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ABSTRACT

Expert demonstrations have proven to be an easy way to indirectly specify com-
plex tasks. Recent algorithms even support extracting unambiguous formal spec-
ifications, e.g. deterministic finite automata (DFA), from demonstrations. Un-
fortunately, these techniques are typically not sample-efficient. In this work, we
introduce L∗LM , an algorithm for learning DFAs from both demonstrations and
natural language. Due to the expressivity of natural language, we observe a sig-
nificant improvement in the data efficiency of learning DFAs from expert demon-
strations. Technically, L∗LM leverages large language models to answer mem-
bership queries about the underlying task. This is then combined with recent tech-
niques for transforming learning from demonstrations into a sequence of labeled
example learning problems. In our experiments, we observe the two modalities
complement each other, yielding a powerful few-shot learner.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a powerful tool for converting natural language
expressions into structured tasks (Yang et al., 2023a; Song et al., 2023; Huang et al., 2022). Sim-
ilarly, in many settings (e.g. robotics), demonstrations and labeled examples provide a comple-
mentary way to provide information about a task (Ravichandar et al., 2020). In addition, natural
language has been shown to significantly reducing the number of demonstrations needed to learn to
perform a task (Sontakke et al., 2023). Although impressive, these methods suffer a core limitation:
they do not provide a well-defined artifact that unambiguously encodes the specification of the task
in a manner that supports: (i) formal analysis and verification, and (ii) composition of tasks.

For example, we may wish to compositionally learn two task specifications independently in envi-
ronments that facilitate learning them and then compose them afterwards: “dry off before recharg-
ing” or “enter water before traversing through hot regions”. Similarly, due to regulatory require-
ments, we may wish to enforce an additional set of rules conjunctively with the learned specification,
e.g., “never allow the vehicle to speed when children are present.” In both cases, a desirable prop-
erty of our learned task representation is that it can guarantee high-level system properties without
retraining. Any need to fine-tune learned tasks with such properties undercuts the original purpose
of learning generalizable task representations (Littman et al., 2017; Vazquez-Chanlatte et al., 2018).

To this end, we consider learning task specifications in the form of deterministic finite automata
(DFA). The choice of DFAs as the concept class is motivated by three observations. First, DFAs
offer simple and intuitive semantics that require only a cursory familiarity for formal languages.
The only requirement to interpret them is a basic understanding of how to read flowcharts. As such,
DFAs offer a balance between the accessibility of natural language and rigidity of formal semantics.
Second, DFAs explicitly encode memory, making the identification of relevant memory needed to
encode the task clear. Furthermore, they are the “simplest” family of formal languages to do so, since
they are equivalent to having finite number of residual languages (Nerode congruences in the form
of states) (Hopcroft & Ullman, 1979). Third, many existing formulations such as finite temporal
logic and sequences of reach avoid tasks (go to location A, while avoiding B, then go to location C
while avoiding D) are regular languages and thus are expressible as DFAs (Camacho et al., 2018).
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Figure 1: Our algorithm, L∗LM is a multi-modal learning algorithm that builds upon the classic L∗
automata learning algorithm to learn automata from natural language. It also incorporates DISS to
learn from expert demonstrations and self-labeled examples that minimize surprisals.

In this work, we offer three key insights that enable us to robustly learn DFAs from a mixture
of demonstrations, labeled examples, and natural language. The resulting algorithm is known as
L∗LM . The first major insight is that we design an interaction protocol built around answering
simple membership queries. Here, we build on the classic automata learning literature to create an
active learning algorithm that only asks the LLM membership queries, e.g., “is it ok to visit the
red tile and then the blue tile?” There are two natural ways to realize this: (i) asking the LLM
to synthesize code and then evaluating the code and (ii) by constraining the output of the LLM to
conform to a grammar (Jones, 2023) – allowing trivial interpretation of the membership label. In this
work, we focus on the latter to avoid arbitrary code execution but demonstrate in appendix D.3 that
models such as GPT-4o are capable of generating membership answering programs. Importantly, as
L∗LM is designed to take in user inputs, avoiding arbitrary code execution removes whole classes
of security vulnerabilities due to code injection.

Our second key insight is that it is important for the LLM to be able to say it is unsure when asked
a membership query. We found in our experiments that the LLM would often state that it was
unsure during chain-of-thought reasoning (Wei et al., 2022) followed by a hallucinated membership
response. We note that this is consistent with other results in the literature (Turpin et al., 2023). The
resulting DFA would then contain features that were not justified by the labeled examples or the
language prompt and resulted in poor alignment with the task. A simple solution was to allow the
LLM (or code generated by an LLM as in the appendix) to respond “unsure” and then have the DFA
learner ask a different query. As shown in our experiments, this greatly improved performance,
particularly when complemented by inferences made by analyzing the demonstrations. Note, the
“unsure escape hatch” is required because the LLM is given an incomplete context to specify the
task. For example, parts of the task may be omitted by the user. In our experiments environment
dynamics are withheld from the LLM.

This leads to our third key insight: Labeled examples offer a bridge between LLM knowledge
distillation and an outside verifier. In our experiments, we found that LLMs such as GPT3.5-Turbo
and GPT4-Turbo failed to correctly provide membership queries for simple languages. In order to
correct this, we leverage (as a blackbox) the recent Demonstration Informed Specification Search
(DISS) algorithm which translates the problem of learning a DFA from an expert demonstration
in a Markov Decision Process into an iterative series of DFA identification from labeled example
problems (Vazquez-Chanlatte, 2022). Each problem is sent to our LLM based DFA-learner – seeded
with the labeled examples as context. Because of the ability to say its unsure, the LLM is able to
focus on labeling queries it is confident in due to the text prompt and leverages DISS to provide
corrective feedback. By creating an interaction protocol with DISS, we fuse the LLM’s natural
language reasoning with dynamics-dependent analysis the LLM would otherwise be oblivious to.

