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Abstract

Fine-grained open-vocabulary object detection (FG-OVD) aims to detect novel ob-
ject categories described by attribute-rich texts. While existing open-vocabulary de-
tectors show promise at the base-category level, they underperform in fine-grained
settings due to the semantic entanglement of subjects and attributes in pretrained
vision-language model (VLM) embeddings — leading to over-representation of
attributes, mislocalization, and semantic drift in embedding space. We propose
GUIDED, a decomposition framework specifically designed to address the se-
mantic entanglement between subjects and attributes in fine-grained prompts. By
separating object localization and fine-grained recognition into distinct pathways,
GUIDED aligns each subtask with the module best suited for its respective roles.
Specifically, given a fine-grained class name, we first use a language model to
extract a coarse-grained subject and its descriptive attributes. Then the detector is
guided solely by the subject embedding, ensuring stable localization unaffected
by irrelevant or overrepresented attributes. To selectively retain helpful attributes,
we introduce an attribute embedding fusion module that incorporates attribute
information into detection queries in an attention-based manner. This mitigates
over-representation while preserving discriminative power. Finally, a region-level
attribute discrimination module compares each detected region against full fine-
grained class names using a refined vision-language model with a projection head
for improved alignment. Extensive experiments on FG-OVD and 3F-OVD bench-
marks show that GUIDED achieves new state-of-the-art results, demonstrating the
benefits of disentangled modeling and modular optimization.

1 Introduction

Open-vocabulary object detection (OVD) offers greater flexibility than traditional closed-set detection
by allowing models to recognize arbitrary categories specified by text prompts. This paradigm
significantly improves scalability in real-world environments where new categories frequently emerge
and manual annotation is costly. However, most existing OVD methods focus on coarse-grained
concepts (e.g. “dog”, “cat”) and fall short when dealing with more specific descriptions. Fine-grained
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Figure 1: (a) The t-SNE visualization of CLIP text embeddings on LVIS classes and the fine-grained
classes. The figure shows that some CLIP embeddings of fine-grained variants are positioned far
apart. (b) The visualization of predictions of an OV detector with different class prompts(A dog
vs A dog with a head). The detector focuses on the head instead of the dog, leading to incorrect
localization. (c) The mean classification scores and the mean IoU of the prediction box with the
ground truth box of OWL-ViT[23] under coarse-grained class queries and fine-grained class queries.
The detector shows better performance on both classification and localization with coarse-grained
queries than with fine-grained queries.

open-vocabulary detection (FG-OVD) addresses this limitation by enabling recognition of novel
categories with detailed attributes (e.g. “a small brown dog™). This fine-grained capability is vital for
applications requiring precise granular understanding, such as product retrieval, visual search, and
autonomous systems. Nonetheless, the increased semantic complexity in FG-OVD introduces new
challenges in aligning textual attributes with visual regions, making it a critical yet under-explored
problem in the open-vocabulary setting.

Existing FG-OVD methods typically rely on pretrained vision-language models (VLMs), such as
CLIP, by directly encoding the full fine-grained class name into a single text embedding. However,
this paradigm introduces two fundamental issues. First, due to the contrastive learning objective of
VLMs, all tokens are treated equally, which leads to semantic entanglement between subjects and
attributes. This often causes attribute over-representation, where descriptive modifiers dominate the
embedding and suppress the core semantics of the object category. As shown in Figure[T(b), the query
“a dog with a head” leads the model to focus only on the head, yielding mislocalized predictions,
while “a dog” correctly grounds the entire object. Second, this entanglement also results in semantic
drift in the embedding space. As illustrated in Figure[T[a), fine-grained variants like “a dog” and “a
dog with a head” are positioned far apart in CLIP’s latent space, despite their visually overlapping
concepts. This mismatch makes classification unreliable for fine-grained open-set detection.

These issues stem from a common root: the use of a single text embedding to simultaneously
serve two objectives — object localization and attribute recognition. Such coupling introduces
semantic ambiguity, impeding the model’s ability to specialize in either task. To address this, we
propose GUIDED, a decomposition framework that disentangles FG-OVD into coarse-grained
object detection and fine-grained attribute discrimination, allowing each to be handled by the
model best suited for the subtask. This strategy is motivated by empirical observations shown in
Figure [Tfc): detectors achieve higher classification scores and more accurate localization when
queried with coarse-grained categories (e.g., “dog”) than with fine-grained descriptions (e.g., “a
black fluffy dog”). This indicates that object detectors are better suited for base-level semantics,
while fine-grained attribute recognition, which often requires subtle and localized reasoning, is more
effectively handled by pretrained vision-language models.

