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Abstract

Temporal Knowledge Graph (TKG) extrapola-
tion fundamentally involves selecting the cor-
rect answer from all entities based on histor-
ical information. Current methods can easily
eliminate most incorrect answers, narrowing
the candidate pool to a tiny area called the
candidate zone. However, these methods of-
ten fail to find the correct answer within this
zone, primarily because the entities within the
candidate zone are similar in subgraph struc-
ture or relational connectivity, causing signif-
icant interference. These methods, which ei-
ther model the graph structure of entities or
the paths of relationships, can only address one
type of similarity. To address this issue, we
propose a model called the Relation Causal
Logic Inference and Entity Structure Learning
(RIES), which consists of two modules: rela-
tion inference and entity structure. These two
modules model the causal logic of relations
over time and the temporal evolution of enti-
ties” subgraph structure, respectively, allowing
for the differentiation of candidates similar in
subgraph structure and relational connectivity.
When evaluated on five commonly used public
datasets, the performance of RIES surpasses
that of other state-of-the-art baselines.

1 Introduction

Predicting future facts accurately requires a com-
prehensive analysis of historical data. Each times-
tamp links entities through a variety of relations,
constructing a knowledge graph characterized by
intricate structural and causal logic. Methods like
CyGNet (Zhu et al. (2021)), CENET (Xu et al.
(2023)), HGLS (Zhang et al. (2023)), and EvoEx-
plore (Zhang et al. (2022)) typically model histor-
ical facts based on repetitive patterns, primarily
making predictions from these recurrences. In con-
trast, some methods are entirely independent of
entities, such as DaeMon (Dong et al. (2023)) and
TiPNN (Dong et al. (2024)), which search for rela-
tion paths that have occurred in history and learn
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Figure 1: An illustration of temporal reasoning over a
TKG.

entity-agnostic inference rules. The main issues
with these methods include:

Issue 1: The causal logic in the temporal order
of relations between pairs of entities is not cap-
tured. Some graph-structured TKGR methods like
CyGNet, CENET, HGLS, and EvoExplore do not
focus on the changes in relations of the same en-
tity pair across different timestamps, ignoring the
causal logic of these relations over time. In the ex-
ample of Figure 1, the variety of historical relations
between the entities China and the US President
do not contribute equally to answering queries. Fo-
cusing more on relations that are highly relevant
to the query can reduce semantic noise during the
reasoning process.

Issue 2: The aforementioned approaches con-
sider only entities, or only relations, which have
limitations in some specific cases. If we focus
solely on relations, independent of the entities, it
becomes difficult to distinguish between entities
that share very similar historical relations with the
query subject s. For instance, in Figure 1, the en-
tities USA and the US President would be hard
to differentiate. If we only consider the subgraph
structure of the entities, such as USA and India, we
find that the neighboring entities connected in the
subgraphs for these two countries at different times-
tamps are all other country entities. The subgraph
structures represented by these two entities are very
similar, making it difficult to distinguish between



them in the final prediction. To summarize, exist-
ing models focus on only one type of information
in entities and relations and ignore the other, which
limits their performance in TKGR.

To address the aforementioned issues, we model
relations and entities information in a unified frame-
work that allows these two types of information to
be complementary in the reasoning process.

To solve issue 1, we propose a relation inference
module, which consists of two parts: RCL (Re-
lation Causal Logic) and PCA (Path Confidence
Aggregation). (1) RCL: This part focuses on learn-
ing the temporal causal logic between historical
relations and the query relation r,. (2) PCA: This
part involves aggregating the confidence scores of
all relation inference paths between query subject s
and candidate entities. It calculates the probability
score that the query relation r, will occur between
the query subject s and the candidate entities at the
timestamp 74, based solely on relation data.

In order to tackle issue 2, we first propose an en-
tity structure module, which models the structural
dependencies between entities and concurrent facts.
This enables us to generate a dynamic structural
encoding of the query subject s and each candi-
date entity. We then decode this information to
determine the probability of interaction between
the query subject s and each candidate entity at the
query timestamp #, and under the query relation r,,.
Subsequently, we combine the predictive probabil-
ity scores from both the relation level and the entity
level for each candidate entity to arrive at a final
predictive probability score. By leveraging both re-
lation and entity information, we can significantly
improve the accuracy of our predictions.

