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Abstract

We study the problem of efficiently estimating the mean of a k-class random
variable, Y, using a limited number of labels, N, in settings where the analyst
has access to auxiliary information (i.e.: covariates) X that may be informa-
tive about Y. We propose an active learning algorithm (“PartiBandits”) to esti-
mate E[Y]. The algorithm yields an estimate, 7ipg, such that (fips — E[Y])? is
1) v+cxp(c-(—1\1[\7/ log(V)))

), where ¢ > 0 is a constant and v is the risk of the

Bayes-optimal classifier. PartiBandits is essentially a two-stage algorithm. In
the first stage, it learns a partition of the unlabeled data that shrinks the average
conditional variance of Y. In the second stage it uses a UCB-style subroutine
(“WarmStart-UCB”) to request labels from each stratum round-by-round. Both
the main algorithm’s and the subroutine’s convergence rates are minimax optimal
in classical settings. PartiBandits bridges the UCB and disagreement-based ap-
proaches to active learning despite these two approaches being designed to tackle
very different tasks. We illustrate our methods through simulation using nationwide
electronic health records. Our methods can be implemented using the PartiBandits
package in R.

1 Introduction

Estimating the mean of a k-class random variable, Y, with limited data from a subset of the population
of interest is a pervasive problem in statistics and machine learning. A classical solution to this
problem is to draw a simple random sample (SRS) of N independent and identically distributed
(IID) labels and compute the resulting sample mean. However, this may be an inefficient use of the
label budget if one has information X (i.e., covariates) that may be related to Y. In such cases, one
approach is to leverage X to get a better estimate of E[Y'] with fewer labels, perhaps through stratified
random sampling (StRS) over X and allocating the label budget across strata in proportion to how
frequently each stratum occurs in the population. But in practice, there are many ways to define
strata, and choosing a poor definition can result in minimal gains, or even worse performance than
SRS. In general, analysts who use X poorly, through stratification or otherwise, may over-sample
some subpopulations and neglect others, resulting in biased or sub-optimally noisy estimates (see,
e.g.,|Aznag et al.|(2023);[Henderson et al.[(2022)). This challenge has motivated the development of
different adaptive sampling techniques for mean estimation (see, e.g.,|Seber and Mohammad Salehi
(2015); [Thompson| (1991)), but these approaches focus on asymptotic performance and do not address
whether fast rates of convergence can be achieved in finite samples. In parallel, the active learning
literature has developed strategies for learning with limited labels. While classical active learning
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results primarily focus on classification (see, e.g., Puchkin and Zhivotovskiy| (2022); Hanneke and
'Yang| (2014); [Hanneke| (2011)), recent work uses active learning to efficiently estimate subgroup
(i.e. within-strata) means in settings where strata are predefined (Aznag et al., 2023). However,
there has been no thorough exploration of active learning methods for population mean estimation
when the researcher does not know an optimal stratification scheme. In this paper, we carry out
such an exploration by developing an active learning framework for population mean estimation of
k-class random variables, its convergence guarantees, and to what extent fast rates of convergence
are achievable.

Our main problem setup revolves around estimating the mean of a k-class random variable Y, where
the analyst has access to auxiliary information X that may be informative about Y. The analyst may
adaptively choose which instances to query for their corresponding labels, Y, round by round, with a
budget of IV label requests. This setup parallels the pool-based active learning setup, where the analyst
observes a large collection of IID unlabeled instances X, X5, ... and sequentially selects which
ones to label, ultimately giving the analyst the labeled dataset, (X1,Y7),...,(Xn, Yn). The hope
is to obtain an estimate of E[Y] that is closer to E[Y'] than the SRS strategies with high probability,

where the latter convergence rates are on the order of O (%)

There are two important reasons why it is hard to efficiently estimate population means in this
problem setup. An ideal strategy would first partition the data into strata that minimize the average
within-stratum variance of Y, then allocate the label budget across these strata according to the
Neyman allocation to minimize the variance of the mean estimate that aggregates the subgroup mean
estimates (seeJo et al.| (2025); |Bosch et al.|(2003)). But in most settings, this optimal stratification is
not known ahead of time. Moreover, variance within each stratum is not observed directly and must
be estimated from noisy samples, so an allocation strategy that may seem optimal early on—based on
preliminary variance estimates—may prove suboptimal as more data is collected. Thus, the analyst
must (1) learn a good stratification from unlabeled data, and (2) decide how to allocate labels across
strata adaptively in a way that reflects estimated (as opposed to oracle) variances.

1.1 Summary of Contributions

Our contributions are five-fold. First, we develop an active learning algorithm (“PartiBandits”) for
efficiently estimating the mean of a k-class variable Y. This algorithm yields an estimate, fipg, such

that (fipg — E[Y])” is O (VJFEXP(C'(*AJ,V/ loe(V))) ) where ¢ > 0 is a constant and v is the risk of the

Bayes-optimal classifier (Theorem [3] Figure[I). It performs at least as well as SRS in N, and almost
exponentially better when X is predictive of Y (i.e., when v is small). It also closely resembles the
exponential savings observed in disagreement-based active learning for classification (Puchkin and
Zhivotovskiy, 2022; Hanneke and Yang|, 2014; Hannekel [2011)), even though such results do not
help with the task of mean estimation of Y when X does not perfectly predict Y (see Dong et al.
(2025)). Second, we show that if X can be stratified in advance using a stratification scheme G, the

PartiBandits subroutine (“WarmStart-UCB”) achieves error O EIT(Q)), where X1 (G) is the average

within-group variance of Y (Theorem|[I} Figure|[I). Third, we show that both convergence rates are
minimax optimal in classical settings (Theorems [2]and ). Fourth, we bridge a gap between Upper
Confidence Bound (UCB) algorithms and disagreement-based approaches in the active learning
literature despite these two approaches being developed for very different tasks (Section[4.2). Finally,
we conduct simulation studies using real-world data from over 6 million electronic health records
and find that the gains predicted by our theory for population mean estimation can be achieved even
in realistic small-sample regimes (Section [3)).

