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Abstract

Language evolution follows the rule of grad-
ual change. Grammar, vocabulary, and lexical
semantics shift took place over time, result-
ing in the diachronic linguistic gap. However,
a considerable amount of texts are written in
languages of different eras, which brings obsta-
cles to natural language processing tasks, such
as word segmentation and machine translation.
Chinese is a language with a long history, but
previous Chinese natural language processing
works mainly focused on tasks in a specific era.
Therefore, in this paper, we propose a cross-era
learning framework for Chinese word segmen-
tation (CWS), CROSSWISE, which uses the
Switch-memory (SM) module to incorporate
era-specific linguistic knowledge. Experiments
on four corpora with different eras show that
the performance of each corpus obtains a sig-
nificant improvement. Further analyses also
demonstrate that the SM can effectively inte-
grate the knowledge of the eras into the neural
network.

1 Introduction

As a human-learnable communication system, lan-
guage is by no means static but evolve over time.
Various aspects of language, such as grammar, vo-
cabulary and word meaning change at different
rates due to language contact and many other fac-
tors, a fact that led to the diachronic linguistic gap.
For example, “That slepen al the nyght with open
ye (That sleep all the night with open eye)” is a
sentence from The Canterbury Tales, written in
Middle English by Geoffrey Chaucer at the end
of the 14th century. It’s difficult for people with-
out a background of Middle English knowledge
to understand the sentence. However, some dis-
courses may consist of modern English and Old
English because of citation or rhetorical need. For
instance, Shakespeare’s fourteen lines of poetry is
often quoted in contemporary novels. This kind of
era-hybrid text brings barriers to natural language
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Table 1: Illustration of the different segmentation results
for a modern Chinese sentence and an ancient Chinese
sentence with different segmentation toolkits.

processing tasks such as word segmentation and
machine translation.

Having the honour of being listed as one of the
oldest languages of the world, the Chinese lan-
guage has seen several changes over its long his-
tory. It has undergone various incarnations, which
is recognized as Archaic (Ancient) Chinese, Mid-
dle Ancient Chinese, Near Ancient Chinese, and
Modern Chinese. Notably, most Chinese NLP tasks
skew towards Modern Chinese. Take Chinese Word
Segmentation (CWS) as an example, many pre-
vious methods mainly focused on addressing the
CWS problem on Modern Chinese and achieved
satisfying results (Zheng et al., 2013; Chen et al.,
2015; Zhang et al., 2016; Xu and Sun, 2016; Shao
etal., 2017; Yang et al., 2017; Zhang et al., 2018;
Tian et al., 2020b,a). Although CWS for ancient
Chinese has been noticed in recent years, the pro-
cessing of language-hybrid texts is still an open
question. As shown in Table 1, PKUSeg (Luo et al.,
2019a) is a Chinese segmenter trained with modern
Chinese corpus, which can segment the modern
Chinese sentence correctly, but its accuracy drops
sharply when applied to ancient Chinese. And the




ancient Chinese segmenter JiaYan' achieves good
performance on ancient Chinese text, but fails to
perform well on the Modern Chinese. Therefore,
it is necessary to develop appropriate models to
exploit cross-era NLP tasks.

To this end, we propose CROSSWISE (CROsS-
ear Segmentation WIth Switch-mEmory), a learn-
ing framework that deals with cross-era Chinese
word segmentation (CECWS) task. The frame-
work integrates era-specific knowledge with the
Switch-memory mechanism to improve CWS for
era-hybrid texts. More specifically, we jointly train
CWS and sentence classification task in order to
predict both segmentation result and era label. We
utilize the Switch-memory module to incorporate
knowledge of different eras, which consists of key-
value memory networks (Miller et al., 2016) and a
switcher. The key-value memory networks are used
to store era-specific knowledge by several memory
cells. And the sentence discriminator is considered
as a switcher governing how much information in
each memory cell will be integrated into the model.
For each memory cell, we map candidate words
from dictionary and word boundary information to
keys and values.

The main contributions of this paper could be
summarized as follows.

* Cross-era learning is first introduced for CWS,
in which we share all the parameters with a
multi-task architecture. The shared encoder
is used to capture the common information
between several datasets with different eras.
This single model can produce different words
segmentation granularity according to the dif-
ferent era.

e The Switch-memory mechanism is used to
integrate era-specific knowledge into the neu-
ral network, which can help improve the per-
formance of out of vocabulary (OOV) words.
And two switcher modes (hard-switcher and
soft-switcher) are proposed to control how
much information in each cell will be feed
into the model.

» Experimental results from four CWS datasets
with different eras confirm that the perfor-
mance of each corpus obtains a significant
improvement. Further analyses also demon-
strate that our model is flexible for cross-era
Chinese word segmentation.