To instantiate the design, GUIDED adopts a three-stage pipeline that explicitly separates subject
identification, object detection, and attribute discrimination. Given a fine-grained class prompt,
a large language model is first employed to extract the coarse-grained subject and its associated
attributes, which are then encoded separately using a vision-language model. The subject embedding
guides a coarse-grained object detector to localize candidate regions. To retain relevant attribute
cues while avoiding over-representation, an attribute embedding fusion module selectively integrates
attribute embeddings into the detector queries via attention. In the final stage, fine-grained attribute



discrimination is performed on the detected regions using region-text similarity. A lightweight
projection head is applied to refine the text embeddings before comparison, enhancing the alignment
between visual regions and fine-grained semantics. The final prediction score is computed by
fusing the detector’s coarse confidence with the attribute similarity score, yielding more precise and
interpretable fine-grained predictions.

Extensive experiments on FG-OVD benchmarks validate the effectiveness of our proposed GUIDED
framework, which outperforms existing state-of-the-art methods by a margin of 19.8%. Our main
contributions are summarized as follows:

* We propose GUIDED, a novel decomposition framework that decouples FG-OVD into
coarse-grained object detection and fine-grained attribute discrimination, aligning each
subtask with the strengths of detection transformers and pretrained vision-language models.

* We design an attribute embedding fusion module that selectively integrates fine-grained
attribute cues into detection queries, enhancing representation without overwhelming coarse
category semantics.

* We introduce a projection-based attribute discrimination mechanism that refines text em-
beddings and computes region-text similarity for accurate fine-grained classification over
detected objects.

* We establish new state-of-the-art results on FG-OVD benchmarks, demonstrating the effec-
tiveness of task decomposition and modular optimization.

2 Related Work

Open vocabulary object detection Open-vocabulary object detection (OVD) has emerged as a
salient research direction, propelled by advancements in vision-language models[24, 17 [12]] and
large-scale pretraining techniques. Notably, recent attempts |33} 23] 4. 134} |39} 114 137,136/ 130] have
primarily focused on adapting the VLMs to the detection task by fine-tuning. Another line of
work [[13L1310 11501381 16l 111, 29] explores knowledge distillation to bridge the modality gap between
detection and language understanding. ViLD [7] introduces a vision-language distillation framework
that aligns region-level features with the image encoder from CLIP[24], thus enhancing cross-modal
retrieval and detection accuracy. The recent works [32, [26] [35]] integrate detection transformers
in OVD to achieve further advanced capabilities. Grounding DINO[19] integrates the DINO with
language models, enabling zero-shot object detection through text prompts by aligning visual regions
with semantic embeddings. LAMI-DETR [5] introduces the language model instructions to generate
the relationships between visual concepts for detection transformers. Despite these advances, existing
methods exhibit limited performance on the detection of fine-grained classes(FG-OVD) with specific
attributes due to the lack of fine-grained text-region annotations. Our approach addresses this
limitation through decomposed FG-OVD into coarse-grained object detection with transformer
detectors and fine-grained attribute identification with VLMs to take the inherent advantage of each
model.

Fine-grained Open Vocabulary Object Detection The concept of fine-grained open-vocabulary
detection (FG-OVD) [2] extends conventional OVD by introducing attribute-conditioned class def-
initions (e.g., color, material, shape) that require detectors to recognize novel classes like “dark
brown wooden lamp” versus “gray metal lamp”. Current approaches [27] predominantly address
this challenge through text embedding refinement. SHiNe[18]] proposes to update the classifiers
in OVD by the hierarchy-aware sentences. However, it fails to capture the attribute information in
its embedding construction process. HA-FGOVD[22] proposes a universal approach to generate
attribute-highlighted text embeddings by masking the attention map of VLMs to obtain the attribute-
specific features, while Bianchi et al.[1] propose to fine-tune an additional linear projection layer to
enhance the fine-grained capability of CLIP text embeddings. However, these methods suffer from
the attribute over-representation and semantic entanglement. Besides, the performance improvement
led by embedding augmentation is limited by the detector’s fine-grained capability. To address this,
GUIDED addresses these limitations by decoupling attribute identification from detection pipelines,
which integrates the strong discrimination capability of VLMs.
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Figure 2: An overview of the proposed GUIDED framework. GUIDED adopts a three-stage pipeline,
which consists of subject identification, coarse-grained object detection, and fine-grained attribute
discrimination. In subject identification, GUIDED employs an LLM to extract the coarse-grained
subject and its attribute embeddings. For detection, coarse-grained subject embeddings are adopted
as queries to localize the candidate regions with coarse confidence. An attribute embedding fusion
module selectively integrates attribute embeddings into queries. In the discrimination stage, GUIDED
estimates the fine-grained score for each detected region with the full fine-grained class names using
a refined CLIP with a projection head. The final score is obtained from the weighted multiplication
of the detector’s coarse confidence and the attribute similarity scores.

