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Abstract

Language evolution follows the rule of grad-001
ual change. Grammar, vocabulary, and lexical002
semantics shift took place over time, result-003
ing in the diachronic linguistic gap. However,004
a considerable amount of texts are written in005
languages of different eras, which brings obsta-006
cles to natural language processing tasks, such007
as word segmentation and machine translation.008
Chinese is a language with a long history, but009
previous Chinese natural language processing010
works mainly focused on tasks in a specific era.011
Therefore, in this paper, we propose a cross-era012
learning framework for Chinese word segmen-013
tation (CWS), CROSSWISE, which uses the014
Switch-memory (SM) module to incorporate015
era-specific linguistic knowledge. Experiments016
on four corpora with different eras show that017
the performance of each corpus obtains a sig-018
nificant improvement. Further analyses also019
demonstrate that the SM can effectively inte-020
grate the knowledge of the eras into the neural021
network.022

1 Introduction023

As a human-learnable communication system, lan-024

guage is by no means static but evolve over time.025

Various aspects of language, such as grammar, vo-026

cabulary and word meaning change at different027

rates due to language contact and many other fac-028

tors, a fact that led to the diachronic linguistic gap.029

For example, “That slepen al the nyght with open030

ye (That sleep all the night with open eye)” is a031

sentence from The Canterbury Tales, written in032

Middle English by Geoffrey Chaucer at the end033

of the 14th century. It’s difficult for people with-034

out a background of Middle English knowledge035

to understand the sentence. However, some dis-036

courses may consist of modern English and Old037

English because of citation or rhetorical need. For038

instance, Shakespeare’s fourteen lines of poetry is039

often quoted in contemporary novels. This kind of040

era-hybrid text brings barriers to natural language041

Sample from MSR

Golds
(wait) (who) (come) (slove) (ne)？
等待 谁 来 解决 呢 ？

PKUSeg 等待 谁 来 解决 呢 ？

JiaYan 等 待 谁 来 解 决 呢 ？

Sample from AWIKI

Golds
(Qi) (Cui Shu) (leads army) (attack) (Lv)。
齐 崔杼 帅师 伐 莒 。

PKUSeg 齐崔 杼帅 师伐莒 。

JiaYan 齐 崔杼 帅师 伐 莒 。

Table 1: Illustration of the different segmentation results
for a modern Chinese sentence and an ancient Chinese
sentence with different segmentation toolkits.

processing tasks such as word segmentation and 042

machine translation. 043

Having the honour of being listed as one of the 044

oldest languages of the world, the Chinese lan- 045

guage has seen several changes over its long his- 046

tory. It has undergone various incarnations, which 047

is recognized as Archaic (Ancient) Chinese, Mid- 048

dle Ancient Chinese, Near Ancient Chinese, and 049

Modern Chinese. Notably, most Chinese NLP tasks 050

skew towards Modern Chinese. Take Chinese Word 051

Segmentation (CWS) as an example, many pre- 052

vious methods mainly focused on addressing the 053

CWS problem on Modern Chinese and achieved 054

satisfying results (Zheng et al., 2013; Chen et al., 055

2015; Zhang et al., 2016; Xu and Sun, 2016; Shao 056

et al., 2017; Yang et al., 2017; Zhang et al., 2018; 057

Tian et al., 2020b,a). Although CWS for ancient 058

Chinese has been noticed in recent years, the pro- 059

cessing of language-hybrid texts is still an open 060

question. As shown in Table 1, PKUSeg (Luo et al., 061

2019a) is a Chinese segmenter trained with modern 062

Chinese corpus, which can segment the modern 063

Chinese sentence correctly, but its accuracy drops 064

sharply when applied to ancient Chinese. And the 065
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ancient Chinese segmenter JiaYan1 achieves good066