2 Related Work

Our work builds on, and bridges, two different strands of prior work in active learning. The first is
disagreement-based theory, as developed and refined by Hanneke|(2011). This theory was originally
designed for classification where labeled data are costly but unlabeled data are abundant. In this
setting, the analyst queries labels for instances drawn from a large pool, concentrating effort on regions
of the input space where candidate hypotheses disagree. A defining feature of this approach is its
potential for “exponential savings”, which refers to the convergence rate of excess classification error
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Figure 1: This plot compares the performance of PartiBandits and WarmStart-UCB, to SRS in different problem
settings. The left panel compares SRS to PartiBandits for label budgets from 10 to 100. Here, X ~ Unif]0, 1]
and Y = 1{X > 0.5}, with a fixed fraction of Y"’s (between 0% and 10%) randomly flipped to introduce noise.
The proportion of flipped labels is equal to v by definition. For each label budget, we generate 500 hypothetical
datasets in this way, apply SRS and PartiBandits to each, and compute the resulting error rates. We then take the
90th percentile of these error rates to obtain a classical 90% high-probability/confidence bound. PartiBandits
eventually outperforms SRS with relatively fewer samples, with performance gains becoming more pronounced
when X better predicts Y and v decreases. The right panel compares SRS to WarmStart-UCB for label budgets
from 50 to 200. In this panel, X ~ Unif[0, 1] and Y = 1{X > 0.5}, with 5% of the labels randomly flipped to
introduce noise. We examine the effect of specifying different stratification schemes beforehand that reduce the
within-group variance of Y to varying degrees, where lower values of X1 (G) indicate better average within-group
variance reduction. Each scheme defines strata by applying a threshold between 0.3 and 0.5 and grouping
observations based on whether X falls to the left or right of the threshold. We run the same simulation procedure
as above to obtain the 90% confidence bounds. WarmStart-UCB consistently outperforms SRS, and the gap
grows when stratification reduces variance more effectively (i.e., when X1 (G) shrinks).

(relative to the risk of the Bayes optimal classifier) shrinking at roughly O (exp(c - (—N/log(N)))),
far faster than the O(Var(Y')/N) rate typical in passive learning. While disagreement-based learning
has been extensively studied in classification, it has not, to our knowledge, been applied to the
problem of estimating population means. Our work is the first to show that the core insights of
this framework can be used to construct stratification schemes that substantially reduce estimation
variance in the mean estimation setting.

The second strand that our work connects to is UCB-style active learning. In particular, our proposed
WarmStart-UCB subroutine is closely related to the work of |/Aznag et al.| (2023)), which developed a
Variance-UCB algorithm for estimating the means of predefined subgroups using a fixed label budget,
using upper confidence bounds on within-group variance to guide sampling. Our subroutine uses a
similar approach to estimate the overall population mean using the strata selected by the first stage
of our algorithm. Additionally, we build on the|Aznag et al.|(2023) results by showing in Theorem
[1] that the rate of our subroutine for estimating population means from pre-defined strata explicitly
quantifies the effect of how “informative” the subgroups are for estimating the quantity of interest,
something that cannot be obtained through direct application of the main|Aznag et al.| results alone.
Our rate also has improved dependence on key parameters such as the number of strata and o, the
smallest conditional variance of Y over all strata.

3 Notation and Problem Setups

3.1 Main Setup

Our main problem setup is that of estimating the population mean of a k-class random variable, Y,
whose realizations come from the set {0, ..., k} using a limited label budget N. Where appropriate,
the realizations of Y may also be any set with k distinct elements in R. The analyst has abundant
access to unlabeled information X € &’ (ex: covariates), which may be informative about Y, and can
choose which examples to label in order to estimate p := E[Y]. The analyst uses an algorithm to



construct an estimator 7i(/V) of the population mean i, that uses auxiliary information X and only N
labels. The goal is to minimize the squared error, (7i(N) — p1)*.

We also have the following terms and notations. A hypothesis class C is any set of measurable
classifiers h : X — R C R where |R] is finite. As we will show in Section[4.2] PartiBandits parallels
classical disagreement-based active learning algorithms in that it requires C as an input. For any
measurable h : X — {0,...,k}, we define the squared loss of & as er(h) = E[(h(X) — Y)?]. Let
v = infpec er(h), the infimum loss of C.

As discussed in the Appendix, our main results still hold for other loss functions, including asym-
metric misclassification costs. Such alternatives can produce more informative Bayes classifiers in
applications where the ordinary squared-loss version fails to identify the threshold (such as when
Pr(Y =1|X) <1/2forall X).

Our main assumption is the following:

Assumption 1 (Exponential Savings in Classification). We assume that the joint of distribution
(X,Y) and the hypothesis class C are such that an active learning algorithm, S, can be used to learn

a classifier h such that with high probability, E[(h(X) —=Y)2] —v < exp (c . %) , where N

is the label budget, and c > 0 is some N -independent constant.

There are many problem setups in which this assumption is satisfied, as we discuss in Corollaries

M

3.2 Setup for a PartiBandits Subroutine, WarmStart-UCB

Additionally, PartiBandits contains a subroutine that depends on the following problem setup that
builds on the one discussed above. The following notation and definitions are drawn from |Aznag
et al.[(2023). We assume that we can partition X’ using a stratification scheme G = {41, ..., Ag},
where A, C R? are disjoint. Let P, = P(X € A,) and pu, = E[Y | X € A,]P(X € A,), so
the population mean is y = 2521 fig. We define o7 := Var(P, - Y | X € A), which equals
P? - g2, where 0> := Var(Y | X € A,) is the unweighted conditional variance of Y given
X e Aqg. The distribution of X is assumed to be virtually known (as is the case in classical active
learning setups), so P, is also known to the analyst. 3, (G) is the average within-group variance of Y,
> 9€lC] J;JQPg. The analyst wishes to compute an unbiased estimate of the population mean with [NV

label requests, sampling only one group from { Ay, ..., Ag} at a time. The set of feasible policies for
estimating 11 is defined as IT := {7 = {m}ren) | m € G'1 X R™ — A(G), Vit € [N]}, where
A(G) is the set of measures supported on [G]. For some policy = € II, let n, y(m) denote the
number of collected samples from group A, after N label requests by way of policy 7 € II, and
let iy () be the weighted sample mean estimator of u  for ng () collected samples, that is:
fg N () = m >_t:x,ea, Yt - Pg. Once all data have been collected using the full label budget,
N, the analyst’ will compute the population mean by aggregating the subgroup mean estimates
obtained from the policy m € II: fi(m,N) = 3 fig,n (7). Going forward, we drop the explicit
dependence on 7 and N in the notation when the policy is clear from context. As long as at least one
sample is collected from each group, each /iy x is an unbiased estimator of pn, = E[Y | X € Ay]- P,
and hence the aggregated mean estimator [z is an unbiased estimator of the population mean p. The
analyst wishes to obtain a high probability bound on the variance of i. The analyst does not know the
true standard deviation vector o := (01, ...,0¢), which can be used to obtain an upper bound on

the variance of [ via Var(i) = Var <ZgG:1 g, N) < 25:1
o through their decisions. We define the regret of a policy as Regrety () := (fi(m, N) — p)*.

2
%9

. Therefore the analyst must learn
g,

4 Our Algorithms and Performance Guarantees

We now discuss our algorithms and their performance guarantees in turn. The proofs are in the
Appendix. PartiBandits is our main algorithm, but since it incorporates a UCB-style subroutine,
WarmStart-UCB, we first analyze the subroutine.