Contributions:
1. We propose L∗LM , a novel algorithm for multimodal learning of deterministic finite automata

from (i) natural language, (ii) labeled examples, and (iii) expert demonstrations in a Markov
Decision Process.
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2. A prototype implementation of L∗LM written in Python and compatible with many LLMs. 1

3. We empirically illustrate that (i) providing a natural language description of the task improves
learnability of the underlying DFA, (ii) allowing the language model to respond unsure improves
performance, and (iii) allowing more queries to the language model improves performance.

We emphasize that the resulting class of algorithms:
1. is guaranteed to output a valid DFA that is consistent with the input examples.
2. requires no arbitrary code evaluation.
3. only asks simple yes/no/unsure questions to the LLM.
4. supports natural language task descriptions and a-priori known examples and demonstrations.

2 RELATED WORK

This work lies at the intersection of a number of fields including grammatical inference, knowledge
distillation from language models, and multi-modal learning. We address these connections in turn.

2.1 GRAMMATICAL INFERENCE AND CONCEPT LEARNING

Grammatical inference (De la Higuera, 2010) refers to the rich literature on learning a formal gram-
mar (often an automaton (Drews & D’Antoni, 2017; Kasprzik, 2010)) from data – typically labeled
examples. Specific problems include finding the smallest automata consistent with a set of positive
and negative strings (De la Higuera, 2010) or learning an automaton using membership and equiv-
alence queries (Angluin, 1987). We refer the reader to (Vaandrager, 2021) for a detailed overview
of active automata learning. Notably, we leverage SAT-based DFA-identification (Ulyantsev et al.,
2015; Heule & Verwer, 2010) to easily identify small DFAs that are consistent with a set of labeled
examples and utilize a common technique to convert this passive learner into an active version space
learner (Sverdlik & Reynolds, 1992). Our LLM to DFA extraction pipeline builds directly on these
techniques. Finally, we note that the idea of learning with incomplete teachers is an evolving topic
in automata learning (Moeller et al., 2023).

2.2 LEARNING FROM EXPERT DEMONSTRATIONS

The problem of learning objectives by observing an expert also has a rich and well developed lit-
erature dating back to early work on Inverse Optimal Control (Kalman, 1964) and more recently
via Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000). While powerful, traditional IRL
provides no principled mechanism for composing the resulting reward artifacts and requires the rele-
vant historical features (memory) to be a-priori known. Furthermore, it has been observed that small
changes in the workspace, such as moving a goal location or perturbing transition probabilities, can
change the task encoded by a fixed reward (Vazquez-Chanlatte et al., 2018; Abel et al., 2021).

To address these deficits, recent works have proposed learning Boolean task specifications, e.g.
logic or automata, which admit well defined compositions, explicitly encode temporal constraints,
and have workspace independent semantics (Kasenberg & Scheutz, 2017; Chou et al., 2020; Shah
et al., 2018; Yoon & Sankaranarayanan, 2021; Vazquez-Chanlatte & Seshia, 2020).

Our work utilizes the Demonstration Informed Specification Search (DISS) algorithm (Vazquez-
Chanlatte, 2022). DISS is a variant of maximum causal entropy IRL that recasts learning a speci-
fication (here a DFA) as a series of grammatical inference from labeled example queries. For each
demonstration, a proxy gradient is computed over the surprisal (negative log likelihood) which sug-
gests paths that should have their labeled changed to make the demonstrations more likely. The key
insight in our work is that this offers a bridge to our LLM extraction formalism by having the LLM
provide some of the examples and DISS provide the others. From the perspective of DISS, this can
be seen as indirectly restricting the concept class using a natural language prompt.

2.3 KNOWLEDGE EXTRACTION FROM LLMS

Attempts to extract formal specifications from language can at least be traced back to (Vadera &
Meziane, 1994), if not further. More recent works have studied extracting knowledge from deep
learning models, e.g., extracting an automaton from a recurrent neural network using L∗ (Weiss

1https://lstar-lm.github.io/
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(a) While one path directly navigates to
■, the other demonstrates an implicit rule
which was omitted: dry before recharing

start start

(b) DFAs with stuttering semantics. If a transition is not pro-
vided, a self-loop is assumed. Accepting states are marked
with a concentric circle, and the initial state is labeled start.

Figure 2: Demonstrations of example robotic tasks and the corresponding DFA produced by L∗LM

et al., 2018) or using language prompts to synthesize programs (Desai et al., 2016). Several re-
cent works have explored extracting finite state automata from large language models (Yang et al.,
2023a;b).

A key difference between our work and the ones mentioned is our focus on multimodal learning from
demonstrations and language. Further, as mentioned in the introduction, when compared against
program synthesis, a key feature of the work is the restriction of arbitrary code to membership
queries which avoids (i) security and analysis issues and (ii) guarantees the resulting concept is
always a valid DFA, faithful to the input examples. This latter point is a significant difference from
other automata extraction works, e.g., (Yang et al., 2023a), that focus on more direct extraction of the
automata as a series of steps. Further, we note that the description of steps (i) encodes a policy rather
than a task specification as studied in this paper (ii) is ultimately restricted to automata whereas the
key ideas of our technique are applicable to arbitrary formal language learners.

