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ABSTRACT

We define the supermodular rank for set functions. This is the smallest number
of terms needed to decompose it into a sum of supermodular functions. The su-
permodular summands are defined with respect to different partial orders. We
characterize the maximum possible value of the supermodular rank and describe
the functions with fixed supermodular rank. We analogously define the submod-
ular rank. We use submodular decompositions to optimize set functions. Given
a bound on the submodular rank of a set function, we formulate an algorithm
that splits an optimization problem into submodular subproblems. We show that
this method improves the approximation ratio guarantees of several algorithms for
monotone set function maximization and ratio of set functions minimization, at a
computation overhead that depends on the submodular rank.

Keywords: supermodular cone, imset inequality, set function optimization, greedy
algorithm, approximation ratio

1 INTRODUCTION

We study the optimization of set functions — functions that are defined over families of subsets.
The optimization of set functions is encountered in image segmentation (Boykov and Kolmogorov
(2004)), clustering (Narasimhan et al. (2005)), feature selection (Song et al. (2012)), and data sub-
set selection (Wei et al. (2015)). Brute force optimization is often not viable since the individ-
ual function evaluations may be expensive and the search space has exponential size. Therefore,
one commonly relies on optimization heuristics that work for functions with particular structure.
A classic function structure is supermodularity, which for a function on a lattice! requires that
flz)+ fly) < f(z Ay) + f(z Vy). A function is submodular if its negative is supermodular.
Submodularity can be interpreted as a “diminishing returns” property. Submodularity and super-
modularity can be used to obtain guarantees for greedy optimization of set functions, in a similar
way as convexity and concavity are used to obtain guarantees for gradient descent/ascent. Well-
known examples of results using supermodularity are the results of Nemhauser et al. (1978) for
greedy maximization of a monotone submodular set function subject to cardinality constraints and
those of Cilinescu et al. (2011) for arbitrary matroid constraints. Refinements of these results have
been obtained (Conforti and Cornuéjols (1984); Sviridenko et al. (2017); Filmus and Ward (2012)).

As many set functions of interest are not submodular or supermodular, relaxations have been con-
sidered, such as the submodularity ratio (Das and Kempe (2011)), generalized curvature (Con-
forti and Cornuéjols (1984); Bian et al. (2017); Buchbinder et al. (2014); Gatmiry and Gomez-
Rodriguez (2018)), weak submodularity (Chen et al. (2018); Halabi and Jegelka (2020)), e-
submodularity (Krause et al. (2008)), submodularity over subsets (Du et al. (2008)), or bounds
by submodular functions (Horel and Singer (2016)). We will discuss some of these works in more
detail in Section 4.

We propose a new approach to define the complexity of a set function. Specifically, we define the
supermodular rank of a set function. We consider set functions that are real-valued with domain
o] =~ {0,1}™. Using a refinement of our notion of rank, we present a new algorithm for set
function optimization via submodular decompositions. Our definition of complexity of set functions

'Le., a poset where any two elements z, y have a greatest lower bound = A y and a least upper bound z \V 3.
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lets us take guarantees for low complexity functions and apply them to higher complexity functions.

Main contributions.

* We introduce the notion of supermodular rank for set functions (Definition 13). The functions
of supermodular rank at most 7 comprise a union of Minkowski sums of at most r supermodular
cones. We characterize the facets of these sums (Theorem 12) and find the maximum supermod-
ular rank (Theorems 14) and maximum elementary supermodular rank (Theorem 19).

* We describe a procedure to compute low supermodular rank approximations of functions via ex-
isting methods for highly constrained convex optimization (Section 3).

* We show that the supermodular rank decomposition provides a grading of set functions that is
useful for obtaining optimization guarantees. We propose the R-SPLIT and R-SPLIT RATIO algo-
rithms for monotone set function and the ratio of set functions optimization (Algorithms 2 and 6),
which can trade-off between computational cost and accuracy, with theoretical guarantees (Theo-
rems 30, 72 and 73). The case for the ratio of set functions optimization is presented in Appendix
F.3. These improve on previous guarantees for greedy algorithms based on approximate submod-
ularity (Tables 2 and 3). We also provide a lower bound for the complexity of optimizing an
elementary submodular rank-(r + 1) function (Theorem 33).

» Experiments illustrate that our methods are applicable in diverse settings and can significantly
improve the quality of the solutions obtained upon optimization (Section 5).2

Other related work.  Supermodular functions are defined by linear inequalities. Hence, they com-
prise a polyhedral cone called the supermodular cone. These inequalities are called imset inequal-
ities in the study of conditional independence structures and graphical models (Studeny (2010)).
They impose non-negative dependence on conditional probabilities. The supermodular cone has
been a subject of intensive study (Matds (1999); Studeny (2001)), especially the characterization of
its extreme rays (Kashimura et al. (2011); Studeny (2016)), which in general remains an open prob-
lem. Supermodular inequalities appear in semi-algebraic description of probabilistic graphical mod-
els with latent variables, such as mixtures of product distributions (Allman et al. (2015)). Seigal and
Montufar (2018) suggested that restricted Boltzmann machines could be described using Minkowski
sums of supermodular cones (Appendix I). We obtain the inequalities defining Minkowski sums of
supermodular cones, which could be of interest in the description of latent variable graphical models.

2  SUPERMODULAR CONES

In this section we introduce our settings and describe basic properties with proofs in Appendix B.

Definition 1. Let X be a set with a partial order such that for any =,y € X, there is a greatest
lower bound x A y and a least upper bound z V y (this makes X a lattice). A function f: X — Ris
supermodular if, for all z,y € X,

f@)+ fly) < fl@Ay)+ fl@Vy). ()
The function f is submodular (resp. modular) if < in (1) is replaced by > (resp. =).

Example 2. Let X be the poset of all subsets of a set S ordered by inclusion. Then a function f is
supermodular is for all A, B C S, we have that

f(A)+ f(B) < f(AN B) + f(AU B).

Here f(A) = |A| is a modular function. If g is concave, then f(A) = g(]A|) is submodular and if h
is convex then f(A) = h(]A]) is supermodular.

Definition 3. We fix X = {0, 1}" and consider a tuple of linear orders 7 = (71, ..., m,) on {0, 1}.
Our partial order is the product of the linear orders: for any z,y € X, we have z <, y if and
only if x; <, y; for all i € [n]. For each i, there are two possible choices of 7;, the identity
0 <4, 1, and the transposition 1 <, 0. A function that is supermodular with respect to 7 is called
w-supermodular.

2Computer code for our algorithms and experiments is provided in [anonymous GitHub repo].
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Example 4. Consider n = 2, then X = {(0,0), (1,0), (0,1),(1,1)}. Then, suppose we have the
standard linear orders, that is, 1 and 7o are the identity. Then we have that (0,0) is the smallest
element, (1, 1) is the biggest, and (1,0) and (0, 1) are intermediate incomparable elements.

Now suppose 71 is a transposition. This implies that 1 <., 0 for the first coordinate. Thus, we have
that (1, 0) is the smallest, (0, 1) is the biggest, and (0, 0) and (1, 1) are the intermediate incomparable
elements. Hence with this latice, we have that f is supermodular if and only if

f((0,0)) + f((1,1)) < f((1,0)) + f((0,1)).

For fixed X, the condition of 7-supermodularity is defined by requiring that certain homogeneous
linear inequalities hold. Hence the set of m-supermodular functions on X is a convex polyhedral
cone. We denote this cone by £, € R¥. Two product orders generate the same supermodular cone
if and only if one is the total reversion of the other, and hence there are % [, | X! distinct cones L,
see Allman et al. (2015). The cone of 7-submodular functions on X is — L.

In the case X = {0, 1}", the description of the supermodular cone in Equation 1 involves (2; ) linear

inequalities, one for each pair x,y € X. However, the cone can be described using just (g) o2
facet-defining inequalities (Kuipers et al. (2010)). These are the elementary imset inequalities (Stu-
deny (2010)). They compare f on elements of X that take the same value on all but two coordinates.
Identifying binary vectors of length n with their support sets in [n], the elementary imset inequalities

flzud{ih) + F(z0{i}) < f(2) + f(z U {i,5}), 2)
where i,j € [n],i # jand z C [n] \ {¢,7}.

We partition the (7)2"~2 elementary imset inequalities into () sets of 2”2 inequalities, as follows.

Definition 5. For fixed i,j € [n], i # j, we collect the inequalities in Equation 2 for all z C
[n]\ {4, j} into matrix notation as A() f > 0. We call A € R2"**2" the (ij) elementary imset
matrix.

We give examples to illustrate the elementary imset inequality matrices from Definition 5.

Example 6 (Elementary imset inequalities). Given f: {0,1}" — R, the elementary imset inequal-
ities are

foot+foton < fooo+ fot1, 3)
where f..g..1... :== f(---0---1---) and an index (---a---b---) has varying entries at two posi-
tions i and j. Fixing ¢ and j, one has 2"~2 inequalities in equation 4. For example, if i = 1 and
J = 2 then one obtains two inequalities:

foro + fro0 < fooo + fi10
fou1 + fio1 < foor + finr-

Example 7 (Three-bit elementary imset inequality matrix). For n = 3, A(!?) is the 2 x 8 matrix
0o0 001 010 011 100 101 110 111

402) _ (1) (1 . -1 . -1 . 1 1).

Each row of A(%7) has two entries equal to 1 and two entries equal to —1.

The elementary imset characterization extends to m-supermodular cones £, with general 7.

Definition 8. Fix a tuple 7 = (my,...,m,) of linear orders on {0,1}. Its sign vector is T =
(T1y...,mn) € {1}, where ; = 1if 0 <., land 7, = —1if 1 <, 0.

Lemma 9. Fix a tuple of linear orders 7 with sign vector 7. Then a function f: {0,1}" — R is
m-supermodular if and only if 7,7, AU f >0, for all i, j € [n] withi # j.

Example 10 (Three-bit supermodular functions). For X = {0,1}3, we have %23 = 4 supermodular
cones L, given by sign vectors 7 € {#£1}? up to global sign change. Each cone is described

by (3) x 2! = 6 elementary imset inequalities, collected into three matrices A7) € R?*®. By
Lemma 9, the sign of the inequality depends on the product 7;7;:
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T ‘ A(12)f A(13)f A(23)f
(1,1,1) + + +
(717171) - - +
(1,-1,1) — + —
(1,1,-1) + — —

In Appendix H we show that supermodular cones have tiny relative volume, at most (0.85)%" .

3 SUPERMODULAR RANK

We describe the facet defining inequalities of Minkowski sums of w-supermodular cones. Given two
cones P and Q, their Minkowski sum P + Q is the set of points p 4 ¢, where p € P and ¢ € Q. For
a partial order 7 with sign vector 7, we sometimes write £, for L.

Example 11 (Sum of two three-bit supermodular cones). We saw in Example 10 that there are 4
distinct 7-supermodular cones £, each defined by (‘3) 23-2 — 6 elementary imset inequalities. The

inequalities defining the Minkowski sum L 1 1) + £(_1,1,1) are A3 f > (. That is, the facet
inequalities of the Minkowski sum are those inequalities that hold on both individual cones.

We develop general results on Minkowski sums of cones and apply them to the case of supermod-
ular cones in Appendix D. We show that the observation in Example 11 holds in general: sums of
m-supermodular cones are defined by the facet inequalities that are common to all supermodular
summands. In particular, the Minkowski sum is as large a set as one could expect.

Theorem 12 (Facet inequalities of sums of supermodular cones). Fix a tuple of partial orders
71'(1), o ,w(m). The Minkowski sum of supermodular cones L.y + - - - + L.m) is a convex polyhe-
dral cone whose facet inequalities are the facet defining inequalities common to all m cones L ).

