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Abstract

Connectivity-matrix independent component analysis (cmICA) is a data-driven
method to calculate brain voxel maps of functional connectivity. It is a powerful
approach, but one limitation is that it can only capture linear relationships. In this
work, we focus on measuring the explicitly nonlinear relationships between the
voxel connectivity to identify brain spatial map in which demonstrate explicitly
nonlinear dependencies. We expand cmICA using normalized mutual information
(NMI) after removing the linear relationships and find highly structured resting
networks which would be completely missed by existing functional connectivity
approaches.

1 INTRODUCTION

During the past few decades, functional magnetic resonance imaging (fMRI) has become one of
the most widespread approaches to understanding brain function. In this area, functional (network)
connectivity has been widely used to analyze the relationship among distinct brain regions. Studies
on network models of fMRI data suggest linear correlation provides a powerful tool to identify the
relation between fMRI time courses [1]. It is also easy to calculate and interpret positive and negative
correlations in the field (e.g., the default mode network tends to be anti-correlated to other networks).
However, some research has suggested that brain activity exhibits nonlinear dynamic behavior [2].
Other studies discuss the nonlinear effects of hemodynamic responses in fMRI data [3, 4], which
can also vary with time (and location) and changes from subject to subject. Considering even just
these few examples of nonlinear effects, it is likely, even expected, that distinct brain areas might
be nonlinearly related in a way that would be missed by conventional linear analysis. In the current
study, we were interested in evaluating the degree to which explicitly nonlinear relationships (i.e.,
after removing the linear relationships) exist among brain regions in a functional connectivity context.
We proposed a new statistical tool, explicitly nonlinear ICA (EN-cmICA), to measure explicitly
nonlinear dependencies in spatiotemporal fMRI data. To do this, we combine two previously distinct
lines of work, connectivity matrix ICA (cmICA), which extracts resting fMRI networks from a
linear connectivity matrix, and normalized mutual information (NMI), which is an information-
theoretic approach that has the advantage of being capable of measuring both linear and nonlinear
dependencies.
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2 MATERIALS AND METHODS

2.1 Participants and Preprocessing

In this work, we applied our method on one subject fBIRN dataset. This data set is part of a larger
data set that has been analyzed previously in [5]. Eyes-closed resting-state fMRI data is collected in
the United States. Informed consent was obtained before scanning in accordance with the internal
review boards of corresponding institutions. Resting-state fMRI scans were acquired using a standard
gradient-echo echo-planar imaging paradigm: FOV of 220 x 220 mm (64 x 64 matrices), TR =
2 s, TE = 30 ms, FA =770, 162 volumes, 32 sequential ascending axial slices of 4 mm thickness
and 1 mm skip. Data were preprocessed by using several toolboxes such as AFNI, SPM, GIFT.
Rigid body motion correction using the INRIAlign [6] toolbox in SPM was applied to correct for
head motion. To remove the outliers, the AFNI3s 3dDespike algorithm was performed. Then fMRI
data were resampled to 3 mm3 isotropic voxels. Then data were smoothed to 6 mm full width at
half maximum (FWHM) using AFNI3s BlurToFWHM algorithm and each voxel time course was
variance normalized. Subjects with larger movement were excluded from the analysis to mitigate
motion effects during the curation process. The preprocessing resulted in a 3D by time matrix for
each subject witch of size (53x63x52)x157. For more details, please see [5].

2.2 Mutual Information Approach

The correlation coefficient mainly measures the linear dependence between two distributions. How-
ever, nonlinear dependence is not captured in the value of the correlation coefficient. Recent statistical
approaches have been proposed to measure the correlation without underestimating the nonlinear
dependency. One of these methods, mutual information (MI), measures both linear and nonlinear
dependencies. However, MI units are not standardized, making it hard to compare across subjects
and datasets. Some of normalizing factors for MI are: 1) min(H(x), H(y)), 2) H(x)+ H(y ), and 3)
max(H(x), H(y)). In this work we used the latter as [7] proved that it is a (normalized) similarity
metric. The normalized MI (NMI) formula is

NMI(x,y) = (H(x) + H(y) — H(z,y))/(max[H (), H(y)])-

In this work, our goal is to calculate only the nonlinear component of dependence. To do so, we
measure the data’s mutual information dependencies after removing the linear dependency. For a
given vector x and y, fitting a linear model y' = ax + (3 gives the linear correlation between x and
y. Here 3/ is the best linear estimation of y when x is given, the slope is denoted by , and is the
y-intercept. Next, we cancel the linear effect by calculating z = y - y’. The nonlinear dependency of x
and z is the same as x and y. Next, we can use NMI(x, z) to evaluate the nonlinear dependency of x
and y. To assure symmetricity i.e., NMI(x, y)=NMI(y, x), we took the average of the results when
switching x and y.

2.3 Explicitly nonlinear mutual Information of cmICA

We use connectivity matrix (cmICA) method, introduced in 8], to be applied on the brain connectivity
to drive spatial map components. Brain connectivity is a voxel-by-voxel matrix whose element (i, j)
value shows the similarity of voxel i and voxel j over time. In this work we used two measures, Pearson
correlation and explicitly nonlinear mutual information (ENMI), to evaluate linear and explicitly
nonlinear components of dependencies between voxels. Note that Pearson correlation is between -1
and 1 while NMI is O to 1. The cmICA is a novel method that can be used for dual parcellation of
the brain connectivity. The dual parcellation consists of a set of spatially independent maps sk and a
corresponding dual set of spatial maps rk such that rk defines the brain regions connected to sk. Our
focus here is on driving spatially independent maps sk from the brain connectivity. To identify spatial
map and explicitly nonlinear spatial map, we took these steps for an individual: The rsfMRI data is a
3D by time matrix (in total 4D). We first convert it to a vector by time, such that voxels get a long one
dimension for each time pint. To reduce the calculation, we restricted to a 2D slice in this work. The
subject data set is a 53 by 63 by 52 by 157 matrix, which is X, y, z, and time. We used the middle z =
26 slice, giving a 2D by time matrix. Next, we cancel voxels that don’t have information about the
brain and vectorize the rest voxels. After that, we calculate the Pearson correlation and ENMI of the
brain voxels, which are the brain connectivity and ENMI brain connectivity (Fig. 1). These matrices



are the cmICA approach’s input. In this work we let the number of components be five. This results
in five linear and EN spatial maps. Fig. 2 demonstrates an example of each spatial maps.

3 RESULT AND FUTURE WORK

We implemented cmICA and EN-cmICA on one subject rsfMRI data set to drive five spatial maps
from each approach. An example of each is displayed in Fig. 2. Note that the two methods, rather
than being comparable, are complementary of each other. The cmICA reveals a set of statistically
independent regions where in each region, the voxels showing a high level of linear correlation. Each
region is considered as one spatial map. The EN-cmICA uncovers a set of statistically independent
regions where in each region, the voxels show a high level of explicitly nonlinear relationship and
considering them as one EN spatial map.
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Figure 1: ENMI and linear connectivity of voxels. The left panel is the correlation between voxels
over time. The right panel is the normalized mutual information after canceling the linear relationship
between voxels over time. Pearson correlation is between -1 to 1, and NMI is between O to 1.
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Figure 2: The EN and linear spatial component. Passing the connectivity and ENMI connectivity
matrices to cmICA approach resulted in linear and explicitly nonlinear spatial maps. The left plot is
one of the linear spatial maps, and the right is one of the EN spatial maps.
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