4.1 PartiBandits Subroutine: WarmStart-UCB

The first Algorithm is similar to the Variance-UCB algorithm of |Aznag et al.| (2023)) except that
we include an initial “warm-start” step (Step 1). We estimate o, via the sample standard deviation,

Ogt = \/ﬁ Ds<t:X.—g(PgYs — Hg,t)?. We can then define UCBy(0g) = Gyt + En(o)

24/c1 1 14+co+1
where C (8) := 2\/201 log (%) log () + Ve f 5)\(/;O:r s(%) +=-In Cn(6), ¢1 and ¢

are constant upper bounds on the sub-gaussian parameters of Y (which exist since Y is k-class),
and 0 € (0, 1) is parameter representing the confidence level for obtaining a high probability bound.
WarmStart-UCB selects at each round the group with the largest upper confidence bound on its
variance estimate, but begins with a “warm-start” phase that allocates a fixed fraction of the label
budget, 7, evenly across all groups (initiated by Step 1).

Algorithm 1 WarmStart-UCB

Require: Label budget IV, stratification scheme G, confidence level ¢, buffer fraction 7
1: Initialize ngy0 = 0,and 6,; = +oo forallg € [G]andt < TN
2: Compute C (9 )
3: fort =0,. —1do

4: Compute UCBt(ag) =04+ ﬁ’ Vg € [G]

5: Select group X4 = arg max, Ucfit(t%)

6: Observe feedback Vi1

7: Update the number of samples: ng 11 = ng; + 1x,,,—9, Vg € [G]

8: Update the mean estimates, fig 41 = nq,1t+1 Zt+1 1x,—¢ - P)Ys, Vge€[G]
9: Update the standard deviation estimates,

&g-,H-l = \/ng‘t-fl—l—l Zs§t+1:xs=g(PgYs - ﬂg,t+1)2v Vg € [G}
10: end for
Output: fiws.ucs(N) = >, fig,N

The following is an upper bound on the performance of WarmStart-UCB.

Theorem 1. |fiys.ucs — E[Y]]* = O (ElT(g))

Theorem|[I] shows that when a stratification scheme G is given a priori, WarmStart-UCB efficiently

El(g)

estimates the population mean with error scaling as @) ( > where 31 (G) captures how informa-

tive the grouping is. The more informative the grouping, the smaller 3, (G) is, and the faster the rate
of convergence. By the law of total variance, 31 (G) < Var(Y'), so this rate is always at least as fast as
that obtained with SRS. The proof is relatively straightforward. In Section A.5 of their work, |Aznag

et al.|(2023) showed that % = O(1/N). We do not define R;(n) and R (n*) explicitly

here as this would involve significant technical detail. However, we show in the Appendix that R;(n)
is equivalent to the variance of fiws.ucg, while R;(n*) corresponds to X1 (G)/N. This identification
allows us to directly leverage this bound from Section A.5 of |/Aznag et al.|(2023)). We then calculate
how large N must be in order for this quotient to be bounded from above by some constant (though
this threshold is quite large, as it is inversely proportional to oy,;,), and we get a bound on the
variance of /i for sufficiently large N. For all other N, we use the fact that a minimum fraction of
the label budget is allocated to each group and obtain a similar high probability bound using classical
Hoeffding arguments. This is why 7 and the WarmStart step are important, as they safeguard the
Variance-UCB procedure by ensuring that part of the label budget is allocated to StRS (every group
gets a minimum number of samples), and this allows for nice convergence guarantees even when
the proper rate of |/Aznag et al.|(2023)) does not hold. This allows us to obtain an analogous rate for
label budgets that do not meet the threshold, thereby eliminating the counterintuitive dependence on
Omin that is typical in the active learning literature (Aznag et al., 2023} Carpentier et al.,|2015). This
ensures that our rate holds uniformly over all label budgets and constitutes a proper non-asymptotic,
high-probability bound.



We note in the Appendix that when the dependence on the constants 7 and G is made explicit, the
rate is |iws.ucs — E[Y] \2 =0 (%ﬁg)), however, we follow |Aznag et al.| (2023) in treating G as

a constant, and do the same for 7. As we allude to above and show in the Appendix, the dependence
on 7 vanishes for large N relative to oy, and for all other IV, the rate still holds with slightly larger
constants (including a constant factor of 7~ !). We also discuss in the Appendix the special cases
when 7 € {0,1}.

While |Aznag et al.[(2023) established a rate of O(N —2) for the task of multi-group mean estimation
(which can be extended to the task of population mean estimation) for a particular regret definition, the
upper bound for WarmStart-UCB both (1) explicitly accounts for the signal of Y in X through ¥ (G),
and (2) exhibits tighter dependence on the number of groups, GG, and eliminates the dependence
on the smallest conditional variance of Y across all subgroups, omin. The latter result in particular
addresses an open problem in the active learning literature on mean estimation by demonstrating that
not all active learning mean estimation frameworks result in the counterintuitive inverse dependence
on oy (see, e.g.,|Aznag et al|(2023); [Carpentier et al.| (2015);|Ganti and Gray|(2013))). While these
improvements to the rate of convergence come at the cost of slower dependence on the label budget
N (from N=2 to N—1), this is expected as the O(N~2) of |/Aznag et al.| (2023) is for a different

definition of regret than the one we are interested in here, (i — 11)°.

The following provides a matching lower bound.

Theorem 2 (Lower Bound for WarmStart-UCB). Let X ~ Unif|0,1] and Y = 1{X > t} for some
t € [0, 1]. Assume that a p<-fraction of labels of Y is flipped at random over X < t, and analogously
with ps for X >t and that p<, p> < 1/4. The stratification scheme G partitions the covariate space
at the true threshold (i.e., groups X < t and X > t). Then,

. 2 ¥1(9

By > o 2D

for some constant ¢, > 0 and all estimators [i' of E[Y] in this setup.

Since this lower bound matches the upper bound of Theorem I} we have that the rate of Theorem
[Tis minimax optimal in this classical setting. This lower bound is based on the classical threshold
example where the stratification scheme is such that the strata are chosen according to the decision
boundary, and represents a favorable case where X is highly predictive of Y and the analyst has
knowledge of how to group observations to reduce within-stratum variance—exactly the kind of
setting any analyst would hope to operate in. The main point to note about this lower bound is that
when the stratification scheme is well-chosen, the dependence in N is still on the order of 1/N. This
will be important in the discussion of the lower bound for the main PartiBandits algorithm (Theorem

A).
4.2 PartiBandits

We now present our main algorithm, PartiBandits (Algorithm 2).