Finally, we note that the fact that LLMs hallucinate on unknown queries is well known (Turpin et al.,
2023), with some works going so far as to retrain the LLM to refuse answering such queries (Zhang
et al., 2023). In our work, we do not retrain but instead relax our membership queries to allow the
LLM to say “unsure”, using constrained decoding (Tromble & Eisner, 2006; Geng et al., 2023).

2.4 RUNNING EXAMPLE

To ground our later discussion, we develop a running example. This running example is adapted
from (Vazquez-Chanlatte, 2022). Consider an agent operating in a 2D workspace as shown in Fig 2a.
The agent can attempt to move up, down, left, or right, but with probability 1/32, wind will push the
agent down, regardless of the agent’s action. The agent can sense four types of tiles: red/lava (■),
blue/water (■), yellow/recharging (■), and brown/drying (■). We would like to instruct the robot
to (i) avoid lava and (ii) eventually go to a recharge tile. To communicate this, we provide a variant
of that natural language task description. Further, we provide a few demonstrations of the task as
shown in Fig 2a. Unfortunately, in providing the description, we forget to mention one additional
rule: if the robot gets wet, it needs to dry off before recharging.

An insight of our work is that the demonstrations provided imply this rule. In particular, the deviation
after slipping implies that the direct path that doesn’t dry off is a negative example. As we show in
our experiments, neither the demonstrations nor the natural language alone is enough to consistently
guess the correct DFA (shown on the right in Fig 2b.

3 REFRESHER ON AUTOMATA LEARNING

In this section, we propose a general scheme for extracting a DFA from a large language model
(LLM) that has been prompted with a general task description. We start with the definition of a DFA
and a refresher on automata learning using examples and membership queries. This then sets us up
for an interactive protocol with the LLM to extract the underlying DFA. Again, we start with the
formal definition of a DFA and a set of labeled examples.

Definition 3.1. A Deterministic Finite Automaton (DFA) is a 5-tuple, D = ⟨Q,Σ, δ, q0, F ⟩, where
Q is a finite set of states, Σ is a finite alphabet, δ : Q× Σ→ Q is the transition function, q0 ∈ Q
is the initial state, and F ⊆ Q are the accepting states. The transition function is lifted to strings,
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δ∗ : Q × Σ∗ → Q. One says D accepts x if δ∗(q0, x) ∈ F . Denote by L[D] ⊆ Σ∗ the set of
strings, i.e., language, accepted by D. Its complement, the set of rejecting strings, is denoted by
L[D]. A word, x, is said to distinguish D1 and D2 if it causes one to accept and the other reject,
i.e., it x lies in the symmetric difference of their languages, x ∈ L[D1] ⊖ L[D2]. Finally, we will
assume the DFA is endowed with a size (or complexity), mapping it to a positive real number. This
will typically encode the number of bits or states needed to represent the DFA.

A collection of labeled examples, X = (X+, X−) is a finite mutually exclusive set of words where
X+ and X− are called the positive examples and negative examples respectively. A DFA, D, is
said to be consistent with X if it accepts all positive examples and rejects all negative examples, i.e.,
X+ ⊆ L[D] ∧X− ⊆ L[D] The DFA identification problem asks to find k ∈ N DFAs of minimal
size that are consistent with a set of labeled examples.

The DFA identification problem is extremely underdetermined in general due to there being a count-
ably infinite number of consistent DFA for any finite set of labeled examples (Gold, 1967). More-
over, for common size measures such a number of states, the identification problem is known to be
NP-Hard (Gold, 1978). Nevertheless, many SAT-based implementations exist which, in practice,
are able to efficiently solve the DFA identification problem (Heule & Verwer, 2010; Ulyantsev et al.,
2016).

Notably, this all assumes a passive learner, i.e., one where the example set X is a-priori provided.
Alternatively, one can consider active learners that directly query for labels. Formally, one assumes
that there is some unknown language L∗ and an oracle that can answer queries about L∗. The
common model, referred to as the Minimally Adequate Teacher (MAT) (Angluin, 1987) assumes
access to two types of queries: (i) membership queries, M(x) = x ∈ L∗, and (ii) equivalence
queries, E(D) = (l, x) where l ∈ {0, 1} indicates if L[D] ≡ L∗. If l = 0, i.e., the candidate DFA
is incorrect, then x is a distinguishing string.

The classic algorithm for learning under a MAT is called L∗ (Angluin, 1987). L∗ is known to
perform a polynomial number of membership queries and a linear number of equivalence queries.
Unfortunately, in practice the equivalence queries are often not realizable, and thus are often ap-
proximated by random sampling or candidate elimination (CE). In the former, one labels random
words from a fixed distribution over words yielding a probably approximately correct (PAC) approx-
imation of the underlying language (Angluin, 1987). In the latter, one uses DFA identification to find
a set of consistent DFAs and queries distinguishing sequences. The guarantee in CE is that size(D)
will be minimized. This leads to a folk algorithm for transforming any passive DFA identification
algorithm into an active one. A pseudo code example for such an algorithm, guess dfa VL, is
provided in Appendix Alg 1 where find minimal dfas refers to an arbitrary DFA identification
algorithm.2

Finally, we observe that in many cases – as will be the case with our LLMs – the oracle may not be
able to confidently provide membership queries. For example, if the task description provided does
not cover the case provided, the LLM may be simply hallucinating the membership label. To address
this case, we propose an extended membership query that answers true, false, or unsure. Further
observe that Alg 1 applies in the extended setting by automatically ignoring unsure responses. This is
in contrast to the L* algorithm which to our knowledge has no extension to support unsure responses.
For our experiments with L∗ we map unsure responses to membership queries to false.