performance on ancient Chinese text, but fails to067

perform well on the Modern Chinese. Therefore,068

it is necessary to develop appropriate models to069

exploit cross-era NLP tasks.070

To this end, we propose CROSSWISE (CROsS-071

ear Segmentation WIth Switch-mEmory), a learn-072

ing framework that deals with cross-era Chinese073

word segmentation (CECWS) task. The frame-074

work integrates era-specific knowledge with the075

Switch-memory mechanism to improve CWS for076

era-hybrid texts. More specifically, we jointly train077

CWS and sentence classification task in order to078

predict both segmentation result and era label. We079

utilize the Switch-memory module to incorporate080

knowledge of different eras, which consists of key-081

value memory networks (Miller et al., 2016) and a082

switcher. The key-value memory networks are used083

to store era-specific knowledge by several memory084

cells. And the sentence discriminator is considered085

as a switcher governing how much information in086

each memory cell will be integrated into the model.087

For each memory cell, we map candidate words088

from dictionary and word boundary information to089

keys and values.090

The main contributions of this paper could be091

summarized as follows.092

• Cross-era learning is first introduced for CWS,093

in which we share all the parameters with a094

multi-task architecture. The shared encoder095

is used to capture the common information096

between several datasets with different eras.097

This single model can produce different words098

segmentation granularity according to the dif-099

ferent era.100

• The Switch-memory mechanism is used to101

integrate era-specific knowledge into the neu-102

ral network, which can help improve the per-103

formance of out of vocabulary (OOV) words.104

And two switcher modes (hard-switcher and105

soft-switcher) are proposed to control how106

much information in each cell will be feed107

into the model.108

• Experimental results from four CWS datasets109

with different eras confirm that the perfor-110

mance of each corpus obtains a significant111

improvement. Further analyses also demon-112

strate that our model is flexible for cross-era113

Chinese word segmentation.114

1http://github.com/jiayan/Jiayan/

2 Related Work 115

Chinese word segmentation is generally considered 116

as a sequence labeling task, i.e. to assign a label to 117

each character in a given sentence. In recent years, 118

many deep learning methods have been applied to 119

CWS successfully (Zheng et al., 2013; Chen et al., 120

2015; Zhang et al., 2016; Xu and Sun, 2016; Shao 121

et al., 2017; Yang et al., 2017; Kurita et al., 2017; 122

Liu et al., 2018; Zhang et al., 2018; Ye et al., 2019a; 123

Higashiyama et al., 2019; Huang et al., 2020b; Tian 124

et al., 2020b,a,c; Liu et al., 2021). Among these 125

studies, some point out that context features and 126

external knowledge can improve the CWS accu- 127

racy (Kurita et al., 2017; Yang et al., 2017; Zhang 128

et al., 2018; Liu et al., 2018; Tian et al., 2020b,a,c). 129

The studies from Liu et al. (2018) and Zhang et al. 130

(2018) leveraged dictionary to improve the task; n- 131

gram are also an effective context feature for CWS 132

(Kurita et al., 2017; Tian et al., 2020b; Shao et al., 133

2017). Tian et al. (2020b) utilized syntactic knowl- 134

edge generated by existing NLP toolkits to improve 135

CWS and part-of-speech (POS). Tian et al. (2020c) 136

incorporated wordwood information for neural seg- 137

menter and achieved state-of-the-art performance 138

at that time. 139

It is a common practice to jointly train CWS and 140

other related tasks based on a multi-task framework. 141

Chen et al. (2017) took each segmentation criterion 142

as a single task, and proposed an adversarial multi- 143

task learning framework for multi-criteria CWS by 144

extracting shared knowledge from multiple segmen- 145

tation datasets. Yang et al. (2017) investigated the 146

effectiveness of several external sources for CWS 147

by a globally optimized beam-search model. They 148

considered each type of external resource as an 149

auxiliary classification, then leveraged multi-task 150

learning to pre-train the shared parameters used for 151

the context modeling of Chinese characters. Liu 152

et al. (2018) jointly trained the CWS and word clas- 153

sification task by a unified framework model. In- 154

spired by these successful studies, we also borrow 155

ideas from the multi-task framework, and jointly 156

train the CWS task and the sentence classification 157

task to boost the performance of cross-era CWS. 158

Recently, some studies have noticed the linguis- 159

tic gap due to the differences in eras. Ceroni et al. 160

(2014) proposed a time-aware re-contextualization 161

approach to bridge the temporal context gap. 162

Chang et al. (2021) reframed the translation of an- 163

cient Chinese text as a multi-label prediction task, 164

then predicted both translation and its particular 165
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Figure 1: CROSSWISE for cross-era Chinese word segmentation. “Dis” represents the discriminator, namely
sentence classifier. “M1” is the first memory cell, its internal structure as shown at the right of the figure. For
each character, the first memory cell extracts all candidate words from the input sentence and only keeps ones that
appeared in the first dictionary (candidate words as keys, words’ boundary information as value).