Proofidea. Each L) is defined by picking sides of a fixed set of hyperplanes. All supermodular
cones are full dimensional. If two cones lie on the same side of a hyperplane, then so does their
Minkowski sum. Hence the sum is contained in the cone defined by the facet defining inequalities
common to all m cones £..y. We show that the sum fills this cone. This generalizes the fact that a
full dimensional cone P C R satisfies P + (—P) = R<. O

Definition 13. The supermodular rank of a function f: {0,1}"™ — R is the smallest  such that
f=fi+---+ fr, where each f; is a w-supermodular function for some 7.

Theorem 14 (Maximum supermodular rank). For n > 3, the maximum supermodular rank of
a function f: {0,1}" — R is [logyn] + 1. Moreover, submodular functions in the interior of
—L(1,...,1) have supermodular rank [logy n .

Proof idea. We find [log, ] + 1 m-supermodular cones whose Minkowski sum fills the space. To
remove as many inequalities as possible, we choose cones that share as few inequalities as possible,
by Theorem 12. The sign vectors should differ at about n/2 coordinates, by Lemma 9. A recursive
argument shows that [log, n] + 1 cones suffices. O

Submodular functions f in the interior of —L ;. 1) do not have full rank. They satisfy AU f < 0.
We believe that full rank functions f do not satisfy A f > 0 or A f < 0, for any i # j.

Example 15. Any function f: {0,1}® — R can be written as a sum of at most three 7-supermodular
functions. Furthermore, there are functions that cannot be written as a sum of two m-supermodular
functions. Indeed, Example 10 shows that any two m-supermodular cones share one block of in-
equalities, and three do not share any inequalities.

Definition 13 has implications for implicit descriptions of certain probabilistic graphical models:
models with a single binary hidden variable as well as restricted Boltzmann machines (RBMs).
Specifically, a probability distribution in the RBM model with r hidden variables has supermodular
rank at most . We discuss these connections in Appendix L.



Under review as a conference paper at ICLR 2024

Example 16 (Poset of sums of three-bit supermodular cones). We have four supermodular cones,
with7 =(1,1,1), (-1,-1,1), (—1,1,—1), (1, =1, —1). In this case, all sums of pairs and all sums
of triplets of cones behave similarly, in the sense that they have the same number of 0’s in the vector
¢ indexing the Minkowski sum. This is shown in Figure 1.

000

AN
VAR

N\

Figure 1: The inclusion poset of Minkowski sums of three-bit supermodular cones. The string in
each node is the vector £ of signs of the inequalities for that supermodular cone or sum of super-
modular cones.

3.1 ELEMENTARY SUBMODULAR RANK Table 1: Volumes

We introduce a specialized notion of supermodular rank,
which we call the elementary supermodular rank. This restricts
to specific 7. Later we focus on submodular functions, so we n| rank 1 rank 2 rank 3 rank 4

phrase the definition in terms of submodular functions. 3] 125% 749% 100% -
41 0.0072% 5.9% 100% -

Elementary Submodular

Submodular

Definition 17. If 7 has a unique coordinate ¢ with the sign of
m; equal to —1, then we call —L, an elementary submodular
cone and we say that a function f € —L is {i}-submodular. n| rank I rank 2 rank 3 rank 4
3| 3.14% 53.16% 100% -
‘6 107%% 0.38% 29% 100%

Definition 18. The elementary submodular rank of a function
f:{0,1}™ — Ris the smallest r + 1 such that f = fo+ f;, +
-+ fi.. where fo € =L, 1) and f;, is {i;}-submodular.

Theorem 19 (Maximum elementary submodular rank). For n > 3, the maximum elementary sub-
modular rank of a function f: {0,1}" — R is n. Moreover, a supermodular function in the interior
of L(1,...,1) has elementary submodular rank n.

The proof is given in Appendix D.4 using similar techniques to Theorem 14. The relative volume of
functions of different ranks is shown in Table 1, with details in Appendix H.

Low Elementary Submodular Rank Approximations Given f: {0,1}"™ — R and a target rank
r, we seek an elementary submodular rank-r approximation of f. This is a function g: {0,1}" — R
that minimizes || f — g||¢,, with g elementary submodular rank 7. The set of elementary submodular
rank r functions is a union of convex cones, which is in general not convex. However, for fixed
77(1), ... ,7r(7’), finding the closest point to f in £ ) + --- + L. is a convex problem. To find g,
we compute the approximation for all rank r convex cones and pick the function with the least error.
Computing the projection onto each cone may be challenging, due to the number of facet-defining
inequalities. We use PROJECT AND FORGET (Sonthalia and Gilbert, 2022), detailed in Appendix E.

4 SET FUNCTION OPTIMIZATION

The elementary submodular rank gives a gradation of functions. We apply it to set function optimiza-
tion. Here we show that the theoretical guarantees that exist for submodular function optimization
can applied to a broader family of functions. Namely, functions with low elementary submodular
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rank. This extended applicability comes with increased running time. Specifically, the new runtime
is exponential in . However, we present a lower bound that shows that the added complexity is un-
avoidable. The first application is to constrained set function maximization. The second application
to the ratio of set function minimization can be found in Appendix F.3.

Definition 20. A set function f: 2V — R is monotone (increasing) if f(A) < f(B) for all AC B,
normalized if f(() = 0, and positive if f(A) > 0 forall A € 2V \ {0}.

Examples of monotone submodular functions include
entropy S — H(Xg) and mutual information S —
I(Y; Xg). Unconstrained maximization gives an opti-

= . . 2
mum at S = V, but when constrained to subsets with .

. . 3:  while F # () do
upper bounded cardinality the problem is NP-hard. The 1. "¢ = arg max, . A(e|Sk)
cardinality constraint is a type of matroid constraint. 5. Sip1 =Sk Ue? e}
6
7
8
9

Algorithm 1 GREEDY

: function GREEDY(f, M)
: So=0,F={ee€V:S5U{e} € M}

Definition 21. A system of sets M C 2V is a matroid, F={eeV:Sp1U{e} € M}
if ()S € Mand T C S implies T € X and (ii) e“td Whge

S, T € Mand [T|+ 1 = [S] implies Je € S\ T'such g enr(;:fl'llll;‘:lcti’(ill

that T'U {e} € M. The matroid rank is the cardinality

of the largest set in M.

Problem 22. Let f be a monotone increasing normalized set function and let M C 2V be a matroid.
The M-matroid constrained maximization problem is maxgep f(S). The cardinality constraint
problem is the special case M = {S C V': |S| <'m}, for a given m < |V|.

A natural approach to finding an approximate solution to cardinality constrained monotone set func-
tion optimization is by an iteration that mimics gradient ascent. Given S C V and e € V, the
discrete derivative of f at S in direction e is

AlelS) = f(SU{e}) = f(9).
The GREEDY algorithm (Nemhauser et al. (1978)) produces a sequence of sets starting with Sy = (),

adding at each iteration an element e that maximizes the discrete derivative subject to S; U{e} € M
until no further additions are possible, see Algorithm 1.

Submodular functions. A well-known result by Nemhauser et al. (1978) shows that GREEDY has
an approximation ratio (i.e., returned value divided by optimum value) of at least (1 — e~!) for
monotone submodular maximization with cardinality constraints. Cilinescu et al. (2011); Filmus
and Ward (2012) show a polynomial time algorithm exists for the matroid constraint case with the
same approximation ratio of (1 — e~!). These guarantees can be refined by measuring how far a
submodular function is from being modular.

Definition 23 (Conforti and Cornuéjols (1984)). The total curvature of a normalized, monotone
increasing submodular set function f is
. Alel®) — Ae|V \ {e})

& 1= max AlelD) . where Q = {e € V: A(e|0) > 0}.

It can be shown that & = 0 if and only if f is modular, and that & < 1 for any submodular f.
Building on this, Sviridenko et al. (2017) presents a NON-OBLIVIOUS LOCAL SEARCH GREEDY
algorithm. They proved for any e an approximation ratio of (1 — de~! + O(¢)) for the matroid
constraint and that this approximation ratio is optimal. See Appendix F.

Approximately submodular functions. To optimize functions that are not submodular, many
prior works have looked at approximately submodular functions. We briefly discuss these here.

Definition 24. Fix a non-negative monotone set function f : 2" — R.
* The submodularity ratio (Bian et al. (2017); Wang et al. (2019)) with respect to a set X and integer
mis
} Sees AlelT)
TcX,Scv,|Sjgm,snr=0  A(S|T)

We drop the subscripts when X =V and m = |V/|.
* The generalized curvature (Bian et al. (2017)) is the smallest a s.t. forall T, S € 2 and e € S\T,

Ale|(S\{eHhuT) > (1 —a)Ale]S\ {e}).

YX,m =
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Remark 25. For monotone increasing f, we have v € [0,1], with v = 1 if and only if f is
submodular as well as « € [0, 1] and o = 0 iff f is supermodular. Thus, if « = 0 and v = 1, then f
is modular. We compare these notions to the elementary submodular rank in Appendix F.6.

Bian et al. (2017) obtained a guarantee of é(l —e~7) for the GREEDY algorithm on the cardinality
constraint problem. For optimization of non-negative monotone increasing f with general matroid
constraints, Buchbinder et al. (2014); Chen et al. (2018); Gatmiry and Gomez-Rodriguez (2018)
provide approximation guarantees that depend on v and a.

Algorithm 2 R-SPLIT

: function R-SPLIT(f, 7, A - subroutine)
for A C B C V with |B| =r do
run Aon fa.B
end for
run A on f
return Best seen set
end function

Functions with bounded elementary rank. We for-
mulate an algorithm with guarantees for the optimiza-
tion of set functions with bounded elementary submod-
ular rank. We first give definitions and properties of low
elementary submodular rank functions.

Definition 26. Given A C B C V, define II(A, B) :=
{C CV :CNB = A}. Givenaset function f : 2V — R,
we let f4 p denote its restriction to IT(A, B).

AR AR ol i

Note that IT(A, B) = 2V\B_ If B = {i}, then f;; p and f p are the pieces of f on the sets that
contain (resp. do not contain) . If | B| = m, then we have 2™ pieces, the choices of A C B.

Proposition 27. A set function f has elementary submodular rank r + 1, with decomposition f =
fo+ fi, +---+ fi., ifand only if fa g is submodular for B = {i1,...,i,} and any A C B.

The pieces f4,p behave well in terms of their submodularity ratio and curvature.

Proposition 28. If f is a set function with submodularity ratio v and generalized curvature o, then
fa,B has submodularity ratio o p > vy and generalized curvature aq g < .

We propose the algorithm R-SPLIT, see Algorithm 2. The idea is to run GREEDY, or another opti-
mization method, on the pieces f4,p separately and then choose the best subset.

Definition 29. We define

o, = min max oA, p and = max minya g | .
" BCv|Bl<r (AQB ) T pcviBl<r \ACB |

We can now state our main result.

Theorem 30 (Guarantees for R-SPLIT). Let A be an algorithm for matroid constrained maximiza-
tion of set functions, such that for any monotone, non-negative function g: 2V — R, |W| = m,
with generalized curvature o and submodularity ratio vy, algorithm A makes O(q(m)) queries to
the value of g, where q is a polynomial, and returns a solution with approximation ratio R(«, ).
If f: 2" — R is a monotone, non-negative function with generalized curvature o, submodular-
ity ratio vy, and elementary submodular rank r + 1, then R-SPLIT with subroutine A runs in time
O(2"n"q(n)) and returns a solution with approximation ratio max{R(a,~), R(c.,1)}.

Remark 31 (Approximation ratio). The approximation ratio R(c,~y) usually improves as ~ in-
creases, as seen for the function é(l — e~ ) from Bian et al. (2017). The case 7 = 1 corresponds
to the function being submodular. We split an elementary rank-(r + 1) function into the appropriate
2" pieces, then we run the subroutine .4 on submodular functions Hence obtaining the best available
guarantees.

Remark 32 (Time complexity). For fixed » we give a polynomial time approximation algorithm
for elementary submodular rank-(r + 1) functions. If we assume knowledge of the cones involved
in a decomposition of f, then we need only optimize over one split, and we can drop the time
complexity factor n”. With the extra information about the decomposition, this is a fixed parameter
tractable (FPT) time O(1) approximation for monotone function maximization, parameterized by
the elementary submodular rank. This suggests that determining the cones in the decomposition
may be a difficult problem.