"http://github.com/jiayan/Jiayan/

2 Related Work

Chinese word segmentation is generally considered
as a sequence labeling task, i.e. to assign a label to
each character in a given sentence. In recent years,
many deep learning methods have been applied to
CWS successfully (Zheng et al., 2013; Chen et al.,
2015; Zhang et al., 2016; Xu and Sun, 2016; Shao
etal., 2017; Yang et al., 2017; Kurita et al., 2017;
Liuetal., 2018; Zhang et al., 2018; Ye et al., 2019a;
Higashiyama et al., 2019; Huang et al., 2020b; Tian
et al., 2020b,a,c; Liu et al., 2021). Among these
studies, some point out that context features and
external knowledge can improve the CWS accu-
racy (Kurita et al., 2017; Yang et al., 2017; Zhang
et al., 2018; Liu et al., 2018; Tian et al., 2020b,a,c).
The studies from Liu et al. (2018) and Zhang et al.
(2018) leveraged dictionary to improve the task; n-
gram are also an effective context feature for CWS
(Kurita et al., 2017; Tian et al., 2020b; Shao et al.,
2017). Tian et al. (2020b) utilized syntactic knowl-
edge generated by existing NLP toolkits to improve
CWS and part-of-speech (POS). Tian et al. (2020c)
incorporated wordwood information for neural seg-
menter and achieved state-of-the-art performance
at that time.

It is a common practice to jointly train CWS and
other related tasks based on a multi-task framework.
Chen et al. (2017) took each segmentation criterion
as a single task, and proposed an adversarial multi-
task learning framework for multi-criteria CWS by
extracting shared knowledge from multiple segmen-
tation datasets. Yang et al. (2017) investigated the
effectiveness of several external sources for CWS
by a globally optimized beam-search model. They
considered each type of external resource as an
auxiliary classification, then leveraged multi-task
learning to pre-train the shared parameters used for
the context modeling of Chinese characters. Liu
et al. (2018) jointly trained the CWS and word clas-
sification task by a unified framework model. In-
spired by these successful studies, we also borrow
ideas from the multi-task framework, and jointly
train the CWS task and the sentence classification
task to boost the performance of cross-era CWS.

Recently, some studies have noticed the linguis-
tic gap due to the differences in eras. Ceroni et al.
(2014) proposed a time-aware re-contextualization
approach to bridge the temporal context gap.
Chang et al. (2021) reframed the translation of an-
cient Chinese text as a multi-label prediction task,
then predicted both translation and its particular
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Figure 1: CROSSWISE for cross-era Chinese word segmentation. “Dis” represents the discriminator, namely
sentence classifier. “M;” is the first memory cell, its internal structure as shown at the right of the figure. For
each character, the first memory cell extracts all candidate words from the input sentence and only keeps ones that
appeared in the first dictionary (candidate words as keys, words’ boundary information as value).

era by dividing ancient Chinese into three periods.

Key-value memory networks were introduced to
the task of directly reading documents and answer-
ing questions by Miller et al. (2016), which helped
bridge the gap between direct methods and us-
ing human-annotated or automatically constructed
Knowledge Bases. Tian et al. (2020c) utilized this
mechanism to incorporate n-grams into the neural
model for CWS.

Encouraged by the above works, we design a
multi-task model for cross-era CWS, jointly train
the sentence classification task and CWS by a uni-
fied framework model. Key-value memory net-
works are used to integrate era-specific knowledge
into the neural network follow Tian et al. (2020c¢).

3 The Proposed Framework

3.1 BERT-CRF model for Chinese word
Segmentation

Chinese word segmentation is generally viewed
as a character-based sequence labeling task. In
detail, given a sentence X = {x1, xg,...x7}, each
character in the sequence is labeled as one of £ =
{B, M, E, S}, indicating the character is at the
beginning, middle, end of a word, or the character
is a single-character word. CWS aims to figure out
the ground truth of labels Y* = {y{,v5,...y} }:

Y* =argmazx P(Y|X)ycpr (1)

The universal end-to-end neural CWS architec-
ture usually contains an encoder and a decoder.

Encoding layer. According to Fu et al. (2020),
although BERT-based (Devlin et al., 2019) mod-
els for CWS are not impeccable, BERT is inferior
to un-pre-training models in many aspects, such

as BERT is more suitable for dealing with long
sentences. therefore, we utilize BERT released by
Devlin et al. (2019) as the shared encoder, which
is pre-trained with a large number of unlabeled
Chinese data.

{hy,....,h;,....hp} = Encoder({x1, ..., x;, ...x7})
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where h; is the representation for z; from the en-
coder.

Decoding layer. In this work, we use a shared
decoder for different eras’ samples, since we com-
bined era-aware representation for each character
by the Switch-memory module. There are different
algorithms that can be implemented as decoders,
such as random conditional fields (CRF) (Lafferty
et al., 2001) and softmax. In our framework, we
use CRF as the decoder.

In CRF layer, P (Y| X) in Eq. 1 could be repre-
sented as:

hv]X)

i som TS B
where, ((Y|X) is the potential function, and we
only consider interactions between two successive
labels.