4 EXTRACTING DFAS FROM LLM INTERACTION

The previous section formulated automata learning in the passive setting and in the active setting.
Notably, the active setting resulted in interaction protocols between the learner and an oracle that
can answer membership queries. In this section, we detail the observation that LLMs offer a natural
approximation for a membership oracle as overviewed in Fig 3.

Formally, an LLM takes in a sequence of tokens, x ∈ Γ∗ called a prompt, and outputs another
sequence of tokens y ∈ Γ∗ called a response. The response, y, can be viewed as a sample on the
suffixes of x from some underlying distribution. Techniques such as constrained decoding (Tromble
& Eisner, 2006) offer the ability to further restrict y to a specified formal language Ly – for example

2The VL here stands for version space learning of which this algorithm can be seen as an instance of.
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Figure 3: Visualization of the process of converting a language model into a membership oracle
for DFA learning. To address the issue of hallucinations in LLMs, our work proposes an extended
membership query and a cache. Ablations of our design proposals are provided in 6

using a context free grammar (Geng et al., 2023; Jones, 2023). This guarantees that y can be inter-
preted as an extended membership oracle. Functionally, our grammar splits the LLM’s response into
two parts, i.e., y = work �“FINAL ANSWER: ” �answer. The work portion can be utilized to imple-
ment various prompt engineering tricks, e.g., ReAct (Yao et al., 2023) and Chain-of-Thought (Wei
et al., 2022) or as seen with reasoning models (OpenAI, 2024), space for reasoning tokens. The
answer part contains either yes, no, or unsure – making parsing into a membership response trivial.

During the interaction between the LLM and the DFA learner, the prompt is incrementally extended
to include the responses of the previous query. The initial prompt is taken to be an arbitrary user-
provided description of the task along with (i) instructions for answering the question, (ii) a request
to show work, and (iii) known labeled examples. Finally, to guarantee that the LLM is consis-
tent with the provided labeled examples, we introduce a caching layer between the LLM and the
DFA learner. This layer answers any known queries without consulting the LLM; furthermore, it
memorizes any queries the LLM has already answered.

5 INCORPORATING EXPERT DEMONSTRATIONS

Next, we discuss how to introduce additional modalities. Our key insight is that labeled examples
offer a flexible late stage fusion mechanism between modalities. For example, we leverage the
Demonstration Informed Specification Search (DISS) algorithm (Vazquez-Chanlatte, 2022) which
transforms the problem of learning concepts from expert demonstrations into a series of passive
learning from labeled example problems.

Specifically, by an expert demonstration we mean the behavior of an agent acting in a Markov
Decision Process who generates a path, ξ, to satisfy an objective. Here, the path is featurized into a
finite alphabet and the goal is to generate a path that is accepted by some DFA D.
Remark 5.1. We observe several important differences between demonstrations and the labeled ex-
amples from the previous section. First, a demonstration of D need not be accepted by D. That is,
the labeled few-shot examples provided to the LLM must be consistent with the DFA, D whereas
the demonstrations need not be. Returning to our running example, this might be because (i) the
robot slips and accidentally violates the task specification; or (ii) the demonstration is a prefix of the
final path, perhaps being generated in real time.

The key idea of DISS is to generate counter-factual labeled examples in a manner that makes the
demonstrations less surprising.

6 EXPERIMENTS
Tomita Grammars For our first experiment, we use L∗LM as a membership oracle to learn
DFAs representing the 7 Tomita Grammars. These simple languages are a common benchmark for
studying automata learning (Weiss et al., 2018). We ask 30 membership queries for each grammar
to GPT3.5-Turbo and GPT4-Turbo. We repeat each experiment for both the original L⋆ (Angluin,
1987) learning algorithm and L∗LM which allows for extended membership queries. The halluci-
nation rates observed ( # of incorrect queries

total # of queries ) ranged from 3.33% to 100% with a median of 33.33%. In
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(a) Running example using L∗. Ground truth is de-
noted by the red line. Unlike the SAT-based back-
end, L∗ does not learn the DFA when it is not pro-
vided all examples and unsure is not allowed.

(b) Running example using candidate elimination
variant. In each iteration, DISS conjectures new la-
beled examples based on the demonstration and the
conjectured DFA.

Figure 4: Comparison between L∗ backend and candidate elimination variant in learning DFAs.

all grammars, no model was able to completely avoid hallucination, including a few experiments
with GPT-4o. Full experiment details and prompts are provided in the appendix. Similar hallucina-
tion rates were also observed with Mixtral-8x7B-v0.1. These results provide two key takeaways: (i)
Allowing LLMs to respond unsure reduces hallucination rates by up to 10%;, and (ii) despite the
reduction, we are unable to eliminate hallucinations and so L∗LM cannot strictly rely on an LLM
to serve as an oracle. Given the need for a grounded supervisory signal, we now consider our next
experiment (our running example) which provides for learning through multiple modalities.

6.1 ROBOTIC WORKSPACE

Given our findings in the single mode learning setting, we study the following research questions:
• RQ1: Does including a natural language description of the task aid in inferring the task?
• RQ2: Is reasoning using the demonstrations given the natural language prompt important?
• RQ3: Does including a partial description of the task aid in inferring the task?
• RQ4: Does the LLM avoid hallucinating unhelpful task components when it can say unsure?
• RQ5: Does L∗ or dfa-identify (our SAT-based version space DFA learning) perform better?