era by dividing ancient Chinese into three periods.166

Key-value memory networks were introduced to167

the task of directly reading documents and answer-168

ing questions by Miller et al. (2016), which helped169

bridge the gap between direct methods and us-170

ing human-annotated or automatically constructed171

Knowledge Bases. Tian et al. (2020c) utilized this172

mechanism to incorporate n-grams into the neural173

model for CWS.174

Encouraged by the above works, we design a175

multi-task model for cross-era CWS, jointly train176

the sentence classification task and CWS by a uni-177

fied framework model. Key-value memory net-178

works are used to integrate era-specific knowledge179

into the neural network follow Tian et al. (2020c).180

3 The Proposed Framework181

3.1 BERT-CRF model for Chinese word182

Segmentation183

Chinese word segmentation is generally viewed184

as a character-based sequence labeling task. In185

detail, given a sentence X = {x1, x2, ...xT }, each186

character in the sequence is labeled as one of L =187

{B, M, E, S}, indicating the character is at the188

beginning, middle, end of a word, or the character189

is a single-character word. CWS aims to figure out190

the ground truth of labels Y ∗ = {y∗1, y∗2, . . . y∗T }:191

Y ∗ = arg max P (Y |X)Y ∈LT (1)192

The universal end-to-end neural CWS architec-193

ture usually contains an encoder and a decoder.194

Encoding layer. According to Fu et al. (2020),195

although BERT-based (Devlin et al., 2019) mod-196

els for CWS are not impeccable, BERT is inferior197

to un-pre-training models in many aspects, such198

as BERT is more suitable for dealing with long 199

sentences. therefore, we utilize BERT released by 200

Devlin et al. (2019) as the shared encoder, which 201

is pre-trained with a large number of unlabeled 202

Chinese data. 203

{h1, ...,hi, ...,hT } = Encoder({x1, ..., xi, ...xT })
(2) 204

where hi is the representation for xi from the en- 205

coder. 206

Decoding layer. In this work, we use a shared 207

decoder for different eras’ samples, since we com- 208

bined era-aware representation for each character 209

by the Switch-memory module. There are different 210

algorithms that can be implemented as decoders, 211

such as random conditional fields (CRF) (Lafferty 212

et al., 2001) and softmax. In our framework, we 213

use CRF as the decoder. 214

In CRF layer, P (Y |X) in Eq. 1 could be repre- 215

sented as: 216

P (Y |X) =
∅(Y |X)∑

Y ′∈LT ∅(Y ′|X)
(3) 217

where, ∅(Y |X) is the potential function, and we 218

only consider interactions between two successive 219

labels. 220

∅(Y |X) =

T∏
i=2

σ(X, i, yi−1, yi) (4) 221

σ(x, i, y′, y) = exp(s(X, i)y + by′y) (5) 222

where by′y ∈ R is trainable parameters respec- 223

tive to label pair (y′, y). The score function 224

s(X , i) ∈ R|L| calculate the score of each lable 225

for ith character: 226
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Rule Vi,j

xi is the beginning character of wi,j . VB

xi is the ending character of wi,j . VE

xi is a single word, wi,j . VS

Table 2: the rules for assigning different values to xi

according to its position in word wi,j .