3 Approach

In this paper, we propose GUIDED, a framework specially designed for FG-OVD that aims to detect
objects from both base and novel fine-grained categories with detailed attributes. Our proposed
GUIDED framework disentangles the FG-OVD into different tasks, including subject identification,
coarse-grained object detection, and fine-grained attribute discrimination. During the subject identifi-
cation process, GUIDED introduces a large language model to identify the coarse-grained subject
and fine-grained descriptions to generate the corresponding embeddings. In the coarse-grained object
detection stage, a detection transformer is employed to localize objects based on subject embeddings
while dynamically fusing attribute-specific semantics through an attribute embedding fusion module.
Subsequently, fine-grained attribute discrimination adopts the VLMs to estimate the fine-grained
scores on the detected proposal with the fine-grained text of each class. The overview of the GUIDED
framework is shown in Figure

3.1 Subject Identification

The proposed GUIDED framework addresses FG-OVD through a hierarchical decomposition strategy
that systematically separates coarse-grained object detection and fine-grained attribute discrimination.
This approach begins with semantic parsing of fine-grained class names using a frozen large language
model. Given a fine-grained class name, we first identify its subject as a coarse-grained class and
the associated attributes by prompting the existing large language models(e.g. GPT4-o [8]). These
prompts are shown in Figure[3](a). For each class, the identified subjects and associated attributes are
fed into the frozen CLIP text encoder to obtain the coarse-grained text embeddings {t;}?_; and the
attribute embeddings{{t] };I;l i—1. Here n is the number of classes and n; is the number of attribute
embeddings for the j-th class. Note that the coarse-grained Subject Identification is done before the
training or inference process.

The coarse-grained subject identification process can also be applied to identify the super class of a
subclass, such as identifying the dog from the Siberian Husky. In this case, the associated attributes
can be extended from the descriptions of the complex classes by LLMs.
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Figure 3: (a) [llustration of the prompt for subject identification. The prompt for extracting the
associated attributes is shown in our supplementary document. (b) The architecture of the attribute-
fused attention layer.

3.2 Coarse-grained Object Detection

After the identification stage, we perform coarse-grained object detection(CGOD) by a detection
transformer. To retain a relevant attribute cues while avoiding over-representation, we also propose an
attribute embedding fusion module to exploit the helpful fine-grained attributes in an attention-based
manner.

Specifically, we adopt the LAMI-DETR[S] as our baseline transformer, which is built upon the
DINO[3] detection framework. Concretely, an input image is encoded to a frozen ConvNext[21]]
backbone from the pre-trained CLIP image encoder to output the spatial feature map F,,. The
spatial feature map is then input to a learnable transformer encoder for refinement. The refined
encoder feature is denoted as F..

Attribute Embedding Fusion. After obtaining the refined feature map, we introduce an Attribute
Embedding Fusion module to fuse the subject embeddings and attribute embeddings into input object
queries of the transformer decoder. Specifically, we follow LaMI-DETR to select the top & pixels
in the encoder feature F,. as object queries based on their classification logits. This process is

formulated as,
{qj}] 1 — Topk(max(CLS({t }z—la enC)))7 (1)

Here CLS({t;} 4, -) is the classifier which inputs the subject embeddings as frozen layer weights
and outputs the logits corresponding to the n classes. With the TopK selection, each selected query
is matched with a class with the largest classification scores. Then the query embeddings are fused
with the corresponding subject embedding and attribute embeddings through a cross-attention layer,
which is formulated as follows,

q; = q; + ATIN(d', {t; — t:} U {t] — t:}72,, {t:} U {t]}]2,). )