In summary, our work makes the following con-
tributions:

1) We have developed a relation inference mod-
ule that explores the causal logic of relations
in their temporal sequence by collecting infor-
mation about the interactions between query
entities and candidate entities from historical
data.

2) To our knowledge, we are the pioneers in in-
tegrating modeling of relations and entities
within a unified framework, effectively lever-
aging both relation and entity information.

3) Extensive experiments indicate that our model
substantially outperforms existing methods.

2 Related Work

Depending on the type of historical information
that a model focuses on, existing models can be
divided into two categories: models based on his-
torical entity information and models based on his-
torical relation information.

Models based on historical entity information
focus on modeling information about the entity
(Park et al. (2022);Yang et al. (2023);Wu et al.
(2020);Jin et al. (2020);Xiao et al. (2024);Zhang
et al. (2023)). For instance, CyGNet (Zhu et al.
(2021)) counts the frequency of entities occurring
repeatedly in history and uses a copy mechanism
to select prediction results from the entities that ap-
pear frequently. CENET (Xu et al. (2023)) adopts
a comparative learning approach to capture the de-
pendency of queries on both historical and non-
historical entities. EvoExplore (Zhang et al. (2022))
implements a hierarchical attention mechanism to
model the intricate local and global structures of
entities.

Models based on historical relation informa-
tion are completely independent of entities and
focus on modeling the temporal path of relations
(Sun et al. (2021);Lin et al. (2023)). For instance,
CluSTeR (Li et al. (2021)) utilizes reinforcement
learning to develop cluster search strategies that
identify explicit and reliable relation clues for pre-
dicting future facts. DaeMon (Dong et al. (2023))
introduces a novel architecture that leverages time-
line relations to adaptively capture temporal path
information between query topics and candidate
objects. ALRE-IR (Mei et al. (2022)) extracts rela-
tion paths from historical subgraphs, aligns these
paths with current events to formulate rules, and
then uses these rules to predict missing entities.

3 Method

3.1 Preliminaries

Let €,R,T denote the finite set of entities, rela-
tions, and timestamps, respectively. In the tem-
poral knowledge graph, each fact is represented by
a quaternion (s,r,0,t), where s € € is the subject
entity, o € € is the object entity, and r € R is the
relation between s and o that occurs at timestamp
t € T. Specifically, given a query g = (s,74,?,1,) ,
we take the candidate object o; € €, as an example,
where the subscript ¢ of & is the initial letter of
candidate, and €. is denoted as the set of all enti-
ties connected in the history of the query subject
s,which we take as the set of candidate entities.



3.2 Model Overview

For predicting queries, we can consider two levels:
On the one hand, from the relation, for a specific re-
lation r; between a subject s and a candidate object
o; under the historical timestamp ¢, denoted as r;’,
a relation inference path path (’";T) = (rj,tz) =
(r4,t4) is formed between it and the relation r, un-
der the query timestamp f,,. This relation inference
path suggests that any pair of entities that have a
relation r; under timestamp ¢, that pair will have
a relation r, under timestamp #,. We explore the
potential causal logic between (r;,#;) and (ry,1,)
to assess the confidence level that the relation in-
ference path path(r;?) holds, and use it as a basis
for reasoning that the query g = (s,74,0;,1,) holds.
After obtaining confidence scores for all relation
inference paths between the subject s and the candi-
date object o;, we aggregate these scores to finally
obtain the likelihood score for reasoning that the
query g = (s,r4,0i,t4) holds from the relation level.

On the other hand, focusing on entities, we ex-
amine the changes in the connectivity of the can-
didate object o; with neighboring entities across
various historical timestamps. We achieve the dy-
namic structural encoding of o; by capturing the
structural changes in the subgraphs where o; is
situated, which reflects the evolution of o0;’s struc-
tural semantics over time. Similarly, we can obtain
the dynamic structural encoding for the subject s.
Subsequently, we decode the dynamic structural
encodings of s and o; using the ConvTransE (Shang
et al. (2019)) decoder to determine the probability
of interaction between s and o; at the given query
timestamp #, and query relation r,.