Algorithm 2 PartiBandits
Require: hypothesis class C, active learning classification algorithm S, label budget IV, confidence
level 4, buffer fraction 7.
1: Stage 1: Learn stratification using S
2: Run S with hypothesis class C, label budget | V/2], and confidence level ¢ to obtain classifier h

3: Construct a stratification scheme G by defining A; = ﬁ’l(i) for all i € Im(ﬁ) and setting
g ={Ai}i

4: Stage 2: Apply Stratified Sampling Subroutine (WarmStart-UCB) to estimate means over

g
5: Run WarmStart-UCB with label budget N — | N/2], stratification scheme G and buffer fraction 7

Output: fipg = >_ fig,N-

It is essentially a two-stage algorithm. In the first stage, it runs a disagreement-based algorithm, S,
that the analyst chooses. S helps identify a partition of the unlabeled data that shrinks the average



conditional variance of Y. In the second stage, it runs the WarmStart-UCB subroutine on that learned
stratification. Examples of S to handle the case when Y is binary (k = 1) include the A? algorithm
of Balcan et al.|(2006) and Algorithm 1 of |Puchkin and Zhivotovskiy| (2022)). For the multiclass
setting (k > 1), one may instead use algorithms such as Algorithm 1 of |Agarwal (2013) to learn a
partition of the unlabeled data reduces the mean conditional variance of Y. In Algorithm[2|we present
PartiBandits with a general choice of S, and show in Theorem 3] that it can achieve near-exponential
savings whenever Assumption [I]is satisfied given the data-generating process, hypothesis class, and
the choice of S. We then illustrate in Corollaries [IH4] how different choices of S can accommodate
different data-generating processes (e.g., binary vs. multiclass Y') and assumptions about the problem
setup (such as the hard margin condition or the assumption that the Bayes optimal classifier is in
the hypothesis class). The main theorem and its corollaries show that PartiBandits allows efficient
mean estimation for multiclass outcomes across a wide range of structural assumptions and problem
settings.

The following is an upper bound on the performance of Algorithm 2]

Theorem 3. For any joint distribution of (X,Y"), hypothesis class C, and S such that Assumption
holds, we have

where ¢ > 0 is a constant.

We note in the Appendix that when the dependence on 7 and G is made explicit, the rate is
s —E[Y]? = O (\g| : ("+exp(c'(;,ﬁ/ 10g(Nm>) where |G| is the number of strata. Theorem

shows that PartiBandits efficiently estimates E[Y] by learning a stratification scheme G of Y that yields
an average within-stratum variance, 3, (G), that is bounded from above by v+exp(c-(—N/log(N))).
Asymptotically, this rate is faster than—or at least as fast as—the 1/N decay achieved by classical
adaptive sampling methods (Félix-Medinal, 2003; [Thompson, |1991)), since our bound decays at the
rate of roughly exp(—cN/log N)/N when v is small.

Result Intuition. Disagreement-based active learning algorithms effectively learn a stratification
scheme where within-group variance is reduced, since the labels in each stratum (i.e., strata induced
by the inverse mapping of the classifier’s prediction function) will tend to concentrate around a
single class. Furthermore, they can do this with very few labels. Because active learning algorithms
can identify these low-variance strata rapidly, we can then perform an adaptive stratified sampling
procedure (Algorithm (1)) using the learned stratification to estimate the population mean. Since
estimation error depends primarily on the average within-group variance, reducing that variance
quickly leads to a correspondingly fast decline in estimation error. We discuss in Corollary 4| how
PartiBandits can further decompose relatively homogenous strata into sub-strata with higher and lower
conditional variances, which allows the algorithm to allocate more samples to more heterogeneous
sub-strata, yielding even better estimates of the population mean.

Proof Sketch. If Assumptionﬂ] is satisfied, then there is an active learning algorithm, S, such that
when § is used in Step 2 of PartiBandits, we obtain a classifier, ﬁ, whose excess risk decays at an
exponential rate, E[(E(X) —Y)? — v < exp(c- (—N/log N)) for some constant ¢ > 0. We can
then show that the variance of the mean estimate, fipg, is bounded from above by E[(ﬁ(X )—Y)?]. In
particular, we first use the law of total expectation to show that E[(h(X)—Y)?] = > e BllG— Y)? |

?L(X ) =7] Pr(ﬁ(X ) = j), where J is the image of h. Then we use the Bias-Variance decomposition
to show that the latter quantity is equal to > ;(Var(Y [ h =j) + (j —E[Y [ h = i?) Pr(h = j).
Then it easily follows that this quantity is an upper bound on the average within-group variance of Y

using the stratification induced by h, and therefore an upper bound on the variance (and therefore the
estimation error) of [ipg.

The constant ¢ depends on C’s VC-dimension and disagreement coefficient (Hanneke| [2011])). Part-
iBandits yields better mean estimates with smaller label budgets if C is well constructed and relatively
small (as is the case when the analyst has good prior knowledge about possible ways in which X may
be related to '), since less of the label budget is needed to eliminate incorrect hypotheses. It is typical
for disagreement-based active learning algorithms to exhibit this dependence on the hypothesis class
C (Puchkin and Zhivotovskiy, 2022; |Hanneke and Yang, 2014)).



With different choices of S, we can obtain the following corollaries that allow for different assump-
tions and problem setups regarding the joint distribution of (X, Y") and the hypothesis class C. All
proofs may be found in the Appendix.

Corollary 1 (Classical Binary case with low noise). Suppose Y is binary, and the joint distribution of
(X,Y) and hypothesis class C are such that there exists 1 < 0o such that for all € > 0, diam(g;C) <
e, where diam(e; C) is the diameter of the e-minimal set of C (this is the “hard margin” condition.
For further details, see Section 2 and Theorem 4 of Hanneke| (2011)). If we set S to be the A®
algorithm of\Balcan et al.|(2000)), then, given a label budget of N and 6 € (0,1/2), we have with

probability at least 1 — & that |Jipg — E[Y]|> = O (V+9Xp(c'(]_VN/ log N))).

Corollary 2 (Binary, weaker structural conditions on C). Assume Y € {0,1} and that the joint
distribution of (X,Y) and hypothesis class C are such that Massart’s noise condition is satisfied
(Assumption 4 in |Puchkin and Zhivotovskiy| (2022)), without requiring that C contain the Bayes
optimal classifier. Suppose further that the joint distribution and hypothesis class are such that the
star number s and the (combinatorial) diameter of C are finite (see Section 2 and Theorem 4.1 of
Puchkin and Zhivotovskiy| (2022)). If we set S to be Algorithm 4.2 of \Puchkin and Zhivotovskiy
(2022), then, given a label budget of N and § € (0,1/2), we have with probability at least 1 — 0 that

|ﬁPB - ]E[Y]|2 — @ (V+exp(c-(;vN/ logN))).