In Table 2 we instantiate several corollaries of Theorem 30 for specific choices of the subroutine and
compare them with the prior work mentioned above (see Appendix F for details). Table 2 should be
read as follows. We have an approximation ratio for every row in the prior work section of the table.
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We can extend that result to the case with an elementary low-rank function. For example, the first
row in the table shows that for submodular functions with matroid constraints, there exists an O(ns)
algorithm that results in a 1 — e~ ! approximation. Note that this result is for submodular functions.
We can then extend this for elementary submodular rank-r + 1 functions. This is the last line of the
table. Here, we see that we pay the time penalty of O(2"n") to do so. In the table we only extend
the best three results. We also provide a lower bound.

Theorem 33 (Lower Bound). Any deterministic procedure that achieves an O(1) approximation
ratio for maximizing elementary submodular rank-(r + 1) set functions requires at least 2" function
queries.

Table 2: Approximation ratios and time complexity for maximizing a monotone, normalized func-
tion f on 2[n] of total curvature @, generalized curvature «, submodularity ratio -, and elementary
submodular rank 7 + 1. Here m is the bound in the cardinality constraint, and p is the matroid rank
in the Matroid constraint. Results with * are in expectation over randomization in the algorithm.

Sub- Low Card. Matroid Approximation

modular Rank Constr. Constr. Ratio Time Ref.
~ ali 1.
v - - v ]l O(n®) Ci 1r(1§(s)clli)et a
A4 =
8 - 3 A1 —1 Sviridenko
§ v’ v’ 1—de " —O(e) O(e "poly(n)) eltggll. (20117)
-a%’ - - v’ - L1—e) O(nm) 1(2;(1)?;)21 ‘
C1v— Chen et al.
- - - v’ 14+~ O(n?) (2018)
Gatmiry and
- - - 0.4~2 2 Gomez-
\/7711 o) Rodriguez
(2018)
Gatmiry and
ST Gomez-
_ ) ) v (I+(1=a) 1) ' O(nQ) Rodriguez
(2018)
g - v’ v’ - 1—ae ' —0(e) O(et2™n"-poly(n)) Cor 67
E - v’ v’ - Ld—e) o2™n" - nm) Cor 68
£ - v’ i v’ l—e ' O(2'n" - n®) Cor 69

5 EXPERIMENTS

Our theory shows that we can extend theoretical guarantees that exist for submodular function op-
timization to low elementary submodular rank optimization. We take set functions that are not
submodular, run our new algorithm, and show an improved performance. We consider four types
of functions: DETERMINANTAL, BAYESIAN, COLUMN, and RANDOM, detailed in Appendix G.

Submodularity ratio and generalized curvature. We compute «, and -, and the resulting ap-
proximation ratio guarantee for constrained maximization for functions of the four different types,
for n = 8 and log number of pieces 0 < r < 4. We report the mean and standard error for 50
functions in each case. Figure 2a shows that the approximation ratio guarantee can increase quickly:
for DETERMINANTAL it improves by 400% by r = 4.

Low elementary rank approximations. We compute low elementary submodular rank approxi-
mations forn = 7and 1 < r + 1 < 7. Figure 2b shows the relative error ||f — g||¢, /|| f]l¢, and
Figure 2c¢ the running times (see Appendix E). We see that COLUMN has a low elementary submod-
ular rank, 7 + 1 = 4. The computation time peaks near r + 1 = n/2 and decreases for larger r + 1
as there are fewer Minkowski sums and fewer constraints.

r-Split Greedy with small n. We evaluate the improvement that R-SPLIT provides over GREEDY.
Let n = 20 and maximize functions with a cardinality constraint m = 10. Figure 3a shows the
approximation ratio for GREEDY and R-SPLIT GREEDY for r = 1,2, 3, as well as how often the
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Figure 2: Shown are (a) how the bound from Bian et al. (2017) changes when we use «, and
v (see Definition 29); higher values correspond to better guarantees, (b) the relative error when
approximating a function by an elementary rank-(r + 1) function, and (c) the running times for
computing the approximation.

optimal solution was found. All four algorithms outperform their theoretical bounds. In all cases,
increments in 7 increase the percentage of times the (exact) optimal solution is found.

1.0 1.0 = Greedy 2 —— Column
W 1 Split Greedy g Determinantal
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506 F3 Zuo
2 506 o
£ éé 51
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Datasets. Here n = 20 Datasets. Here n = 20 n
(a) Approximation Ratio (b) Exact Solutions (c) Split/ Greedy Ratio

Figure 3: Shown are (a) the approximation ratio for the solution found versus the optimal solution
averaged over 50 objective functions in each type, (b) the proportion of instances for which the
algorithms find the optimal solution, (c) the ratio of the solution found by 1 SPLIT and GREEDY.

r-Split Greedy with large n. We now consider larger values of n, with a maximum cardinality of
15. Since we do not know the optimal solution, in Figure 3¢ we plot the ratio of R-SPLIT GREEDY to
GREEDY. For BAYESIAN our approach improves the quality of the solution found by about 1% and
for DETERMINANTAL by 5-15% on average. Running the experiment for RANDOM is not viable as
we cannot store it for oracle access. Computing the COLUMN function takes longer than computing
DETERMINANTAL and BAYESIAN. Hence we only ran it until n = 300. For n = 300, there are

(31050) ~ 8 x 10%* possible solutions.

6 CONCLUSION

We introduced the notion of submodular and supermodular rank for set functions along with geo-
metric characterizations. Based on this we developed algorithms for constrained set function max-
imization and ratios of set functions minimization with theoretical guarantees improving several
previous guarantees for these problems. Our algorithms do not require knowledge of the rank de-
composition and show improved empirical performance on several commonly considered tasks even
for small choices of . For large n it becomes unfeasible to evaluate all splits for large r, and one
could consider evaluating only a random selection. It will be interesting to study in more detail the
rank of typical functions. The theoretical complexity and practical approaches for computing rank
decompositions remain open problems with interesting consequences. Another natural extension of
our work is to consider general lattices, involving non-binary variables.
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A NOTATION

We summarize our notation in the following table.

[n] {1,...,n}.

(X,m) A poset X with partial order defined by a tuple 7.

f A function from a poset (X, 7) to R.

L The cone of m-supermodular functions.

T Tuple of n linear orders © = (71, ..., 7,), see Definition 3.

AGI) The (ij) elementary imset matrix, a 2”2 x 2" matrix that collects the imset
inequalities for each = € {0,1}"~2, see Definition 5.

T Sign vector 7 = (71, ..., 7,) of a tuple of linear orders 7, see Definition 8.

£ Vector in {—1, 0, 1}(3) described in Definition 42.

Notions of curvature and submodularity ratio.

& The total curvature of a normalized, monotone increasing submodular function f
is & := max.cq W, where Q = {e € V: A(e|0) > 0}

YX,m The submodularity ratio of a non-negative monotone function with respect to a set
. . _ . > es Ale]T) .
X and integer m is Yx m := MINTC X, 5CV,|S|<m,SNT=0 W. Subscripts

dropped for X =V, m =k

o The generalized curvature of a non-negative monotone set function is the smallest
astforallT,S €2V ande € S\T, A(e|(S\{e})UT) > (1—a)A(e|S\ {e})

a The generalized inverse curvature of a non-negative set function f is the smallest
al st forallT, S € 2 ande € S\T, A(e|S\{e}) > (1—af)A(e|(S\{e})UT).
¢ The curvature of f with respect to X is ¢/ (X) :=1 — Zeeéiii)):({iﬁ\{e})

B BACKGROUND ON POSETS

We introduce relevant background for posets and partial orders.

Definition 34. Let (X, <) be a partially ordered set (poset). Given two elements z,y € X,

1.

The greatest lower bound x A yisaz € X suchthat z < x,y and w < z forall w < z,y.

2. The least upper bound x V yisaz € X suchthatz,y < zand z K wforall z,y < w.

Posets such that any two elements have a least upper bound and a greatest lower bound are called

lattices.

Example 35.

1. Let X be the power set of some set, with < the inclusion order. Given z,y € X, we have
rAy=zNyandzVy=xUy.

2. Let X = [di]' x [d2]’ x--- X [dy]’, where [n] :={0,1,2,3,...,n—1}. Fixz = (x1,...2,) and
y=(y1,...,Yn)in X. Let x < y if and only if z # y and x; < y;, foralli = 1,...,n, where
< is the usual ordering on natural numbers. Then x A y = (min(xy, 1), ..., min(z,, y,)) and
xVy = (max(z1,y1),. .., max(T,, Yn))-

3. Let X = X; x -+ x X,,, where (X;,<;) are linearly ordered spaces for i = 1,...,n.
For z,y € X, let x < y if and only if z; <; y;, fori = 1,...,n and x # y, where
<; is the linear ordering on X;. Then z A y = (min<,(x1,y1),...,min<, (zn,y,)) and
zVy = (max<,(z1,y1), ..., max<, (Tn, Yn))-
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C DETAILS ON SUPERMODULAR CONES

We give examples to illustrate the elementary imset inequality matrices from Definition 5.

Example 36 (Elementary imset inequalities). Given f: {0,1}" — R, the elementary imset inequal-
ities are

foot+fot0 < fo00F+ ft1., 4)

where f..g..1... := f(--+0---1---) and an index (---a---b---) has varying entries at two posi-
tions 4 and j. Fixing 7 and j, one has 2”2 inequalities in equation 4. For example, if i = 1 and
7 = 2 then one obtains two inequalities:

foro + fro0 < fooo + fi10
for1 + fio1 < foor + finr-

Example 37 (Three-bit elementary imset inequality matrix). For n = 3, A(?) is the 2 x 8 matrix

0o0 001 o010 011 100 101 110 111

(12) _ O 1 —1 —1 1 )
A 1 ( 1 -1 -1 1)

We prove Lemma 9, which describes the 7-supermodular cones in terms of signed elementary imset
ienqualities:

Lemma 9. Fix a tuple of linear orders 7 with sign vector 7. Then a function f: {0,1}"" — R is
m-supermodular if and only l'fTiTjA(ij)f >0, foralli,j € [n] withi # j.

Proof. The result is true by definition if 7 = (1,...,1). Fix two binary vectors « and y. If 7; = 1,
the greatest lower bound x A y is a binary vector with min(x;, y;) at position 4, while the least up-
per x V y bound has max(z;,y;) at position i. If 7, = —1, then the greatest lower bound z A y
has max(x;,y;) at position ¢, while  V y has min(z;,y;) at position . Fix n = 2 and assume
7 = (—1,1). Then (00) A (11) = (01) and (00) V (11) = (10). Hence the supermodular inequal-
ity equation 1 applies to z = (00) and y = (11) to give

foo + f11 £ for + fro.

For general n, assume that (7;, 7;) = (—1, 1) with (without loss of generality) that ¢ < j. Then

foo + f11 < f01 + f10

This is equation 4 with the sign of the inequality reversed. That is, with this partial order, the
inequalities involving positions i and j are those of —A(4), If 7 = (—1, —1) then (01) A(10) = (00)
and (01) V (10) = (11) and there is no change in sign to the inequalities A7), O

Example 38 (Four-bit supermodular functions). For four binary variables, there are 24! = 8 dis-
tinct supermodular comes L., given by a sign vector 7 € {£1}* up to global sign change, namely
(1,1,1,1), (-1,1,1,1), (1,-1,1,1), (1,1,-1,1), (1,1,1,-1), (-1,-1,1,1), (-1,1,-1,1),

9 ) ) ) ) )

(=1,1,1,—1). Each cone is described by (;l) x 22 = 24 elementary imset inequalities, collected

) ) )

into (;1) matrices A(¥) € R**16_ where the sign of the inequality depends on the product 7;7;. We

give the signs of the inequalities for three sign vectors.