The union of subject embedding t; and fine-grained attribute embeddings {tJ 3 j— for the matched
class ¢ is used as the value states of the cross-attention layer. We adopt the dlfference between
the attribute embeddings and the corresponding subject embedding as key states to highlight the
attribute information. q' is a learnable query. The architecture of attribute-fused attention is shown
in Figure 3[b). This attention layer dynamically integrates the subject embedding and attribute
embeddings into queries, enabling the detector to exploit helpful attributes for detection.

After that, the fused query embeddings {q'} and the encoder feature Fe,. are input to a DINO decoder
to output the prediction embedding {p;}*_,. We adopt the aforementioned classifier CLS({t;}?_,, )
to output the detector’s coarse confidence s;™™° € R(") for the j-th prediction with a sigmoid
function,

lqoarse =Mcoarse CLS({t ’}?:13 pj)-

joarse 7Slgm01d(lcoarse) (3)

where Mcoarse 18 a scaling factor. The bounding box locations {b; } le are output from the prediction
embedding with a box regression process.



3.3 Fine-grained Attribute Discrimination

The bounding boxes output by the detection transformer are used as candidate regions of fine-grained
classes. To discriminate whether the fine-grained attribute is aligned with the candidate bounding
boxes, we introduce a fine-grained attribute discrimination(FGAD) module. To this end, we first add
a lightweight linear projection layer after the frozen CLIP text encoder to refine the text embeddings
for better representation on fine-grained attributes. This lightweight linear projection layer bridges
the gap between general-purpose pre-trained representations and task-specific attribute semantics,
enhancing discriminative capability for subtle attribute distinctions. Then the full fine-grained class
names are fed into the refined CLIP text encoder T’ to obtain the corresponding fine-grained class
embeddings {f:i}?:l. Subsequently, the image embeddings of each candidate are generated from the
spatial feature map F ., from the frozen ConvNext backbone by performing a pooling operation on
the features of the box location. Finally, we estimate an attribute similarity score for each candidate
box, noted as s, The attribute similarity score s?“e e R™ of the j-th prediction is estimated from,

15" = mne cos(Pooling(Feony[b;]), {t: }i1 ),

s?“e = Softmax(l?“e). 4
The cos(+) is the cosine similarity function, and myy. is a scaling factor. Since the spatial feature
map F..,y is previously calculated in the coarse-grained detection module, the fine-grained attribute
discrimination only slightly increases the inference time. In addition to CLIP, other VLMs can also
be applied to calculate the attribute similarity score, as shown in our experiments. Nevertheless, the
application of other VLMs always substantially increases the inference time. The final scores of the
j-th bounding box prediction for the fine-grained detection are set as,

S?nal _ (S§0arse)(a) (S?ne)(lfa), 5)

where « is a hyperparameter.

3.4 Training Objective

We introduce a two-stage training pipeline for the GUIDED. During training, we first follow the
LaMI-DETR]S5] training pipeline to pretrain the detection transformer on the base classes of the
traditional open vocabulary dataset without applying the attribute similarity score. In this stage, the
class names of the base classes are extended by a large language model to construct the attribute
embeddings for the attribute embedding fusion module. In the second stage, we introduce the FG-
OVD dataset to train the detection transformer and the refined CLIP. The fine-grained class names
in the FG-OVD dataset are decomposed into coarse-grained subjects and attributes by the subject
identification. For the detection transformer, we generate the ground truth with the labels of subjects
to supervise the detection transformer. Furthermore, we introduce an additional binary loss for the
samples on the original fine-grained classes,

Lne = — Z gtj log((sg_oarse)(a) (Sf}ne)(lfa)). (6)

J

Here gt; is the one-hot class label of the j-th sample. This loss enhances the discriminative capability
for attribute distinctions of embeddings from the refined CLIP for improved alignment.

4 Experiments

4.1 Dataset

Our method is evaluated on the two benchmark fine-grained open vocabulary object detection datasets,
FG-OVD and 3FOVD. Additionally, we perform training on the LVIS dataset.