Corollary 3 (Multiclass). Suppose Y is k-class (k > 2) and that the joint distribution of (X,Y") and
hypothesis class C satisfy Assumptions 1-3 and the multiclass Tsybakov noise condition (Assumption
4) of |Agarwal (2013). If we set S to be Algorithm 1 of Agarwal| (2013)), then, given a label
budget of N and 6 € (0,1/¢), we have with probability at least 1 — & that |fips — E[Y]|> =

%) (quexp(C'(}N/ log N))).

Corollary effectively allows PartiBandits to also handle real-valued outcomes (ex: Y~ ~ Unif[0, 1])
if the analyst first discretizes Y into bins, effectively turning the problem setup into that of Corollary

Bl

Up to this point, we have focused on active learning algorithms S that guarantee exponential savings
by grouping together instances that are likely to have similar labels. However, we may also consider S
that not only identify homogeneous regions but also heterogeneous regions. Such S would be helpful
for identifying strata for a distribution where labels are assigned by a simple threshold rule that
outputs 0 if z < 1/2 and 1 otherwise, except that in the regions = € (1/4,1/2] and = € (1/2,3/4]
the label is flipped with probability 0.1. The optimal stratification scheme here splits the domain into
four intervals [0,1/4], (1/4,1/2],(1/2,3/4], (3/4,1], and allocate more of the Stage-2 samples to
the middle two strata where the labels are noisier. In Corollary 4 below, we introduce an example of
an S that helps identify such a scheme. The proof is in the Appendix.

Corollary 4 (Heterogeneity-Aware S). Assume the setup of Corollary[2] Define S in the following
way:

Algorithm 3 Heterogeneity-Aware Active Learning Algorithm

Requlre hypothesis class C, label budget N, confidence level ¢.

: Run Algorithm 4.2 of [Puchkin and Zh1votovsk1y (2022) with a given label budget N’ and
hypothesis class C to obtain a classifier, h

2: Let X, denote the abstention region obtained in Step 2 of Algorithm 4.2 of [Puchkin and Zhivo{
tovskiy|(2022).

3: Define h*(x) = h(z) + e(N) if x € X, and h*(z) = h(x) otherwise. £(N) is an arbitrarily
small number relative to N (we may choose e(N) = exp(—N/log N)).
Output: h*(z)

Then we have that given a label budget of N and 6 € (0,1/2), we have with probability at least 1 — 6,
|Lips — ]E[Y]|2 =0 (V%Xp(c.(;vN/ = N)))'

What this S does is capture heterogeneity via the abstention region X, produced within Algorithm
4.2 of |Puchkin and Zhivotovskiy| (2022): the region where labels are more likely to be ambiguous. It



converts the final classifier h returned by Algorithm 4.2 of |[Puchkin and Zhivotovskiy| (2022) into a

new classifier h* that takes values in {0,e,1,1 + €}, splitting the space into four strata that isolate
both homogeneous and heterogeneous regions. The result is intuitive because the difference between

1 from Corollary and 7* is small, so Assumptionis satisfied for 7o* if it is satisfied for that f.
The following yields a matching lower bound.

Theorem 4 (Lower Bound for PartiBandits). Consider the data-generating process where X ~
Unifl0,1] and Y = 1{X > t} for some t € [0,1], with a p<- and p- fraction of labels Y flipped at
random over X < t and X > t, respectively, and p<,p> < 1/4. Let C = {1{(-) > t} : t € [0,1]}.
Then we have that for sufficiently large N,

v+ exp(c- (—N/log(N)))
N

Jor constants ¢, co > 0 and all estimators fi of E[Y] in this setup.

i -E[Y]]” = e

Since this lower bound matches the upper bound in Theorem [3| we have that the rate of Theorem [3]is
minimax optimal for this classical setting. This lower bound is based on a simple threshold setup with
segmented label noise. As we will show in Section[5] this setup reflects a common situation where a
subset of the unlabeled data is highly predictive of Y. The proof of Theorem []starts by noting that
the minimimum of % (G) among all possible stratification schemes, G, is precisely v because of the
way Y is generated. We can then use the lower bounds in/Hanneke and Yang|(2014) and Hanneke
(2011) to show that the exponential decay of the excess risk is the optimal rate in this setup, so no
algorithm can cause X1 (G) to converge to its optimal value faster than this exponential rate.

5 Empirical Illustration

We empirically evaluate the performance of our main algorithm, PartiBandits, and comparing it to
SRS. We also test the WarmStart-UCB subroutine on the analogous mean estimation task when
X can be stratified according to some stratification scheme a priori. In most settings, SRS and
stratified random sampling (StRS) are the standard approaches—and often the only realistic choices
available—since the effectiveness of more sophisticated methods is highly domain- and application-
specific. In practice, whether alternative sampling algorithms outperform SRS or StRS depends
crucially on the relationship between observed covariates and the outcome of interest, which may not
always be known or exploitable. That said, we present comparisons to other baselines, as well as
analyses with other data generating processes, in the Appendix. We use Monte Carlo simulations and
simulations involving nationwide electronic health records, with further details in the Appendix.

5.1 Simulations for Theorems [l and

The error of the PartiBandits mean estimate is O "JrcxP(C‘(fAJ,V [10g(N)) ) "5 shown in Theorem
t

Hence the critical parameter that affects this rate is v, which is closely related to X ’s relationship wi
Y. The left panel of Figure 1| shows how PartiBandits performs as the strength of the relationship
between X and Y varies. We see that generally, PartiBandits eventually outperforms SRS with
relatively fewer samples, and this performance gap increases as the relationship between X and Y
strengthens. We set S = A? for our runs of PartiBandits. The right panel shows the performance of
the WarmStart-UCB subroutine, which estimates the mean of Y when X can be stratified in advance
according to some stratification scheme G. We see that WarmStart-UCB consistently outperforms
SRS when the stratification scheme closely aligns with the underlying decision boundary, effectively
grouping observations with similar values of Y. We do not compare PartiBandits to A2. A2 is an
active learning algorithm for classification, not mean estimation, so comparing its output directly to
mean estimates from PartiBandits or SRS might not be meaningful, and attempting to do so can yield
biased results Dong et al.[(2025).

5.2 Simulations for Theorem [3 Using Health Records Data

To illustrate the gains of PartiBandits in a real-world setting, we leverage access to the American
Family Cohort (AFC) dataset, which contains patient-level data from over 1,000 practices participating



in the American Board of Family Medicines PRIME Registry. AFC contains fine-grained longitudinal
records of patient race and clinical diagnoses.

