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Figure 1: Bridging the gap between theory and practice in Lipschitz regularization. While
Lipschitz continuity offers a principled form of implicit regularization, selecting and distributing
the budget K remains non-trivial. We propose a novel, data-driven approach to derive K from
interpretable, signal- or domain-specific properties, such as tissue compressibility in deformable
registration, and strategically distribute this budget across layers. This methodology allows to better
balance smoothness and expressiveness compared to uniform allocation strategies.

ABSTRACT

Implicit Neural Representations (INRs) have shown great promise in solving in-
verse problems, but their lack of inherent regularization often leads to a trade-off
between expressiveness and smoothness. While Lipschitz continuity presents a
principled form of implicit regularization, it is often applied as a rigid, uniform
1-Lipschitz constraint, limiting its potential in inverse problems. In this work,
we reframe Lipschitz regularization as a flexible Lipschitz budget framework. We
propose a method to first derive a principled, task-specific total budget K, then
proceed to distribute this budget non-uniformly across all network components,
including linear weights, activations, and embeddings. Across extensive experi-
ments on deformable registration and image inpainting, we show that non-uniform
allocation strategies provide a measure to balance regularization and expressive-
ness within the specified global budget. Our Lipschitz lens introduces an alterna-
tive, interpretable perspective to Neural Tangent Kernel (NTK) and Fourier analy-
sis frameworks in INRs, offering practitioners actionable principles for improving
network architecture and performance.

1 INTRODUCTION

Implicit neural representations |I| (Tancik et al., 2020; Sitzmann et al., [2020) have emerged as a
promising modality-agnostic modeling framework, with applications ranging from data compression

"We use the term neural fields (NF) and INRs interchangeably. We refer the reader to a comprehensive
survey (Xie et al.,|2022)
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(Striimpler et al.,[2022; |Dupont et al., 2022b; Wu et al.| 2025), representation learning (Dupont et al.,
2022a; Bauer et al., 2023} [Friedrich et al., 2025), novel view synthesis (Mildenhall et al., 2021}
Barron et al.| 2021), to inverse problems including deformable registration (Wolterink et al.| 2022;
Sideri-Lampretsa et al.l |2024), MRI reconstruction (Corona-Figueroa et al., [2022; McGinnis et al.,
2023 Huang et al.,|2023)), and population modeling (Bieder et al., 2024} |Dannecker et al., 2024).

Despite their widespread success, a significant gap remains in our understanding of the generaliza-
tion mechanisms underlying INRs. Notably, studies by (Fridovich-Keil et al.l 2022)) and (Kim &
Fridovich-Keil| [2025) reveal that regularized grids can match or even outperform non-regularized
INRs, challenging the presumed superiority of INRs in computer vision. These findings may be
intuitively explained by the absence of implicit regularization in expressive INR architectures (Ra-
masinghe et al.l [2022), may be addressed by incorporating explicit regularization into the learning
process (Gropp et al.| [2020; Niemeyer et al., [2022). Alternatively, one can employ spectrally con-
strained architectures (Liu et al.| [2022; |Coiffier & Béthune, |2024; Zhang et al., [2023)) as implicit
regularization, which we systematically study in this paper.

In these applications, the network is typically constrained to be 1-Lipschitz, which we refer to as a
Lipschitz Budget of one. This choice of unit Lipschitz constant is theoretically well-founded: the
Wasserstein distance can be reformulated as a maximization over 1-Lipschitz functions through the
Kantorovich-Rubinstein duality (Arjovsky et al., [2017), while for SDFs, the constraint naturally
emerges from the triangle inequality and Eikonal equation (Coiffier & Béthunel 2024). To globally
fulfill the Lipschitz Budget of one, current methods typically set all network component bounds to
1-Lipschitz, thus allocating the total Lipschitz Budget |"|uniformly across all network components,
including layers, activations, and embeddings. However, we question whether this uniform distribu-
tion of the budget is optimal.

In this work, we propose a new perspective on the regularization of INRs by analyzing it through the
lens of Lipschitz continuity. We advocate for shifting the paradigm from a rigid, uniform Lipschitz
constraint to a more flexible, budgeted strategy. This approach directly addresses two fundamental,
open problems in the Lipschitz regularization literature (Gouk et al.| 2021} [Newhouse et al., [2025):
(1) how to determine a principled total Lipschitz budget K for a given task, and (2) how this budget
should be optimally allocated among the network’s components to maximize performance. Our
primary contributions are as follows:

1. We derive induced Lipschitz constants for INR components providing a framework to move
beyond rigid 1-Lipschitz constraints. This allows for task-specific regularization strength.

2. We propose to estimate the Lipschitz budget guided by domain knowledge (deformable
image registration) or via an interpretable oracle based on expected signal variation within
the target domain (inpainting), and set it as an upper Lipschitz bound of the network.

3. Proposing a non-uniform budget allocation strategy, distributing the K-Lipschitz budget
across network components based on their intrinsic Lipschitz characteristics, allows for
balancing expressiveness and smoothness within the network.

4. Finally, we show how viewing empirically effective strategies, such as weight scaling,
through a Lipschitz lens can provide an important, complementary perspective to Fourier
analysis and the Neural Tangent Kernel theory in explaining their effectiveness.

2 BACKGROUND AND RELATED WORK

INRs and Regularization: Implicit representations have seen increasing adoption since neural ra-
diance fields (Mildenhall et al., [2021), with coordinate encodings (Rahimi & Recht, 2007 [Tancik
et al., 2020; Miiller et al., [2022) and activation functions (Sitzmann et al., 2020; Ramasinghe &
Luceyl [2022; [Saragadam et al.,[2023)) being crucial for network expressivity to enable detailed mod-
eling. Recent architectural works target the inherent trade-off of high expressiveness and smooth-
ness (Chen et al., 2023; Kazerouni et al., 2024; [Liu et al., 2024; [Yeom et al., 2024), but so far, no
principled approach to network design exists. To balance expressiveness and generalization, explicit

2The total Lipschitz of a neural network is the product of each network component’s Lipschitz constant. We

define this in



Under review as a conference paper at ICLR 2026

regularization has been extensively studied (Niemeyer et al.,[2022; [Yang et al., 2023} [Wynn & Tur-
mukhambetovl, |2023)), especially in shape modeling (Gropp et al., 2020; |Atzmon & Lipman, 2020;
Ben-Shabat et al [2022). While explicit regularization can be beneficial, it only rigidly constrains
model capacity and does not inherently limit the network’s susceptibility to input perturbations. We
deem this particularly relevant in the case of INRs, where early works have shown implicit regular-
ization to be largely absent (Ramasinghe & Lucey, 2022 Ramasinghe et al., 2022)), putting this at
the core of our study.

Lipschitz Constraints: The use of Lipschitz constraints has been widely studied in both the-
ory (Szegedy et al 2013} Bartlett et al., 2017} |Gouk et al [2021) and application (Arjovsky et al.,
2017 |Gulrajani et al.l 2017). However, within neural fields, it remains relatively underexplored.
We believe systematically studying this for INRs is timely, especially as spectral regularization has
recently gained traction in computer vision (Kim et al., 2021; Q1 et al., 2023) and large language
models (Kim et al.| 2021} [Large et al., 2024} [Newhouse et al., 2025). While Liu et al.| (2022)) reg-
ularizes the upper Lipschitz bound in conditional shape modeling to enable meaningful inter- and
extrapolation, most other works are limited to 1-Lipschitz networks. (Coiffier & Béthune|(2024) have
introduced 1-Lipschitz neural distance fields, Mujkanovic et al.| (2024)) for neural Gaussian scale-
space fields, and |Zhang et al.| (2023)) for vision applications. However, solely relying on uniform
allocation of 1-Lipschitz layers, without task-specific budgets or non-uniform allocations, severely
limits a network’s expressivity.