T

Y IX) = [[o(X,iyimr,m) @

=2

o(x,i,y,y) = exp(s(X, i)y—l—by/y) 5)

where b, € R is trainable parameters respec-
tive to label pair (y', y). The score function
s(X , i) € RI¥l calculate the score of each lable
for 74, character:



Rule Vij
x; is the beginning character of w; ;. | Vp
x; 1s the ending character of w; ;. Ve
x; 18 a single word, w; ;. Vg

Table 2: the rules for assigning different values to x;
according to its position in word wy ;.

s(X i) = W/a; +b, (6)

where a; is the final representation for i, char-
acter. W, € R%*L and b, € RI£l are trainable
parameters.

3.2 Switch-memory mechanism

The Switch-memory consists of d memory cells
and a switcher. For an input sentence, there are
d memory cells for each character. The switcher
govern how much information in each cell will be
integrated into the network. And the state of the
switcher depends on sentence classification task.

3.2.1

Dictionary has been used as an useful external
source to improve the performance for CWS in
many studies(Yang et al., 2017; Liu et al., 2018;
Zhang et al., 2018). However, the method of incor-
porating dictionary for previous studies is limited
in either concatenating candidate words and charac-
ter embeddings or requiring handcrafted templates.
In this work, we utilize key-value memory net-
works to incorporate dictionary information, which
is initially applied to the Question Answering(QA)
task for better storage of prior knowledge required
by QA. Intuitively, we can also use this network
structure to store the prior knowledge required by
cross-era CWS.

At a fine-grained view, the notion of “ancient
Chinese” may not be considered a single language
with a static word-meaning mapping. Ancient
Chinese has three development stages: Ancient,
Middle Ancient, and Near Ancient. Each stage
has specific lexicon and word segmentation gran-
ularity. Therefore, we construct four dictionaries
D = {Dy, D1, Dy, D3}, associating with the four
development stages of Chinese respectively, and
each dictionary is era-related. Given a sentence,
four memory cells are generated for each character
in the sentence according to the four dictionaries,
and each memory cell will map candidate words
and word boundary information to keys and values.

Memory cells

Candidate words as keys. Following
Miller et al., for each z; in the input sentence,
each dictionary has many words containing
xi, we only keep the n-grams from x;’s con-
text and appear in each dictionary, resulting

d _ fod  d d d ~
w {w“, Wiy, Wi g}, x is a part
of word w¢. € Dy, d € [0,3]. We use an

1,
example to Jlllustrate our idea. For the input
sentence show in Figure 1, there are many n-grams
for x3 = “Jfi(sea)”, we only keep ones that
appear in Dg for the first memory cell, thus, wg =
{“J& 1 (HaiKou)”, “ A& (estuary)” “/@(sea)”}.
Similarly, we can generate w3, w%, w3 for the
second, third and fourth memory cell according to
D1, Dy, D3. Then, the memory cell compute the
probability for each key (which are denoted as ¢’
for each w ;)> here h; is the embedding for x;,
which is encoded by the encoder.

exp(h; - €’ )
>y exp(h; - e )

Word boundary information as values. As
we know, CWS aims to find the best segment po-
sition. However, each character x; may have dif-
ferent position in each wd For example, :1:1- may

(¢ —
Pij =

(N

be at the beginning, mlddle ending of wl j» or
x; may form a single word. Different positions
convey different information. Therefore, we use
the boundary information of candidate words as
values for key-value networks. As shown in Ta-
ble 2, a set of word boundary value {Vg, Vg, Vs}
with embeddings {ey,,ev,, ey, } represent the
x;’s different positions in wd i.j» and we map z;
to different value vectors according to its posi-
tions. As a result, each wd for x; has a values

list VI = [Ugl,’UZZ, .. vfj, g ]. In Figure 1,
xs = “W(sea)”, for the first memory cell, we can

map candidate word boundary information to the
value list V) = [Vs, Vg ]. Four cells for z; has
a values list V; = [vf,v}, 02,03 ]. Then the dy,
memory cell embedding for z; is computed from
the weighted sum of all keys and values as follow.

m;
d
= 2 el ®
where e}

i * is the embeddlng for v .. Next, the final
character embedding is the element—w1se sum of o;
and h;, or their concatenation, passing through a
fully connected layer as follow:

a, =W, (0,‘ ® hi) 9)



where © operation could be sum or concatenate,
W, is a trainable parameter and the output a; € R”
is the final representation for the 7;;, character. o; is
the final memory embedding for the 74, character,
and can be calculated as follow.

0; = Switcher([0},0;, 07, 03])

7771 T

(10)

The Switcher is used to control how much infor-
mation in each memory cell will be combined with
the output of the encoder.

3.2.2 The switcher

Inspired by the efforts of multi-task, we add a dis-
criminator network on the top of the source encoder
to predict the era label of the input sentence. The
discriminator predicts the probability of the correct
era label z conditioned on the hidden states of the
encoder H. The loss function of the discriminator
is Jaise = —logP(z|H), through minimizing the
negative cross-entropy loss to maximizes P(z|H).
The predicted result is not only used to switch mem-
ory cells, intuitively, but it also forces the encoder
to encode era-related information into the features
it generates.