Our outcome of interest is a binary random variable, Y = H B, where H indicates the presence of
hypertension and B is an indicator for whether the patient is Black. The estimand is E[Y], which
corresponds to the fraction of patients who (1) are Black and (2) have hypertension. X is the
probability that an individual is Black based on their zip code, Z, which is available in the data. This
setup reflects a common scenario in which researchers are studying demographic prevalences but lack
access to direct demographic labels (Andrus et al.| 2021} [U.S. E.O.,[2021), which motivates the use of
proxy information like geolocation to guide sampling decisions. Though X is defined as a probability
mapping, it can also be viewed as an upper bound on the probability that Y = 1 for an individual
from a certain zip code since Pr(HB =1| Z) < (Pr(H = 1|Z) APr(B =1 Z)), and therefore
also a bound on the variance of Y. If H is known but B is not (analogous to the problem setting of
Elzayn et al.| (2025)), we can obtain even more sampling efficiency gains by forcibly setting X = 0
for all H = 0, since the variance of Y is O for all such H. As a result, PartiBandits will not request
labels B from individuals such that H = 0. We compare the PartiBandits and SRS estimates of E[Y]
under different label budgets. Because obtaining diagnosis and race data is often costly, this setting is
such that labels are expensive, making it well suited to illustrate the benefits of using PartiBandits.

We focus on individuals whose derived probabilities of being Black, X, fall in the top and bottom
5th percentiles of the distribution. Although we restrict to these tails, this experimental setup does
not simplify the problem. We are interested in the interaction variable H B rather than a single
class label, which makes identifying any separation more difficult. Even when B = 1, not all such
individuals have hypertension, so H B is not always 1 and can even be 0 more often than when B = 0.
Since, AFC data are not IID draws from the general population, the upper tail may, for example,
include individuals from predominantly Black but affluent neighborhoods who are less likely to have
hypertension. Thus, H B may even be 0 more often than for those classified as B = 0, so the class
separation is not immediate. This setup reflects the reality of many datasets that are not IID samples
from the general population.

Our focus on the tails also shows that X does not need to be highly predictive of Y across the entire
population. We show that the mean within these tails where X is highly predictive can be estimated
accurately with much fewer labels than SRS requires, freeing up the remainder of the label budget for
regions where X is less informative of Y. This experimental setup thus illustrates how PartiBandits
still offers a way of efficiently estimating the population mean.

To run this simulation, we draw, for each label budget, 500 random subsets of 10,000 patients each
from the full AFC dataset of 6 million patients. Within each subset, we restrict attention to individuals
whose geocoding-derived probabilities of being Black, X, fall in the top or bottom 5th percentile,
and estimate the mean of Y for this subpopulation using both PartiBandits and SRS. We compute the
90th percentile of the resulting estimation errors to obtain a high-probability bound for each method.
Our choice of S is the classical A% algorithm of Balcan et al.| (2006) (thus putting us in the regime of
Corollary [T). Figure [2]shows the results and confirms that PartiBandits eventually outperforms SRS
with relatively fewer samples. For smaller label budgets, SRS fares better but only by a universal
constant factor.

Performance of SRS and PartiBandits (AFC Data)

0.075

- SRS
0.050 =®- PartiBandits

Estimation Error

0.025

50 75 100 125 150
Number of Labels

Figure 2: Comparison of estimation error for different label budgets using the AFC data.
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Appendix

5.3 Proofs

Before proving Theorem [T} we need a few auxiliary lemmas.
Lemma 1. Ler 6 € (0,1) and

U2 “
Ri(nn) = Ri(n) == l|< 5 ) ,

Ng,N |
g=1 A

where ny = n = (n1 n,...,ng,n). Then we have that with probability at least 1 — 6,

~ 2
|Bws-uce — M|2 <C (Rl(nN) log 5)

for some absolute constant C' > (.
Proof. We begin by recalling that for any policy we have:

~ 1 Z
/’Lg,N = n )/t . ng
9N t: X1 €A,

and

HWs-UCB = E fig,N-
g

Since fiws-uce is an unbiased estimator for y and Var(fg n) = —2— Y. x,ca. Var(YiPy) = -2,
g,N ’ g

we have:

Z (ﬂg,N - E[ﬂ%N])

g

Pr (‘//lWS—UCB — ,u| Z S) =Pr ( Z S) (Linearity)

82

2 Zz’:l n_q)yN

Through the classical exercise of setting the left-hand-side to ¢ and writing s in terms of §, we have:

G 0_2 9
2 g
=2 log —. 1
o2y T M
g=1 =
———
Rl(nN)

O

The next Lemma is simple but is important for linking the results of |Aznag et al.|(2023) to our work
here.

Lemma 2. Let

(Soeas)

Rl(n*) = N

13



Then,

21(9)
N b

where 31(G) is the expected conditional variance of Y given the stratification G:

S1(G) =Y orP,

g€(G]
Proof. This follows immediately from the fact that o> = P2 - 07> and P, € (0, 1) for all g € [G]
and from the norm equivalence property of ¢! and ¢ norms on R O

Proof of Theorem|l} We have the following directly from Section A.5 of |Aznag et al.|(2023)):

where:

* * * 6 *
Ri(n) = Ry(n*) _ Glin —n*||% n 7(3)°%% (”m) [l —n*[I2
g

max
* — : * 3 5
Rq(n*) N ming n} v o Ng,N N

min

® Omin = MiNge[G] Og>

* X = de[G] Tg>

This simplifies to:

* * * 6 *
Rilw) ~ Balrr) _ Glln—wllf | 6858 i\ -l
Ri(n*) Nmingn} = o 9 \Ng,nN N3

min

(I) (I1)

By Lemmas [I] and [2] it is sufficient to show that for sufficiently large IV, the right hand side of
Equationis upper bounded by some constant. We first show that term (1) is upper bounded by a
constant and then we show that the same goes for term (I7). For all N that are not sufficiently large,
we will perform a classical Hoeffding analysis.

* Bounding Term (I). We have that

. 2GC -
[In —n*|leo <3G+ ElN /m}inn;’N 3)

by Equation 23 of |/Aznag et al.| (2023)), and

Omin N

2

m}in NN =

by the analysis in Lemma 1 of |Aznag et al.|(2023)). What we want to do first is combine the
summation on the right hand side of [3|into one term. As long as

2
)
N > (221 ! > , (Condition 1)
Omin
Ci(X,01)
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then:

. Omin
minn; = N
VARl N R

> 2%, (by Condition 1)
which implies that:
2GC
> N mhin ny v = 4G > 3G, (C'y > 1 by construction)
AR, ;

and so we can write:

Thus, if we assume Condition 1 and

64G3C2
Nz Tt
1
—_———
C2(G721;o'min)

(Condition 2)

then we have that

2
8GC :
Glin = n*|l%, _ G (g5 /i )

- = - "
lengngw N~m1ngng7N

(€3]

64G2C% . *
G- (T -ming nj,

. *
N - min, Ny N

Zteiles

T ONEN
<1

min

a2 ||, w3
* Bounding Term (II). We rewrite this term as the product of two terms, <6‘52i HHNLSH‘X’) :

g9,

N
(maxg (:91’: ) ) , and focus on each term in the product separately.