To enable more expressive Lipschitz bounds requires enforcing constraints in the INRs’ linear layers.
Most commonly this is achieved with spectral normalization (Golub & Van Loan[2013), or efficient
approximations thereof using power iteration methods (Miyato et al.,|2018)). For stricter constraints,
Bjorck orthonormalization (Bjorck & Bowiel |[1971; |Anil et al.l [2019) iteratively refines matrix or-
thogonality, which inherently maintains unit spectral norm. Alternatively, directly developing Lip-
schitz constrained layers is a topic of active study (Serrurier et al., 2020; |Prach & Lampert, 2022}
Prach et al.l |2024; |Araujo et al.l [2023). Gradient norm—preserving activations (Anil et al., 2019;
Singla et al.| 2021} Ducotterd et al.| 2024)) are designed to approach the upper bound of a network’s
Lipschitz capacity, in contrast to standard activations like ReLU. Complementary methods aim to
approximate the actual Lipschitz constant, both for ReLU-based MLPs (Virmaux & Scaman, |2018;
Fathony et al., [2020) and, more recently, for networks with gradient-preserving activations (Pauli
et al., 2024azb)). This work builds upon previous work by providing a unified framework for INR
components. We investigates the critical questions of deriving task-specific Lipschitz budgets and
non-uniform allocation for INRs to tackle the expressiveness-smoothness trade-off. In the following,
we provide the theoretical background on Lipschitz theory for this work.

3 LipscHITZ COMPOSITION OF INRS

3.1 LAYER-WISE LIPSCHITZ CONSTANTS

A function f : R? — R™ is Lipschitz-continuous with constant K if || f(z1) — f(x2)|| < K||z1 —
@o|| for all &y, xy € R<. This Lipschitz constant K bounds the maximum rate of change of the
function. In the context of INRs, we argue that controlling the Lipschitz constant is crucial for
balancing smoothness and expressiveness. For a network fy with L layers, the composition property
of Lipschitz continuity dictates that the overall Lipschitz constant K is bounded above by the product
of the Lipschitz constants of individual layers and activations ¢:

L
K =Lip(fy) < | [ Lip(¢:) Lip(W5) (1)
i=1
where W, represents the weight matrix of the ¢-th linear layer and ¢; is the activation function
applied after it. This compositional property represents the cornerstone of our framework. It reveals
that a global budget K can be achieved through a vast combination of layer-wise constants, which
motivates our central exploration of different budget allocation strategies.

Linear layers are the fundamental building blocks of INRs. The Lipschitz constant of a linear layer
is determined by its weight matrix W, specifically through the induced operator norm. The spectral
norm, defined as the largest singular value of W, is a common choice: Lip(W;) = ||[W;|2 =
Omaz(W;). Constraining the norm of a linear layer is achieved through techniques like spectral



Under review as a conference paper at ICLR 2026

normalization, e.g. using power iteration (Miyato et al., 2018)) to estimate the singular value decom-
position, and orthogonalization (Bjorck & Bowie, |1971; [Anil et al., [2019), which forces the weight
matrix to be orthogonal, such that Wi‘ W, =1.

For some INRs, the first layer is a feature projection ~(-) with an associated Lipschitz
constant. For positional encodings (Mildenhall et al|, [2021), given a mapping v,(p) =
(sin(2°7p), cos(2°7p), . .., sin(2L 1 7p), cos(2X~1p)) of 1D input p to a vector of sinusoidal

4L3_1 . Random Fourier Features +¢(v) (Rahimi

& Recht, 2007} Tancik et al.l|2020) similarly map inputs using random projections with a Lipschitz

functions, the Lipschitz constant is Lip(yp) = 7

constant of Lip(vyy) = 27 \/ Amax <Z;":1 b b]T) . We refer to |Appendix E|for the exact derivation.

Lastly, we analyze activation functions as a crucial non-linear building block of INRs. Activations
can be broadly categorized into two groups. 1-Lipschitz activations, like ReLU (¢(x) = max(0, x))
and GroupSort (Anil et al.| [2019), as well as related MaxMin and FullSort, inherently bound the
change in output relative to the input, simplifying Lipschitz control. Learnable activation func-
tions can be constrained to maintain a Lipschitz constant of 1 through parameter regularization.
Non-1-Lipschitz activations usually have hyperparameter-dependent Lipschitz bounds, such as the
frequency w or the scale parameter a. For sinusoidal activations, we have ¢(z) = sin(wz) with
derivative ¢’ () = wcos(wz). Since max, |cos(wx)| = 1, we obtain Lip(dsinusoida) = w. For
2 2

Gaussian activations with ¢(z) = e~ 247, the derivative is ¢/ () = —%e_;?. To find the maxi-

mum of |¢/(z)], we solve -L |¢/(2)| = 0, which occurs at z = +a. Evaluating at |¢/(+a)| = Le~2
yields Lip(@Gaussian) = %\/E Non-1-Lipschitz activations typically require careful scaling or regu-
larization to prevent unbounded growth in the overall Lipschitz constant. The choice of activation
function and its parameterization significantly impacts network behavior.

3.2 LIPSCHITZ BUDGET ALLOCATION

Given the total Lipschitz budget K g, we need to allocate this to individual network components.
Let’s consider that we have a total of M network components. For this, Eq. [I]is used for com-
puting the total Lipschitz of the network. The allocation problem is to find [K;], which satisfy

Hf\il K; = Kp where individual K; > 0. This product allocation can be thought of as a total sum
allocation in logspace. Besides uniform allocation (A), we also study four non-uniform allocation
strategies (B-E):

(A) Uniform allocation. In this work, we consider a baseline uniform allocation strategy, where we
allocate each component the same Lipschitz contribution. This results in K; = Y/ Kp.

(B) All-first allocation. We allocate K1 = Kp and K; = 1 fori = 2 : M. This is motivated by the
intuition that the first layer often plays a critical role in feature learning for neural networks, where
early weights have been shown to critically influence network sensitivity (Raghu et al.|[2017).

Additionally, we consider monotonically increasing parametric allocation using linear, exponential,
and cosine-annealed strategies constrained by the minimal Lipschitz of the last layer Ky = K-

Let t; = =L fori=1: M with t; = 0 and t5; = 1 and define u; = log K;.

(C) Linear allocation. We impose a straight line in budget space from an unknown K; = sg to
Ky = Kpin @ Ki = 8o+ (Kmin — 50) t4, t = 1 : M, and choose sy > 0 as the unique
solution of Zf\il log(so + (Kmin — So0) ti) = log K . using a one-dimensional root finder such as
the bisection/Newton method.

(D) Exponential allocation. We use a front-heavy ramp in log space as follows

log Kp — M log Kpin

U; = log Kmin + M
Zj:l(l - tj)

(1—-1t), K; = exp(u;).

(E) Cosine-annealed allocation. We consider the following g(t;) = H%(ﬂ’), sog(ty) =
1,¢9(tar) = 0. We seek a single amplitude «« > —1 such that
M—1
K; = Kpin (1 + ag(ti)) fori =1: M, subject to Kn]}/{n H (1 + ag(ti)) = Kp.
i=1
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Equivalently, « is the unique solution to the 1-D monotone equation Zf\ifl log(l + o g(ti)) =

log< 1?15 ), a > —1. Exemplary allocation strategies are provided in the supplementary Fig.

min

4 REVISITING 1-LIPSCHITZ UNDER FLEXIBLE BUDGET ALLOCATION

4.1 1-LipscHITZ SIGNED DISTANCE FIELDS

Definition: Let us consider an SDF as a learnable, implicit neural function fy which maps each
coordinate of an input space €2 to its shortest orthogonal distance from that point to the boundary, i.e.,
to the surface of a geometric object. The sign of the function’s output encodes a spatial relationship:
negative values indicate that the coordinate resides inside the represented object, while positive
values indicate that the coordinates are outside the object’s boundary. We can thus express the
shape’s boundary as the function’s zero-level set (Park et al., 2019} [Coiffier & Béthune| [2024).

1-Lipschitz: Since SDFs should represent the shortest, orthogonal distance to a shape’s boundary,
the gradient magnitude is required to be ||V f|| = 1 almost everywhere (Coiffier & Béthunel [2024).
This property is known as the eikonal equation and holds for a true SDF throughout its domain,
except at points where it is not differentiable, i.e., at the surface itself. Adhering to this property
ensures the function is 1-Lipschitz, which is critical for algorithms like ray marching
and further also enables the use of specific losses such as the hinge-Kantorovitch-Rubinstein loss
for training neural distance fields (Coiffier & Béthune, [2024)).