Ultimately, by integrating the scores from both
the relation level and the entity structure level, we
utilize this composite score as the final probabil-
ity score for predicting the validity of the query
q = (s,74,0i,1;). The overall flow of our proposed
model is shown in Figure 2. In the following, we
elaborate on each part of the model.

3.3 Relation Inference

We denote the set of relations connected to the
subject s of a query ¢ at timestamp #; as Ry, €
RI&XIRI¥d where || is the base of the set of can-
didate objects, |R| is the base of the set of relations,
and d is the dimension of the relation embedding.
Specifically, given a query g = (s,74,?,t,), we con-
sider all the connected relations between the subject
s and the candidate entity o;. Since our goal is to
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Figure 2: Architecture of RIES Framework. The gray
shaded area in the bottom left explores the causal logic
over time in the connecting relations between the subject
entity s and the candidate entity o;; the green shaded
area in the upper right models each temporal subgraph
of o; to capture its dynamic structural semantics.

capture the causal logic of the relations between
s and o; entity pairs across time, we need to ob-
tain all relations information R ., € R ¢ within
the historical timestamp range of [t;_jen,t5—1], T =
q—len,...,q — 1, where the parameter len is the
length of the timestamp range of the historical in-
formation under consideration. Specifically for
a single relation rzf €ERy,,(j=1,...,IR:,,|) at
timestamp ¢, the confidence score of the relation
inference path path(r;’) corresponding to relation

r;-’ is computed as follows:
con(path(r;?)) =RCL(rj,rq,(tz,ty)) (1)

Where RCL(-) is a relation causal logic module,
which aims to mine the potential causal logic be-
tween the query relation r, and relation r; in terms
of temporal order.

We then aggregate the confidence scores of these
relation inference paths to obtain the total confi-
dence score of all relation inference paths between
entity pairs s and o; under timestamp #:

T

|Rs~>ui|
con(path(R§ ) = Y con(path(ry))  (2)
j=1

Upon calculating the total confidence scores for the
relation inference paths between entities s and o;
across the time horizon [t;_en,1,—1], we utilize path
confidence aggregation (PCA) to aggregate these
total confidence scores. This aggregation provides
the historical relation inference path scores for s —
0;.

score, = PCA(con( path(RLt"_Iéi”’tH]))) 3)
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Figure 3: The architecture of RCL module. Exploring
the causal logic of the relations r; and r; at timestamp
t1 on the relation r, at timestamp 7, in a temporal order.

In the following section, we provide a detailed de-
scription of the RCL module and the PCA module,
respectively.

3.3.1 Relation Causal Logic

The workflow of relation causal logic (RCL) is
shown in Figure 3. We first encode the tempo-
ral information as follows: At a specific historical
timestamp ¢, the relation r;? occurring between
the entity pairs s and o; may lead to a query re-
lation r, occurring at timestamp 7 + At. There-
fore, we encode the time interval Ar between the
query time #, and the historical time #;. For a re-
lation r;? €Ry., (j=1,..,|R,,|) at timestamp
tr, where the time interval from the query ¢ is
At = t, —tr, the time interval is encoded as a d-
dimensional time-encoded vector using the follow-
ing equation:

Tias 27y = sin(At/ 100002%/4 ) %)

Tiar2e+1) = cos(At/10000°4)  (5)

After encoding the timing information, we add the
time encoding to the initialized relation encoding
r'j inir SO that we obtain an embedding of the relation
r;’:

Y =T init+Tn (6)

Next, we obtain the relation inference path
path (rz-’) = (rj,tz) = (r¢,t,) from the relation r;.f
between the entity pairs s and o; to the relation r,
at the query time ¢,. We consider r;.f as the cause
and r, at 7, as the effect. Finally, we assess the con-
fidence that the relation inference path path(r;?)
holds by capturing the association between r;f and
rq at the query time 7,. To compute this, we directly
use the dot product method:

con(path(rj-’)) =Tj*Iy, (7)

Where r; is the relation r;T embedding that contains
the time encoding and ry is the initial relation em-
bedding of the query ¢ that does not contain the

time encoding.