2 _a*|3 . o
We first consider the term % % We observe that if we assume Condition 1 and
2/3
2002 - G3C3 ..
N > 117]\7 , (Condition 3)
yi1/2 1/2
1 amin

C3(G,%1,0min)

then

15



N3 > 200% - G3C%,
= yll/2 1/2
o

1 min

. N3/2 (by Condition 3)

32256 - G°CY )

S
_ 63512 G°C} a0
$11/2 172

1 min

6352 512G3C3, (amin N)3/2

Ur2nin 2? E1

_ 635 (8GCON [owmin 8

B UI’ZniIl Z1 E1
6352

> 1 [ln—n*|%, (by Condition 1)
Umin

which implies

6352 I~ 'l _ |
o2 N3 -

min

*
Ng,N
Ng,N

6
Next, we consider the term max, ( ) . We have by the proof of Theorem 1 in|Aznag

et al.[(2023) that if N is sufficiently large such that W < 1, then
v N

*
ng,N 1
max

— n—n* !
g9 Ng N 1— 7I|Lin *“‘X’
h M N

Hence, we have that as long as Condition 1 is satisfied and

S (16GCx)?

Yo (Condition 4)

C4(G,X1,0min)

then, dividing both sides of that inequality by 2v/N, we have

1 < 8GCyN

2~ \/ElaminN

8GC Omin
STV Al

_ln— 1o

- a—
minp, n, y

and therefore we have:

¥ 6 6
n
max( g’N) < <1> < 64.
9 \Ng,nN 1-1/2

This gives us that:
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63%3 ny n\° |ln —n*3
5 1maX< 97N> ||n n?’) ||OO S1'64
o g \NgnN N

min

if Conditions 1, 3, and 4 hold.

Hence, if we let:

C(G7 El, Umin) ‘= max {C1(217 Umin)a CQ(G, Ela Crmin)a C3(Ga Ela Jmin)a C4(Ga Ela Umin)}
then we have that as long as N > C(G, X1, 0min), then

Rl (TL) — Rl (n*)

<1+64
Rl(n*)

< 65,
which means that
Ri(n) <C"- Ri(n*)
for some absolute constant C’ > 0, and so:

—~ 2
(Aws-ucs — p)° < C’ (Rl(nN) log (5)

2
<C" Ry(n*)-log =

- )
/ 2 Zl(g)
< (C’ log 5) G N (Lemmal2)

Now for the analysis when N < C(G, 31, 0min ). By construction of Algorithm we have that for
all g € [G]:

Ng N Z %N
So by[T]we have:
G 2
—~ 2 Oy 2
B — <2 -log - 4
(fws-ucs — p)” < ; e og = (4)
G 2
G o 2
<C-=)» Z.log= 5
<C - ~ logs (%)
g=1
G 2\ X1(9)
<(C: —log- 6
< ( — log 5) N (6)
We follow |Aznag et al.| (2023) in treating G as a constant, and do the same with 7 to obtain:
~ ~ (21(G
(Hws-uce — M)2 =0 (1}57)> .
O
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Remark 1 (Dependence on 7 and G.). We note that by[6] when the dependence on the constants T
and G is made explicit, the rate is

fiws.ves — E[Y])> = O <G21(g)> .

N-T

We discuss the dependencies on T and G further below.

Proof of Theorem[2] The proof follows from the fact that the Neyman allocation corresponding to
this G yields the smallest value of 1 (G’) over all possible stratification schemes G’ and classical
results about the estimation of the mean of IID Bernoulli random variables (ex: Lemma 1 from
Hanneke and Yang| (2010)). The idea is that first, 3;(G) minimizes ¥, (G’) among all possible
stratification schemes G’ (precisely because G aligns with the way the data are generated) and the
fastest possible rate for estimating the conditional mean of Y on each stratum of G is simply the

conditional variance divided by the number of labels requested on that stratum (ex: Lemma 1 from
Hanneke and Yang|(2010)). Combining the results yields the bound. O

Proof of Theorem 3] The proof essentially amounts to showing that the value of X (G) produced by
Algorithm 2)is bounded from above by v + exp(c - (—N/log(N))). To do this, we first show that:
E[(h(X) = Y)?*] > C-%,(G).

We first use the law of total expectation to obtain that:

E[(h(X) - Y)?] =Y E[(j - V)? | A(X) = j] Pr(h(X) = j) )
jeJ

where J is the image of . We will now proceed with a bias-variance decomposition. We have that
forall j € J,

o~

E[(A(X) - Y)? | A(X) = j] =E[(j — Y)? | h(X) = j].
Define

Then we have that

E[(j —Y)* | h(X) = ] = E[(j — p + pj = ¥)* | B(X) = j].
Expanding using the identity
(a—cH+c—b)?=(a—c)*+(c—b)?*+2(a—c)(c—b),

we get:

E[(j — pj+ 15 — Y)? | R(X) = j] = (j — 11;)* + El(pj — Y)? | h(X) = j]
+2(j — 117) - El(n; — V) | h(X) = j.

Note that the last term, 2(j — 1) - E[(1; —Y") | E(X ) = 7], is 0 by linearity of expectation and the
definition of y;.

So ultimately we have that:
E[(h(X) = Y)? [ h(X) = j] = (G = p;)* + El(; = Y)? [ h(X) = j]
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Now using[/| we can rewrite:

E[(R(X) = Y)] =[G = 1) +El(w; = V) [ R(X) = j]| - Pr(R(X) =), (®)

jeT
If we let 07> = Var(Y | A;) for each j € J, then by definition of 11; we have that:
E[(h(X) =Y)*) = 307 Pr(h(X) = j)
jed
=31(G).

Now by Assumption[I] we have that:

E[(h(X) — Y)?] < v+ exp(c- (—~N/log(N))),

so we have that:

%1(9) < v+ exp(c- (—N/log(N)))

for some constant ¢ > 0. Applying Theorem [I| with our choice of G and the remaining label budget
of N/2 we obtain that:

(V +exple- (=N 1og<N>>>> |

O

Remark 2 (More on the Dependence on 7 and G (IG|)). We note that by Remark it is
straightforward to show that when the dependence on T and G is made explicit, the rate is

|iipg — ]E[Y]|2 =0 (|g| . (V+6Xp(c'(;/{v/ log(N)))>) where |G| is the number of strata.