4.2 ON CAPACITY IN 1-LipscHITZ SDFs

1-Lipschitz SDFs can be achieved through various architectures and components; therefore, our first
objective is to systematically evaluate the impact of two key design choices: (1) different spectral
normalization techniques applied to linear layers, and (2) the incorporation of 1-Lipschitz activation
functions, which, to the best of our knowledge, have not been explored in the neural SDF literature.
Following the approach of for Wasserstein GANs, we investigate how achieving
tighter Lipschitz bounds influences the learned SDF.

CD:6.780 €D:3.130 €D:0.404 CD:2.679
K :0.581 Km:10.752 Km:0.809 Km12.730

SpecNorm Bjoerck SLL NoNorm
CD:3.130 CD:1.086 CD:0.131 €D:0.127
Kim:0.752 Km:0.881 Kpm:0.962 Kpm:0.957
RelLU FullSort MaxMin Householder

Figure 2: Learning the classical Stanford bunny shape with different spectral normalization tech-
niques (first row) and different gradient-preserving activation functions in combination with a Bjo-
erck normalized linear layer (second row) demonstrates that approaching the upper Lipschitz bound
in SDFs correlates with perceptual quality. We report the CD, Chamfer Distance ({) and the em-
perically estimated Lipschitz constant K, for all reconstructions. Please refer to the Appendix for
experimental details and results on other shapes.

Experiment 1 - Lipschitz Capacity: Given the widespread use of ReLU activation functions in
implicit neural representations for SDFs (Park et al., 2019} [Gropp et al.| 2020; [Davies et al., 2020}
Liu et al.| 2022} [Coiffier & Béthune], [2024), we investigate how imposing spectral normalization
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Figure 3: Budget allocation experiments for 1-Lipschitz SDFs. We train ten SDFs with two different
architectural components, i.e., Householder (HH) and GroupSort (MaxMin) as activation, using
Bjork and SLL for normalization, and demonstrate the impact of different allocation strategies. We

refer to for experimental setup details.

as a 1-Lipschitz constraint affects SDF learning quality. We evaluate this approach by training
neural representations of the Stanford bunny model, comparing reconstruction quality against non-
regularized SDFs using Chamfer Distance. To address the potential limitations of ReLU activations
under Lipschitz constraints, we further examine how gradient-norm preserving activation functions
can improve representational capacity by evaluating common gradient-preserving functions, includ-
ing MaxMin (Anil et al., [2019), FullSort (Anil et al.l 2019), and Householder activations (Singla
et al.,[2021) as implemented in [Serrurier et al.[(2020) against 1-Lipschitz ReL.U-based SDF repre-
sentations. To substantiate our claims, we also measure the network’s Lipschitz constant using the
empirical method presented in (Wang & Manchester, 2023)).

Our results in demonstrate that Bjorck orthonormalization (Bjorck & Bowiel, [1971}; [Anil
et al.,[2019) and SLL (Araujo et al.,|2023)) achieve sharper reconstruction quality compared to stan-
dard spectral normalization (Miyato et al., 2018)). Similarly, gradient-preserving activation func-
tions, particularly MaxMin and Householder, also enable more effective utilization of the network’s
representational budget, allowing for finer geometric detail preservation. Notably, we find that the
concept of Lipschitz capacity usage with respect to its empirically measured Lipschitz constant,
proves intuitively interpretable for SDFs, correlating strongly with perceptual quality metrics: The
closer a network is to utilizing the entire 1-Lipschitz budget, the better the image quality. Remark-
ably, with suitable spectral regularization, we observe that certain 1-Lipschitz activations provide
strong alternatives to the widely established ReLLU activation in shapes (Park et al., |2019; |[Davies
et al., [2020; (Coiffier & Béthunel [2024).

Experiment 2 - Budget Distribution: Up to this point, we have applied uniform 1-Lipschitz con-
straints across all layers of the neural network. However, the potential benefits of non-uniform
constraint allocation remain largely unexplored (Gouk et al.l 2021). This gap is particularly in-
triguing given the theoretical insights of Raghu et al.|(2017), who demonstrate that neural network
behavior exhibits high sensitivity to initial weight distributions, suggesting that layer-wise constraint
variation could yield improved reconstruction capabilities. Motivated by this theoretical foundation,
we investigate a strategic non-uniform allocation approach: we relax Lipschitz constraints in early
layers to enable more expressive feature transformations, while imposing progressively tighter con-
straints in later layers. This allocation strategy maintains the global 1-Lipschitz budget through the
composition property of Lipschitz functions outlined in[Section 3.1] ensuring theoretical guarantees
while potentially enhancing representational capacity. The results presented in show that
non-uniform allocation strategies perform on par with the standard uniform approach.

This result suggests that the benefits of non-uniform allocation may be stifled by the overly restrictive
nature of a unit budget. This motivates our extension to the general K-Lipschitz setting, where the
budget itself is a meaningful, task-dependent parameter.

5 BUDGET ESTIMATES & ALLOCATION STRATEGIES IN K -LIPSCHITZ INRS

In this section, we extend our investigation to a broader class of K-Lipschitz INRs for inverse prob-
lems, with an exemplary study of budget estimation and allocation within the context of deformable
image registration for medical imaging using a knowledge-driven estimate, and an oracle-driven es-
timate for the classical computer vision application of inpainting. We include a third experiment for
single-image super-resolution in Appendix [B}
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5.1 DOMAIN-DRIVEN BUDGETS IN THE K -LIPSCHITZ SETTING

INRs within the registration landscape: While deep learning models have been proposed to ac-
celerate medical image registration from pairwise to cohort-level settings (Balakrishnan et al.,2018;
2019; Dalca et al., 2019), conventional optimization-based methods (Rueckert et al.| [2002; |Avants
et al., 2011} |Yushkevich et al.,|2016) remain the gold standard for pairwise registration. Recently,
INRs have emerged as a promising learning-based alternative, showing strong potential in lung CT
and brain MRI registration (Wolterink et al.| [2022; |Sideri-Lampretsa et al.| [2024). However, due
to the lack of implicit regularization (Ramasinghe et al., [2022)), explicit constraints such as bending
energy (Rueckert et al., [2002), elastic (Burger et al.l [2013)), and curvature-based regularizers (Fis-
cher & Modersitzki, 2003) are often required. Even then, implicit deformation fields tend to fold
(Sideri-Lampretsa et al., [2024)), motivating our investigation of spectral regularization as a form of
implicit regularization within our K -Lipschitz framework.

Lipschitz budget in K-Lipschitz deformation fields: Accurate deformable registration of lung
images is essential for monitoring COPD (Murphy et al., 2012} |Galban et al., [2012} (Castillo et al.}
2013)), but respiratory motion and disease-related changes make this task challenging (Wolterink:
et al.,2022)). While lung tissue is deformable, it preserves structural integrity and cannot undergo
extreme distortions. Enforcing a Lipschitz constraint provides a principled upper bound on local
stretching or compression, ensuring anatomically plausible deformation fields and preventing fold-
ing, tearing, or excessive compression. Clinical evidence suggests that strain approaching 2.0 marks
a threshold for tissue failure (Chiumello et al.,2008; Brower et al., 2008; |Fung| 2013)), motivating our
choice of £k = 2. Guided by this principle, we study allocation strategies on a lung dataset (Castillo
et al., 2013)) using SIREN (Wolterink et al.| 2022} |Sideri-Lampretsa et al., 2024) and Fourier Fea-
ture networks, both shown to be promising for modeling continuous deformation fields, and evaluate
performance via target registration error (TRE) and folding ratio of deformation field.

Results: While we observed no significant differences between allocation strategies in SDFs, we
discovered important insights regarding training dynamics in deformable registration tasks that lead
to concrete recommendations for practitioners. Our systematic evaluation reveals that the combi-
nation of network architecture and Lipschitz normalization method significantly impacts training
stability and registration quality. We found that FFNs using Bjork or SLL normalization (Araujo
et al.,[2023), as well as SIREN with standard spectral normalization (Miyato et al., [2018), can ex-
hibit training instabilities when applied to registration tasks with certain Lipschitz constraints. Based
on these findings, we recommend two stable and effective configurations: spectral ReLU FFNs and
SIREN networks with Bjork or SLL normalization (c.f. Fig ). These architectures consistently
achieve stable training while maintaining the intended benefits of Lipschitz regularization, deliver-
ing a balance between TRE and folding ratio. Furthermore, we observe that the choice of allocation
strategy (c.f. Fig[4 provides control over this trade-off: non-uniform strategies enhance model ex-
pressiveness and reduce TRE, while maintaining a comparable folding ratio to uniform strategies.
These insights may enable practitioners to select configurations that best match their specific accu-
racy and smoothness requirements.