We adapt the experiment from (Vazquez-Chanlatte, 2022) Ch 5 which also serves as our running
example to support natural language task descriptions. We use the same DFA-conditioned maxi-
mum entropy planner as (Vazquez-Chanlatte, 2022) which works on a discretized approximation of
the 2D workspace. For a language model, we use Mixtral-8x7B-Instruct (Jiang et al., 2024) and
find minimal dfa is implemented using the dfa-identify SAT based solver (Vazquez-Chanlatte
et al., 2021). The task description, which is also given as the task description to L∗LM is provided
in the appendix in Fig 5. As in our motivating example, two demonstrations are provided illustrating
the task. We instantiate several variants of L∗LM varying the following factors:

1. all rules: Boolean determining if the third rule of the task prompt is replaced with ⟨ unknown ⟩.
2. allow unsure: Boolean determining if the response grammar includes the “unsure” output.
3. use L*: Boolean determining if L∗ is used for the DFA-learner or guess dfa VL using SAT.
4. query budget: Number of queries allowed to the LLM per iteration ∈ [0, 32].

The results are illustrated in Figures 4a and 4b for use L* = false and true, respectively. These
figures plot the minimum energy, U , found at each iteration of DISS. Each figure is broken into four
quadrants varying whether all the rules are provided and whether the unsure response is included
in the grammar. The color of the line indicates the number of queries allowed per DISS iteration.
Finally, the red dotted line corresponds to the energy of the ground truth DFA shown in Fig 2b.

RQ1: Natural language prompts improve performance: First, observe that with 0 query budget,
we revert to the original DISS experiment as described in (Vazquez-Chanlatte, 2022), i.e., no natural
language assistance. Second, the DFA conjectured during the first iteration of DISS provides no
labeled examples to the DFA learner. Thus, this corresponds to the performance of the learner with
no demonstrations. Studying Figures 4a and 4b, we see that the 0 query budget runs fail to find
DFAs with equal or lower energy to the ground-truth DFA before the maximum number of DISS
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iterations is reached. Conversely, we see that the more both L∗ and the CE backend are allowed
to query the LLM, the lower the final energy tends to be. Further analyzing the learned DFAs, we
see that many of the runs learn the exactly correct DFA, while others learn variants that are nearly
indistinguishable given the demonstration and the particular environment.

RQ2: Analyzing the demonstrations is still required to learn the correct DFA: Somewhat sur-
prisingly, even in the setting where all rules are provided, we see that 5 to 15 DISS iterations are
still required to learn a good DFA. As with the Tomita languages, the natural language prompt is not
enough and the multi-modal nature of L∗LM is indeed useful for learning correct DFAs.

RQ3: Including more of the task description improves performance: Comparing the top and
bottom rows of Figures 4a and 4b, we see that including all rules has small effect on the CE backend
but results in a substantial improvement for the L∗ backend. Notably, the CE backend seems to be
able to compensate for the lack of rules using the hypothesized labeled examples from DISS.

RQ4: Allowing unsure responses improves performance: Comparing the left and right columns
of Figures 4a and 4b, we see a clear improvement in performance when allowing the LLM to respond
unsure. Again, the improvement is particularly noticeable in the L* setting. Analyzing the LLM
responses, this seems to be because L* queries about words to directly determine transitions between
states as opposed to directly considering what is relevant between the remaining set of consistent
small sized DFAs. This leads to queries that are largely inconsequential with a higher risk that a
hallucination will lead to a larger than necessary DFA. Further, this results in DISS providing a
correcting labeled example that was unnecessary given the size prior.

RQ5: SAT-based candidate elimination outperforms L∗: Finally, we observe that the SAT based
CE backend which only queries distinguishing words systematically performs equal to or better than
the L∗ backend – where the L∗ backend often converges just above the red line. This is particularly
striking in the treatments that do not include all the rules or disallow unsure responses. As with the
analysis of unsure responses, this seems to be due to L∗ asking queries with less utility and thus
hallucinations have a larger comparative downside.

Lastly, we consider the effects of changing the output modality of the LLM. We allow the LLMs to
output code instead of the context-free-grammar. Samples of the output programs are provided in
the appendix. The results are similar to the bottom left graph in Figure 4a. The resulting programs
are never able to help learn an adequate DFA. Analysis of the chains-of-thought reveal that this
is because even less reasoning for the primary task is used in this setting. Instead of focusing
on determining whether an example is positive or negative, the LLM quickly makes a superficial
decision on the current query and instead focuses its attention on describing all it understands as a
program. We also note that in this interactive setting, arbitrary code execution leaves us vulnerable
to code injection attacks and mitigation strategies should be employed (e.g. sandboxes).

7 CONCLUSION AND DISCUSSION

In this work, we considered learning DFAs from natural language descriptions with supervision via
expert demonstrations. By using the shared language of labeled examples, we showed success in a
2D workspace problem, even when certain rules were omitted from the description. We end with
a few natural extensions of this work. Specifically, our current experiments were focused on 2D
workspaces due to limitations of the current DFA conditioned maximum entropy planners used in
DISS and not limitations in our proposed algorithm, L∗LM . Enhancing the planners to support new
kinds of workspaces and larger state spaces would allow L∗LM to support much larger DFAs and
real world domains ranging from IoT home automation to in-cabin assistants for cars. Finally, this
work can be extended to any concept class learnable (not just DFAs) using a minimally adequate
teacher (membership and approximated equivalence queries), e.g., symbolic automata (Drews &
D’Antoni, 2017) and non-deterministic residual automata (Kasprzik, 2010).
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A DEMONSTRATION INFORMED SPECIFICATION SEARCH (DISS) OVERVIEW

DISS is a variant of maximum causal entropy inverse reinforcement learning (Ziebart, 2010), that
requires:

1. A concept sampler which returns a concept (here a DFA) consistent with a hypothesized set of
labeled examples.

2. A planner which given a concept (here a DFA) returns an entropy regularized policy for it.

DISS proceeds in a loop in which it (i) proposes a candidate DFA from a set of hypothesized of set
of examples, (ii) analyzes the demonstrations using the entropy regularized policy to hypothesize
new labeled examples, and (iii) adds these new labeled examples into an example buffer which is
used to generate the labeled examples for the next round. The goal of the loop is to minimize the
energy (description complexity) of the DFA plus the demonstration given its corresponding policy,

U(D, ξ) = − log Pr(ξ | πD) + λ · size(D),

where λ is set based on the a-priori expectation of size(D).