For our work, we feed H into a fully-connected
layer and let it pass through a softmax layer to
obtain probabilities for each era label.

Switch mode. For the switcher, we propose two
switcher modes, hard-switcher and soft-switcher.
Hard-switcher switches memory cells according
to the final predict result from the discriminator.
For the input sentence in Figure 1, if the pre-
dict result is the modern era, the switcher will
switch to the memory cell associated with mod-
ern Chinese, and 0; = O;fl . Soft-switcher switches
memory cells according to the predict probabil-
ity, which will be taken as the weight for each
memory cell. Soft-switcher means there are some
other datasets corresponding dictionary informa-
tion that will be incorporated into the current sen-
tence representation. For example, the predict prob-
ability list is [0.1,0.2,0.1,0.6 ], therefore, the
final memory representation for ¢;; character is
0; =00 x0.1+0] *0.2+07 x0.1+03  0.6.

3.2.3 Objective

In our framework, the discriminator is optimized
jointly with the CWS task, both sharing the same
encoding layer. We assign different weights to the
loss of the two tasks, the final loss function is:

J = aT cws +(1 - 04) Tdisc (11)

where « is the weight that controls the interaction
of the two losses. J .5 1S the negative log likeli-
hood of true labels on the training set.

N
T ews = — Y _log(P (Ya|Xp))  (12)
n=1

where [V is the number of samples for training set,
and Y, is the ground truth tag sequence of the nyy,
sample.

4 Experiment

4.1 Datasets

We evaluate our proposed architecture on four
CWS datasets from Academia Sinica Ancient Chi-
nese Corpus2 (ASACC) and SIGHAN 2005 (Emer-
son, 2005). Table 3 lists the statistics of all datasets.
Among these datasets, PKIWI, DKIWI, AKIWI
from ASACC, corresponding to near ancient Chi-
nese, middle ancient Chinese, ancient Chinese re-
spectively, and MSR from SIGHAN 2005 is a
modern Chinese CWS dataset. Note that PKIWI,
DKIWI, and AKIWTI are traditional Chinese, and
we translate them into simplified Chinese before
segmentation.

For PKIWI, DKIWI, and AKIWI, we randomly
pick 5K examples as test set, and randomly pick
10% instances from training set as the development
set for all the datasets. Similar to previous work
(Chen et al., 2017), we preprocess all datasets by
replacing Latin characters, digits, and punctuation
with a unique token.

4.2 Experimental Configurations

In our experiments, for the encoder BERT, we fol-
low the default setting of the BERT (Devlin et al.,
2019). The key embedding size and value embed-
ding size are the same as the output of the encoder,
and we random initialize them. For the baseline
model Bi-LSTM, we set character embedding size
to 300 and set the hidden state to 100. For the trans-
former, we follow the settings as Qiu et al. (2020).
The loss weight coefficient «v is a hyper-parameter
to balance the classification loss and segmentation
loss, we searched for o from O to 1 by setting an
equal interval to 0.1, and the model achieves the
best performance when « is set to 0.7.

We use the words from the training set as the
internal dictionary, and each training set generates

’http://lingcorpus.iis.sinica.edu.tw/
ancient


http://lingcorpus.iis.sinica.edu.tw/ancient
http://lingcorpus.iis.sinica.edu.tw/ancient

Datasets Words | Chars | Word types | Char Types | Sents | OOV Rate

AKIWI Train | 2.8M | 3.2M 65.3K 7.5K 59.7K -

Test | 0.2M | 0.3M 15.7K 4.4K 5K 4.35%
Train | 2.2M | 2.8M 443K 6.0K 50.1K -

ASACC DKIWI Test | 0.2M | 0.3M 13.0K 3.8K 5K 4.91%
PKIWI Train | 6.4M | 7.8M 117.0K 7.2K 144.1K -

Test | 0.2M | 0.3M 18.6K 4.4K 5K 1.71%
Train | 2.4M | 4.1M 88.1K 5.2K 86.9K -

SIGHANOS | MSR Test | 0.IM | 0.2M 12.9K 2.8K 4.0K 2.60%

Table 3: Detail of the four datasets.

a dictionary. The simplified Chinese dictionary
sourced from jieba 3 is used as the external dic-
tionary for MSR, and we extract words from The
ErYa (an ancient dictionary) and ancient Chinese
textbooks as the external dictionary for AWIKI. In
particular, for PWIKI and DWIKI, we use high-
frequency bi-grams and tri-grams extracted from
the corresponding period corpus * as external dic-
tionaries.

4.3 Overall results

In this section, we first give the experimental results
of the proposed model on test sets of four cross-
era CWS datasets. The experimental results on the
aforementioned four datasets are shown in Table
4, where the F1 score and the OOV recall rate are
reported.

There are several observations drawn from the
results. First, we compare BERT-CRF in single-era
scenario (ID:1 in Table 4) and cross-era learning
without the SM module (ID:6). As can be seen
from the table, when mixing four datasets, the aver-
age F1 value on all datasets slightly drops. Single-
era dataset learning obtains 97.61 in average F1
value, while cross-era learning without the Switch-
memory module obtains 97.32 average F1 value. It
shows that the performance cannot be improved by
merely mixing several datasets.