(D)) C ™)

+ +
[GENEY)] € 2 e C
+ + +
C C C (™
(‘(‘)) (;(2)) (é( )}
- - e =
TimeXDecay + Time>|§)ecay + Time%ecay E

Figure 4: The architecture of PCA module. Aggregating
the confidence scores of all relation inference paths
between query subject s and candidate entity o;.

3.3.2 Path Confidence Aggregation

The workflow of path confidence aggregation
(PCA) is shown in Figure 4. Calculation by means
of Equation 2, we obtain the total confidence level
score con(path(RESH).....con(path(RE54)) for
the relation inference path for s — o; at each times-
tamp within the time range [f,_;.,,%,—1]. In special

1 Ty— en
cases, when two inference paths, parh(r/ ") and

path(r;f’*1 ), under different historical timestamps
have the same relation r;, we should assign differ-
ent weights to these paths to distinguish between
them. Due to the stability and simplicity of power
functions, we define a power function-based time
decay coefficient:

Wd(tqvtf) = (tq_tr)iy )]

The larger the value of ¥ in the above equation,
the faster the rate at which W, decays over time.
The time decay coefficient W, ensures that relation
inference paths closer in time to the query time ¢,
are assigned higher weights. We weight the relation
inference path confidence scores at each timestamp
as follows:

PCA(con( path(RBq—;(]f,-"er ) =

q-1 9
Y Walty.t:)con(path(R’.,,))

T=q—len

3.4 Entity Structure

This module explores the association between the
subject s of a query ¢ and a candidate object o; in
terms of dynamic structural semantics, determin-
ing the probability that the subject s of the query
interacts with candidate object o; under the query
timestamp 7, and the query relation r,. The entire
process is divided into two parts: encoding and
decoding.



3.4.1 Entity Dynamic Structural Encoding

For simultaneous facts, entities usually have strong
semantic correlations with their neighboring enti-
ties. To capture these semantics, we model them us-
ing the w-layer R-GCN (Schlichtkrull et al. (2018))
as a structural encoder:

1

hl, = f( Y wihl,+r)+whi") (10)

| S’t| e);;eNr,I

Where Ny is the set of neighbors of entity s in the
static subgraph at timestamp ¢, f(-) is the reflection
modified linear unit (RReLU (Xu et al. (2015))) ac-
tivation function, Wll € R¥*4 is a relation-specific
parameter used for aggregating structural features
based on different edges, WZZ € R?*4 denotes the
parameter that aggregates the self-loop features of
all entities, hfh, and r denote the embedding of
the neighboring entity ¢/ in the /-th layer of the
R-GCN and the embedding of the connected rela-
tion, respectively. After @ layers of R-GCN, we
can obtain a representation h{’; that only considers
semantic dependencies with neighboring nodes of
entity s at timestamp ¢.

To capture the dynamic structural semantic
changes of an entity s over a short period, the model
needs to consider all temporally neighboring facts.
Therefore, we use the structural semantic output
of the entity from the previous timestamped sub-
graph as input to the R-GCN model for the next
timestamp:

hl

.0
st+1 — hs,l

11
We use the time-gate loop component to further
model the temporal dependence of the entity struc-
ture. The dynamic structural semantic embedding
e, ;1 of the final entity s is determined by two com-
ponents: the output of the last layer of the R-GCN,
hgf, 41> and the e, from the previous timestamp.
The specific expressions are as follows:

€1 = U1 ®hsa7);+1 +(1-Up1)®es,  (12)
The expression ® denotes the dot product operation.
The time gate U, | € R?*? undergoes a nonlinear
transformation as:

UI-H =0 (vvues,t + b) (13)

Where o (-) is the sigmoid function and W, € R¥*¢
is the weight matrix of the time gate.

3.4.2 Entity Dynamic Structure Decoding

We choose ConvTransE (Shang et al. (2019)) as
the decoder to compute the degree of association
between the subject s of the query ¢ and the can-
didate object o; at the dynamic structural-semantic
level under the query timestamp 7, represented as
follows:

score, = 0(€,,;,ComvTransE(es;,,r,))  (14)

Where r, is the initial relation embedding of query
g. This function yields the probability that the
subject s interacts with a candidate object o; at time
t4 and relation r,. In other words, it represents the
probability that the query g = (s,74,0;,t,) holds
from the perspective of the entity structure.