B GUESSING DFAS AS AN ACTIVE VERSION SPACING LEARNER

Algorithm 1 guess dfa VL (Σ, X+, X−,query budget)

1: for t = 1 . . . query budget do
2: D1, D2 ← find minimal dfas(Σ, X+, X−, 2)
3: word ∼ L[D1]⊖ L[D2]
4: label←M(word)
5: if label = true then
6: X+ ← word
7: else if label = false then
8: X− ← word
9: return find minimal dfas(Σ, X+, X−, 1)

C RUNNING EXAMPLE PROMPT

A robot is operating in a grid world and can visit four types of tiles: red, yellow, blue, green. They
correspond to lava (red), recharging (yellow), water (blue), and drying (green) tiles. The robot is to visit
tiles according to some set of rules. This will be recorded as a sequence of colors. Rules include:

1. The sequence must contain at least one yellow tile, i.e., eventually recharge.
2. The sequence must not contain any red tiles, i.e., lava must be avoided at all costs.
3. If blue is visited, then you must visit green *before* yellow, i.e., the robot must dry off before

recharging.
A positive example must conform to all rules. Further note that repeated sequential colors can be replaced
with a single instance. For example:

• [yellow,yellow,blue] => [yellow, blue]
• [red,red,blue,green,green,red] => [red,blue,green,red]
• [blue,blue,blue => [blue]

Figure 5: Prompt used in all rules treatment in experiments.

D PSUEDO CODE FOR L*LM

# LLM wrapper prompted with task
oracle = ...
# SAT based DFA identification
find_dfa = ...
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# finds word is language sym difference
distinguishing_query = ...

def guess_dfa(positive, negative)->DFA:
# 1. Ask membership queries that
# distinguish remaining candidates.
# Similar process done in
# equivalence query for L* backend
for _ in range(QUERY_BUDGET):
word = distinguishing_query(

positive, negative, alphabet)
label = oracle(word)
if label is True:

positive.append(word)
elif label is False:

negative.append(word)
else: # idk case

assert label is None

# 2. Return minimal consistent DFA.
return find_dfa(positive,

negative, alphabet)

def main():
diss = DISS()
positive, negative = [], []
min_nll, best = float(’inf’), None
while unsatisfied: # DISS loop
candidate = guess_dfa(positive,

negative, oracle)
# Compute counterfactual based on
# on gradient of demonstration nll
# (i.e., surprisal).
positive, negative, nll = diss.send(

candidate)
if nll < min_nll:

min_nll, best = nll, candidate
return best

D.1 LLM INTERACTION EXAMPLE

14
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LLM interaction using direct yes/no/unsure
Generated using ChatGPT-4o:

A robot is operating in a grid world and can visit four types
of tiles: {red, yellow, blue, green}.

They correspond to lava (red), recharging (yellow), water (
blue), and drying (green) tiles.

The robot is to visit tiles according to some set of rules.
This will be recorded as a sequence of colors.

Rules include:

1. The sequence must contain at least one yellow tile, i.e
., eventually recharge.
2. The sequence must not contain any red tiles, i.e., lava
must be avoided at all costs.
3. If blue is visited, then you must visit green *before*
yellow, i.e., the robot must dry off before recharging.

A positive example must conform to all rules.

Further note that repeated sequential colors can be replaced
with a single

instance.

For example:
- [yellow,yellow,blue] => [yellow, blue]
- [red,red,blue,green,green,red] => [red,blue,green,red]
- [blue,blue,blue] => [blue]

Additionally, by examining demonstrations of the task, we
conjecture the following labeled examples:

POSITIVE EXAMPLES
- [blue, green, yellow]
- [yellow]

NEGATIVE EXAMPLES
- [blue, red, yellow]
- [red, yellow, green]
- [blue, red, blue, red]
- [blue]
- [blue, red, green, yellow]
- [blue, green]
- [blue, yellow]

Please briefly answer the following questions using step-by-
step reasoning to show your work. Do not answer any other
question. When you arrive at a conclusion, please state it
as FINAL_ANSWER: <yes, no>.

User: Is [red, red, blue] a positive example?

AI: To determine if [red, red, blue] is a positive example, we
need to check if it conforms to all the rules.
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1) The sequence must contain at least one yellow tile -
FINAL_ANSWER: no

User: Is [yellow, blue] a positive example?

AI: To determine if [yellow, blue] is a positive example, we
need to check if it conforms to all the rules.

1) The sequence must contain at least one yellow tile -
FINAL_ANSWER: yes

User: Is [red, blue] a positive example?

AI: To determine if [red, blue] is a positive example, we need
to check if it

conforms to all the rules.

1) The sequence must not contain any red tiles - FINAL_ANSWER:
no

User: Is [yellow, yellow, green] a positive example?

AI: To determine if [yellow, yellow, green] is a positive
example, we need to

check if it conforms to all the rules.

1) The sequence must contain at least one yellow tile -
FINAL_ANSWER: yes

User: Is [yellow, blue, blue] a positive example?

AI: To determine if [yellow, blue, blue] is a positive example
, we need to

check if it conforms to all the rules.