Second, these models with the SM mecha-
nism (ID:3,5,7) outperform those baseline models
(ID:2,4,6) in terms of F1 value and R, on all
datasets. For instance, BERT-CRF with SM mod-
ule (ID:7) gains 1.09% improvement on the average
F1 score compared with BERT-CRF(ID:6), and the
average R,,, improves from 76.15 to 82.37. It in-
dicates that the Switch-memory can help improve

3github.com/fxsjy/jieba/tree/master/
jieba/dict.txt
*http://core.xueheng.net/

segmentation and R,,, performance by integrating
era-specific knowledge.

Third, among different encoders, the improve-
ment of pre-trained encoder BERT on F1 value
is still decent. When using Bi-LSTM as the en-
coder (ID:2,3), the average F1 value and the R,
is 89.15, 90.66, respectively. When using BERT
as the encoder (ID:6,7), the F1 value obtains about
8% improvement. The reason may be that the pre-
training processing supplements some effective ex-
ternal knowledge.

To further illustrate the validity and the effective-
ness of our model, we compare our best result on
four datasets with some previous state-of-the-art
works. Multi-domain and multi-criteria Chinese
word segmentation are very similar to our task in
some aspects, and therefore we also reproduce ex-
periments on several previous word segmentation
models with four datasets (Luo et al., 2019b; Qiu
et al., 2020; Huang et al., 2020a). For the multi-
domain segmenter PKUSeg (Luo et al., 2019b), we
train four datasets with pre-trained mixed model,
respectively. The comparison is shown in Table 5,
and our model outperforms previous methods.

4.4 Ablation study

Table 6 shows the effectiveness of each component
in the SM module.

The first ablation study is to verify the effec-
tiveness of memory cells. In this experiment, the
sentence classification task is no longer a switcher,
it’s simply a joint training task with word segmen-
tation. We can see that ancient Chinese datasets
(AWIKI, DWIKI, PWIKI) are more sensitive to the
memory cells than MSR. This may be explained by
the fact that the encoder is pre-trained with a large
number of modern Chinese data, and our memory
cells incorporate some ancient era knowledge into
the model, and help boost the performance on the
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NO. En-De | | AWIKI | PWIKI | DWIKI | MSR | Avg.
Single-era learning

e SRR
Cross-era learning

> | pLcer o asss | dear | 51 | sos | dese
N P e e e e
+ | TRCRF o w01 | 4o | a2 shso
5| TRCRRSM | 622 | 123 | S | 113 coso
6 | Brorr o | 678 | 7539 | 7994 | sedt | 7615
1| BECRRSMCROSSWISD) - s | gisg | 7725 | soso | 27

Table 4: Experimental results of the proposed model on the tests of four CWS datasets with different configurations,
“+SM” indicates this model uses the Switch-memory module. There are two blocks. The first block is results of
the baseline model (BERT - CRF) on the single-era dataset. The second block consists of the results of cross-era
learning model with different encoders (“BL” for Bi-LSTM, “TR” for Transformer, “BT” for BERT ). Here, F, Ry,
represent the F1 value and OOV recall rate respectively. The maximum F1 values are highlighted for each dataset.

Models AWIKI PWIKI DWIKI MSR

F Roov F Roov F Roov F Roov
Chen et al. (2017) - - - - - - 96.04 | 71.60
Gong et al. (2019) - - - - - - 97.78 | 64.20
Luo et al. (2019b) 91.25 | 56.32 | 97.01 | 48.09 | 97.00 | 43.18 | 97.09 | 75.19
Ye et al. (2019b) - - - - - - 98.40 | 84.87
Qiu et al. (2020) 96.44 | 65.06 | 95.83 | 63.75 | 96.31 | 57.03 | 98.05 | 78.92
Huang et al. (2020a) | 98.16 | 78.97 | 97.70 | 75.69 | 98.12 | 74.28 | 98.29 | 81.75
Tian et al. (2020c) - - - - - - 98.28 | 86.67
CROSSWISE 98.46 | 83.88 | 98.04 | 81.86 | 98.42 | 77.25 | 98.73 | 86.50

Table 5: Performance (F1 value) comparison between CROSSWISE and previous state-of-the-art models on the test

sets of four datasets.

three ancient Chinese datasets.

The second ablation study is to evaluate the ef-
fect of the switcher. For this experiment, we use
the average of four memory cells embedding as
the final memory representation. The comparison
between the second and the third line indicates that
the switcher is an important component when inte-
grating era-specific information.

In summary, in terms of average performance,
the switcher and memory cells both can boost the
performance on OOV considerably.

929

—+— AWIKI —— PWIKI
DWIKI —+— MSR

soft+concat t

Figure 2: The F1 values of CROSSWISE using four
pair settings, “hard+sum” means hard-switcher and sum
the memory embedding and the character embedding
from encoder as the final character representation.