3.5 Inference

To ensure that we can maximize the use of relation
and entity information, we introduce the coeffi-
cient ¢ to adjust the weight between the relation
inference score and the entity structure score. The
final prediction that the missing object entity in
q = (s,rq,?,t,) will be the highest combined prob-
ability entity 6 for both aspects:

P(o|s,ry,ty) = axscore, + (1 — a) xscore, (15)

0 = argmaxoee P(0ls,14,1;) (16)

Where P(ols, r4,t,) denotes the predicted probabil-
ity of all candidate object entities o € &.

3.6 Train

In the relation inference process, we compute the
similarity between the embedding r; of r;? and the
relation embedding r, of the query ¢ in the em-
bedding space by using the dot product to obtain
the confidence score for the relation inference path
path <r§7> = (rj,tz) = (rg,t4). The challenge lies
in determining the correct inference path and as-
signing it a higher confidence score. To address
this, we design a positive and negative sample com-
parison training method. This method learns the ri?
relation embedding r; in the relation inference path

path (r?) so that when the relation inference path

is correct, the historical relation embedding r; is
spatially close to the relation embedding r, of the
query g. Conversely, when the relation inference
path is incorrect, r; is spatially distant from r,.
First, we negatively sample and generate the
error quaternion.  Specifically, given a cor-
rect quaternion pos = (s,r,0,t), we randomly



Datasets Entities  Relations  Training  Validation  Test Time Granules

ICEWS14 7128 230 63685 13823 13222 365

ICEWS0515 10488 251 322958 69224 69147 4017

ICEWSI18 23033 256 373018 45995 49545 304

WIKI 12554 24 539286 67538 63110 232

YAGO 10623 10 161540 19523 20026 189

Table 1: Statistical data for the datasets.
ICEWS14 ICEWSI18 ICEWSO0515
Model
MRR H@l H@3 H@I0 MRR H@l H@3 H@I0 MRR H@l H@3 H@I0

ComplEX 30.84  21.51 3448 4958 21.01  11.87 2347  39.87 31.69 2144 3574  52.04
R-GCN 28.03 1942 3195 44.83 1505 8.3 1649  29.00 27.13 18.83 3041 43.16
DE-SimplE 3267 2443 3569  49.11 1930 11.53  21.86  34.80 3502 2591 3899 5275
CyGNet 3273 23.69 3631  50.67 2493 1590 2828 4261 3497 2567 39.09 5294
XxERTE 40.79 32770 4567  57.30 29.31  21.03 3351 4648 46.62  37.84 5231 6392
CEN 42.40 32.08 47.46 61.31 31.05 21.70 35.44 50.59 - - -
TECHS 4388 3459 4936  61.95 30.85  21.81 3539  49.82 4838 3834 5469 68.92
DaeMon - - - - 31.85 22,67 3592 49.80 - - - -
HGLS 47.00 3506 - 70.41 2932 1921 - 49.83 46.21 3532 - 67.12
RPC 4455 3487 49.80  65.08 3491 2434 3874  55.89 51.14 3947 5711 71.75
TiPNN - - - - 32.17 22.74 36.24 50.72 - - -
DLGR 46.72  36.67 51.61 - 3548 25.11  40.03 - - - - -
RIES 5434 4188 6149 77.84 39.12 2628 45.02  64.69 56.52 4450 6347  79.03
Absolute Boost  7.34 5.21 9.88 7.43 3.64 1.17 4.99 8.80 5.38 5.03 6.36 7.28
Relative Boost 15.62 1421  19.14  10.55 1026 4.66 1247 1575 1052 1274 11.14  10.15

Table 2: Performance (in percentage) on ICEWS14, ICEWS18, ICEWS0515. Best results are bolded, sub-optimal

results are underlined.

sample an object entity from historical events
and disrupt the quaternion to generate an incor-
rect quaternion neg that satisfies the condition
neg = {(s,r,0',1)|]0’ €e—o0}. We ensure that
the correct quaternions (positive samples) receive
higher scores and the incorrect quaternions (neg-
ative samples) receive lower scores by using the
So ftMarginLoss function, expressed as follows:

L= ¥

(s,r,0,0)EPUN

J— 1’
y_ _1’

In Equation 18, P is the set of correct quaternions
and N is the set of incorrect quaternions.

log(1+ exp(—y-score,(s,r,0,t)))

an

(s,r,0,t) €EP

(s,r,0,t) €N (18)

The training task based on the SoftMarginLoss
function is to assign higher scores to correct quater-
nions and lower scores to incorrect quaternions,
with these scores derived from the confidence level
of the relation inference paths. From the perspec-
tive of the embedding space, this task brings the
historical relation embeddings of the positive exam-
ples closer to the query relation embedding, while
moving the historical relation embeddings of the
negative examples further away from the query re-
lation embedding.

In short, this training task is to enable correct re-
lation inference paths to achieve higher confidence
scores.

4 Experiment

4.1 Experimental Setup
4.1.1 Datasets

We use five benchmark datasets (ICEWS14 (Li
et al. (2022b)), ICEWS0515 (Ren et al. (2023)),
ICEWS18 (Boschee et al. (2015)), WIKI (Vran-
deci¢ and Krotzsch (2014)), and YAGO (Suchanek
et al. (2007))) to evaluate the performance of the
model on the temporal knowledge graph reasoning
task. To ensure a fair comparison, we follow the
data partition provided in the reference TECHS
(Lin et al. (2023)) to divide each dataset into train-
ing, validation, and test sets. Table 1 provides
statistics for these data sets.

To assess the validity of our proposed model, we
have thoroughly compared the experimental results
with various static and temporal models.

4.1.2 Assessment Indicators and Training
Settings

In our experiments, we used MRR and Hits@1,3,10
as evaluation indicators. For the configuration of
the model, we use random initialization to gen-
erate relation embeddings of dimension 200. To
optimize all model parameters, we used the Adam
(Kingma (2014)) optimizer and set the initialized
learning rate to 0.001. For the entity structure mod-
ule, we set the number of layers @ of R-GCN to
2. For each R-GCN layer, the dropout rate is set
to 0.2 and the history length is set to 10. For Con-



Model WIKI YAGO

MRR H@I H@3 H@10 MRR H@l] H@3 H@10
ComplEX 2447 19.69 2728  34.83 4438 2578 482 59.01
R-GCN 13.96 1575  22.05 2025 - 24.01 37.30
DE-SimplE 4543 42,60 47.71 54.91 51.64 5730 -
CyGNet 5878  47.89  66.44  78.70 6898 5897 7680  86.98
XxERTE 73.60 69.05 78.03  79.73 84.19 80.09 83.02 89.78
CEN 7893  75.05 81.90  84.90 - - - -
TECHS 75.98 82.39 89.24 - 92.39
DaeMon 8238 7826  86.03  88.01 91.59  90.03 93.00 93.34
HGLS 82.04  78.07 84.04 - 8748  83.17 89.76 -
RPC 81.18  76.28 8543  88.71 88.87 85.10 9257 94.04
TiPNN 83.04 79.04 86.45 88.54 92.06 90.79  93.15  93.58
DLGR 8298  80.14  80.14 - 88.87 84.60 9235 -
RIES 89.46 87.34 91.82 93.12 9473  92.83 9525  96.63
Absolute Boost 6.42 7.20 5.37 441 2.67 2.04 2.10 2.59
Relative Boost 7.73 8.98 6.21 4.97 2.90 2.25 2.25 2.75

Table 3: Performance (in percentage) on WIKI, YAGO.

vTransE, the kernel size is set to 2 x 3 and the
dropout rate is set to 0.2. Specifically, we trained
the model for 100 epochs, with early stopping if
the validation loss did not decrease for 10 con-
secutive epochs. All experiments were conducted
on a single Tesla T4 GPU with 16GB of memory.
The model has approximately 9 million parame-
ters. The time required to run one epoch on the
ICEWS14, ICEWS18, ICEWS0515, YAGO, and
WIKI datasets is approximately 10, 60, 110, 10,
and 20 minutes, respectively.