T ‘ A2 p A3 p AOD f A@) f ACHf  AGYf
(1,1,1,1) + + + + + +
(_17171a1) - - - + + +

(-1,-1,1,1) + — — — — +

D DETAILS ON SUPERMODULAR RANK

We provide details and proofs for the results in Section 3.
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Figure 4: Proof of Proposition 39.

D.1 FACET INEQUALITIES OF MINKOWSKI SUMS

We prove elementary properties of Minkowski sums of polyhedral cones. If two cones lie on the
same side of a hyperplane through the origin, then so does their Minkowski sum, since u'z; > 0
andu'zy >0 implies u' (z1 4+ x2) > 0. Moreover, the Minkowski sum of two convex cones P;
and P is convex, since

ey +x2) + (1= p)(y1 +y2) = (o + (1 — pyr) + (pr2 + (1 — p)y2)

holds, for x;,y; € P;. Given a polyhedral cone P defined by inequalities Ax > 0, we denote by
—P the cone defined by the inequalities Az < 0. We write Av > 0 if every entry of the vector Av
is strictly positive.

Proposition 39. Let P C R™ be a full-dimensional polyhedral cone. Then P + (—P) = R™.

Proof. Let P = {v € R": Av > 0}. There exists v € P with Av > 0, since P is full dimensional.
Fix z € R™. For sufficiently large ¢, we have A(z +tv) > 0 and A(z — tv) < 0. Hence z + tv € P
and z — tv € —P. We have z = 1 (2 +tv) + 2 (2 — tv). Since P is closed under scaling by positive
scalars, the first summand lies in P and the second in —P. Hence z is in the Minkowski sum. For a
pictorial proof, see Figure 4. O

Proposition 40. Given matrices A; € R™*N | fix the two polyhedral cones

7)1 = {U c RN . Al’U Z O,AQU Z 0,1431} Z O}

Py={ve RN : Ajv>0,A0 <0, Av > 0}.
Assume that the set

S={veRY:Av=0,A0> 0,430 >0, A0 < 0}

is non-empty. Then Py + Py = {v € RV : Ajv > 0}.
Proof. Let z € P;+Ps. Then z = v+ u for some v € Py, and u € Py. Hence A1z = Ay (v+u) >
0,s0P; + P2 C {z: A;z > 0}. For the reverse containment, take z such that A;z > 0. Fix

v* € S. There exists some Ay € Rx>( such that for all A > Ay, we have Az(z + Av*) > 0 and
As(z + Av*) > 0. Then z + \v* € Py, since

A1(z 4+ ") = A1z + A" = A1z > 0.
Moreover, there exists some Ay € R>( such that for all A > Ay, we have that z — Av* satisfies
Ai1(z— W) >0, A2(z — A*) < 0and Ay(z — W) >0,

$0 z — Av € P,. Taking A > max(A1, A2), we can write z = 3(z + Av*) + 3 (z — Av*) to express
z as an element of P; + Ps.
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D.2 FACET INEQUALITIES FOR SUMS OF SUPERMODULAR CONES

Example 41 (Sums of two four-bit supermodular cones). We saw in Example 38 that there are
eight possible 7-supermodular cones £, each defined by (;l) 24-2 = 24 elementary imset inequal-
ities. Here we study the facet inequalities for their Minkowski sums. The inequalities defining the
Minkowski sum Ly 11,1) + £(—1,1,1,1) are

ARYf >0, ABYfF >0, ABYF >,

as can be computed using polymake Assarf et al. (2017). That is, the facet defining inequalities
of the Minkowski sum are those that hold on both individual cones, and no others. We similarly
compute the inequalities that define the Minkowski sum £; 1 1 1) + £(—1,-1,1,1). We obtain

AU >0 ABYF >,

Again, the Minkowski sum is described by just the inequalities present in both cones individually.
Notice that L1 1,1,1) + £(—1,1,1,1) is defined by 12 inequalities while L1 11,1) + £(—1,-1,1,1) 1S
defined by eight.

We show that the assumptions of Proposition 40 hold for sums of supermodular cones.
Definition 42. Given ¢ € {—1,0, 1}(3), define L¢ to be

= {x: £,;A% g >0, foralli#j},
where A() is the (4, ) elementary imset matrix from Definiton 5. Similarly, define

L =Len{x: AWz =0 foralli # j with &; = 0},

The cones L¢ and Ly are m-supermodular cones in the special cases that §;; = 7;7; for some
T e {1}

Lemma43. Fix¢ € {—1,0, 1}( ). There exists » € E’ with &;;A AU 2 > 0 for all &j #0.

Proof. First assume just one entry &;; of § is non-zero. Let 2017) ¢ R{01}" have entries zéij) = 055
for { = (¢4,...,4,) € {0,1}™. Then all rows of &;; A 2(4) equal &;(cop + c11 — o1 — c10). We
choose the four entries cog, co1, 10, €11 50 that & (coo +¢11 — co1 —€10) > 0. Moreover, A7) 2(i9)
is zero for all other {4’, j'}, since the value of zéij ) only depends on ¢;, ;. We conclude by setting
z =" 209) where the sum is over (i, j) with & # 0. O

Proposition 44. Fix f(l), 5(2) e {-1,0, 1}(3) The Minkowski sum £§(1> + ,/35(2) is cut out by the
inequalities common to both summands. That is, L¢) + Le2) = L¢, where

(1) (1) _ 2
= {% &) =€

0 otherwise.

Proof. Define £’ by
€@ 4
¢ <71> é) .

ggj = 5(71) d) 7& 0 5(2 -0
£ 2#05;_0

There exists v in the interior of E’g,, by Lemma 43. This v satisfies the assumption from Proposi-

tion 40 for the polyhedral cones P; = ﬁfu) and Py = Eg(m. The four cases in the definition of &’
are the four cases Ajv = 0, Asv > 0, Asv > 0, Ayv < 0 in set S of Proposition 40. O]

We can now show Theorem 12:
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Figure 5: Illustration of the proof of Theorem 14.

Theorem 12 (Facet inequalities of sums of supermodular cones). Fix a tuple of partial orders
W, 7™ The Minkowski sum of supermodular cones L.y + - - - + L) is a convex polyhe-
dral cone whose facet inequalities are the facet defining inequalities common to all m cones L.

Proof. Let (%) be the sign vector of 7(*). By Proposition 44, the Minkowski sum in the statement

is L¢, where
= {58) R

0 otherwise.

D.3 MAXIMUM SUPERMODULAR RANK

We now prove Theorem 14.

Theorem 14 (Maximum supermodular rank). For n > 3, the maximum supermodular rank of
a function f: {0,1}" — R is [logyn] + 1. Moreover, submodular functions in the interior of
—L1,... 1) have supermodular rank [logy n].

Proof. The maximum supermodular rank is the minimal m such that a union of cones of the form
L) + -+ L, fills the space of functions f : {0,1}" — R. Let 7(*) be the sign vector of
partial order 7(*), We show that the maximum supermodular rank is the smallest m such that there
exist partial orders (1), ... 7("™) with no pair i # j having the same value of the product of signs

Ti(k) . T;k) forall k =1,..., m. If there is no such pair ¢, 7, then the Minkowski sum fills the space,

by Lemma 9 and Theorem 12. Conversely, assume that §;; := Ti( ). T;k) is the same for all k, for
some i # j. Let the other entries of £ be zero. Then the Minkowski sum £ ) + -+ 4+ L (m) I8
contained in L¢, by Theorem 12. A union of £, with { # 0 cannot equal the whole space since
€; AW f > 0 from Lemma 9 imposes 2”2 inequalities and for n > 3 there exist functions with
different signs for these two or more inequalities, since each inequality involves distinct indices. It,

therefore, remains to study the sign vector problem.

Without loss of generality, let 7() = (1,...,1). Consider the partition [n] = [n]; U [n]_;, where
@ _ [1 i€
T, = .
-1 i€e[n]_1.
Let ny := |[n]1]. Of the (}) pairs i # j there are ny(n — ny) with TZ-(Q)T]@) = —1. The quantity

ni(n — ny) is maximized when ny = % (for n even) or n; = %(n =+ 1) (for n odd). It remains to

consider the pairs ¢ # j with Ti(l)T}l) = Ti(2)7'(2)' that is, (Ti(Q), 7(2)) = (1,1) or (—1,—1). We have

Jj J
reduced the problem to two smaller problems, each with (”21) pairs 4, j where m < "TH We choose

a partition of [n]; into two pieces, say [n]1 1 and [n];,_1, and likewise for [n]_;. Define 7(3) to be
1on [n]1,1,[n]-1,1 and —1 on [n]1,_1, [n]—1,—1. Then the pairs ¢ # j with 7-1.(1)7-](1) = TZ.(Q)TJ@) =
Ti(g)T;?)) are those with {7, j} C [n]q for some a,b € {—1,1}. In a sum of m cones, the set [n] has

been divided into 2™~ pieces. Hence there is one piece of size at least [ 5= |, by the Pigeonhole

18



Under review as a conference paper at ICLR 2024

principle. This is at least two for m < [log, n]. Conversely, choosing a splitting into two pieces of
size as close as possible shows that for m > [log, n| + 1 the set [n] can be divided into pieces of
size 1. O

Proposition 45 (Supermodular rank of submodular functions). A strictly submodular function
f: 2"l = R has supermodular rank [log, n].

Proof. We first show that there exists a submodular function f of supermodular rank at least
[logy n]. Suppose that for all f € —L;,.. 1), the supermodular rank of f was at most [logy n] — 1.
The sum Ly, . 1) + (—/3(1,...,1)) is the whole space, by Proposition 39. Then the maximal super-
modular rank would be [log, n], contradicting Theorem 14. Hence there exists f € —L ;.. 1) with
supermodular rank at least [log, n].

A function ¢ in the interior of the submodular cone satisfies A7) g < 0 for all {4, j}. Suppose that
there exists such a g with supermodular rank less than [log, n]. Then there exist 7(1), ... (™) for
m < [logyn],suchthatg € £ 1) + -+ + L, m). There exists { € {—1,0,1}" such that

Le=Loy+ -+ Loom,

by Proposition 40. Hence g satisfies inequalities §ijA(ij )g > 0, by Definition 42. Therefore &j €
{—1,0} forall {7, j}. It follows that all submodular functions are in L¢, a contradiction since by the
first paragraph of the proof there exist submodular f of supermodular rank at least [log, n].

It remains to show that the supermodular rank of a submodular function is at most [log, n]. That is,
we aim to show that [log, n] cones can be summed to give some L¢ with all §;; in {—1,0}. In the
proof of Theorem 14, we counted the number of supermodular cones that needed to give L¢ with all
& = 0. Here, starting with a partial order with some 7;7; = —1, instead of all 7;7; = 1, shows that
we require (at least) one fewer cone than in Theorem 14. O]

D.4 MAXIMUM ELEMENTARY SUBMODULAR RANK

A function can be decomposed as a sum of elementary submodular functions.
Theorem 46. Let f: {0,1}" — R. Then there exist fo, f1,..., fu_1 with fo € —L(1,... 1) and
fi € =L ) where TJ@ = —1ifand only if j = i, such that f = fo + Z;-:ll fi-

Proof. The sign vector —Ly
L.y, we have Ti(i)’l'(i) = —1 for all j # i. Hence there are no facet inequalities common to all n
cones. The result then follows from Proposition 44. O

pisT=(1,..., 1). For all ¢, j we have 7,7; = 1. For the cones

.

We can now prove Theorem 19:

Theorem 19 (Maximum elementary submodular rank). For n > 3, the maximum elementary sub-
modular rank of a function f: {0,1}" — R is n. Moreover, a supermodular function in the interior
of L(1,...,1) has elementary submodular rank n.

Proof. The maximum elementary submodular rank is at most n, by Theorem 46. For any ¢4, ..., %,
the cone =Ly, 1)+ (=L, an) + -+ (=L, 6 ), where =L ;) is an (i;)-th elementary submod-
ular cone, is defined by the inequalities

A(Jk)féoa jakg{ila"'viT}7

see Proposition 40. This consists of 27?2 (”;7) inequalities. A union of such functions therefore
cannot equal the full space of functions if » + 1 < n — 1, as in the proof of Theorem 14.