. AWIKI DWIKI PWIKI MSR
ID | Switcher | Memory F (Rl F (Bl F B F [Row
1 v X 98.00|80.62|97.87|80.69|97.52|74.69|98.01 | 86.48

X v 98.28|76.58|97.85|74.80|98.32|74.85|98.63 | 86.85
3 v v 98.46 | 83.88 | 98.04 | 81.86 | 98.42 | 77.25|98.73 | 86.50

Table 6: Ablation experiments.

Sample from MSR (Modern Chinese): M\ AELE R AIG, HAEIEAREE -
(From chaos to prosperity, through Yongzheng connects the past and the future.)

Golds A I A AL [E FR] iR A= EIE  [RATE)E] -

from | big |chaos|go| to |biglprosperity| , |middlejthrough|Yongzheng| connect | o
wioSM| M | K| EL || K] A 2z FEIE PREIE)E| -
Ours N KT EL E[ M [X A GH \ =% EIE REIEE] -

Mixed sample from DWIKI (Near Ancient Chinese): 1 A~ A KA TL1H” -
(In ancient poems, there are “two merciless things: water flowing and flowers fading.)

" | AN R Al K R e | W ] TE -

Golds - - = - 5
ancient/people|poem|in have water [flow|flower| fade two merciless|” o
w/o SM| T A | w [FE |- 7K | A i R
Ours L AN | & [ H|- 7K | A i ] TE [

Table 7: Segmentation cases from the test sets of MSR and DWIKI datasets.

4.5 Mode selection

In this section, we investigate the influence of the
switcher mode and the combination mode (concate-
nate or sum) of the memory embedding and the
character embedding.

To better understand the effect of the different
configurations. We study four pair settings to train
our model on four datasets, the results as shown in
Figure 2, where different color poly lines represent
different dataset. As we see, soft-switcher signifi-
cantly improves the F1 value on MSR comparing
to hard-switcher, while other three datasets perfer
hard-switcher, which implies that the forward di-
rection of knowledge dissemination from ancient to
modern can help modern Chinese word segmenta-
tion, and the reverse knowledge dissemination will
have a negative impact on ancient Chinese word
segmentation. Concatenating the memory embed-
ding and the character embedding from the encoder
outperforms summing both.

4.6 Case study

We further explore the benefits of the SM mecha-
nism by comparing some cases from BERT-CRF
and CROSSWISE. Table 7 lists two examples from
the test sets of MSR and DWIKI datasets. Ac-
cording to the results, in the first sentence, BERT-
CREF gives the wrong prediction of boundary in

“HI(middle)” and “#Z(through)”. However, our
CROSSWISE achieves exact segmentation of this
instance. The second sample is a sentence written
in both ancient and modern Chinese, we could ob-
serve that CROSSWISE also can split the words
correctly. This investigation indicates that our
model is flexible for era-hybrid texts Chinese word
segmentation, and can produce the different seg-
mentation granularity of words according to the era
of the sentence. At the same time, it also shows that
our model is effective to integrate the era-specific
linguistic knowledge according to different sam-
ples.

5 Conclusion

In this paper, we propose a flexible model, called
CROSSWISE, for cross-era Chinese word segmen-
tation, which can improve the performance of every
single dataset by fully integrating the era-specific
knowledge. Experiments on four corpora show the
effectiveness of our model. In the future, we are
also planning to incorporate other labeling tasks
into the CROSSWISE, such as POS tagging and
named entity recognition.

References

Andrea Ceroni, Nam Khanh Tran, Nattiya Kanhabua,
and Claudia Niederée. 2014. Bridging temporal con-


https://doi.org/10.1145/2600428.2609526
https://doi.org/10.1145/2600428.2609526

text gaps using time-aware re-contextualization. In
Proceedings of the 37th international ACM SIGIR
conference on Research & development in informa-
tion retrieval, page 1127-1130. ACM.

Ernie Chang, Yow-Ting Shiue, Hui-Syuan Yeh, and
Vera Demberg. 2021. Time-aware Ancient Chinese
text translation and inference. In Proceedings of
the 2nd International Workshop on Computational
Approaches to Historical Language Change 2021,
pages 1-6, Online. Association for Computational
Linguistics.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015. Long short-term mem-
ory neural networks for Chinese word segmentation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1197-1206, Lisbon, Portugal. Association for Com-
putational Linguistics.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing
Huang. 2017. Adversarial multi-criteria learning for
chinese word segmentation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), page
1193-1203. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Thomas Emerson. 2005. The second international Chi-
nese word segmentation bakeoff. In Proceedings of
the Fourth SIGHAN Workshop on Chinese Language
Processing.

Jinlan Fu, Pengfei Liu, Qi Zhang, and Xuanjing Huang.
2020. Rethink cws: Is chinese word segmentation a
solved task? In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5676-5686, Online. Association
for Computational Linguistics.

Jingjing Gong, Xinchi Chen, Tao Gui, and Xipeng Qiu.
2019. Switch-Istms for multi-criteria chinese word
segmentation. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 6457-6464. AAAI Press.