FG-OVD. Fine-grained open vocabulary detection (FG-OVD) dataset [2] is an evaluation task
for comprehensively evaluating the fine-grained discrimination capabilities of models. Each an-
notation in FG-OVD is paired with a positive caption and up to ten hard negatives generated by
substituting attribute words while preserving sentence structure. The data are partitioned into four
difficulty splits (Trivial, Easy, Medium, Hard) and four attribute-focused subsets (Colour, Material,



Pattern, and Transparency). We follow the official benchmarks subset splits and report mean average
precision[16](mAP) averaged over all eight tracks.

3F-OVD. The recently released 3F-OVD [20]] benchmark provides a more demanding test-bed
for fine-grained open-vocabulary detection under long-caption queries, which assigns a single,
sentence-length description to every class, and re-uses that description across all images that contain
the class. The benchmark comprises two distinct domains: vehicles (NEU-171K-C) with 598 fine-
grained classes, and retail products (NEU-171K-RP) with 121 fine-grained classes. Consistent with
the benchmark authors’ configuration, we report mAP across both domains.

LVIS. The LVIS dataset is a long-tailed object detection dataset with . Following the open vocabulary
setting in LaMI-DETR][3]], 866 common and frequent categories in the LVIS dataset are set as base
classes, while the remaining 335 rare categories are set as novel classes. We mainly use the base
classes in LVIS for training.

4.2 Implemental Details

We mainly adopt the LaMI-DETR][5] as our codebase. The ConvNext backbone of the detec-
tion transformer is initialized from ConvNeXt-Large-D-320[21]] in OpenCLIP[9]. We follow
GroundingDino[19] to retain the top-k = 900 tokens ranked by coarse-grained classification logits.
In the two-stage training pipeline, we first pre-train on the base-class subset of the LVIS for 85200
iterations; we then fine-tune for a further 2000 iterations on the FG-OVD training set. For 3FOVD,
we extract all the available captions’ subjects using LLM and process all the classes together. More
details are presented in our supplementary document. At the score ensemble process, the « is set to
0.6. Mfine and Meoarse 15 set to 100. We leave other hyper-parameters the same as in LaMI-DETR.

4.3 Experimental Results

Comparison on FG-OVD dataset. We compare GUIDED against the existing OVD methods on
FG-OVD datasets, including OWL-ViT[23]], Detic[40], ViLD[7], Grounding DINO[19], CORA[32],
and OV-DINOJ[28]. Furthermore, we apply GUIDED to three distinct architecture-based OVD
models, Grounding DINO, OWL-ViT, and LaMI-DETR[S]. Note that the attribute embedding
fusion module is only applied to the DETR-based framework, LaMI-DETR. The results are shown
in Table[l] As presented in the table, the MAP performance of GUIDED significantly surpasses
that of other OVD methods. Specifically, GUIDED achieves a 23.2% mAP improvement over our
baseline method LaMI-DETR, highlighting the effectiveness of leveraging PVLMs for fine-grained
attribute discrimination in GUIDED. While methods like Grounding DINO and OV-DINO benefit
from large-scale pretraining on coarse-grained datasets (Object365[25]], GoldG[10]), they exhibit
limited capability in distinguishing fine-grained categories. As shown in the table, our GUIDED
is capable of enhancing the performance of these methods on the FG-OVD. Furthermore, our
methods defeat existing FG-OVD methods by a large margin. Specifically, HA-FGOVD[22] only
slightly improves the performance since it only modifies the input text embeddings. In contrast, our
GUIDED framework boosts the fine-grained detection capability of OVD methods, underscoring the
generalization of our methods.

Comparison on 3FOVD dataset. We conduct evaluation of our proposed GUIDED on the 3FOVD
dataset in Table E} Compared with FG-OVD, 3FOVD is a more complex task since the class names
in 3FOVD are more complicated proper nouns(e.g. Drink_Coca-Cola, Car_Porsche-macan) with
corresponding captions. Note that we do not perform training on 3FOVD but only transfer the
model trained on LVIS and FG-OVD to conduct the evaluation. In 3FOVD, we extract the super
classes of the fine-grained class names as subjects for coarse-grained object detection and utilize
the caption data as the fine-grained full names in fine-grained attribute discrimination. The results
show our method defeats other methods by clear margins. Compared with LaMI-DETR, our method
demonstrates a clear improvement on both subsets, underscoring the effectiveness of our GUIDED
framework on the detection of complicated fine-grained classes.