s(X i) = W⊤
s ai + bs (6)227

where ai is the final representation for ith char-228

acter. Ws ∈ Rda×L and bs ∈ R|L| are trainable229

parameters.230

3.2 Switch-memory mechanism231

The Switch-memory consists of d memory cells232

and a switcher. For an input sentence, there are233

d memory cells for each character. The switcher234

govern how much information in each cell will be235

integrated into the network. And the state of the236

switcher depends on sentence classification task.237

3.2.1 Memory cells238

Dictionary has been used as an useful external239

source to improve the performance for CWS in240

many studies(Yang et al., 2017; Liu et al., 2018;241

Zhang et al., 2018). However, the method of incor-242

porating dictionary for previous studies is limited243

in either concatenating candidate words and charac-244

ter embeddings or requiring handcrafted templates.245

In this work, we utilize key-value memory net-246

works to incorporate dictionary information, which247

is initially applied to the Question Answering(QA)248

task for better storage of prior knowledge required249

by QA. Intuitively, we can also use this network250

structure to store the prior knowledge required by251

cross-era CWS.252

At a fine-grained view, the notion of “ancient253

Chinese” may not be considered a single language254

with a static word-meaning mapping. Ancient255

Chinese has three development stages: Ancient,256

Middle Ancient, and Near Ancient. Each stage257

has specific lexicon and word segmentation gran-258

ularity. Therefore, we construct four dictionaries259

D = {D0, D1, D2, D3}, associating with the four260

development stages of Chinese respectively, and261

each dictionary is era-related. Given a sentence,262

four memory cells are generated for each character263

in the sentence according to the four dictionaries,264

and each memory cell will map candidate words265

and word boundary information to keys and values.266

Candidate words as keys. Following 267

Miller et al., for each xi in the input sentence, 268

each dictionary has many words containing 269

xi, we only keep the n-grams from xi’s con- 270

text and appear in each dictionary, resulting 271

wd
i = {wd

i,1, wd
i,2, ...w

d
i,j ...w

d
i,mi

} , xi is a part 272

of word wd
i,j ∈ Dd, d ∈ [0, 3]. We use an 273

example to illustrate our idea. For the input 274

sentence show in Figure 1, there are many n-grams 275

for x3 = “海(sea)”, we only keep ones that 276

appear in D0 for the first memory cell, thus, w0
3 = 277

{“海口(HaiKou)”, “入海口(estuary)”, “海(sea)”}. 278

Similarly, we can generate w1
3, w2

3, w3
3 for the 279

second, third and fourth memory cell according to 280

D1, D2, D3. Then, the memory cell compute the 281

probability for each key (which are denoted as ewi,j 282

for each wd
i,j), here hi is the embedding for xi, 283

which is encoded by the encoder. 284

pdi,j =
exp(hi · ewi,j )∑mi
j=1 exp(hi · ewi,j )

(7) 285

Word boundary information as values. As 286

we know, CWS aims to find the best segment po- 287

sition. However, each character xi may have dif- 288

ferent position in each wd
i,j . For example, xi may 289

be at the beginning, middle, ending of wd
i,j , or 290

xi may form a single word. Different positions 291

convey different information. Therefore, we use 292

the boundary information of candidate words as 293

values for key-value networks. As shown in Ta- 294

ble 2, a set of word boundary value {VB, VE , VS} 295

with embeddings {eVB
, eVE

, eVS
} represent the 296

xi’s different positions in wd
i,j , and we map xi 297

to different value vectors according to its posi- 298

tions. As a result, each wd
i for xi has a values 299

list Vd
i = [vdi,1, v

d
i,2, ...v

d
i,j , ...v

d
i,mi

]. In Figure 1, 300

x3 = “海(sea)”, for the first memory cell, we can 301

map candidate word boundary information to the 302

value list V0
3 = [VS , VB ]. Four cells for xi has 303

a values list Vi = [v0i , v
1
i , v

2
i , v

3
i ]. Then the dth 304

memory cell embedding for xi is computed from 305

the weighted sum of all keys and values as follow. 306

odi =

mi∑
j=1

pdi,je
vd

i,j (8) 307

where ev
d

i,j is the embedding for vdi,j . Next, the final 308

character embedding is the element-wise sum of oi 309

and hi, or their concatenation, passing through a 310

fully connected layer as follow: 311

ai = Wo · (oi ⊙ hi) (9) 312
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where ⊙ operation could be sum or concatenate,313