TRE Folding Ratio
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Figure 4: Comparison of smoothness (Folding Ratio ()) and expressiveness (TRE ({)) across three
Lipschitz-regularized INR architectures and budget allocation strategies. Non-uniform allocations
(e.g., exponential) can improve TRE while maintaining a comparable folding ratio to uniform allo-
cation.
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Figure 5: Results for different allocation strategies in the inpainting experiment using FFNs with
Knin = 1.0 and SLL-normalization layers.

5.2 DATA-DRIVEN BUDGET FOR K -LIPSCHITZ SETTINGS

A well-studied application of INRs in computer vision is image inpainting (Pathak et al.| 2016} |Yu
et al., 2018)), which aims to fill in missing or corrupted regions of an image. INRs are well-suited
for this task (Sitzmann et al., [2020) as they represent images as continuous functions that can be
queried at any spatial coordinate, enabling natural interpolation of missing pixel values.

Definition: Let’s consider image inpainting as the task of reconstructing a complete image I froma
corrupted image I with missing or masked regions M. The goal is to fill in the missing pixels with
plausible content. Given an input coordinate (z, y) € €2, where 2 is the 2D image domain, an INR fj
learns to map each spatial coordinate to its corresponding RGB color value: fy : (z,y) — (R, G, B)
For coordinates in the known regions, i.e., (z,y) ¢ M, the network is trained to reproduce the orig-
inal pixel values: fy(x,y) ~ I(z,y) for (x,y) ¢ M For masked coordinates, i.e., (x,y) € M, the
network infers appropriate color values based on the learned continuous representation, effectively
completing the image by querying fy at the missing coordinate locations. The reconstructed image

is then given by: I(x,y) = fo(z,y) forall (z,y) € Q

A Lipschitz oracle for INRs: We begin by discussing two useful oracles in INRs. For image recon-
struction, i.e., inpainting experiments, we assume the image to have a bandwidth B, and assume that
Lipschitz signal observation may follow this expectation. In this case, we can then state that (1) the
Lipschitz constant is upper-bounded by the sampling distribution over a bounded input and output
domain. (2) We decide to use an L2-norm-based approach (since we are spectrally constraining with
L2), to estimate a lower-bounded Lipschitz constant using a gradient-based estimate. We refer to
Appendix [C] for the oracle estimate.

Experiment: For the inpainting experiments, we use the CelebA dataset (Zhu et al.,2022) and train
several common INR architectures, including SIREN (Sitzmann et al., [2020)), FFNs (Tancik et al.,
2020), and Gaussian-activated INRs (Ramasinghe & Lucey, [2022), using the allocation strategies
presented earlier. We evaluate performance using standard metrics: PSNR (1 ), SSIM (1) (Wang
et al, 2004), and LPIPS () (Zhang et al.| [2018). We present exemplary quantitative (Fig. [5) and
qualitative (Fig. [6) results and refer to Appendix [D] for setup details, [G.4] for statistical signficants
tests and [G.3] for additional results.

As shown in Fig[f] non-uniform budget allocation strategies yield statistically significant improve-
ments in reconstruction (c.f. [G.4), peaking near the oracle estimate. Conversely, as shown in Fig. [5}
performance degrades when the Lipschitz budget deviates from the oracle, particularly when using
higher computational budgets (shown here for FFNs). This demonstrates that the oracle provides a
meaningful approximation of the upper Lipschitz bound for the inpainting task. Moreover, as shown
in different INR architectures exhibit varying degrees of self-regulation when deviating from
the estimated oracle budget, as evidenced by the steepness of their performance decline curves. We
interpret this behavior as an inductive Lipschitz regulation bias that corresponds to how suboptimal
budget allocations (i.e., greater deviation from the oracle estimate) affect each architecture’s abil-
ity to self-regulate local Lipschitzness. Observations for other architectures, including SIREN and
Gauss, are provided in Appendix [G.5]
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Figure 6: Qualitative examples from image inpainting experiments on the CelebA dataset using a
Lipschitz FFN with K,,;, = 0.5 and SLL-normalization layers.

6 PRACTICAL GUIDELINES FOR LIPSCHITZ REGULARIZATION

While the experiments in section [5|demonstrate the efficacy of our framework in inverse problems,
the core principles of the proposed Lipschitz framework are broadly applicable. In this section,
we distill our findings into a generalized methodology for practitioners, addressing (1) deriving a
principled global budget K, and (2) selecting an optimal allocation strategy.

6.1 STRATEGIES FOR ESTIMATING THE BUDGET K

We propose three distinct methods for deriving a robust Lipschitz estimate, depending on available
information:

* Domain-driven estimate: Beyond the tissue stretch constraints used in our experiments,
domain-specific priors (e.g., max cardiac contraction) or intensity bounds can serve as in-
terpretable upper bounds. For instance, in CT reconstruction, the maximal plausible gradi-
ent between adjacent voxels, such as the transition from air to tissue in Hounsfield Units,
can directly be used to set an informed budget K relative to spatial resolution.

 Data-driven estimate: When representative samples are available (e.g., high-resolution ref-
erence images for super-resolution tasks), they may serve as a meaningful reference signal
for the proposed oracle to estimate as described in[C] A dataset of representative images can
quantify local variations, effectively transferring the smoothness prior from the observed
domain to guide budget selection.

* Signal-theoretic estimate: Lacking strong priors or reference data, we recommend con-
servative estimation based on signal processing fundamentals (see Appendix C). Known
bandlimits or sampling rates, such as those standard in audio (44.1 kHz) or electrocardio-
grams (/150 Hz), provide robust, noise-suppressing baselines for regularization.

6.2 STRATEGIES FOR ALLOCATING THE BUDGET K

Distributing the global budget K remains an open challenge (Gouk et al}, [2021). We recommend
treating allocation as a hyperparameter search centered on network expressivity. Specifically, prac-
titioners should analyze the performance of different allocation strategies introduced in Section [3.2]
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Figure 7: Visualization of the upper induced Lipschitz bound of the method proposed by|Yeom et al.
(2024) for SIREN. Scaling the initialization leads to direct scaling of the Lipschitz bounds of the
linear layers, which allows the network to increase its capacity to overfit high-frequency content.

We report layer-wise spectral norms for the experiment in

with respect to K,,ip, i.e., the minimum imposed Lipschitz bound of the networks’ components.
This allows for a systematic exploration of the trade-off between rigid, uniform regularization and
flexible, non-uniform budget distributions.

7 HOW CAN LIPSCHITZ THEORY PROVIDE A NOVEL PERSPECTIVE?

So far, we have employed Lipschitz regularization as a measure to improve smoothness in learned
neural representations, while setting a global constraint on allowed perturbations, thus directly guid-
ing implicit regularization strength. In this section, we want to highlight the appeal of using Lips-
chitz theory to explain concurrent advances in neural field architectures, and provide an outlook for
the community on how Lipschitz theory may complement and even go beyond NTK literature (Jacot;
et al.,|2018; |Yiice et al.,2022)) and Fourier analysis (Benbarka et al., 2022} Ramasinghe et al.| [2023)
in providing a unifying paradigm. Recent work by [Yeom et al.| (2024)) shows that scaling the initial
and hidden layer weights of SIREN networks by a constant factor o improves both accuracy and
convergence speed. While their explanation relies on optimization and NTK theory, we argue that
Lipschitz theory offers a complementary perspective.

To test this, we performed an inpainting experiment with a three-layer, 256-neuron SIREN (w = 30),
trained on 25% of the pixels and evaluated using PSNR on training and test sets. Following |Yeom
et al.| (2024), we uniformly scaled the first and hidden layer weights by a € [1.0,4.0] in steps of
0.2. For a standard SIREN layer f(z) = sin(w(aWx + b)), the induced Lipschitz constant is
Lip(f) = |wal||W||, showing that the upper Lipschitz bound scales linearly with a. Empirical
spectral analysis of the scaled layers and the full network confirms this relationship. Scaling in-
creases the spectral norm, enabling the network to capture higher-frequency components and overfit
more strongly. Moreover, layer-wise analysis shows that with small «, the Lipschitz bound grows
during training, while with large « it remains constant, indicating a self-regulating capacity when
weights are sufficiently scaled.