4.2 Experimental Results

The experimental results of RIES and all the base-
lines on TKG reasoning are presented in Tables 2
and 3. The results are from the average of the ex-
periments. We chose ComplEX (Trouillon et al.
(2016)) and R-GCN (Schlichtkrull et al. (2018))
as static models for comparison. DE-SimplE
(Goel et al. (2020)), CyGNet (Zhu et al. (2021)),
xERTE (Han et al. (2020)), CEN (Li et al. (2022a)),
TECHS (Lin et al. (2023)), DaeMon (Dong et al.
(2023)), HGLS (Zhang et al. (2023)), RPC (Liang
et al. (2023)), TiPNN (Dong et al. (2024)), and
DLGR (Xiao et al. (2024)) as comparative tempo-
ral models.

Static models such as ComplEX and R-GCN
underperform compared to temporal models be-
cause they fail to consider temporal information
and dependencies across different snapshots. Simi-
larly, the interpolation model DE-SimplE also per-
forms poorly because such models struggle to han-
dle events occurring in future timestamps. Among
the extrapolation models, CyGNet, xERTE, CEN,
HGLS, and DLGR focus on entity information and
overlook the dynamic changes in relations between
entity pairs over time. TECHS, DaeMon, RPC, and
TiPNN start from relations, utilizing path-based

Best results are bolded, sub-optimal results are underlined.

ICEWSI4 ICEWSIS __ YAGO
RIES 5434 39.12 9473

RIES w/o R 46.16(-82)  3526(-39)  89.32(-5.4)
RIES w/o E 50.81(-3.5)  36.05(-3.1)  82.65(-12.1)
RIES w/o (E&R-TE)  43.79(-10.6)  31.55(-7.6)  79.53(-15.2)
RIES w/o (E&R-TD) ~ 46.39(-8.0)  33.83(-5.3)  81.14(-13.6)

Table 4: Results (in percentage) by different variants of
our model on three datasets.

searches to extract potential logical rules within
the graph. These methods are limited by the ex-
isting paths, which restrict their search range and
impair their performance. Our proposed model
operates within a unified framework that models
relations and entities, exploring the causal logic
between relations over time and the dynamic struc-
tural changes of entities. By fully leveraging infor-
mation on relations and entities for prediction, our
model outperforms the state-of-the-art across all
metrics on five datasets.

4.3 Ablation Study

To test the contribution of each component in the
model, we performed ablation experiments.

To further analyze the contribution that each part
of the model makes to the final prediction results,
we report in Table 4 above the results of the MRR
metrics for the five sub-models on the test sets of
the three datasets. The five sub-models compared
are: 1. RIES, the full model. 2. RIES w/o R,
representing RIES without the relation inference
module. 3. RIES w/o E, representing RIES without
the entity structure module. 4. RIES w/o (E&R-
TE), representing RIES without the entity structure
module and without using time encoding in the re-
lation inference module. 5. RIES w/o (E&R-TD),
representing RIES without the entity structure mod-
ule and without using the time decay coefficient in
the relation inference module.



query

(China, engage in
diplomatic cooperate, ?, t)

. Target

relation score-r score-e h
entity

engage in negotiate,t-1 0.575
make statement,t-1 0.516
intent to cooperate,t-2 0.351 =1.774 | 0.703 USA(V)
sign formal agreement,t-2 0.332
engage in negotiate,t-1 0.575
praise,t-1 0.604 .
engage in negotiate,-2 0287 =1.798 0.372 the US President
sign formal agreement,t-2 0.332
host a visit,t-1 0.316
consult,t-1 0.287 .
make a visit.t-2 o158 0969 | 0768 | India
endorse,t-2 0.208

Table 5: A case demonstrating that entity and relation information can effectively complement each other in the

reasoning process.

From the results in Table 4, we draw the follow-
ing findings:

Effectiveness of combined use of relation and
entity information. The full model RIES outper-
forms RIES w/o R and RIES w/o E on all datasets,
which confirms that relation and entity information
complement each other well for future prediction.