Wo is a trainable parameter and the output ai ∈ RT314

is the final representation for the ith character. oi is315

the final memory embedding for the ith character,316

and can be calculated as follow.317

oi = Switcher([o0i , o1i , o2i , o3i ]) (10)318

The Switcher is used to control how much infor-319

mation in each memory cell will be combined with320

the output of the encoder.321

3.2.2 The switcher322

Inspired by the efforts of multi-task, we add a dis-323

criminator network on the top of the source encoder324

to predict the era label of the input sentence. The325

discriminator predicts the probability of the correct326

era label z conditioned on the hidden states of the327

encoder H. The loss function of the discriminator328

is Jdisc = −logP (z|H), through minimizing the329

negative cross-entropy loss to maximizes P (z|H).330

The predicted result is not only used to switch mem-331

ory cells, intuitively, but it also forces the encoder332

to encode era-related information into the features333

it generates.334

For our work, we feed H into a fully-connected335

layer and let it pass through a softmax layer to336

obtain probabilities for each era label.337

Switch mode. For the switcher, we propose two338

switcher modes, hard-switcher and soft-switcher.339

Hard-switcher switches memory cells according340

to the final predict result from the discriminator.341

For the input sentence in Figure 1, if the pre-342

dict result is the modern era, the switcher will343

switch to the memory cell associated with mod-344

ern Chinese, and oi = odi . Soft-switcher switches345

memory cells according to the predict probabil-346

ity, which will be taken as the weight for each347

memory cell. Soft-switcher means there are some348

other datasets corresponding dictionary informa-349

tion that will be incorporated into the current sen-350

tence representation. For example, the predict prob-351

ability list is [0.1, 0.2, 0.1, 0.6 ], therefore, the352

final memory representation for ith character is353

oi = o0i ∗ 0.1 +o1i ∗ 0.2 +o2i ∗ 0.1+o3i ∗ 0.6.354

3.2.3 Objective355

In our framework, the discriminator is optimized356

jointly with the CWS task, both sharing the same357

encoding layer. We assign different weights to the358

loss of the two tasks, the final loss function is:359

J = αJ cws + (1 − α) Jdisc (11)360

where α is the weight that controls the interaction 361

of the two losses. J cws is the negative log likeli- 362

hood of true labels on the training set. 363

J cws = −
N∑

n=1

log(P (Yn|Xn)) (12) 364

where N is the number of samples for training set, 365

and Yn is the ground truth tag sequence of the nth 366

sample. 367

4 Experiment 368

4.1 Datasets 369

We evaluate our proposed architecture on four 370

CWS datasets from Academia Sinica Ancient Chi- 371

nese Corpus2 (ASACC) and SIGHAN 2005 (Emer- 372

son, 2005). Table 3 lists the statistics of all datasets. 373

Among these datasets, PKIWI, DKIWI, AKIWI 374

from ASACC, corresponding to near ancient Chi- 375

nese, middle ancient Chinese, ancient Chinese re- 376

spectively, and MSR from SIGHAN 2005 is a 377

modern Chinese CWS dataset. Note that PKIWI, 378

DKIWI, and AKIWI are traditional Chinese, and 379

we translate them into simplified Chinese before 380

segmentation. 381

For PKIWI, DKIWI, and AKIWI, we randomly 382

pick 5K examples as test set, and randomly pick 383

10% instances from training set as the development 384

set for all the datasets. Similar to previous work 385

(Chen et al., 2017), we preprocess all datasets by 386

replacing Latin characters, digits, and punctuation 387

with a unique token. 388

4.2 Experimental Configurations 389

In our experiments, for the encoder BERT, we fol- 390

low the default setting of the BERT (Devlin et al., 391

2019). The key embedding size and value embed- 392

ding size are the same as the output of the encoder, 393

and we random initialize them. For the baseline 394

model Bi-LSTM, we set character embedding size 395

to 300 and set the hidden state to 100. For the trans- 396

former, we follow the settings as Qiu et al. (2020). 397

The loss weight coefficient α is a hyper-parameter 398

to balance the classification loss and segmentation 399

loss, we searched for α from 0 to 1 by setting an 400

equal interval to 0.1, and the model achieves the 401

best performance when α is set to 0.7. 402

We use the words from the training set as the 403

internal dictionary, and each training set generates 404

2http://lingcorpus.iis.sinica.edu.tw/
ancient
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Datasets Words Chars Word types Char Types Sents OOV Rate

ASACC

AKIWI
Train 2.8M 3.2M 65.3K 7.5K 59.7K -
Test 0.2M 0.3M 15.7K 4.4K 5K 4.35%

DKIWI
Train 2.2M 2.8M 44.3K 6.0K 50.1K -
Test 0.2M 0.3M 13.0K 3.8K 5K 4.91%

PKIWI
Train 6.4M 7.8M 117.0K 7.2K 144.1K -
Test 0.2M 0.3M 18.6K 4.4K 5K 1.71%

SIGHAN05 MSR
Train 2.4M 4.1M 88.1K 5.2K 86.9K -
Test 0.1M 0.2M 12.9K 2.8K 4.0K 2.60%

Table 3: Detail of the four datasets.