Shohei Higashiyama, Masao Utiyama, Eiichiro Sumita,
Masao Ideuchi, Yoshiaki Oida, Yohei Sakamoto, and
Isaac Okada. 2019. Incorporating word attention into

character-based word segmentation. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and
Short Papers), pages 2699-2709, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kaiyu Huang, Degen Huang, Zhuang Liu, and Fengran
Mo. 2020a. A joint multiple criteria model in transfer
learning for cross-domain chinese word segmentation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
page 3873-3882. Association for Computational Lin-
guistics.

Weipeng Huang, Xingyi Cheng, Kunlong Chen, Taifeng
Wang, and Wei Chu. 2020b. Towards fast and accu-
rate neural Chinese word segmentation with multi-
criteria learning. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2062-2072, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Shuhei Kurita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2017. Neural joint model for transition-based
chinese syntactic analysis. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 1204-1214.
Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282-289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Junxin Liu, Fangzhao Wu, Chuhan Wu, Yongfeng
Huang, and Xing Xie. 2018. Neural chinese word
segmentation with dictionary knowledge. In Natural
Language Processing and Chinese Computing, pages
80-91, Cham. Springer International Publishing.

Yang Liu, Yuanhe Tian, Tsung-Hui Chang, Song
Wu, Xiang Wan, and Yan Song. 2021. Exploring
word segmentation and medical concept recognition
for Chinese medical texts. In Proceedings of the
20th Workshop on Biomedical Language Processing,
pages 213-220, Online. Association for Computa-
tional Linguistics.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng Ren,
and Xu Sun. 2019a. Pkuseg: A toolkit for multi-
domain chinese word segmentation.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng
Ren, and Xu Sun. 2019b. Pkuseg: A toolkit for
multi-domain chinese word segmentation. CoRR,
abs/1906.11455.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.


https://doi.org/10.1145/2600428.2609526
https://doi.org/10.18653/v1/2021.lchange-1.1
https://doi.org/10.18653/v1/2021.lchange-1.1
https://doi.org/10.18653/v1/2021.lchange-1.1
https://doi.org/10.18653/v1/D15-1141
https://doi.org/10.18653/v1/D15-1141
https://doi.org/10.18653/v1/D15-1141
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://doi.org/10.18653/v1/2020.emnlp-main.457
https://doi.org/10.18653/v1/2020.emnlp-main.457
https://doi.org/10.18653/v1/2020.emnlp-main.457
https://doi.org/10.1609/aaai.v33i01.33016457
https://doi.org/10.1609/aaai.v33i01.33016457
https://doi.org/10.1609/aaai.v33i01.33016457
https://doi.org/10.18653/v1/N19-1276
https://doi.org/10.18653/v1/N19-1276
https://doi.org/10.18653/v1/N19-1276
https://doi.org/10.18653/v1/2020.emnlp-main.318
https://doi.org/10.18653/v1/2020.emnlp-main.318
https://doi.org/10.18653/v1/2020.emnlp-main.318
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/P17-1111
https://doi.org/10.18653/v1/P17-1111
https://doi.org/10.18653/v1/P17-1111
https://doi.org/10.18653/v1/2021.bionlp-1.23
https://doi.org/10.18653/v1/2021.bionlp-1.23
https://doi.org/10.18653/v1/2021.bionlp-1.23
https://doi.org/10.18653/v1/2021.bionlp-1.23
https://doi.org/10.18653/v1/2021.bionlp-1.23
http://arxiv.org/abs/1906.11455
http://arxiv.org/abs/1906.11455
http://arxiv.org/abs/1906.11455
https://arxiv.org/abs/1906.11455
https://arxiv.org/abs/1906.11455
https://arxiv.org/abs/1906.11455

2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400-1409, Austin, Texas. Associ-
ation for Computational Linguistics.

Xipeng Qiu, Hengzhi Pei, Hang Yan, and Xuanjing
Huang. 2020. A concise model for multi-criteria chi-
nese word segmentation with transformer encoder.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, page 2887-2897. Associ-
ation for Computational Linguistics.

Yan Shao, Christian Hardmeier, Jorg Tiedemann, and
Joakim Nivre. 2017. Character-based joint segmenta-
tion and pos tagging for chinese using bidirectional
rnn-crf.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xiaojun
Quan, Tong Zhang, and Yonggang Wang. 2020a.
Joint Chinese word segmentation and part-of-speech
tagging via two-way attentions of auto-analyzed
knowledge. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8286-8296, Online. Association for Computa-
tional Linguistics.

Yuanhe Tian, Yan Song, and Fei Xia. 2020b. Joint Chi-
nese word segmentation and part-of-speech tagging
via multi-channel attention of character n-grams. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2073-2084,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Yuanhe Tian, Yan Song, Fei Xia, Tong Zhang, and Yong-
gang Wang. 2020c. Improving Chinese word segmen-
tation with wordhood memory networks. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8274-8285, On-
line. Association for Computational Linguistics.