If f is in the interior of the super modular cone, then

AWp >0, foralli # j.
For ftobein =Ly, 1) + (=L a1)) + -+ + (=L,6), we need there to be no {i, j} such that
{i,7} N {i1,... i} = 0. Thus, we require r > n — 1. O
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D.5 INCLUSION RELATIONS OF SUMS OF SUPERMODULAR CONES

We briefly discuss the structure of the sets of bounded supermodular rank. Some tuples of super-
modular cones are closer together than others in the sense that their Minkowski sum is defined by a
larger number of inequalities, as we saw in Example 41.

We consider the sums £.1) + L2 + - - - + L.(m, for different choices of (ﬂ(l), e ,ﬂ(m)) and m.
This set can be organized in levels corresponding to the number of summands (rank) and partially
ordered by inclusion. Each cone corresponds to a (g)-vector ¢ with entries indexed by {i,j}, 4 # j.
A sign vector 7 having s entries —1 has & vector with s - (n — ) entries —1.

Example 47 (Poset of sums of three-bit supermodular cones). We have four supermodular cones,
withT =(1,1,1), (-1,-1,1), (—1,1,—1), (1, =1, —1). In this case, all sums of pairs and all sums
of triplets of cones behave similarly, in the sense that they have the same number of 0’s in the vector
¢ indexing the Minkowski sum. This is shown in Figure 6.

N\

Figure 6: The inclusion poset of Minkowski sums of three-bit supermodular cones. The string in
each node is the vector £ of signs of the inequalities for that supermodular cone or sum of super-
modular cones. See Example 47.

Example 48 (Poset of sums of four-bit supermodular cones). There are eight supermodular cones,
given by the 7 = (1,1,1,1), (=1,1,1,1), (1,—1,1,1), (1,1,—1,1), (1,1,1,—1), (=1,-1,1,1),
(-1,1,-1,1), (—1,1,1, —1), each defining signs for the six columns {1, 2}, {1, 3}, {1, 4}, {2,3},
{2,4}, {3,4}. In this case, we see that rank 2 nodes are not all equivalent, in the sense that they may
have a different number of 0’s (arbitrary sign). Some have three and some have four 0’s. There are
triplet sums that have all 0’s, but not all do. See Figure 7.

Figure 7: Inclusion poset of Minkowski sums of four-bit supermodular cones. There are 8 super-
modular cones and 28 distinct Minkowski sums of pairs of supermodular cones. See Example 48.
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D.6 EXAMPLES OF LOWw RANK FUNCTIONS

RBM. The first example comes from Restricted Boltzmann Machines (RBMs). These are graph-
ical models for modeling probability distributions on {0, 1}™. They have a hyperparameter m, the
number of hidden nodes. Prior work (Allman et al., 2015) has shown that when m = 1, this model
can represent distributions f(x) if and only if log f is 7-supermodular and satisfies certain polyno-
mial equality constraints. Then, when we move to more significant values of m, it can be shown
that the model can model distribution f(z) only if log f is rank-m supermodular. Thus log RBM
distributions are functions with bounded supermodular rank. In this case, the optimization problem
would correspond to finding modes of the distribution.

One hidden layer neural networks Building on this, we have the following.

Proposition 49. Ler [ be a real-valued function on {0,1}" that is the composition of an affine
function and a convex function. That is,

f(2) = $(wa + )

where w is a vector of length 1n and c is a scalar and ¢ : R — R is convex. Then [ is sign(w)-
supermodular:

Proof. We show that the elementary imset inequalities are satisfied. Such an inequality involves
four vectors on a two-dimensional face of the cube {0, 1}". We have two indices x;, x; that vary
and a fixed value of z[,\ (; ;3. the vector x restricted to the set [n] \ {4, j}. Let y be the entry of the
face where z; = x; = 0. Letting ¢ = ¢ + Ay, we seek to compare ¢(¢’ + w;) + ¢(¢’ + w;) with
() + o(¢’ + w; + w;). By the definition of sign(w)-supermodularity, if both entries w; and w;
have the same sign, we require

P(c" +w;) + ¢(c +wy) < o) + o(c +w; +wy)
while if w;w; < 0, we require
o(c' +wi) + o(c +wj) = ¢(c') + ¢(c + wi +wy).

The inequalities hold by the fact that ¢ is convex. For example, if w;,w; > 0, then ¢ < ¢+ w;, ¢ +
wj < ¢+ w; + wj, and we apply the definition of convexity as applied to a comparison of four
points. U

Thus, in particular, a one-hidden layer ReLU neural network, when restricted to {0,1}" with k
hidden nodes with positive outer weights, is rank-k supermodular

E DETAILS ON COMPUTING LOW RANK APPROXIMATIONS

The problem we are interested in is as follows. Given a target set function f and partial orders
7M. 7™ we minimize || f—g||2 over g € L)+ +L,m) . While there are many algorithmic
techniques that could solve this problem, we use PROJECT AND FORGET due to Sonthalia and
Gilbert (2022), which is designed to solve highly constrained convex optimization problems and
has been shown to be capable of solving problems with up to 10!° constraints. We first present
a discussion of the method, adapted from Sonthalia and Gilbert (2022). Then we apply it to our
problem.

E.1 PROJECT AND FORGET

PROJECT AND FORGET is a conversion of Bregman’s cyclic method into an active set method to
solve metric constrained problems (Brickell et al. (2008); Fan et al. (2020); Gilbert and Sonthalia
(2018)). It is an iterative method with three major steps per iteration: (i) (ORACLE) an (efficient) or-
acle to find violated constraints, (ii) (PROJECT) Bregman projection onto the hyperplanes defined by
each of the active constraints, and (iii) (FORGET) the forgetting of constraints that no longer require
attention. The main iteration with the above three steps is given in Algorithms 3. The PROJECT and
FORGET functions are presented in Algorithm 4. To describe the details and guarantees we need a
few definitions.

21



Under review as a conference paper at ICLR 2024

Definition 50. Given a convex function f(z) : S — R whose gradient is defined on S, we define
its generalized Bregman distance Dy : S x S — Ras Dy(x,y) = f(z) — f(y) — (Vf(y),z — y).

Definition 51. A function f : A — R is called a Bregman function if there exists a non-empty
convex set S such that S C A and the following hold:

(i) f(x) is continuous, strictly convex on S, and has continuous partial derivatives in S.
(ii) For every a € R, the partial level sets L{(y,a) = {z € S : D¢(x,y) < a} and
Lg(x,a) :={y € S:Dy(x,y) < a} are bounded forall z € S,y € S.
(iii) If y, € Sand lim y, =y*, then lim D(y*,y,) =0.
n—oo n—oo
(iv) Ify, € S,z, €S, lim D¢(p,yn) =0, y, — y*, and z,, is bounded, then z,, — y*.
n—oo

We denote the family of Bregman functions by B(.S). We refer to .S as the zone of the function and
we take the closure of the S to be the domain of f. Here S is the closure of S.

This class of function includes many natural objective functions, including entropy f(z) =
— >, milog(x;) with zone S = R” (here f is defined on the boundary of S by taking the limit)
and f(x) = %Hng for p € (1,00). The ¢, norms for p = 1, 0o are not Bregman functions but

can be made Bregman functions by adding a quadratic term. That is, f(z) = ¢

function, but ¢’z + 27 Qz for any positive definite (Q is a Bregman function.

z is a not Bregman

Definition 52. We say that a hyperplane H; is strongly zone consistent with respect to a Bregman
function f and its zone .S, if for all y € S and for all hyperplanes H, parallel to H; that lie in
between y and H;, the Bregman projection of y onto H lies in S instead of in S.

Theorem 53 (Sonthalia and Gilbert (2022)). If f € B(S), H; are strongly zone consistent with
respect to f, and 32° € S such that V f(2°) = 0, then

1. Ifthe oracle returns each violated constraint with a positive probability, then any sequence
x™ produced by the above algorithm converges (with probability 1) to the optimal solution.

2. If x* is the optimal solution, f is twice differentiable at x*, and the Hessian H := H f(x*)
is positive definite, then there exists p € (0, 1) such that

N e I
lim ————
vooo ||zt —av|a

®)

where ||y||% = y* Hy. The limit in equation 5 holds with probability 1.

Algorithm 3 General Algorithm.

1: function PROJECT AND FORGET(f, Q - the oracle)

L) =, 2(0 = 0. Initialize 2(*) so that V f(z(*)) = 0.
3:  while Not Converged do

4 L=9(z")

5 L) — LW UL

6: WD (1) — Project(z(), 2() | L +1))

7: L+ = Forget(z(*+1), L(*+1))
8

9

10

end while
return x
: end function

E.2 PROJECT AND FORGET FOR SUMS OF SUPERMODULAR CONES

We adapt PROJECT AND FORGET for optimizing over the cone of w-supermodular functions. The
algorithm begins by initializing L(*), for v = 0, as the empty list. This will keep track of the violated
and active constraints. The first step in PROJECT AND FORGET is to implement an efficient oracle
Q that, given a query point ("), returns a list L of violated constraints. This L is merged L*) to get
L™+ All violated constraints need not be returned, but each constraint violated by (") should be
returned with positive probability. Here we detail two options.
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Algorithm 4 Project and Forget Algorithms.
1: function PROJECT(x, z, L)
2: for H; ={y: {(ai,y) =b;} € Ldo
: Find z*, § by solving V f(z*) — V f(x) = 0a, and z* € H;

3

4: ¢; = min (z;,0

5: T — Tpew

6: Zpew  such that V f(xpew) — Vf(2) = a4
7 Zi 4 2 —C;

8: end for

9: returncz, z

10: end function

11: function FORGET(z, L)

12: for H; = {l’ : (ai,x> = bz} € Ldo
13: if z; == 0 then

14: Forget H;
15: end if
16: end for

17: return L
18: end function

* Deterministic Oracle. Go through all (Z) 272 constraints and see which are violated. There are
exponentially many such constraints.

* Random Oracle For each of the (g) pair i # j, we sample 5n of the 2"~ constraints. We return
the violated ones. Each violated constraint has a positive probability of being returned.

Our objective function || f — g||7, is quadratic, so for the project step, we use the formula for a

quadratic objective from Sonthalia and Gilbert (2022). Specifically, we iteratively project z(*) onto
each constraint in L(***1) and update 2(*) to get z(**1) and z(**+1). There is nothing to adapt in the

forget step: we remove from L(**+1), inactive constraints with Z,EVH) =0.

Remark 54. With these adaptations Theorem 53 applies. Hence we have a linear rate of conver-
gence. We take an exponential amount of time per iteration with the deterministic oracle. However,
with the random oracle, we may take polynomial time per iteration. We might still need exponen-
tial time per iteration if there are exponentially many active constraints. That is, L(**1) becomes
exponentially long. See experiment in Figure 2c and Appendix G for running times for computing
low-rank approximations.

F DETAILS ON THE SET FUNCTION OPTIMIZATION GUARANTEES

We provide details and proofs for the results in Section 4 and discuss related prior work.

F.1 PREVIOUS RESULTS ON MAXIMIZATION OF MONOTONE SET FUNCTIONS

We present the results from prior work that are the basis of our comparison.
Submodular functions. We begin with the following classical result.

Theorem 55 (Nemhauser et al. (1978)). Fix a normalized monotone submodular function f: 2V —
R and let {S;}i>0 be the greedily selected sets for constrained cardinality problem. Then for all
positive integers m and /,

780 = (1-em) omax f(9).

In particular, for £ = m, f(S,,) is a 1 — e~ approximation for the optimal solution.