a dictionary. The simplified Chinese dictionary405

sourced from jieba 3 is used as the external dic-406

tionary for MSR, and we extract words from The407

ErYa (an ancient dictionary) and ancient Chinese408

textbooks as the external dictionary for AWIKI. In409

particular, for PWIKI and DWIKI, we use high-410

frequency bi-grams and tri-grams extracted from411

the corresponding period corpus 4 as external dic-412

tionaries.413

4.3 Overall results414

In this section, we first give the experimental results415

of the proposed model on test sets of four cross-416

era CWS datasets. The experimental results on the417

aforementioned four datasets are shown in Table418

4, where the F1 score and the OOV recall rate are419

reported.420

There are several observations drawn from the421

results. First, we compare BERT-CRF in single-era422

scenario (ID:1 in Table 4) and cross-era learning423

without the SM module (ID:6). As can be seen424

from the table, when mixing four datasets, the aver-425

age F1 value on all datasets slightly drops. Single-426

era dataset learning obtains 97.61 in average F1427

value, while cross-era learning without the Switch-428

memory module obtains 97.32 average F1 value. It429

shows that the performance cannot be improved by430

merely mixing several datasets.431

Second, these models with the SM mecha-432

nism (ID:3,5,7) outperform those baseline models433

(ID:2,4,6) in terms of F1 value and Roov on all434

datasets. For instance, BERT-CRF with SM mod-435

ule (ID:7) gains 1.09% improvement on the average436

F1 score compared with BERT-CRF(ID:6), and the437

average Roov improves from 76.15 to 82.37. It in-438

dicates that the Switch-memory can help improve439

3github.com/fxsjy/jieba/tree/master/
jieba/dict.txt

4http://core.xueheng.net/

segmentation and Roov performance by integrating 440

era-specific knowledge. 441

Third, among different encoders, the improve- 442

ment of pre-trained encoder BERT on F1 value 443

is still decent. When using Bi-LSTM as the en- 444

coder (ID:2,3), the average F1 value and the Roov 445

is 89.15, 90.66, respectively. When using BERT 446

as the encoder (ID:6,7), the F1 value obtains about 447

8% improvement. The reason may be that the pre- 448

training processing supplements some effective ex- 449

ternal knowledge. 450

To further illustrate the validity and the effective- 451

ness of our model, we compare our best result on 452

four datasets with some previous state-of-the-art 453

works. Multi-domain and multi-criteria Chinese 454

word segmentation are very similar to our task in 455

some aspects, and therefore we also reproduce ex- 456

periments on several previous word segmentation 457

models with four datasets (Luo et al., 2019b; Qiu 458

et al., 2020; Huang et al., 2020a). For the multi- 459

domain segmenter PKUSeg (Luo et al., 2019b), we 460

train four datasets with pre-trained mixed model, 461

respectively. The comparison is shown in Table 5, 462

and our model outperforms previous methods. 463

4.4 Ablation study 464

Table 6 shows the effectiveness of each component 465

in the SM module. 466

The first ablation study is to verify the effec- 467

tiveness of memory cells. In this experiment, the 468

sentence classification task is no longer a switcher, 469

it’s simply a joint training task with word segmen- 470

tation. We can see that ancient Chinese datasets 471

(AWIKI, DWIKI, PWIKI) are more sensitive to the 472

memory cells than MSR. This may be explained by 473

the fact that the encoder is pre-trained with a large 474

number of modern Chinese data, and our memory 475

cells incorporate some ancient era knowledge into 476

the model, and help boost the performance on the 477
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NO. En-De AWIKI PWIKI DWIKI MSR Avg.
Single-era learning

1 BT-CRF
F 97.62 97.58 97.19 98.03 97.61
Roov 68.85 76.58 74.80 86.85 76.77

Cross-era learning

2 BL-CRF
F 89.78 85.98 87.04 93.81 89.15
Roov 45.55 46.43 37.51 58.06 46.89

3 BL-CRF+SM
F 90.66 87.41 89.18 95.42 90.66
Roov 43.48 44.40 32.78 78.74 49.76

4 TR-CRF
F 95.89 95.43 95.87 92.68 94.97
Roov 57.87 58.01 47.07 72.24 58.80

5 TR-CRF+SM
F 96.69 97.04 96.87 96.71 96.82
Roov 64.22 57.23 50.42 71.34 60.80

6 BT-CRF
F 97.04 97.51 96.96 97.75 97.32
Roov 68.78 75.39 73.94 86.48 76.15

7 BT-CRF+SM(CROSSWISE)
F 98.46 98.04 98.42 98.73 98.41
Roov 83.88 81.86 77.25 86.50 82.37

Table 4: Experimental results of the proposed model on the tests of four CWS datasets with different configurations,
“+SM” indicates this model uses the Switch-memory module. There are two blocks. The first block is results of
the baseline model (BERT - CRF) on the single-era dataset. The second block consists of the results of cross-era
learning model with different encoders (“BL” for Bi-LSTM, “TR” for Transformer, “BT” for BERT ). Here, F, Roov

represent the F1 value and OOV recall rate respectively. The maximum F1 values are highlighted for each dataset.