D1SCcUSSION AND CONCLUSION:

In this study, we proposed a shift in how Lipschitz regularization is applied to INRs: from a rigid,
global constraint to a more flexible Lipschitz budget. Using an extensive set of experiments from
shape representation, lung registration, to image inpainting and super-resolution, we have demon-
strated that successful Lipschitz regularization critically depends on (i) selecting a meaningful global
budget, and (ii) utilizing appropriate allocation strategies.

To achieve this, we first introduced a systematic framework for deriving task-specific budgets, in-
formed by data, domain, or signal-theoretic properties. Second, we showed that non-uniform budget
allocation enables balancing regularization with expressiveness under the same global budget. After
demonstrating the proposed framework across different modalities and tasks, we have provided a
practical guide for adapting it to novel problems and applications.

In future work, we aim to extend task-specific budgets to novel domains and explore how budget
allocation might generalize within and beyond spectral regularization.

10
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A STATEMENTS

Reproducibility Statement: The complete implementation, including data preprocessing, model
training, and evaluation scripts, is available at https://anonymous.4open.science/r/
iclr_lip-88B1/. We further describe details regarding hyperparameters in

Ethics Statement: Our research advances the theoretical foundations of implicit neural represen-
tations through novel regularization techniques. While our work focuses on fundamental method-
ological contributions without direct harmful applications, we recognize that implicit neural repre-
sentations can potentially be applied to sensitive domains. We encourage practitioners to carefully
evaluate privacy, security, and fairness implications when deploying such models in real-world ap-
plications, particularly those involving personal or sensitive data.

Usage of Large Language Models: We utilized large language models as auxiliary tools during
various phases of this paper while maintaining full responsibility for validating all outputs. Specif-
ically, LLMs assisted with literature search, writing refinement, ideation and brainstorming during
the initial development stage and brain-storming, and were utilized during the implementation of
source code and and visualization utilities. All LLM-generated content was thoroughly reviewed
and modified to ensure accuracy and appropriateness.

B ADDITIONAL EXPERIMENT: SINGLE-IMAGE SUPER-RESOLUTION

We study the applicability of the oracle estimate and the Lipschitz budget allocation for the task
of single-image super-resolution, following the approach and experimental setup presented in [Sara-|

gadam et al.| (2023)).

Definition: Let us consider single-image super-resolution (SISR) as the task of reconstructing a
super-resolved, high-resolution image IR from the observations of a low-resolution image I R.
Here, the goal is to recover high-frequency details while reconstructing an image that is also consis-
tent with I .

Given an input coordinate (x,y) € Q, where ) is the continuous 2D image domain, we define 2
and Qg r as the coordinate grids for Iz and Iy i respectively. Following [Saragadam et al.| (2023)),
we train the INR on the full, high-resolution grid 27 r, and compute the pixel-wise loss between the
degraded, downsampled intensities D(fy(Q2r)) and I, g, where in our experiments, D represents
a downsampling operator with a scale factor of four.

Budget estimate: In light of super-resolution applications, we would like to discuss two useful
oracles.

» Conservative estimate: Assuming that a representative set of natural images is not available
for deriving a signal-based estimate, we can set the conservative, upper Lipschitz bound by
considering the worst-case Lipschitz constant. (c.f. section [C]

» Signal-based estimate: For the sake of evaluation, let us consider that we have access to
both the LR and HR images, and that we can measure the estimate directly using our
proposed signal-based estimate (c.f. section [C).

Experiment: For the SISR experiments, we use the Setl4 dataset (Zeyde et al., [2010) and train

several common INR architectures, including SIREN (Sitzmann et al.| 2020), FFNs
2020), and Gaussian-activated INRs (Ramasinghe & Lucey} 2022), using the allocation strategies

presented earlier. We evaluate performance using standard metrics: PSNR (1), SSIM (1) (Wang
et al.l 2004), and LPIPS (]) (Zhang et al 2018). The quantitative results are shown in Fig. 37] [38]

for spectral norm and K,,;, = 0.25,0.5, 1.0, respectively. The statistical results are shown in
Fig. [36] [39} fi0| respectively. We also provide qualitative examples in Fig. 4]
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C DATA DRIVEN ORACLE ESTIMATION FOR 2D RGB IMAGES

C.1 SIGNAL-BASED ORACLE DERIVATION

Let f : Q@ C R? — R? denote the RGB image-valued function with f(x,y) =

(fr(z,y), fo(x,y), fB(, y))T With Euclidean norms on input and output, the (global) Lips-
chitz constant of f is

L = inf{£>0: |f(p1) = f(p2)ll2 < £]p1 — p2ll2 VP1,p2 € Q}.

If fis C*, then
Jp(w,y) € R,

L= suwp | Jp(y),

(z,y)€Q
where J; is the Jacobian
3mfR ayfR
Jr@y) = |0ufc Oyfc|,  |Jlz2= omax(J).
8wa 81/ B

Equivalently, if we write

I pley) = |3 0 it a= S @ d= S04 b= (0L,

ce{R,G,B} c

then

i@ wlls = Pl 37) = 3 (0 +a Vo a7+ 1),

Discrete estimation on a rectangular grid. Let the image be sampled on a grid {(z;, y;)} with
spacings Az and Ay. Using centered finite differences for interior points (with one—sided differ-
ences at the boundary),

A\ Tj4+1,¥i) — Je\Tj—1,Yi c\Zj,Yi — Je\ Ty, Yi—
8zfc(xjayi) ~ f( I+ y;A"Tf( = y)a ayfc(l'j?yi) ~ f( . y+1)2Ayf( L 1)7

where Ax = 2/H and Ay = 2/W for an H x W size image assuming coordinate range in [—1, 1].
Define a;;, b;;, d;; from these discrete partials as above and set

Gij = \/é (aij +diy + \/(aij ~ )t 4b?j).

Our spectral (Euclidean) Lipschitz estimator is then

Lest = HJ%X 045

C.2 NOISE SENSITIVITY ANALYSIS FOR SIGNAL-BASED ORACLE

Following the common denoising setup in|Saragadam et al.|(2023), we evaluate the robustness of the
signal-based oracle estimator under simulated photon shot noise. We vary the peak photon counts
~v € {30,90, 120} with a fixed readout noise of o = 2, utilizing examples of our inpainting dataset
(CelebA).

As shown in the plots, the oracle estimator is only moderately sensitive to noise. Although noise
induces a slight shift in the gradient distribution, particularly in the tail, leading to an increased max-
imum estimated Lipschitz constant, the overall distributional structure remains largely preserved.
This effect becomes more pronounced at high noise levels (e.g., ¥ = 30). In such cases, where noise
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Figure 8: Sensitivity Analysis to simulated photon shot noise of various levels. We recommend
switching to percentile-based estimates in noisy images instead of utilizing the absolute maximum

estimated Lipschitz constant.

artifacts distort the extreme values, percentile-based thresholds provide a robust alternative to rely-
ing on the absolute maximum. In particular, we find that the 99.9% and 99.99% percentiles reduce
the gap between estimates obtained from the original and noisy images.

19



Under review as a conference paper at ICLR 2026

C.3 CONSERVATIVE ORACLE ESTIMATE:

In applications where access to representative samples is not possible, or the sample-based esti-
mates exhibit high variability, we recommend considering a conservative global upper bound for
the Lipschitz constant that can be set from the input sampling resolution and the output amplitude
range.

Let fs be the sampling frequency, fx = fs/2 the Nyquist frequency, R the peak-to-peak output
range, and C' the number of output channels. For a continuous, bandlimited signal (worst-case
sinusoid at fx) with amplitude A = R/2, the derivative magnitude per channel is bounded by

’jﬁfc(t)‘ <onfyA=TRS.

Bounding the operator norm of the Jacobian by its Frobenius norm yields the conservative global
Lipschitz upper bound:

Lg\@ngszxfcwaN.