Cilinescu et al. (2011); Filmus and Ward (2012) extended the above result to the matroid constraint
problem and obtained the following.
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Theorem 56 (Cilinescu et al. (2011)). There is a randomized algorithm that gives a (1 — e~ 1)-
approximation (in expectation over the randomization in the algorithm) to the problem of maximiz-
ing a monotone, non-negative, submodular function f: 2"l — R subject to matroid constraint M
given by a membership oracle. The algorithm runs in O(n®) time.

Theorem 57 (Filmus and Ward (2012)). Let f be a normalized, positive, monotone, submodular
function, and let M be a rank p matroid. For all € > 0, there exists a randomized algorithm
that is a 1 — e~ — € approximation for the maximization of f over M that queries f at most
O(etp*nlog(n)) times.

Total curvature. The total curvature & measures how far a submodular function is from being
modular, see Definition 23). It can be used to refine Theorem 55. We have & = 0 if and only if the
function is modular, and that & < 1 for any submodular function. Then Conforti and Cornuéjols
(1984) prove the following.

Theorem 58 (Conforti and Cornuéjols (1984, Theorem 2.3)). If M is a matroid and f is a normal-
ized, monotone submodular function with total curvature &, then GREEDY returns a set S with

1
S) > —— Q).
£(8) > 15 max f(9)
Building on this, Sviridenko et al. (2017) present a the NON-OBLIVIOUS LOCAL SEARCH GREEDY
algorithm.

Theorem 59 (Sviridenko et al. (2017, Theorem 6.1)). For every € > 0, matroid M, and monotone,
non-negative submodular function f with total curvature &, NON OBLIVOUS LOCAL SEARCH
GREEDY produces a set S with high probability, in O (e~ poly(n)) time that satisfies

£(8) 2 (1= e™" + 0(9) max (%),

Further Sviridenko et al. (2017), provide the following result to show that no polynomial time algo-
rithm can do better.

Theorem 60 (Sviridenko et al. (2017)). For any constant 6 > 0 and ¢ € (0,1), there is no
(1 — ce™! + ) approximation algorithm for the cardinality constraint maximization problem for
monotone submodular functions f with total curvature &7 < ¢, that evaluates f on only a polyno-
mial number of sets.

For arbitrary monotone increasing functions, they define a curvature c (different from Definition 71),
which agrees with & (Definition 23) for monotone submodular functions, to get a (1 — ¢) approxi-
mation ratio with the GREEDY algorithm.

Approximately submodular functions. Recall the submodularity ratio v and the generalized cur-
vature o from Definition 24.

Theorem 61 (Bian et al. (2017)). Fix a non-negative monotone function f: 2V — R with submod-
ularity ratio y and curvature o Let {S;}i>o be the sequence produced by the GREEDY algorithm.
Then for all positive integers m,

f(Sm) > é |:1 - (m ;laPy> ] Qﬁrg}?gnzf(g)
> é(l — ™) chmf(m

Further, the above bound is tight for the GREEDY algorithm.

Departing from cardinality constrained matroids, Buchbinder et al. (2014); Chen et al. (2018) opti-
mize non-negative monotone set functions with submodularity ratio v over general matroids.

Theorem 62 (Chen et al. (2018)). The RESIDUAL RANDOM GREEDY algorithm has an approxi-
mation ratio of at least (1 + v~1)=2 for the problem of maximizing a non-negative monotone set
function with submodularity ratio ~ subject to a matroid constraint.

Following this, Gatmiry and Gomez-Rodriguez (2018) looked at the approximation for the GREEDY
Algorithm for set functions with submodularity ratio v and curvature «, subject to general matroid
constraints.
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Theorem 63 (Gatmiry and Gomez-Rodriguez (2018)). Given a matroid M with rank p > 3 and
a monotone set function f with submodularity ratio vy the GREEDY algorithm returns a set S such
that
0.4~
S)> —— Q
1(8) 2 =1 e 1(©)
Theorem 64 (Gatmiry and Gomez-Rodriguez (2018)). Given a matroid M and a monotone set
Sfunction f with curvature o the GREEDY algorithm returns a set S such that

)1 max f(9).

QemM

f(5)2<1+1 !

—

Other measures of approximate submodularity. Krause et al. (2008) say a function is € submod-
ular if for all A C B C V, we have that A(e|A) > A(e|B) — e. In this case, they proved that with
cardinality constraint, GREEDY returns a set S, such that f(S,,) > (1 — e~ ") maxq.jq|<m f(2) —
me. Du et al. (2008) study the problem when f is submodular over certain collections of subsets of
V. Here they provide an approximation result for a greedy algorithm used to solve

minc(S), subjectto: f(S)>C,S CV,

where ¢(S) is a non-negative modular function, and C'is a constant. Finally, Horel and Singer
(2016) look at set functions f, such that there is a submodular function g with (1 — €)g(S) <
f(S) < (14 ¢€)g(S) forall S C V. They provide results on the sample complexity for querying f
as a function of the error level for the cardinality constraint problem.

F.2 MAXIMIZATION OF MONOTONE FUNCTIONS WITH BOUNDED ELEMENTARY
SUBMODULAR RANK

We study functions with low elementary submodular rank. Recall our Definition 26:

Definition 26. Given A C B C V, define [I(4,B) := {C C V : C N B = A}. Given a set
function f : 2V — R, we let f 4B denote its restriction to II(A4, B).

The sets that contain ¢ are TI({7}, {7}) and the sets that do not contain ¢ are IT1(}, {3}).

Proposition 65. Let f; be an {i}-submodular function. Then fr;y 15y and fy iy are submodular.

Proof. For all Sy, Sy € T1({i},{i}), we know that i € Sy, So. Hence the linear ordering on the *"
coordinate does affect the computation of the least upper bound and greatest lower bound. Thus,
S1ASy =51 N8 and S; V Sy =57 USs. Hence the submodularity inequalities from Definition
1 hold. Similarly, for Sy,S5 € TI((,{:}), we have ¢ ¢ S;,S2. Hence S; A Sy = S; NSy and
S1V .Sy =51US,. O

With this, we can now prove our Proposition 27:
Proposition 27. A set function f has elementary submodular rank v + 1, with decomposition f =

fo+ fi, ¥+ fi., ifand only if f4 p is submodular for B = {i1,...,i,} and any A C B.

Proof. If f has such a decomposition, then the fact that the pieces f4 p are submodular follows

from Proposition 65, using that a sum of (1, ..., 1)-submodular functions is (1, ..., 1)-submodular.
For the converse, assume that f4 p is submodular for (without loss of generality) B = {1,...,r}
and any A C B. Then f € L¢, where §; = —1 forall ¢ # j with 4,5 > r 4 1. The cone L¢ is a
sum of —L; . 1y and the {i}-submodular cones for all i < 7. O

We can now prove Proposition 28:

Proposition 28. If f is a set function with submodularity ratio v and generalized curvature ., then
fa,B has submodularity ratio ya g > -y and generalized curvature aq g < o

Proof of Proposition 28. This follows from Definitions 24 and 29, as in restriction f4 g we have
fewer sets S, T, in the definition, for which in the inequality in the definitions need to hold. [
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We are now ready to prove our Theorem 30:

Theorem 30 (Guarantees for R-SPLIT). Let A be an algorithm for matroid constrained maximiza-
tion of set functions, such that for any monotone, non-negative function g: 2V — R, |W| = m,
with generalized curvature o and submodularity ratio ~, algorithm A makes O(q(m)) queries to
the value of g, where q is a polynomial, and returns a solution with approximation ratio R(«, ).
If f: 2"l — R is a monotone, non-negative function with generalized curvature o, submodular-
ity ratio vy, and elementary submodular rank r + 1, then R-SPLIT with subroutine A runs in time
O(2"n"q(n)) and returns a solution with approximation ratio max{R(«,7), R(a,,1)}.

Proof of Theorem 30. We first discuss the computational cost. If we run .4 on f, we get an ap-
proximation ratio of at least R(c,7), at a cost of O(¢(n)). For R-SPLIT, there are () = O(n")
sets B C V of cardinality . For each, there are 2" subsets A C B. Hence we have 2" (:‘)
possible II(A, B). On each, we run A, which runs in O(g(n — |A|)), because fa 5 can be re-
garded as a function on 2¥\B. The final step is to pick the optimal value among the solutions
returned for each subproblem, which can be done in O(2" (:f)) time. Hence the overall cost is

O(q(n)) +27(;)O(a(n — |A]) + 02 (7)) = O(2"n"q(n)).

Now we discuss the approximation ratio. The solution returned for f4 g has approximation ratio
R(ca,B,74,B), by the assumed properties of A. Since f has elementary submodular rank 7+1,there
exist submodular fj and elementary submodular f; ,..., f;_ suchthat f = fo+ fi, +---+ fi.. Let
By = {i1,...,4,}. Then, for this set By and any A C By, we know that fa,B, is submodular, by
Proposition 27, and hence 74 g, = 1. Picking the optimum value among the solutions returned for
the subproblems involving B ensures an overall approximation ratio with minac g, v(4, By) = 1,
that is, R(c,, 1). In summary, we are guaranteed to obtain a final solution with approximation ratio
max{ R(a,7), Rar,1)}. 0

Remark 66. With knowledge of the elementary cones involved in the decomposition of f, the set
By from the proof of Theorem 30, we only need to consider the subproblems that involve B. This

gives 2" subproblems instead of 2" (:)

Let us now instantiate corollaries of Theorem 30. We fix the elementary rank to be r + 1. The
runtime will be exponential in 7 but polynomial in n.

Corollary 67. If f has elementary submodular rank r + 1, then for the cardinality constrained
problem, for all € > 0, the approximation ratio for the R SPLIT GREEDY is max(R(a, ), (1 —
ae™ 1) — O(€)). The algorithm runs in O(e~12"n" - poly(n)).

Proof. Use NON-OBLIVIOUS LOCAL SEARCH GREEDY as the subroutine and Theorem 59 for the
guarantee. O

Corollary 68. If f is a non-negative monotone function with submodularity ratio -, curvature «,
and elementary submodular rank r + 1, then for the cardinality constrained problem, the R SPLIT
GREEDY algorithm has an approximation ratio of o, 1 (1 — e=“") and runs in O(2"n" - nm) time.

Proof. Use GREEDY as the subroutine and Theorem 61 for the guarantee. O

Corollary 69. For a non-negative monotone function [ and elementary submodular rank r + 1 for
the matroid constrained problem the R SPLIT GREEDY has an approximation ratio of (1 —e~1) and

runs in O(2'n" - n®) time.

Proof. Use the algorithm from Célinescu et al. (2011) and Theorem 56 for the guarantee. It remains
to show that the procedure from Cilinescu et al. (2011) terminates in O(n®), even if the input is
not submodular. The algorithm from Cilinescu et al. (2011) consists of two steps. First is the
CONTINUOUS GREEDY algorithm. Second, is PIPAGE ROUND (Ageev and Sviridenko (2004)).
From Cilinescu et al. (2011) we have that CONTINUOUS GREEDY terminates after a fixed number
of steps. This would be true even if the input function f is not submodular and always returns a
point in the base polytope of the matroid. Second, using (Cilinescu et al., 2011, Lemma 3.5), we
see that PIPAGE ROUND, terminates in polynomial time for any point in the base matroid of the
polytope. O
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In Table 2 we summarize the results from Corollaries 67, 68, and 69 and how they compare with
previous results given above in Theorems 56, 59, 61, 62, 63, and 64.

Theorem 33 (Lower Bound). Any deterministic procedure that achieves an O(1) approximation
ratio for maximizing elementary submodular rank-(r + 1) set functions requires at least 2" function
queries.