4.4 Ablation Study and Analysis

Ablation of key factors in the GUIDED framework. We conducted an ablation study to assess the
effectiveness of each key factor in our proposed GUIDED framework in Table 4] For comparison, we



Table 1: MAP evaluation results on FG-OVD benchmark (%). The performance in ’Average’ is the
average of performance over the 8 sub-datasets. Trans.” denotes the performance on the Transparency
subset. 'Finetune’ denotes finetune the LaMI-DETR on FG-OVD training set. Here * denotes the
results are from our reproduction.

Detector Hard Medium Easy Trivial Color Material Pattern Trans. | Average

OWL-ViT(B/16) 26.2 39.8 384 539 453 37.3 26.6 34.1 |37.7
OWLv2(B/16) 253 385 40.0 529 451 335 19.2 285 354
OWLv2(L/14) 254 412 428 632 533 36.9 233 122 | 373

Detic 11.5 18.6 186 69.7 215 38.8 30.1 246 |29.3
ViLD 22.1 36.1 399 56.6 432 349 24.5 30.1 | 359
CORA 13.8 20.0 204 351 250 19.3 22.0 279 |229
OV-DINO 18.6 284 250 543 356 30.0 21.0 242 129.6

Grounding DINO 17.0 284 310 625 414 30.3 31.0 262 |335
+ HA-FGOVD 19.2 323 340 622 415 33.0 32.1 29.2 | 354 (+1.9)
+ GUIDED 35.1 493 528 571 497 57.0 264  39.6 | 459 (+12.4)

OWL-ViT(L/14) 26.6 39.8 445 670 440 45.0 36.2 29.2 | 415
+ HA-FGOVD 314 46.0 50.7 672 484 48.5 38.0 327 |45.4(+4.3)

+ GUIDED 46.8 594 641 662 604 58.9 44.7 54.5 |56.9 (+15.4)
LaMI-DETR 29.2 40.6 429 635 495 39.2 346 462 432

+ Finetune 39.5 50.7 542 66.0 519 53.7 421 49.1 |50.9 (+7.7)
+HA-FGOVD* 335 459 475 638 527 42.6 36.9 50.1 |46.6 (+3.4)
+ GUIDED 57.5 69.5 733 T72.6 648 68.5 62.0 634 |66.4(+23.2)

Table 2: MAP evaluation results on the 3FOVD bench-  Table 3: Ablation with different VLMs
mark(%). applied in FGOD. Time’ denotes the aver-
aged inference time(ms) for each image.

Method NEU-171K-C  NEU-171K-RP

Detic 66x10%  22x10°2 VLM | mAP  Time

Vild 3.8 x107* 1.1 x 1072 CLIP (T) 469 2103

GroundingDino 1.3 x 1073 7.6 x 107* LLaVA-1.6 512 34718.0
= - Refined CLIP (T) | 60.8  212.1

LaMI-DETR 9.0 x 10 2.3 % 10

+ GUIDED 7.2 x1073 2.7x 101

train the LaMI-DETR on FG-OVD with different training strategies, including training from scratch
and fine-tuning. As shown in the table, finetuning LaMI-DETR with FG-OVD performs much better
than training from scratch, showing the significance of the first-stage training on LVIS. With GUIDED,
the performance improves from 50.9% to 62.4%, underscoring the superiority of GUIDED training
strategies. We also tease apart the key modules in GUIDED to conduct the ablations. Integrating
the attribute embedding fusion(AEF) in GUIDED leads to a performance gain of 4.0%, validating
the capability of AEF to selectively integrate fine-grained to improve the capability of the detector.
’GUIDED w/o CGOD’ denotes that we directly adopt the full embeddings of fine-grained classes
in the detector to achieve detection of fine-grained classes instead of coarse-grained subjects. We
observe that performing coarse-grained object detection improves the mAP by 9.4%, showing the
effectiveness of our task decomposition idea in GUIDED. When removing the projection layer in
fine-grained attribute discrimination, the performance decreases by 2.3%