Let R be the output range and s, s, the grid spacings along x and y. For each channel c,

T R 7TR

|8 fC| < **7 |8yf0‘ — 2

Let us define:
2 2
“Y s <ct R an ICIAE e
c 5z y

Using the norm inequality || J¢||2 < [|J¢||lF = Va+d, the global bound becomes:

1 1
veinfo(L D)
8 S

Y
In the isotropic case, where x-/y- spacing are identical, i.e. s, = s, = s, this simplifies to
0 2C
L< =R .
2 S

D DETAILS REGARDING EXPERIMENTS

D.1 SHAPES

For all shape experiments, we used the data from the Common 3D Test Model sﬂ namely armadillo,
beast, bimba, cow, homer, ogre, spot, stanford-bunny, suzanne, teapot. Following
2020), we employ an 8-layer multi-layer perceptron for all experiments with 256 hidden dimensions,
and no skip connections. We train all models for 1000 epochs, with a learning rate of 5e — 4, a batch
size of 16384, and a combination of SDF loss A = 1, normal loss A = 0.05, and eikonal loss A\ =
0.05 (Gropp et al.}[2020). For 1-Lipschitz neural networks, we use the native spectral regularization
implemented in PyTorch (Paszke et al.l [2019), Bjoerck normalized layers implemented in
let al (2020) and SLL layers from |Araujo et al.|(2023). All 1-Lipschitz activations are implemented
using [Serrurier et al.| (2020).

Shttps://github.com/alecjacobson/common-3d-test-models
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D.2 DEFORMABLE REGISTRATION

We use the repository of Wolterink et al.| (2022) EL and use the identical setup in terms of dataset and
hyperparameters. To have a comparable setup, we restrict the registration, similarly to [Wolterink
et al| (2022) to the lung area. Since Wolterink et al| (2022) do not report the folding ratio, we
complement the existing metrics computation by implementing the folding ratio within the masked
region of Deepali (Schuh et al.| 2025) and erode the deformation field by three voxels based on
boundary effects imposed by the masked registration.

D.3 INPAINTING

For the inpainting experiments, we choose 25 random images of the CelebA-HQ (resolution:
218x178) dataset (Zhu et al., 2022), and use 4-layer MLPs with a hidden dimension of 256. We
interpret positional encoding and Fourier Features as a non-learnable, fixed first layer, and thus allo-
cate one layer less for all models employing an embedding, in comparison to e.g. SIREN. We keep
the learning rate [, = le — 3 and number of epochs n¢pocns = 5000 constant across all experiments.

D.4 SINGLE IMAGE SUPER-RESOLUTION:

For the super-resolution experiments, we select all images from the Setl4 super-resolution dataset
(Zeyde et al.} 2010) and use 4-layer MLPs with a hidden dimension of 256. We interpret positional
encoding and Fourier Features as a non-learnable, fixed first layer, and thus allocate one layer less
for all models employing an embedding, compared to, e.g., SIREN. We keep the learning rate [, =
le — 3 and number of epochs npocns = 5000 constant across all experiments.

D.5 WEIGHT SCALING FROM A LIPSCHITZ LENS

For this experiment, we choose 10 random images of the CelebA-HQ (resolution: 218x178) dataset
(Zhu et al.l [2022), and use a 3-layer SIREN with a hidden dimension of 256. We scale alpha in
steps of 0.2 within the interval [1, 4].

4nttps://github.com/MIAGroupUT/IDIR
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E ADDITIONAL DETAILS REGARDING LIPSCHITZ DERIVATION

E.1 DERIVATION OF LIPSCHITZ IN INDIVIDUAL COMPONENTS

In this section, we detail our derivation of Lipschitz constants with respect to the results presented
in[Section 3.1l

E.2 POSITIONAL ENCODING

To compute the Lipschitz constant of the positional encoding function ~(p), we must find the supre-
mum of the norm of its derivative. Since the derivative’s magnitude is constant, the supremum is
simply this constant value.

The given positional encoding function v : R — R2% is defined as:

v(p) = (sin(2%7p), cos(2°7p), . .., sin(2" ' 7p), cos(2" ' 7p))
This function maps a scalar value p to a vector of dimension 2L.

The Lipschitz constant of a differentiable function is the supremum of the norm of its derivative. We
first compute the derivative of each component of the vector y(p) with respect to p. For each integer
k €{0,1,...,L — 1}, the derivatives are:

d
. sin(2%7p) = 2% cos(28mp)
p

d
o cos(2Fmp) = —2F 7w sin(2%wp)

The derivative of the entire vector function, +/(p), is a vector composed of these derivatives:

v (p) = (2°7 cos(2°p), —2%m sin(2°7p), . .., 25~ P cos (28 p), — 25w sin (28 p) )

The Lipschitz constant K is given by K = sup,, [|[7'(p)||2. We compute the squared Euclidean norm
of the derivative vector +'(p):

_ 2 2
2 — sin(2%x 4 cos(2Fm
W @)1 = Z <( n) + (o2 p>)>
= Z k1 cos(28mp))? + (—2Fm sin(2¥mp))?)
= ((2’C )2 cos?(2Fmp) + (2%n)? sin2(2k7rp))
Factoring out (2¥7)? and using cos?(#) + sin®(6) = 1:
1V (p)]|* = Z (cos®(2F7p) + sin®(2%7p))

k=
L— L-1 L-1
2Fm)?(1) =72 ) (2K = x4k
k=0 k=0

I
»—-o

el
Il

0

The sum Zé;ol 4F is a finite geometric series with first term ¢ = 1, common ratio r = 4, and L

terms. The sum is given by the formula S, = aTTL_’llz
§4k_1 ab 1 4k
T 4-1 3
k=0
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Substituting this result back into the expression for the squared norm:
L
04" —1
3

The Lipschitz constant Lip(y) = K is the square root of this value. Since the norm is constant, it is
equal to its supremum:

Iy (p)||? ==

4L —1
3

K =+ (p)ll =1/ =

Now, if we want to specifically set it, we can solve it for L giving:

In(3(K/m)%+1)

L =log, (3([(/71-)2 + 1) - =

E.3 RANDOM FOURIER FEATURES
Similarly, for a Random Fourier Feature (RFF) encoding, we consider

v(v) = (cos(2mby v), sin(27b] v), ..., cos(2mb,) V), sin(27rb;',—lv))—r € R?™,
where v € R? and b; € R,

The Lipschitz constant K of y(v) is defined as the supremum of the spectral norm (largest singular
value) of its Jacobian matrix J, (v):

K = sup [[J;(v)[|2 = sup omax (S5 (v))-
v v

The Jacobian J.,(v) is a 2m x d matrix. Its entries are given by the derivatives:

0 0
e cos(27rb;»rv) =27 sin(27rb;~rv) b;r, E sin(27rb;rv) =2r cos(27rb;rv) b;r.
The squared spectral norm is the largest eigenvalue of the Gram matrix J, (v) " J (v).

m

Jy(v) ", (v) = Z ((—27r sin(27rbij)bj)(727r sin(ZWbJTv)bjT) + (27 cos(27rb;rv)bj)(27r cos(ZWb]Tv)bjT))
= (2m)? Z (s1112(27rb;rv)bjb;r + COS2(27Tb;rU)bjb;r)

= (2m)? Z (sin® (27rb;rv) + (:052(27rb;rv))bjb;r

=(2m)> ) bjb;.
j=1

-
Il

Since this result is independent of v, the Lipschitz constant is also independent of v.

m

K = 17,00l = y a3 (0) T3 (0)) = 2 A | D050 |
j=1

where Apax (A) denotes the largest eigenvalue of the matrix A.

More generally, if the encoding uses amplitudes a;, i.e.

v(v) = (a1 cos(2mb{ v), a1 sin(2wb{ v), ..., an, cos(2wb,v), am siJ[1(27rb,,Tnv))T7
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Then the Lipschitz constant generalizes to

K =21 | Amax | D a3bb]
j=1

If the frequencies are sampled from a Gaussian distribution, b; ~ A(0,021,), then Z;”zl afbj bjT
is a random matrix. The expected Lipschitz constant is then given by:

E[K] =27E | |Amax | > a2bb]
j=1

For common RFFs as proposed by [Tancik et al.[(2020), where all amplitudes are equal, a; = 1, the
expression becomes:

E[K]=27E | |Amax | > bib]
j=1

E.4 LI1PSCHITZ BUDGET ALLOCATION

We visualize different budget allocation strategies for the budget K g = 2 as used in the deformable
image registration experiment in[5.1]

Knin = 0.25 Kinin = 0.50 Kmin =0.75 Kmin =1.00

Lipschitz Value

ssssssssssssssssssssssssssssssssssss
Component index Component index Component index Component index

Uniform Exponential Linear Cosine Annealed

Figure 9: Exemplary Lipschitz budget allocation strategy for a budget Kp = 2 for a 9 component
(5-layer) network.