Proof. Assume for contradiction that such a procedure A exists. Let f be a set function with el-
ementary rank-(r + 1) and let f1,..., for be the submodular splits of the functions. Since the
procedure samples fewer than 2" values. There is a piece f; that is not queried. Consider a modified

function f, with the same piece, i.e., f; = f; except that fz = f; + c. Since c can be arbitrary, and

the procedure is deterministic, it will not query fi. Hence will not return an O(1) approximation.
Hence contradiction. O

F.3 MINIMIZATION OF RATIOS OF SET FUNCTIONS

Algorithm 5 RATIO GREEDY

: function RATIO GREEDY(f,9)
Initialize: So =0, R=V
while R # () do

f{v}US:)

1
2
3
fs) 4 U = argMily,c g ‘G({510S,)
5
6

The second application of our decomposition is to minimize
ratios of set functions. We give definitions and previous re-
sults, with details in Appendix F.
Problem 70. Given set functions f and g, we seek ming 55 Siv1 = S U {u}

Bai et al. (2016) obtain guarantees for RATIO GREEDY, see ’ S PS ;0}{U € R g({vpu
Algorithm 5, for different submodular or modular combina- 7. ~ehd while

tions of f and g. To quantify the approximation ratio for non- 8: return S;

sub-/modular f, g, we need a few definitions. 9: end function

Definition 71 (Bogunovic et al. (2018)). ¢ The generalized inverse curvature of a non-negative set
function f is the smallest &/ such that for all 7', S € 2" and foralle € S\ T,

AlelS\ {e}) > (1 = a)A(el(S\ {e}) UT).

=] — ZeexF(O—F(X\{e})

* The curvature of f with respect to X is ¢/ (X) S D
e€eX -

It is known that f is submodular if and only if al =o. Using these notions, Qian et al. (2017) obtain
an approximation guarantee for minimization of f /g with monotone submodular f and monotone g,
and Wang et al. (2019) obtain a guarantee when both f and g are monotone.

Functions with bounded elementary rank. We for-
mulate results for R-SPLIT with GREEDY RATIO sub- -
routine, shown in Algorithm 6. We improve on pre-  1: function R-SPLIT RATIO(f, g, 7, A -
vious guarantees if the functions have low elementar GREEDY RATIO) =

g _ ; y for A C B C V with |[B| = r do
submodular rank. First, we split only f. run Aon fap and ga.p
Theorem 72 (Guarantees for R-SPLIT GREEDY RA- endj?r ;

. . . run on , g

TIO I)..For the. minimization of f/g where f,q are return Best seen set
normalized positive monotone functions, assume f has end function
elementary submodular rank r + 1. Let X* be the op-
timal solution. Then R-SPLIT with GREEDY RATIO subroutine at a time complexity of O(2"n" - n?),
has approximation ratio

Algorithm 6 R-SPLIT RATIO

AN

1 | X
7 ey L+ (X[~ D)1= & (X))

If, in addition, g is submodular then the approximation ratio is 1/(1 — e

df—l)'

The first statement provides the same guarantee as a result of Qian et al. (2017) but for a more
general class of functions. Our result can be interpreted as grading the conditions of Wang et al.
(2019) to obtain similar guarantees as the more restrictive results of Qian et al. (2017). Next, we
split both f and g.

Theorem 73 (Guarantees for R-SPLIT GREEDY RATIO II). Assume f and g are normalized pos-
itive monotone functions, with elementary submodular ranks vy + 1 and vy + 1. For the mini-
mization of f/g, the algorithm R-SPLIT with GREEDY RATIO subroutine at a time complexity of

TE+Tg T F+T 2 : : ;
O(27+*Tan" %" . n?), has approximation ratio s g
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Table 3: Approximation ratios and time complexity for minimizing f /g for monotone, normalized
functions f and g on 2/}, Here f has total curvature &/, generalized curvature o/, generalized
inverse curvature &/, curvature ¢/, and elementary submodular rank 7; + 1. g has submodularity
ratio 7Y and elementary submodular rank 7, + 1. X™ is the optimal solution. Prior works are
discussed in detail in Appendix F.

Numerator Den?:runa- Approx. Ratio Time Ref.
Modular  Modular 1 0(n?) Bgoel‘g;l'
% Modular  Submodular 1—e? 0(n?) B(‘;loel‘;l'
2 Submodu- Bai et al
1 2 .
‘g S blard Submodular T O(n®) _(2016)1
& Submodu- _ 1 x| O(n2) Qian et al.
lar Vg x) THAXF =D (A=l (X)) (2017)
« Wang et al.
- - 1 | X*| 2
99 1x) HIXF =D (A-al)(1-a7) O(n7) (2019)
Low Rank - 1 | X o2 fn"f - n? Thm 72
5 T e THIXT D)2 (X)) @/n'-n7)
2 LowRank  Submodular T 027 n"f - n?) Thm 72
172] _ea —_
E Low Rank Low Rank 1%1 o2 ¥7an 179 . n?) Thm 73
—e’ —

This improves the approximation ratio guarantee of Wang et al. (2019) to that of Bai et al. (2016),
which was valid only if f, g are both submodular. Table 3 compares our results with prior work.

F.4 PRIOR RESULTS

For Problem 70 of minimizing ratios of set functions, RATIO GREEDY from Algorithm 5 has the
following guarantees.

Theorem 74 (Bai et al. (2016)). For the ratio of set function minimization problem min f /g,
GREEDY RATIO has the following approximation ratios:

1. If f, g are modular, then it finds the optimal solution.

2. If f is modular and g is submodular, then it finds a 1 — e~! approximate solution.

3. If f and g are submodular, then it finds a 1/(1 — e‘if*l) approximate solution, where &'
is the total curvature of f.

To quantify the approximation ratio of the GREEDY RATIO algorithm, we recall the definitions of
generalized inverse curvature (Definition 71) as well as alternative notions of the submodularity ratio
(Definition 24) and curvature (Definition 71).

Main results that give guarantees for the ratio of submodular function minimization are as follows.

Theorem 75 (Qian et al. (2017)). For minimizing the ratio f/g where [ is a positive monotone
submodular function and g is a positive monotone function, GREEDY RATIO finds a subset X C V

with
f0 1 X F(X)
900) = 3 oy 1+ (X~ D1 — (X)) g(X7)’
where X is the optimal solution and 9 is the submodularity ratio of g.
Theorem 76 (Wang et al. (2019)). For minimizing the ratio f/g where [ and g are normalized
non-negative monotone set functions, GREEDY RATIO outputs a subset X C V, such that
f) 1 X FX)
9(X) =30 o L+ (X~ DI —ad) (1 = aF) g(X7)’

where X* is the optimal solution, ¥9 is the submodularity ratio of g, and of (resp. &f) are the
generalized curvature (resp. generalized inverse curvature) of f.

28



Under review as a conference paper at ICLR 2024

F.5 MINIMIZATION OF RATIOS OF SET FUNCTIONS WITH BOUNDED ELEMENTARY RANK

‘We now formulate results for our R-SPLIT with GREEDY RATIO subroutine.

Theorem 72 (Guarantees for R-SPLIT GREEDY RATIO I). For the minimization of f /g where f,g
are normalized positive monotone functions, assume f has elementary submodular rank v + 1. Let
X* be the optimal solution. Then R-SPLIT with GREEDY RATIO subroutine at a time complexity of
O(2"n" - n?), has approximation ratio

1 | X
Vo x T+ (X[ = D1 =&/ (X*))

If, in addition, g is submodular then the approximation ratio is 1/(1 — edf*l).

Proof of Theorem 72. The statement follows from analogous arguments to those in the proof of
Theorem 30. There is a set By such that f4 g, is submodular on all A C By. We use Theorem 75
to get the approximation ratio.

If g is submodular, then its restrictions are submodular, and we minimize the ratio of two submodular
functions. Hence can use Theorem 74 to obtain the approximation ratio. O

Next, we consider our Theorem 73 splitting both the numerator f and the denominator g:

Theorem 73 (Guarantees for R-SPLIT GREEDY RATIO II). Assume f and g are normalized pos-
itive monotone functions, with elementary submodular ranks vy + 1 and vy + 1. For the mini-
mization of f/g, the algorithm R-SPLIT with GREEDY RATIO subroutine at a time complexity of

TF+Tg T AT 2 ; ; :
O(2"11Tan" 1% - n2), has approximation ratio Ty g

Proof of Theorem 73. Use r = ry + r, in Algorithm 6. Then there is a By such that fa p, is
submodular and a B, such that g4 p, is submodular. Let By, = By U B,. Then |By 4| < |Bf| +
|B | =r t + 1y and both fa,B o and JA,B; , are submodular. We minimize a ratio of submodular
functions, and use Theorem 74 for the approximation ratio. O

Remark 77. We have assumed that we do not know the decomposition of f into elementary sub-
modular functions. However, if we knew the decomposition, then we can extend any optimization
for submodular functions to elementary submodular rank-r functions, incurring a penalty of 2". This
gives another approach for set function optimization: first compute a low-rank approximation and
then run our procedure on this low-rank approximation. We describe an algorithmic implementation
of this in Appendix E.

F.6 COMPARISON OF ELEMENTARY SUBMODULAR RANK AND CURVATURE NOTIONS

As mentioned in Remark 25, for monotone increasing f, we have v € [0, 1], with v = 1 iff f is
submodular. Values less than one correspond to violations of the diminishing returns property of
submodularity. Moreover, for a monotone increasing function f, we have o € [0,1] and o = 0 if
and only if f is supermodular. Note this latter is a condition that the function is supermodular and
not that the function is submodular. Thus, if @ = 0 and v = 1, then f is both supermodular and
submodular, and thus it is modular.

G DETAILS ON THE EXPERIMENTS

G.1 TYPES OF FUNCTIONS

We consider four types of objective functions. The first three are commonly encountered in applica-
tions. The fourth are random monotone functions.
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Determinantal functions. Let Y = X X7 be a positive definite matrix, where X € R™*d jg a
Gaussian random matrix (i.e., entries are i.i.d. samples from a standard Gaussian distribution). To
ensure ¥ is positive definite, we impose d > n. Given S C [n], denote by X g the |S| x |S| matrix
indexed by the elements in S. Given o € R, we define

f(S) :=det(I + 07 2%g), SC|n]

Bian et al. (2017, Proposition 2) show that f is supermodular. This type of functions appear in
determinantal point processes, see Kulesza and Taskar (2012).

Bayesian A-optimality functions. The Bayesian A-optimality criterion in experimental design
seeks to minimize the variance of a posterior distribution as a function of the set of observations.
Letzy,...,z, € R?be n data points. For any S C [n], let Xg € R™*IS| be the matrix collecting
the data points with index in S. Let § ~ N (0, 372I) be a parameter and let ys = 07 X s + &, where
&~ N(0,0%I). Let Yg|ys be the posterior covariance of 6 given ys. Then we define

_ d 1 _ _

F(S) =Tr(B72I) — Tr(Sgpys) = o Tr((I + (Bo) 2XsXE) ™).

Maximizing f identifies a set of observations that minimizes the variance of the posterior. Bian et al.
(2017) provide bounds on « and ~y for this function.

Column subset selection. Given a matrix A, we ask for a subset S of the columns that minimizes
— 2 T A2
f(9) = |Allr — [[AsAg Al %
Here, AT.; is the Moore-Penrose pseudoinverse. Hence ASAE is the orthogonal projection matrix
onto the column space of Ag.

Random functions. We take a uniform random sample from [0, 1] of size 2™ and sort it in increas-
ing order as a list L. We then construct a monotone function f by assigning to f(0) the smallest
value in L and then, for M = 1,...,n, assigning to f(.5), S C [n], |S| = M, in any order, the next
(1) smallest elements of L.

G.2 SUBMODULARITY RATIO AND GENERALIZED CURVATURE

Here we let n = 8. We sampled five different sample functions for each function type and computed
a, and ~, for r = 0,1, 2, 3,4, where g and 7 are by convention the generalized curvature and
submodularity ratio for the original function.

Determinantal. Here we first sample X € R™*™ with i.i.d. standard Gaussian entries. We then
form ¥ = XX7T. We also set ¢ = 0.1.

Bayesian A-optimality. Here we first sample X € RY0X" with i.i.d. standard Gaussian entries.
Weuse 3 =0.1and o = 0.1

Column subset. Here we first sample A € R?°*" with i.i.d. standard Gaussian entries.
Random. There are no hyperparameters to set.

Figure 8 shows «,- and 7,.