Jingjing Xu and Xu Sun. 2016. Dependency-based
gated recursive neural network for Chinese word seg-
mentation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 567-572, Berlin,
Germany. Association for Computational Linguis-
tics.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural word
segmentation with rich pretraining. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Pa-
pers, pages 839-849. Association for Computational
Linguistics.

Yuxiao Ye, Weikang Li, Yue Zhang, Likun Qiu, and Jian
Sun. 2019a. Improving cross-domain Chinese word
segmentation with word embeddings. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2726-2735, Minneapolis, Min-
nesota. Association for Computational Linguistics.

10

Yuxiao Ye, Weikang Li, Yue Zhang, Likun Qiu, and Jian
Sun. 2019b. Improving cross-domain Chinese word
segmentation with word embeddings. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2726-2735, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 421-431, Berlin, Germany. Associa-
tion for Computational Linguistics.

Qi Zhang, Xiaoyu Liu, and Jinlan Fu. 2018. Neural
networks incorporating dictionaries for chinese word
segmentation. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 5682-5689. AAAI Press.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for Chinese word segmentation and
POS tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 647-657, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

A Appendix

A.1 Extra Case Study

We further explore the benefits of the SM mech-
anism by comparing some cases from BERT-
CRF and CROSSWISE. Table 8 lists three exam-
ples from the test sets of Ancient Chinese, mod-
ern Chienae, and Near Ancient Chinese datasets.
According to the results, in the first sentence,
“EE(swept)” and “¥(grass)” are two words in an-
cient Chinese, BERT-CREF treats these two words
as a single word; BERT-CRF gives the second
sentence the wrong prediction of boundary in
“FI(middle)” and “%Z(through)”. However, our
CROSSWISE achieves all exact segmentation of
these instances. The third sample is a sentence
written in both ancient and modern Chinese, we
could observe that CROSSWISE also can split the
words correctly. This investigation indicates that
our model is flexible for era-hybrid texts Chinese
word segmentation, and can produce the different
segmentation granularity of words according to the
era of the sentence. At the same time, it also shows
that the SM mechanism is effective to integrate
the era-specific linguistic knowledge according to
different samples.
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Sample from AWIKI (Ancient Chinese): #{ LT, FLXZ BEFLAH
(Therefore, the superior civilizes and the subordinate, like the winds swept the grass)

W B2 M DEE mwooI Mz B H HE
Golds - . - . . - -

so [superior| zhi |enlighten|subordinate|, like |wind| zhi | swept grass ye o
wioSM| # | E [ Z | & N mwo M Z BE E
Ours [ i Z 89 ~ , n K| zZ JiE ‘ H 1 o
Sample from MSR (Modern Chinese): M KELE W AVR, HEHEIEARSE -
(From chaos to prosperity, through Yongzheng connects the past and the future.)
Golds LA | A AL E IESERG , A JEIE  PRAIE)S

from | big |chaos| go to big|prosperity| , |middle|through{Yongzheng| connect

wioSM| M | K AL | & NI R EIE REIAE
Ours N K JE] & [7] Xl w |, || & JEIE  PRANE)E
Mixed sample from DWIKI (Near Ancient Chinese): i A1 8 “7KIAC Ul I TCIE” -
(In ancient poems, there are “two merciless things: water flowing and flowers fading.)

5] A W] F &l “l K O TW] | W P TH
Golds - . = - S

ancient| people [poem| in have water |flow|flower| fade two  |merciless

wioSM| & | AN | W | W " oK | e | W wooE B
Ours i A F G H « K i it ] T |

Table 8: Segmentation cases from the test sets of MSR, AWKI and DWIKI datasets.

A.2 Effect on Dataset Imbalance

In this section, we investigate the influence of
the switcher mode and the combination mode.
Our model is a multi-task framework, imbalanced
datasets will bring some sentence classification er-
rors, we expect to use different switcher modes to
minimize the negative effect of these errors.

We study four pair settings to train our model on
four intact datasets, the results as shown in Figure
3(a). According to Table 3, the data of the four
datasets are unbalanced. In order to explore the re-
lationship between the data balance and experiment
configurations. We randomly keep 50K training
samples for MSR and PKIWTI in the training set
respectively, then conduct experiments with differ-
ent settings. The experimental results as shown in
Figure 3(b). Although less than half of the training
data has been reduced, MSR is still sensitive to
the “soft-concat” setting and keeps a competitive
F1 value. The results of the other three datasets
drop slightly. Moreover, the comparison between
Figure 3(a) and Figure 3(b) indicates that although
the data are imbalanced, hybrid training is also a
strategy to increase the scale of training samples in
disguise. As we know, the scale of training samples
is the key to improve the performance with neural
methods.
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(a) The F1 values of SMSeg using four pair settings on
four datasets, the data of the four datasets are unbalanced.
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(b) The F1 values of SMSeg using four pair settings on
four datasets, the data of the four datasets are balanced.
MSR and PKIWI only keep about 50K training samples.

Figure 3: The F1 values of SMSeg using four pair set-
tings, “hard+sum” means hard-switcher and sum the
memory embedding and the character embedding from
encoder as the final character representation.