1) The sequence must not contain any red tiles - FINAL_ANSWER:
yes

User: Is [yellow, yellow] a positive example?

AI: To determine if [yellow, yellow] is a positive example, we
need to check if

it conforms to all the rules.

1) The sequence must contain at least one yellow tile -
FINAL_ANSWER: yes

User: Is [yellow, red, green, yellow] a positive example?

AI: To determine if [yellow, red, green, yellow] is a positive
example, we need to check if it conforms to all the rules.

1) The sequence must not contain any red tiles - FINAL_ANSWER:
no

16
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D.2 LLM INTERACTION GENERATING CODE TO ANSWER YES/NO/UNSURE

The following was generated from ChatGPT-4o. Our prompt:

A robot is operating in a grid world and can visit four types
of tiles: {red, yellow, blue, green}.

They correspond to lava (red), recharging (yellow), water (
blue), and drying (green) tiles.

The robot is to visit tiles according to some set of rules.
This will be recorded as a sequence of colors.

Rules include:

1. The sequence must contain at least one yellow tile, i.e
., eventually recharge.
2. The sequence must not contain any red tiles, i.e., lava
must be avoided at all costs.

A positive example must conform to all rules.

Further note that repeated sequential colors can be replaced
with a single instance.

For example:
- [yellow,yellow,blue] => [yellow, blue]
- [red,red,blue,green,green,red] => [red,blue,green,red]
- [blue,blue,blue] => [blue]

Additionally, by examining demonstrations of the task, we
conjecture the following labeled examples:

POSITIVE EXAMPLES
- [blue, green, yellow]
- [yellow]

NEGATIVE EXAMPLES
- [blue, red, yellow]
- [red, yellow, green]
- [blue, red, blue, red]
- [blue]
- [blue, red, green, yellow]
- [blue, green]
- [blue, yellow]

Using step-by-step reasoning to create a python program to
encode the above rules. Show your work. Do not answer any
other question. The input of the python program will be a
list of colors and the output should be "yes", "no", or "
unsure".

GPT-4o’s response:

To create a Python program that follows the rules and checks
whether a sequence of tiles is a valid path according to

17
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the given conditions, we need to systematically break down
the requirements and encode them step-by-step.

Here’s a step-by-step explanation of the logic we’ll implement
:

Deduplicate Sequential Colors: If the same color appears
consecutively, we will reduce them to a single instance of
that color.

Check for Rules:
The sequence must contain at least one yellow tile.
The sequence must not contain any red tiles.

Determine Positive or Negative Example:
If the sequence contains "red", it’s an immediate "no

".
If the sequence does not contain any "yellow", it’s an

immediate "no".
If the sequence meets the above criteria but does not

conform to the known
patterns of positive or negative examples, it will be

labeled as "unsure".

Here is the Python code to achieve this:

python

def deduplicate_sequence(sequence):
"""Remove consecutive duplicates from the sequence."""
if not sequence:

return []
deduplicated = [sequence[0]]
for color in sequence[1:]:

if color != deduplicated[-1]:
deduplicated.append(color)

return deduplicated

def is_valid_sequence(sequence):
"""Check if the sequence is valid based on the given rules."""
deduplicated = deduplicate_sequence(sequence)

# Check for red tiles
if "red" in deduplicated:

return "no"

# Check for at least one yellow tile
if "yellow" not in deduplicated:

return "no"

# Compare against positive examples
positive_examples = [

["blue", "green", "yellow"],
["yellow"]

]
if deduplicated in positive_examples:
return "yes"

# Compare against negative examples
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negative_examples = [
["blue", "red", "yellow"],
["red", "yellow", "green"],
["blue", "red", "blue", "red"],
["blue"],
["blue", "red", "green", "yellow"],
["blue", "green"],
["blue", "yellow"]

]
if deduplicated in negative_examples:

return "no"

# If it doesn’t match any known patterns, return "unsure"
return "unsure"

19
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D.3 LLM INTERACTION GENERATING CODE TO ANSWER YES/NO

The following was generated from ChatGPT-4o. Our prompt:

A robot is operating in a grid world and can visit four types
of tiles: {red, yellow, blue, green}.

They correspond to lava (red), recharging (yellow), water (
blue), and drying (green) tiles.

The robot is to visit tiles according to some set of rules.
This will be recorded as a sequence of colors.

Rules include:

1. The sequence must contain at least one yellow tile, i.e
., eventually recharge.
2. The sequence must not contain any red tiles, i.e., lava
must be avoided at all costs.

A positive example must conform to all rules.

Further note that repeated sequential colors can be replaced
with a single instance.

For example:
- [yellow,yellow,blue] => [yellow, blue]
- [red,red,blue,green,green,red] => [red,blue,green,red]
- [blue,blue,blue] => [blue]

Additionally, by examining demonstrations of the task, we
conjecture the following labeled examples:

POSITIVE EXAMPLES
- [blue, green, yellow]
- [yellow]

NEGATIVE EXAMPLES
- [blue, red, yellow]
- [red, yellow, green]
- [blue, red, blue, red]
- [blue]
- [blue, red, green, yellow]
- [blue, green]
- [blue, yellow]

Using step-by-step reasoning to create a python program to
encode the above rules. Show your work. Do not answer any
other question. The input of the python program will be a
list of colors and the output should be "yes", "no".

ChatGPT:

To create a Python program that checks if a given sequence of
tiles meets the specified rules, let’s break down the steps
needed:

20



Published as a conference paper at ICLR 2025

Check for at least one yellow tile: The sequence must
contain at least one yellow tile.
Check for the absence of red tiles: The sequence must not
contain any red tiles.
Simplify the sequence: Remove consecutive repeated colors
to simplify the sequence.