G.3 Low ELEMENTARY RANK APPROXIMATIONS

Here we let n = 7. We sampled 50 different sample functions for each function and then computed
the low elementary rank approximation for r + 1 = 1,2,3,4,5,6,7. Appendix E.1 discusses the
details of the algorithm used to compute the low-rank approximations.

Determinantal. Here we first sample X € R™*2" with i.i.d. standard Gaussian entries. We then
form ¥ = X X7, We also set 0 = 0.1.

Bayesian A-optimality. Here we first sample X € R0X" with i.i.d. standard Gaussian entries.
Weuse 3 =1and o = 0.01

Column subset. Here we first sample A € R%°X" with i.i.d. standard Gaussian entries.
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Figure 8: Shown are (a) o, and (b) -y, for the four different function types for splitting into 1,2,4,8,
and 16 pieces.

Random. There are no hyperparameters to set.

G.4 R-SPLIT GREEDY WITH SMALL n
Here we let n = 20. We sampled 50 different sample functions for each function and for each
function, ran GREEDY and R-SPLIT with GREEDY as the subroutine and » = 1, 2, 3.

Determinantal. Here we sample X € R™*2" with i.i.d. standard Gaussian entries. We then form
Y= XXT. Wealsoseto = 0.1.

Bayesian A-optimality. Here we first sample X € R60%" with i.i.d. standard Gaussian entries.
Weuse f =1and 0 = 0.01

Column subset. Here we sample A € R40*" with i.i.d. standard Gaussian entries.

Random. There are no hyperparameters to set.

G.5 R-SPLIT GREEDY WITH LARGE n

Here we let n = 25,50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500. We sampled five different
sample functions for each function and, for each function, ran GREEDY and R-SPLIT with GREEDY
as the subroutine and » = 1.

Determinantal. Here we first sample X € R™*"™ with i.i.d. standard Gaussian entries. We then
form ¥ = X X7 We also set o = 1.

Bayesian A-optimality. Here we first sample X € RY0%" with i.i.d. standard Gaussian entries.
Weuse f =0.1and o = 0.1

Column subset. We use MNIST dataset for this problem.

G.6 INITIAL SEED GREEDY

To compare algorithms with the same time dependence on n, we compare against a method we term
INITIAL SEED GREEDY. This algorithm provides an initial set to GREEDY. That is, instead of
starting at the empty set, it starts at a provided set. We then compare INITIAL SEED GREEDY by
providing all (") seeds and compare to R-SPLIT GREEDY.

For r» = 1 and the DETERMINANTAL FUNCTION, we ran 100 trials for n = 25, 50, 75,100, 150, 200.
We saw that the two methods returned the same solution for each n for most trials. However, for
each n, for 2 to 5 trials, R-SPLIT GREEDY outperformed INITIAL GREEDY and found solutions that
were between 0.3% and 7% better.
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G.7 COMPUTER AND SOFTWARE INFRASTRUCTURE

We run all our experiments on Google Colab using libraries Pytorch, Numpy, and Itertools, which
are available under licenses Caffe2, BSD, and CCA. Computer code for our algorithms and exper-
iments is provided in https://anonymous.4open.science/r/Submodular-Set-Function-Optimization-
8BOE/README.md.

H DETAILS ON COMPUTING VOLUMES

The suprmodular rank r functions on {0, 1}" are a union of polyhedral cones in R2". We estimate
their relative volume. We list the inequalities for each of the Minkowski sums of supermodular
cones. We then sample 500,000 random points from a standard Gaussian, test how many of the
points live in the union of the cones, and report the percentage. Table 1 shows these estimates. We
see that the volume of the cones decreases with the number of variables n and increases rapidly with
the rank r. For instance, when n = 4 the volume of the set of submodular rank-2 functions, 5.9%,
is nearly 1000 times larger than the volume of the set of submodular rank-1 functions, 0.0072%.

One may wonder if it is possible to obtain a closed form formula for these volumes. The relative
volume, or solid angle, of a cone C' C R? is defined by

Vol(€) = [ du(a)/ [ duto)

where B = {x € R¢: ||z|| < 1} is the unit ball. In general there are no closed form formulas avail-
able for such integrals, even when C' is polyhedral. For simplicial cones there exist Taylor series
expansions that, under suitable conditions, can be evaluated to a desired truncation level Ribando
(2006). Instead of triangulating the cone of functions of bounded supermodular rank and then ap-
proximating the volumes of the simplicial components via a truncation of their Taylor series, we
found it more reliable to approximate the solid angle by sampling. In our computations described in
the first paragraph, we use

L
Vol(C) = /Cp(x)du(x) ~ N ZXC(xi)v

where C'is the cone of interest (e.g., the cone of supermodular rank-r functions), x ¢ is the indicator
function of the cone, p is the probability density function of a zero centered isotropic Gaussian
random variable and z;, ¢« = 1,..., N is a random sample thereof. To evaluate () we check
if x satisfies the facet-defining inequalities of any of the Minkowski sums that make up the cone,
described in Theorem 12.

Upper bound on the volume of the supermodular cone. We use the correspondence in Proposi-
tion 27 to upper bound the volume of the supermodular cone on n variables, as follows. There are
271 distinct -supermodular cones, all of the same volume and with disjoint interiors. Hence the
volume of Ly . 1) is upper bounded by 27"*1 which decreases with linear rate as n increases. We
show that the volume decreases at least with quadratic rate.

Proposition 78. The relative volume of L. 1) C RO is bounded above by 0.85%". In partic-
ular, it decreases at least with quadratic rate as n increases.

Proof. We define E(()n) := L(1,...,1) and denote the it" elementary supermodular cone on 7 variables
by 51('”)~ For distinct i1, ...,i, € [n], the cones E(()n), EZ(-?)7 . ,L'Z(-f) have the same volume and
disjoint interiors, and thus

(r + 1) Vol(L5") < Vol(£{ + £ 4 -+ £iM).

A function f in Eén) +E§?) +- - +£l(»:1) consists of 2" supermodular pieces on n — r variables. That
is, each pieces f lies in 5(()”4). Thus f lives in a Cartesian product of 2" cones E(()”fr)

a function f that lives in this product of cones lies in the Minkowski sum ﬁ(()n) + £§T) +ot Eg:”).
Hence

. Conversely,

Vol(£8™ + £ 4 M) = vol(£{ )2
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Taking » = n — 2, and noting that K(()Z) = %, we obtain
9-2""" .
Vol(£{M) < - <085%, n>2 (6)
n—
In particular, the relative volume of L(;, . 1) C R2"™ decreases at least with quadratic rate. O]

Although equation 6 significantly improves the trivial upper bound, it is not clear how tight it is.
_on—2

. n—1

582). However, for n = 3 and n = 4 the values 12.5% and 2.1% it provides are larger than the

experimentally obtained 3% and 0.0006% reported in Table 1. Nonetheless, the result shows that

the relative volume of supermodular functions is tiny in high dimensions. This provides additional

support and motivation to study relaxations of supermodularity such as our supermodular rank.

For n = 2, the expression

in equation 6 equals 50%, which agrees with the true volume of

We are not aware of other works discussing the relative volume of supermodular cones. Following
the above discussion, we may pose the following question:

. . . ; [
Problem 79. What is the relative volume of the cone of supermodular functions on 21"} in R*",
and what is the asymptotic behavior of this relative volume as n increases?

I RELATIONS OF SUPERMODULAR RANK AND PROBABILITY MODELS

Probabilistic graphical models are defined by imposing conditional independence relations between
the variables that are encoded by a graph, see Lauritzen (1996). Supermodularity (in)equalities arise
naturally in probabilistic graphical models. We briefly describe these connections. We consider
finite-valued random variables, denoted X;, which take values denoted by lower case letters z;.

Conditional independence and modularity. Two random variables X; and X5 are conditionally
independent given a third variable X3 if, for any fixed value x3 that occurs with positive probabil-
ity, the matrix of conditional joint probabilities p(z1, x2|z3) = p(x1, z2, x3)/p(x3) factorizes as a
product of two vectors of conditional marginal probabilities,

p(x1, 2|23) = p(z1|2s)p(za|s),
for all x; in the range of values of X; and z in the range of values of X,. This means that the
matrix of conditional joint probabilities has rank one, or, equivalently, that its 2 X 2 minors vanish.
The vanishing of the 2 x 2 minors is the requirement that any submatrix obtained by looking at two
rows and two columns has determinant zero,

p(a1, w2les)p(ay, a5|vs) — p(r1, x5les)p(a), w2|rs) = 0,
for any two rows x1, 2] and any two columns x5, 5. Inserting the definition of conditional proba-
bilities p(x1, z2|z3) = p(x1, 22, 23)/p(x3), moving the negative term to the right hand side, mul-
tiplying both sides by p(x3)p(x3) and taking the logarithm, the rank one condition is rewritten in
terms of log probabilities as

log p(w1, 22, 23) + log p(2], x5, v3) = log p(w1, 75, x3) + log p(x7, ¥2, x3),
for all z1, = in the range of values of X1, all x5, x4 in the range of values of X5, and all x3 in the
range of values of X3. Thus, with an appropriate partial order on the sample space, a conditional
independence statement corresponds to modularity equations for log probabilities.

Latent variables and supermodularity. If some of the random variables are hidden (or latent),
characterizing the visible marginals in terms of (in)equality relations between visible margins be-
comes a challenging problem (see, e.g., Garcia et al., 2005; Allman et al., 2015; Zwiernik, 2015;
Montifar and Morton, 2015; Qi et al., 2016; Evans, 2018; Seigal and Montifar, 2018). In several
known cases, such descriptions involve conditional independence inequalities that correspond to
submodularity or supermodularity inequalities of log probabilities.

Allman et al. (2015) studied n discrete visible variables that are conditionally independent given
a binary hidden variable. This is known as the 2-mixture of a n-variable independence model,
and denoted by M, 5. The article Allman et al. (2015) shows that the visible marginals of M,, o
are characterized by the vanishing of certain 3 X 3 minors (these are equalities) and conditional
independence inequality relations that impose that the log probabilities are m-supermodular for some
partial order m. Thus, the set of log probabilities defined by inequalities of M, , discarding the
equalities, gives a union of 7-supermodular cones.
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Restricted Boltzmann machines and sums of supermodular cones. A prominent graphical
model is the restricted Boltzmann machine (RBM) (Smolensky, 1986; Hinton, 2002). The model
RBM,, ¢ has n visible and £ hidden variables, and defines the probability distributions of n visible
variables that are the Hadamard (entrywise) products of any ¢ probability distributions belonging to
M., 2. Characterizing the visible marginals represented by this model has been a topic of interest,
see for instance (Le Roux and Bengio, 2008; Montufar et al., 2011; Martens et al., 2013). In par-
ticular, Cueto et al. (2010); Montufar and Morton (2017) studied the dimension of this model, and
Montifar and Morton (2015); Montdfar and Rauh (2017) investigated certain inequalities satisfied
by the visible marginals.

Seigal and Montuifar (2018) obtained a full description of the RBM3 2 model. In this case there
are no equations, and the set of visible log probabilities is the union of Minkowski sums of pairs
of m-supermodular cones. They proposed that one could study RBMs more generally in terms
of inequalities and, to this end, proposed to study the Minkowski sums of m-supermodular cones,
which remained an open problem in their work. We have provided a characterization of these sums
in Theorem 12.

Proposition 45 implies that the model RBM,, ; is not a universal approximator whenever ¢ <
[log, n] + 1. This does not give new non-trivial bounds for the minimum size of a universal approx-
imator for n > 4, since the number of parameters of the model, (n + 1)(£ + 1) — 1, is smaller than
the dimension of the space, 2" — 1. However, the result shows that any probability distributions on
{0,1}™ whose logarithm is in the interior of the submodular cone requires at least { = [log,(n)]
to lie in RBM,, ». This complements previous results based on polyhedral sets called mode poset
probability polytopes (Montifar and Morton, 2015; Montidfar and Rauh, 2016).
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