F ADDITIONAL REGISTRATION BASELINES

To contextualize the deformable image registration results, we evaluate two additional baselines to
benchmark the trade-off between target registration accuracy (TRE) and topological preservation
(folding ratio).

While Lipschitz INRs are not specifically designed to avoid folding, but rather to model anatomically
plausible transformations by constraining the maximum stretch, they remain particularly effective
in these experiments and strike a good balance between TRE and the folding ratio. For the folding
ratio, they outperform SIREN, with Jacobian regularization, in 8 out of 10 cases. Importantly, Lips-
chitz SIRENs remain robust across all cases and do not fluctuate as strongly as SIREN or NODEO.
NODEQO, as expected, yields the state-of-the-art folding ratio, but results in a higher TRE given that
its transformations are strictly constrained, posing a challenge to the learning of the transformation.
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Table 1: Comparison of TRE and Folding Ratio for SIREN, Lipschitz SIREN, and NODEO.

SIREN Lipschitz SIREN NODEO
Case TRE ({) Folding Ratio (J) TRE ({) Folding Ratio ({.) TRE ({) Folding Ratio (J.)
1 0.87 +0.95 2.43 x 1073 0.78 + 0.93 2.13 x 1073 1.20 £+ 1.69 6.61 x 1077
2 0.76 & 0.92 3.46 x 1073 0.79 + 0.92 3.54 x 107° 2.13 + 3.61 2.94 x 107°
3 1.03 + 1.04 4.63 x 1073 0.98 + 1.07 4.84 x 1073 2.60 + 3.87 1.08 x 10~%
4 1.46 +1.33 4.96 x 1073 1.42 +1.33 4.50 x 1073 4.72 4+ 5.14 4.82 x 107°
5 1.22 +1.41 4.01 x 1073 1.48 4 1.58 3.64 x 1073 4.37 £ 5.96 2.77 x 107°
6 1.20 + 1.06 1.93 x 1073 1.26 + 1.08 1.92 x 1073 7.95 + 8.43 7.54 x 1077
7 9.39 4 10.48 5.07 x 1073 1.41 +1.09 1.80 x 1073 8.57 +9.52 2.22 x 107°
8 1.22 +1.26 2.65 x 1073 1.52 +£1.27 2.45 x 107° 12.55 + 11.10 5.63 x 1077
9 21.69 + 15.52 7.21 x 1073 1.30 + 1.01 9.90 x 10~4 4.78 £ 4.79 2.65 x 1076
10 3.45 + 6.93 3.68 x 1073 1.34 +£1.17 1.63 x 1073 4.96 + 6.41 5.00 x 107°
CD:4.809 CD:0.528 CD:0.384 CD:0.120
‘K‘)Ws “Kons Km:0.883 Km:1.877
SpecNorm Bjoerck NoNorm
CD:0.528 CD:0.357 CD:0.117 CD:0.115
“K :0.716 “K :0.886 Km:0.970 Kim:0.975
RelLU FullSort MaxMin Householder

Figure 10: Learning Spor with different normalization techniques (first row) and different gradient-
preserving activation functions in combination with a Bjoerck normalized linear layer (second row)
demonstrates that approaching the upper Lipschitz bound in SDFs correlates with perceptual quality.
We report the CD, Chamfer Distance (|) and the emperically estimated Lipschitz constant K, for
all reconstructions.

G ADDITIONAL RESULTS FOR EXPERIMENTS

G.1 SHAPE EXPERIMENTS
G.2 REGISTRATION EXPERIMENTS

We exemplarily visualize our registration setup in[T4]

We ablate the importance of the lower Lipschitz bounds in the allocation experiments for deformable
image registration in Fig. T3]
G.3 SCALING WEIGHTS IN SIREN

We provide additional plots for the inpainting experiments in section 7}
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Learning Stanford bunny with different gradient-preserving activation functions

(columns) in combination with different normalized linear layer (rows) demonstrates that approach-
ing the upper Lipschitz bound in SDFs correlates with perceptual quality. We report the CD, Cham-
fer Distance ({) and the emperically estimated Lipschitz constant K, for all reconstructions.
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Figure 12: Learning Spot with different gradient-preserving activation functions (columns) in com-
bination with different normalized linear layer (rows) demonstrates that approaching the upper Lip-
schitz bound in SDFs correlates with perceptual quality. We report the CD, Chamfer Distance ()
and the emperically estimated Lipschitz constant K, for all reconstructions.
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Figure 13: Visualization of the budget allocation experiment for SDFs using £ = 0.85. Results
similarly indicate no clear trend for improvements with non-uniform allocation strategies.

TRE (after): 1.84 £ 1.24

Figure 14: Visualization of warped deformation field and TRE before/after registration. Notably,
Lipschitz INRs naturally enforce anatomically plausible transformations without other forms of aux-
iliary regularization, striking a good balance between registration accuracy and folding ratio.
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Figure 15: Visualization of the deformable image registration results of the budget allocation exper-
iments using K,,;, = 0.75.

G.4 STATISTICAL SIGNIFICANCE TEST

We perform a statistical significance test to determine the effect of different non-uniform allocation
strategies against a uniform one. For the inpainting experiments, we select distance-to-oracle value
at —20, 0, 20 and perform the Wilcoxon Signed rank test between three non-uniform (First, Linear,
Exponential) with the uniform one. The results for Spectral Norm, Bjoerck, and SLL normalization
are presented in Fig. (31] 32] B3), (24] 27 28).(19] [20} 23), respectively with different K, ;,, value.
We employ the test for all three metrics, PSNR, SSIM, and LPIPS. We observe that non-uniform
strategies consistently yield significant results (p < 0.05) compared to uniform strategies.

Similarly, we perform a Wilcoxon test in registration experiments to determine whether non-uniform
allocation is statistically significant than uniform. The results are provided in Fig. [T6] We observe
that, for each architecture, a non-uniform strategy with an appropriate K,,;, achieves significantly
better results than uniform allocation.
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Figure 16: Heatmap for statistical significance test for registration experiment with K,,;, = 0.5 and
Knin = 0.75. Green indicates that non-uniform allocation is statistically better (p < 0.05) than
uniform allocation. We observe that non-uniform strategies offer significant results for both TRE
and Folding Ratio in Lipschitz FFN (Spectral) and Lipschitz Siren (Bjoerck) for K,,,;, = 0.5 and in
Lipschitz Siren (SLL) for K,,;, = 0.75.
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Figure 17: Visualization of the upper induced Lipschitz bound of the scaling initialization method
proposed by [Yeom et al.| (2024) for SIREN. Scaling the initialization leads to direct scaling of the
Lipschitz bounds of the scaled linear layers, which allows the network to increase its capacity to
overfit high-frequency content. Please note that following (Yeom et all, 2024), we only scale the
initial and hidden layers, but not the final layer (i.e. layer 2 in this case.)

We also provide similar statistically significant results on super-resolution experiments in Fig.
3639140 for different K,,,;, respectively. We observe that a non-uniform strategy yields statisti-
cally better results in most cases.