Models AWIKI PWIKI DWIKI MSR
F Roov F Roov F Roov F Roov

Chen et al. (2017) - - - - - - 96.04 71.60
Gong et al. (2019) - - - - - - 97.78 64.20
Luo et al. (2019b) 91.25 56.32 97.01 48.09 97.00 43.18 97.09 75.19
Ye et al. (2019b) - - - - - - 98.40 84.87
Qiu et al. (2020) 96.44 65.06 95.83 63.75 96.31 57.03 98.05 78.92
Huang et al. (2020a) 98.16 78.97 97.70 75.69 98.12 74.28 98.29 81.75
Tian et al. (2020c) - - - - - - 98.28 86.67
CROSSWISE 98.46 83.88 98.04 81.86 98.42 77.25 98.73 86.50

Table 5: Performance (F1 value) comparison between CROSSWISE and previous state-of-the-art models on the test
sets of four datasets.

three ancient Chinese datasets.478

The second ablation study is to evaluate the ef-479

fect of the switcher. For this experiment, we use480

the average of four memory cells embedding as481

the final memory representation. The comparison482

between the second and the third line indicates that483

the switcher is an important component when inte-484

grating era-specific information.485

In summary, in terms of average performance,486

the switcher and memory cells both can boost the487

performance on OOV considerably.488

Figure 2: The F1 values of CROSSWISE using four
pair settings, “hard+sum” means hard-switcher and sum
the memory embedding and the character embedding
from encoder as the final character representation.
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ID Switcher Memory AWIKI DWIKI PWIKI MSR
F Roov F Roov F Roov F Roov

1 ✓ × 98.00 80.62 97.87 80.69 97.52 74.69 98.01 86.48
2 × ✓ 98.28 76.58 97.85 74.80 98.32 74.85 98.63 86.85
3 ✓ ✓ 98.46 83.88 98.04 81.86 98.42 77.25 98.73 86.50

Table 6: Ablation experiments.

Sample from MSR (Modern Chinese): 从大乱走向大治，中经雍正承前启后。
(From chaos to prosperity, through Yongzheng connects the past and the future.)

Golds
从 大 乱 走 向 大 治 ， 中 经 雍正 承前启后 。

from big chaos go to big prosperity ， middle through Yongzheng connect 。
w/o SM 从 大 乱 走 向 大 治 ， 中经 雍正 承前启后 。

Ours 从 大 乱 走 向 大 治 ， 中 经 雍正 承前启后 。

Mixed sample from DWIKI (Near Ancient Chinese): 古人诗中有“水流花谢两无情”。
(In ancient poems, there are “two merciless things: water flowing and flowers fading.)

Golds
古 人 诗 中 有 “ 水 流 花 谢 两 无情 ”。

ancient people poem in have “ water flow flower fade two merciless ”。
w/o SM 古 人 诗 中 有 “ 水 流 花 谢 两 无 情 ”。
Ours 古 人 诗 中 有 “ 水 流 花 谢 两 无情 ”。

Table 7: Segmentation cases from the test sets of MSR and DWIKI datasets.

4.5 Mode selection489

In this section, we investigate the influence of the490

switcher mode and the combination mode (concate-491

nate or sum) of the memory embedding and the492

character embedding.493

To better understand the effect of the different494

configurations. We study four pair settings to train495

our model on four datasets, the results as shown in496

Figure 2, where different color poly lines represent497

different dataset. As we see, soft-switcher signifi-498

cantly improves the F1 value on MSR comparing499

to hard-switcher, while other three datasets perfer500

hard-switcher, which implies that the forward di-501

rection of knowledge dissemination from ancient to502

modern can help modern Chinese word segmenta-503

tion, and the reverse knowledge dissemination will504

have a negative impact on ancient Chinese word505

segmentation. Concatenating the memory embed-506

ding and the character embedding from the encoder507

outperforms summing both.508

4.6 Case study509

We further explore the benefits of the SM mecha-510

nism by comparing some cases from BERT-CRF511

and CROSSWISE. Table 7 lists two examples from512

the test sets of MSR and DWIKI datasets. Ac-513

cording to the results, in the first sentence, BERT-514

CRF gives the wrong prediction of boundary in515

“中(middle)” and “经(through)”. However, our 516

CROSSWISE achieves exact segmentation of this 517

instance. The second sample is a sentence written 518

in both ancient and modern Chinese, we could ob- 519

serve that CROSSWISE also can split the words 520

correctly. This investigation indicates that our 521

model is flexible for era-hybrid texts Chinese word 522

segmentation, and can produce the different seg- 523

mentation granularity of words according to the era 524

of the sentence. At the same time, it also shows that 525

our model is effective to integrate the era-specific 526

linguistic knowledge according to different sam- 527

ples. 528

5 Conclusion 529

In this paper, we propose a flexible model, called 530

CROSSWISE, for cross-era Chinese word segmen- 531

tation, which can improve the performance of every 532

single dataset by fully integrating the era-specific 533

knowledge. Experiments on four corpora show the 534

effectiveness of our model. In the future, we are 535

also planning to incorporate other labeling tasks 536

into the CROSSWISE, such as POS tagging and 537

named entity recognition. 538
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A Appendix 741