Validity of time encoding in relation inference
modules. The experimental results of RIES w/o
(E&R-TE) have a substantial decrease compared to
RIES w/o E. This is because RIES w/o (E&R-TE)
does not consider the dynamic change of causal
logic between relations, and ignores the absolute
temporal numerical information. What is learned
in this case is a static relation inference path inde-
pendent of temporal order, which is unsuitable for
reasoning on temporal knowledge graphs.

Validity of time decay coefficient in relation
inference modules. The experimental results for
RIES w/o (E&R-TD) have also decreased com-
pared to RIES w/o E. This confirms the necessity
of considering the relative temporal distance of the
inference paths from the query. The value of histor-
ical relation information decreases progressively as
this relative temporal distance increases.

4.4 Case Study

Considering the limited length of the paper, it is
necessary to limit the number of relations between
the subject entity and candidate entities. Therefore,
we set the parameter [en of the history time horizon
to 2. For the query in the ICEWS14 test set (China,
engage in diplomatic cooperate, ?, t), we selected
the top three scoring entities among the candidates
and presented them in Table 5.

From the perspective of relation inference alone,
relations such as engage in negotiate, make state-
ment, and praise provide high scores for the candi-
date entities the US President and USA. The scores

for USA (1.774) and the US President (1.798) are
very similar, but the incorrect answer, the US Pres-
ident, scores higher than the correct, USA.

From the perspective of entity structure alone,
the subgraph structures of the candidate entities
USA and India are quite similar, with neighboring
nodes mostly being other national entities. How-
ever, the incorrect answer, India (0.768), scores
higher than the correct, USA (0.703). This is pri-
marily because India has a closer relationship with
China compared to USA, as both are Asian coun-
tries and their connected neighboring entities are
predominantly from Asia.

The correct answer, USA, can only be deter-
mined by combining scores from both relation in-
ference and entity structure. This shows that con-
sidering only relation or entity information alone is
not enough to distinguish similar candidate entities.
Optimal reasoning results can only be achieved by
effectively utilizing both types of information.

5 Conclusion

In this paper, we consider two types of information
in graphs: entity information and relation informa-
tion. For the first time, we model these two types
of information within a unified framework. We
further propose the RIES model, divided into two
components: relation inference and entity structure,
to handle relation and entity information. At the
relation level, the relation inference component ex-
plores the causal logic of different relations over
time and constructs reasonable inference paths. At
the entity level, the entity structure component en-
codes the dynamic structure of entities and discov-
ers their associations within subgraph structures.
Experiments on five benchmark datasets demon-
strate the effectiveness of our model in temporal
knowledge graph extrapolation tasks.



Limitations

The timestamp range for historical information
modeled by RIES is determined by the parameter
len. Currently, selecting the /en value requires man-
ual intervention, with different datasets needing to
be manually set to different values. This makes
it challenging to determine the optimal parameter
value. Future work could explore the automatic
optimization of this parameter to further enhance
the model’s predictive capability.
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Figure 5: Result on five dataset with different /en.

In the relational inference module, we acquired
all relational information located within the his-
torical timestamp range [f;—jen,f4—1], Where the pa-
rameter /en represents the length of this historical
range. To determine the optimal value for len, we
conducted a detailed parameter tuning experiment
and tested the model’s performance across different
len values on the metrics MRR and Hits@1. The
specific experimental results are shown in Figure 5.

The /en values for the ICEWS14, ICEWS18, and
WIKI datasets were set at 10, 20, 30, 40, 50, and 60.
For the ICEWSO0515 dataset, they were set at 50,
100, 150, and 200. On the YAGO dataset, they were
set at 5, 10, 15, and 20. Across all five datasets, as
the value of len increased, both metrics, MRR and
Hits@1, initially improved and then declined. We
analyzed the reasons as follows: When the value
of len is too small, it considers too little historical
information, failing to capture enough relational
causal logic. Conversely, when len is too large,
it introduces history that is too distant from the



query time, which is of lower value and contains
too much irrelevant information. Thus, both too-
small and too-large values of len are detrimental to
predicting future queries. Ultimately, the optimal
values of len selected for the ICEWS 14, ICEWSI1S,
ICEWSO0515, WIKI, and YAGO datasets were 40,
50, 150, 50, and 10, respectively.
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