Robustness of LLMs on subject identification. To evaluate the robustness of LLMs on subject
identification, we manually annotate the subjects from 300 fine-grained classes and assess the accuracy
of subject identification with different LLMs. As summarized in Table[3] failure cases are categorized
into two types: (1) Hallucination toward in-context samples, where the LLM generates subjects
irrelevant to the input text; (2) Other errors, such as identifying an attribute instead of an object.
Overall, all three LLMs achieve high correctness rates, demonstrating robust performance across
diverse architectures. The results confirm the high robustness of this stage. Crucially, they show that
while the smaller LLaMA-3.1-8B model is prone to hallucination errors that always propagate (8/8),
this critical failure mode is completely eliminated by larger open-source models. Both LLaMA-3.3-
70B and GPT-40 exhibit near-perfect performance, with their rare errors being minor and not always



Table 4: The ablation of key factors in the EDD framework on the FG-OVD dataset. The results are
shown in MAP (%). ’Baseline’ denotes the LaMI-DETR. *AEF’ denotes the attribute embedding
fusion module. ’CGOD’ denotes the coarse-grained object detection.

Method Hard Medium Easy Trivial Color Material Pattern Transp. ‘ Average
Baseline 292 406 429 635 495 39.2 34.6 46.2 432
+ Train from scratch 31.7 39.6 434 426 324 33.0 30.8 204 | 342
+ Finetune 39.5 50.7 542 66.0 519 537 42.1 49.1 |50.9
+ GUIDED w/o AEF 530 652 695 720 641 63.3 49.0 634 | 624

+ GUIDED w/o CGOD 48.6 59.7 642 643 589 57.8 45.6 56.6 | 57.0
+ GUIDED w/o projection  57.5 67.8 702 708 64.0 66.3 554 60.8 | 64.1
+ GUIDED 57.5 69.5 733 72.6 648 68.5 62.0 63.4 | 66.4

affecting the final detection. This demonstrates that our method’s success is not tied to a specific
proprietary model and is robust when using state-of-the-art open-source alternatives.

Furthermore, we also report the detection performance with open-source LLMs (LLaMA-3.1-8B and
LLaMA-3.3-70B) as alternatives to GPT-40. As quantified in Table 6] the mAP of GUIDED drops by
merely 0.5% with LLaMA-3.1-8B and improves by 0.1% with LLaMA-3.3-70B. This demonstrates
that GUIDED performance is not dependent on a specific proprietary model. We will provide more
results with LLaMA-3.1-8B and LLaMA-3.3-70B for other OVD models and other datasets in our
revised paper for reproducibility.

Table 5: The number of failure cases in subject de-
tection of 300 samples in the FG-OVD dataset with
different LLMs. The notation "z /y’ denotes that there
are y failure cases, of which z lead to detection errors.

Table 6: The comparison of mAP(%)
evaluation results on the FG-OVD bench-
mark with different LLMs in subject
identification.

LLM | Hallucination Others  Total LLM | mAP
GPT4-0 0/0 172 1/2 GPT4-o0 66.4
LLaMA-3.1-8B 8/8 1/1 9/9 LLaMA-3.1-8B 65.9
LLaMA-3.3-70B 0/0 1/1 1/1 LLaMA-3.3-70B | 66.5

Analysis of text embeddings applied in CGOD and FGAD. We also conduct an ablation study
about the text embeddings applied in CGOD and FGAD, which is illustrated in the table[7} Applying
the refined text encoder T’ with the lightweight projection layer instead of the original CLIP text
encoder T improves the mAP by 2.3% in FGAD but leads to a performance degradation of 5.8% in
CGOD. This shows that the refined text encoder enhances the fine-grained discrimination capability
in FGAD while exacerbating overfitting on the base classes in CGOD. GUIDED only use the fine-
grained text encoder in FGAD, achieving an optimal solution. Furthermore, we observe that using
the full names of the fine-grained classes in object detectors results in a significant performance drop,
validating the necessity of task decomposition for the FG-OVD task.

Table 7: The ablation of generated text embeddings of

fine-grained classes. *TE’ denotes the text encoder used 80 - Lol
for embedding generation. ’Coarse’ and "Full’ denote the 70 e LaMI + GUIDED
coarse-grained subject and full fine-grained class name 601
used for generation, respectively. 2501 B
2 404
CGOD FGAD mAP zz
TE Text TE Text 10

T Fll]l T Ful] 5 3 5 ° ToU Score
T Full T Full 4938
T Full T Full 57.0
T Coarse T Full 64.1
T Coarse T Full 60.3
T Coarse T Full 664

Table 8: The mean classification scores
and the mean IoU of the prediction box
with the ground truth box of the LaMI-
DETR with and without GUIDED.