A.1 Extra Case Study 742

We further explore the benefits of the SM mech- 743

anism by comparing some cases from BERT- 744

CRF and CROSSWISE. Table 8 lists three exam- 745

ples from the test sets of Ancient Chinese, mod- 746

ern Chienae, and Near Ancient Chinese datasets. 747

According to the results, in the first sentence, 748

“靡(swept)” and “草(grass)” are two words in an- 749

cient Chinese, BERT-CRF treats these two words 750

as a single word; BERT-CRF gives the second 751

sentence the wrong prediction of boundary in 752

“中(middle)” and “经(through)”. However, our 753

CROSSWISE achieves all exact segmentation of 754

these instances. The third sample is a sentence 755

written in both ancient and modern Chinese, we 756

could observe that CROSSWISE also can split the 757

words correctly. This investigation indicates that 758

our model is flexible for era-hybrid texts Chinese 759

word segmentation, and can produce the different 760

segmentation granularity of words according to the 761

era of the sentence. At the same time, it also shows 762

that the SM mechanism is effective to integrate 763

the era-specific linguistic knowledge according to 764

different samples. 765
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Sample from AWIKI (Ancient Chinese): 故上化下，犹风之靡草也。
(Therefore, the superior civilizes and the subordinate, like the winds swept the grass)

Golds
故 上 之 化 下 ， 犹 风 之 靡 草 也 。
so superior zhi enlighten subordinate ， like wind zhi swept grass ye 。

w/o SM 故 上 之 化 下 ， 犹 风 之 靡草 也 。

Ours 故 上 之 化 下 ， 犹 风 之 靡 草 也 。

Sample from MSR (Modern Chinese): 从大乱走向大治，中经雍正承前启后。
(From chaos to prosperity, through Yongzheng connects the past and the future.)

Golds
从 大 乱 走 向 大 治 ， 中 经 雍正 承前启后 。

from big chaos go to big prosperity ， middle through Yongzheng connect 。
w/o SM 从 大 乱 走 向 大 治 ， 中经 雍正 承前启后 。

Ours 从 大 乱 走 向 大 治 ， 中 经 雍正 承前启后 。

Mixed sample from DWIKI (Near Ancient Chinese): 古人诗中有“水流花谢两无情”。
(In ancient poems, there are “two merciless things: water flowing and flowers fading.)

Golds
古 人 诗 中 有 “ 水 流 花 谢 两 无情 ”。

ancient people poem in have “ water flow flower fade two merciless ”。
w/o SM 古 人 诗 中 有 “ 水 流 花 谢 两 无 情 ”。
Ours 古 人 诗 中 有 “ 水 流 花 谢 两 无情 ”。

Table 8: Segmentation cases from the test sets of MSR, AWKI and DWIKI datasets.

A.2 Effect on Dataset Imbalance766

In this section, we investigate the influence of767

the switcher mode and the combination mode.768

Our model is a multi-task framework, imbalanced769

datasets will bring some sentence classification er-770

rors, we expect to use different switcher modes to771

minimize the negative effect of these errors.772

We study four pair settings to train our model on773

four intact datasets, the results as shown in Figure774

3(a). According to Table 3, the data of the four775

datasets are unbalanced. In order to explore the re-776

lationship between the data balance and experiment777

configurations. We randomly keep 50K training778

samples for MSR and PKIWI in the training set779

respectively, then conduct experiments with differ-780

ent settings. The experimental results as shown in781

Figure 3(b). Although less than half of the training782

data has been reduced, MSR is still sensitive to783

the “soft-concat” setting and keeps a competitive784

F1 value. The results of the other three datasets785

drop slightly. Moreover, the comparison between786

Figure 3(a) and Figure 3(b) indicates that although787

the data are imbalanced, hybrid training is also a788

strategy to increase the scale of training samples in789

disguise. As we know, the scale of training samples790

is the key to improve the performance with neural791

methods.792

(a) The F1 values of SMSeg using four pair settings on
four datasets, the data of the four datasets are unbalanced.

(b) The F1 values of SMSeg using four pair settings on
four datasets, the data of the four datasets are balanced.
MSR and PKIWI only keep about 50K training samples.

Figure 3: The F1 values of SMSeg using four pair set-
tings, “hard+sum” means hard-switcher and sum the
memory embedding and the character embedding from
encoder as the final character representation.
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