Here’s a step-by-step breakdown of the code:

Define the function: The function will take a list of
colors as input and return "yes" or "no" based on whether
the sequence meets the rules.

Simplify the sequence: Remove consecutive duplicates.

Check for at least one yellow tile: Ensure there is at
least one yellow tile in the simplified sequence.

Check for absence of red tiles: Ensure there are no red
tiles in the simplified sequence.

Here’s the Python program that accomplishes this:

python

def check_sequence(sequence):
# Step 1: Simplify the sequence to remove consecutive duplicates
simplified_sequence = []
for color in sequence:

if not simplified_sequence or simplified_sequence[-1] != color
:

simplified_sequence.append(color)

# Step 2: Check for at least one yellow tile
if ’yellow’ not in simplified_sequence:

return "no"

# Step 3: Check for absence of red tiles
if ’red’ in simplified_sequence:

return "no"

# If all checks are passed
return "yes"
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Figure 6: Running example using L∗ backend. Ground truth energy is denoted by the red dotted
line. Unlike the SAT-based backend (Fig 4b), L∗ struggles to learn the DFA when not provided all
examples and unsure responses are not allowed.

Figure 7: Running example using candidate elimination variant. In each iteration DISS conjectures
new labeled examples based on the demonstration and the conjectured DFA.

D.4 COMPARING L⋆ AND CANDIDATE ELIMINATION BACKENDS

E TOMITA GRAMMARS

E.1 DETAILED RESULTS

The following tables summarize the results of the Tomita Grammar’s experiment.
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Correct Incorrect
Tomita 1 23 7
Tomita 2 29 1
Tomita 3 0 30
Tomita 4 12 18
Tomita 5 20 10
Tomita 6 20 10
Tomita 7 0 30

Table 1: Active learning of DFAs representing the Seven Tomita Grammars using L∗LM with
the original L∗ learning algorithm. Results are identical with both gpt-3.5-turbo-0125 and
gpt-4-turbo.

Unsure Correct Incorrect
Tomita 1 1 23 7
Tomita 2 1 29 1
Tomita 3 3 0 30
Tomita 4 1 12 18
Tomita 5 2 20 10
Tomita 6 2 20 10
Tomita 7 3 0 30

Table 2: Active learning of DFAs representing the Seven Tomita Grammars using L∗LM and the
extended membership variant which includes an unsure option. Results are identical with both
gpt-3.5-turbo-0125 and gpt-4-turbo.

Prompts
The following meta-prompt was used for the treatment which allows an unsure option.

The following is a description of a rule for labeling a
sequence of ones and zeros as good (accepted) or
bad (rejected).

{rule}

According to the description, respond "true" if the sequence
is good and "false" if the sequence is bad. If you are unsure
or do not know the answer, respond "unsure".
Do not respond with anything else.

For the treatment which does not allow ”unsure”, simply omit the second-to-last sentence that
describes unsure in the meta-prompt.

For each of the seven Tomita Grammars, we substitute the following prompts into the curly braces
of the meta-prompt and query the LLM with the resultant prompt. The prompts we show here were
human generated. We also repeated the same experiment with ChatGPT-4o generated prompts
from providing the examples and and asking for a natural language explanation of the pattern
demonstrated, and finally, we also ask for paraphrased (explained differently) prompts. We found
that in any case there was no difference in the downstream L∗LM results.

Tomita Grammar One:

The sequence should only contain the token ’1’.
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Seeing any other token should result in rejecting the sequence
.

Good examples:
- 1
- 1,1
- 1,1,1
- 1,1,1,1

Bad examples:
- 0
- 1,0
- 0,1
- 1,1,0

Tomita Grammar Two:

Only accept sequences that are repetitions of 1,0.

Good examples:
- 1,0
- 1,0,1,0
- 1,0,1,0,1,0
- 1,0,1,0,1,0,1,0

Bad examples
- 1
- 1,0,1
- 0,1,0
- 1,0,1,0,0

Tomita Grammar Three:

An odd consecutive sequence of 1 should NEVER be later
followed by an odd consecutive sequence of zeros.

Good examples:
- 1,0,0
- 0,1,1,0,1,0,0
- 1,1,0,0,0
- 0,0,0,1,1,0,0,0

Bad examples
- 1,0
- 0,1,0
- 1,1,1,0,0,0
- 0,0,0,1,1,1,0,0,0

Tomita Grammar Four:

The subsequence 0,0,0 never appears, i.e., no three zeros in a
row.

Good examples:
- 1
- 1,0,0
- 0,0,1
- 1,1,0,0
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Bad Examples:
- 0,0,0
- 1,0,0,0
- 0,0,0,1
- 1,1,0,0,0,1,0

Tomita Grammar Five:

There should be an even number of zeros AND an even number of
ones.

Good examples:
- 1,1
- 0,0,1,1
- 0,0,1,1,0,0
- 1,1,1,1,0,0

Bad Examples:
- 0,0,0
- 1,0,0,0
- 1,0,0,1
- 0,1,0,1,1

Tomita Grammar Six:

The difference between the number of zeros and the number of
ones is a multiple for 4.

Good examples:
- 1,0
- 0,1
- 0,1,1,1,1
- 0,1,0,1,1,1,1

Bad Examples:
- 1
- 0
- 0,1,1
- 0,1,0,1,1

Tomita Grammar Seven:

The sequence 0,1 may appear at most once in the sequence.

Good examples:
- 1
- 0,1
- 0,0,1,0
- 1,0,0

Bad examples:
- 0,1,0,1
- 1,0,1,0,1
- 0,1,1,0,1
- 0,1,0,0,1
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