More ablations on FGAD. Our FGAD can be easily integrated with existing PVLMs with different
structures. Specifically, we apply LLaVA-1.6(llava-v1.6-mistral-7b)[1/] without training to estimate
the attribute similarity score by prompting LLaVA with "Does this image match the attributes
described in the following caption? If so, output yes, if not, output no" on the coarse-grained box
regions of images. The attribute similarity scores are obtained from the probability of generating
"yes" tokens. For fair comparison, we directly apply different PVLMs in FGAD with the detector
after the first stage of training on LVIS dataset. As presented in Table[3] LLaVA achieves a higher
score than the pretrained CLIP but lower scores than the refined CLIP, showing the generalization
of our GUIDED framework in integrating different PVLMs in FGAD. Although LLaVA achieves
encouraging performance, the inference speed of LLaVA is much lower than that of CLIP.

Inference time analysis. To provide a assessment of the computational overhead introduced by
components in GUIDED, we report the inference time of detecting one class in an image using locally
deployable LLMs: LLaMA-3.1-8B and LLaMA-3.3-70B. As shown in the Table[J] the inference time
increase in GUIDED primarily stems from LLM-based subject identification, while AEF and CLIP
design in FGAD contribute minimally to latency. This represents a trade-off between our method’s
enhanced semantic understanding and computational cost. Nevertheless, the LLM-based subject
identification is performed once per class name, not per image. For any given dataset or application
scenario, the set of fine-grained classes is fixed. Therefore, the parsing results can be pre-computed
and cached offline, imposing no additional LLM-related latency. For scenarios requiring on-the-fly
parsing of new class names, the latency can indeed be a factor. This can be alleviated by employing
more lightweight LLMs or batch processing multiple subject identification tasks in one chat.

Table 9: The comparison of inference time(ms) between Baseline(LaMI-DETR) and GUIDED for
detecting one class in an image. We also report the average mAP(%) of each method in FGOVD.

Method | LLM  Detector CLIP Overall mAP
Baseline - 198.5 13.2 211.7 43.2
GUIDED with LLaMA-3.1-8B 72.1 198.8 13.3 284.2 65.9
GUIDED with LLaMA-3.3-70B | 193.8 198.8 13.3 405.9 66.5

More analysis of GUIDED. Furthermore, we present the mean classification scores and the mean
IoU of the prediction box with the ground truth box of the LaMI-DETR with and without GUIDED
in Figure[§] The results reveal that our GUIDED enhances both the capability of localization and
confidence with the subject embedding and the attribute embedding fuse module, demonstrating the
superiority of our method.

5 Limitations and Conclusions

Limitations. While GUIDED achieves strong performance on isolated fine-grained object recognition,
the attribute discrimination operates on features within coarse-level detection boxes. When relevant
attributes extend beyond the localized regions, performance may degrade. This could be mitigated by
using expanded region proposals or incorporating context-aware reasoning beyond bounding boxes.

Conclusions. In this work, we present GUIDED, a decomposition framework for fine-grained open-
vocabulary object detection. By explicitly decoupling object localization and fine-grained attribute
discrimination, GUIDED addresses the core challenge of semantic entanglement in vision-language
embeddings. Through task-specific modeling and selective attribute integration, our approach lever-
ages the strengths of both detection transformers and pretrained vision-language models. Extensive
experiments demonstrate that GUIDED achieves state-of-the-art performance across multiple FG-
OVD benchmarks, highlighting the effectiveness of task decomposition for fine-grained visual
understanding under open-vocabulary settings.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We carefully rectify the abstract and introduction to ensure the claims accu-
rately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have created a separate "Limitations" section in our paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper focuses on methodological innovations and empirical validation
without presenting formal theoretical results such as theorems or mathematical proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We will open-source the code after the paper is accepted.
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* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We will open-source the code after the paper is accepted, while we have
provided the implementation details of our method.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided the implementation details of our method.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the standard deviation with different random seeds in our supple-
mentary documents.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the GPU types and the number of GPUs.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have created a separate "Broader impacts" section in our supplementary
document.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: We have cited the original paper that produced the code package.

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided the details about training, license, limitations, etc.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have involved the usage of LLM in our methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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