G.5 ADDITIONAL INPAINTING RESULTS

Due to space constraints, we provide the remaining results of the budget allocation experiments
for the inpainting application here. While FFNs demonstrate limited self-regulation capabilities,
SIREN, for instance, exhibits superior self-regulation properties. We also provide statistical test
results for each experiment setup. Further, we provide qualitative examples in Fig. [#2and [43]
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Figure 18: Budget Allocation for inpainting experiments for SLL with K, = 0.25
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Figure 19: Heatmap for statistical significance test for inpainting experiment with SLL normaliza-
tion with K5, = 0.25. Green indicates that non-uniform allocation is statistically better (p < 0.05)
than uniform allocation. We observe that non-uniform strategies offer significant results in most
cases across PSNR, SSIM, and LPIPS.
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Figure 20: Heatmap for statistical significance test for inpainting experiment with SLL normaliza-
tion with K,,;,, = 0.5. Green indicates that non-uniform allocation is statistically better (p < 0.05)
than uniform allocation. We observe that non-uniform strategies offer significant results in most
cases across PSNR, SSIM, and LPIPS.
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Figure 21: Budget Allocation for inpainting experiments for SLL with K,,;,, = 0.5
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Figure 23: Heatmap for statistical significance test for inpainting experiment with SLL normaliza-
tion with K,,;,, = 1.0. Green indicates that non-uniform allocation is statistically better (p < 0.05)
than uniform allocation. We observe that non-uniform strategies offer significant results in most
cases across PSNR, SSIM, and LPIPS.
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Figure 24: Heatmap for statistical significance test for inpainting experiment with Bjoerck nor-
malization with K,,;,, = 0.25. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 25: Budget Allocation for inpainting experiments for Bjoerck with K,,;,, = 0.25
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Figure 26: Budget Allocation for inpainting experiments for Bjoerck with K,,;, = 0.5
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Figure 27: Heatmap for statistical significance test for inpainting experiment with Bjoerck nor-
malization with K,,;, = 0.5. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 28: Heatmap for statistical significance test for inpainting experiment with Bjoerck nor-
malization with K,,;, = 1.0. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 100 200 300
Distance to Oracle

—o— Uni
—&— First
- Lin

12 == Exp

o 100 200 300
Distance to Oracle

ReLU FFN

400 500 ' 0 100 200 300 400 500
Distance to Oracle

Gauss FFN
0.9
0.8
0.7
0.6
=
& 05
A
0.4
03 —* Uni
—&— Frst
02 — Ln
—a— Exp
0.1
400 500 0 100 200 300 400 500

Distance to Oracle

RelU PE

0 100 200 300
Distance to Oracle

28

26

24

PSNR

22

20

0 100 200 300
Distance to Oracle

400 500 0 100 200 300 400 500
Distance to Oracle

Gauss MLP

SsiM

400 500 0 100 200 300 400 500
Distance to Oracle

SIREN MLP

0 100 200 300
Distance to Oracle

400 500 0 100 200 300 400 500
Distance to Oracle

0 100 200 300 400 500
Distance to Oracle

0 100 200 300 400 500
Distance to Oracle

0 100 200 300 400 500
Distance to Oracle

0 100 200 300 400 500
Distance to Oracle

0 100 200 300 400 500
Distance to Oracle

Figure 29: Budget Allocation for inpainting experiments for Bjoerck with K,,;, = 1.0
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Figure 31: Heatmap for statistical significance test for inpainting experiment with spectral nor-
malization with K,,;, = 0.25. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 32: Heatmap for statistical significance test for inpainting experiment with spectral nor-
malization with K,,;, = 0.5. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 35: Heatmap for statistical significance test for inpainting experiment with spectral nor-
malization with K,,;, = 1.0. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 36: Heatmap for statistical significance test for super-resolution experiment with spectral
normalization with K,,;,, = 0.25. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 39: Heatmap for statistical significance test for super-resolution experiment with spectral
normalization with K,,;, = 0.5. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.
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Figure 40: Heatmap for statistical significance test for super-resolution experiment with spectral
normalization with K,,;, = 1.0. Green indicates that non-uniform allocation is statistically better
(p < 0.05) than uniform allocation. We observe that non-uniform strategies offer significant results
in most cases across PSNR, SSIM, and LPIPS.

45



Under review as a conference paper at ICLR 2026

2430
2431 RelU FFN
2432
2433
2434
2435
2436
2437
2438

0 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
2440 Distance to Oracle Distance to Oracle Distance to Oracle

2441 Gauss FFN

2442
i l.--;

2443
2444
2445
2446
2447
2448
2449 0 200 400 600 800 1000 1200 [ 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
2450 Distance to Oracle Distance to Oracle Distance to Oracle

2451 RelU PE

2452

2453 ”
2454
2455
2456
2457
2458

2459 16
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 [} 200 400 600 800 1000 1200
2460 Distance to Oracle Distance to Oracle Distance to Oracle

2461 Gauss MLP
2462
2463
2464
2465
2466
2467
2468

0 200 400 600 800 1000 1200 ] 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
2470 Distance to Oracle Distance to Oracle Distance to Oracle

2471 SIREN MLP
2472
2473
2474
2475
2476
2477
2478

2479 ;
0 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
2480 Distance to Oracle Distance to Oracle Distance to Oracle

2481
2482 Figure 41: Budget Allocation for super-resolution experiments for spectral normalization with
2483 Kpin = 1.0

0.7

0.8
0.6
22

0.4
18 0.5

0.3 0.4

0.9

0.8

LPIPS

SSIM

0.7

0.6

46



Under review as a conference paper at ICLR 2026

Exponential Linear First Uniform

Uniform

First

Linear

]
=]
c
o
c
5]
a
X
w

First Uniform

Linear

]
=]
c
o
c
1)
a
X
w

Distance=-50

22.79 dB10.6527

Distance=-50
190548 /0.4780

23.45 dB10.6935

2183 dojo 6030

21,22 46105831

Distance=-50

213748105870

23.91 dB/0.7358

2210 dojo 6283

Distance=-20
12,6948 /0.3571

Distance=50

12.958 /03397

24.05 dB/0.7371 3,07 d8/0.7097

Distance=20

12,8708 /0.3436

Distance=0
15218

Input Image

2377 dej0.7107

24.16 65/0.7331

Ground Truth

510,629

2,34 d8/0.6333

21,67 5105969

2185 dB/0.6032

(a) Spectral Normalization

Distance=-20

15,9908 /0.4743

Distance=20

10,575 10,4953

Distance=50
17,0848 04750

Distance=0

19,478 10,4960

Input Image

Ground Truth

2424 dBl0.7424 24.45 dB/0.7611

22,63 cB/0.6640

24518107699

22,94 djo 6502 2398 dijo 7340

2310806715

22,65 d8/0.6452 21.72 0805931

2376 dB/0.7374

(b) Bjoerck Normalization

22,86 810,667

—

Distance=-20 Distance=20 Distance=50

212148 05883

Distance=0

217248 j0.5114 221108 /05325

Input Image

2488 0B/0.7795 24.78 d5/0.7810 24.90 06/0.7848 2387 dB/0.6745

Ground Truth

2312 dujo.sans 22,05 c.5 2355 d8j0.7104 24.59 dijo 7695

2319 d8/0.6879 23,36 d8/0.7007 2353 08/0.7042 2475 48107784

(c) SLL Normalization

Figure 42: Qualitative examples from super-resolution experiments.
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Figure 43: Qualitative examples from super-resolution experiments.
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Figure 44: Qualitative examples from super-resolution experiments using spectral normalization.

49



	Introduction
	Background and Related Work
	Lipschitz Composition of INRs
	Layer-wise Lipschitz Constants
	Lipschitz Budget Allocation

	Revisiting 1-Lipschitz under Flexible Budget Allocation
	1-Lipschitz Signed Distance Fields
	On capacity in 1-Lipschitz SDFs

	Budget estimates & allocation strategies in K-Lipschitz INRs
	Domain-driven Budgets in the K-Lipschitz Setting
	Data-driven Budget for K-Lipschitz Settings

	Practical Guidelines for Lipschitz Regularization
	Strategies for Estimating the Budget K
	Strategies for Allocating the Budget K

	How can Lipschitz theory provide a novel perspective?
	Statements
	Additional experiment: Single-Image Super-Resolution
	Data Driven Oracle Estimation for 2D RGB Images
	Signal-based Oracle Derivation
	Noise Sensitivity Analysis for signal-based oracle
	Conservative Oracle Estimate:

	Details regarding experiments
	Shapes
	Deformable registration
	Inpainting
	Single Image Super-Resolution:
	Weight Scaling from a Lipschitz lens

	Additional details regarding Lipschitz derivation
	Derivation of Lipschitz in individual components
	Positional encoding
	Random Fourier Features
	Lipschitz Budget Allocation

	Additional Registration Baselines
	Additional results for experiments
	Shape experiments
	Registration Experiments
	Scaling weights in SIREN
	Statistical Significance Test
	Additional Inpainting Results