T

Remark 3 (Different Loss Functions). We note that TheoremE]still holds if one is interested in an
asymmetric misclassification cost, a - 1{h(X) = 0,Y = 1} + b- 1{h(X) = 1,Y = 0} instead of
the ordinary squared loss. We assume here that Y is binary.

Proof. To see why we first start by doing an analogous decomposition to

E[a-1{E<X):o, Y =1} +b- 1{h(X) = 1, Y:O}}
:E[b.1{Y:0}\E(X):1] P(M(X)=1)+E a'l{Y:1}|ﬁ(X):0} . P(h(X) = 0),

and this is precisely equal to:

= b-E[(h(X)=Y)? | h(X) =1]- P(A(X) = 1) +a-E[(h(X) =¥)? | h(X) = 0] - P(h(X) = 0).
Therefore the rest of the proof for this alternative misclassification cost is analogous to the proof of
Theorem 3] just with adjustments for the constants a and b. O
This result is helpful in a setting where X ~ Unif{0, 1] and
Bern(0), X <0.5,
- {Bern(0.25), X >0.5.

Here, an alternative loss would be helpful because the typical Bayes optimal classifier based on the
squared loss would not distinguish between X < 0.5 and X > 0.5, but the Bayes optimal classifier
resulting from an asymmetric misclassification loss would.
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Proof of Corollarym By Theorem 5 of Hanneke|(2011), S = A2 learns a classifier with exponential
savings in Stage 1 of PARTIBANDITS. Hence Assumption|[I]is satisfied, and Theorem 3| follows. [

Proof of Corollary |Zl By Theorem 4.1 of|Puchkin and Zhivotovskiy|(2022), Algorithm 4.2 of Puchkin
and Zhivotovskiy| (2022) learns a classifier with exponential savings in Stage 1 of PARTIBANDITS.
Hence Assumption [[|is satisfied, and Theorem [3| follows. O

Proof of Corollary[3] As demonstrated by Corollary 1 of[Agarwal| (2013), Algorithm 1 of[Agarwal
(2013)) learns a classifier with exponential savings in Stage 1 of PARTIBANDITS. Hence Assumption
[1]is satisfied, and Theorem [3]follows. O

Proof of Corollary[] We assume without loss of generality that exp (%) < 1 (the result can be
easily adjusted when this assumption does not hold).

By Theorem 3] it is sufficient to show that Assumption [T]is satisfied:

E[(h*(X) Y)Y —v S exp (e 555 ) -

for some constant ¢ > 0. For this, it is sufficient to show that the excess risk of h and h* differ by
at most exp (c - %), since 1 already satisfies assumption (Corollary. Formally, this means
showing that:

[EI((X) = Y)2) = E[(h"(X) = Y)?]| S exp (o rzfiy ) -

‘We have that:

E[(h(X) ~ )?] ~ E[(h(X) ~ ¥)?]| = [E[(h(X) ~ ¥)? ~ (*(X) - ¥)?]] (inearity)
= ]E[A (X)? = 2h(X)Y + Y2 — h*(X)? 4 20" (X)Y — YQ} ‘
- ]E[A (X)2 = b (X)2 — 2V (h(X) — h*(X)) : b # ﬁ*}
< ]E[B(X)2 (X)) h £ ﬁ*}
+2 |B[Y (h(X) ~ B*(X)) s h £ B*

(triangle inequality)

We note that 2 ’IE {Y(H(X) - B*(X)) th # E*}

< cj exp (ﬁ) for some ¢; > 0 by construc-

tion of h*. Furthermore, we have using the difference of squares decomposition that:

’E{B(Xf —RN(X)? R £ ﬁ*}

— B[ () = b (X)) () + A7 () < ]

<2 [|(h(x) - (X)) B £ 7]

where the inequality follows from Jensen’s inequality, definition of ﬁ*, and the assumption that
exp (ﬁ) < 1. Again by definition of 7*, we have that QEH(}AL(X) - iz*(X))’ L h # E*} <

<

Co €Xp (ﬁ) for some c; > 0. Thus, we have that ‘]EVL(X)2 — h*(X)? :h #E*}

Co eXp (%) , and therefore that:

[EI((X) = Y)2) = E[(0" (X) = Y)?]| S exp (o sty ) -
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Proof of TheoremH] As shown in Theorem [2] the best possible performance achievable by any
algorithm is % for some constant C' > 0 that may depend on other parameters of the problem. So
determining the lower bound for any algorithm returns an estimate of iz becomes a task of determining
the lower bound of C' > 0 for any algorithm. We were able to deduce the lower bound of C' in
Theorem [2]by restricting to a particular situation (that in which the analyst basically is able to leverage
X perfectly in a sense). We consider here a more general problem setting where the analyst is limited
to estimators /i that compute weighted aggregates of stratum means over partitions consisting of
exactly two strata, Sy and S7, which make up some stratification scheme G. The analyst learns Sy
and S; through some procedure after N/2 label requests, and uses the rest of the label budget to
estimate the means within each stratum and then aggregating them at the end. This is a best case
scenario because this is aligns with the data generation process and helps approximate the optimal
value of C' > 0 (one only needs to learn the best choice of Sy and S to arrive at the optimal C, as
shown in Theorem2). Hence, the lower bound on (7i — E[Y])?) is simply the lower bound on 1 (G),
so we focus on the latter quantity in this proof.

Assume without loss of generality that ug = E[Y | X € Sp] < 1/2and p; = E[Y | X € S1] > 1/2.
There exists a classifier h such that h=1(0) = Sy and h~1(1) = S;. Recall from §|that we have the
following for any h:

E[(h(X) =Y)’] = (1 = pa)? + E[(m1 = Y)?* | H(X) =1]) - P(M(X) = 1)
+ (4 + El(po — Y)? | h(X) = 0]) - P(h(X) = 0)

Since o < 1/2 and py > 1/2, we have that (1 — p1)? < (1 — p1)pq and p2 < po(1 — po). Thus,
we have that:

E[(A(X) = Y)*] < (1 = ) +E[(u = Y)? | A(X) = 1]) - 1
+ (no(1 = o) + El(po — Y)? | h(X) = 0]) - P(h(X) = 0)

Since Y is Bernoulli, we have by the corresponding variance formula that:

E[(h(X) = Y)?] < 2E[(u1 = Y)? | M(X) =1] - P(M(X) =1
+2E[(1o = Y)? [ A(X) = 0] - P(W(X) = 0)
< 234(G).

What this shows is that if we can lower bound E[(h(X) — Y)?], then we can lower bound ¥ (G). In
their discussion of Theorem 4, Hanneke| (2011} noted that the rate:

E[(h(X) = Y)?] = v < +exp(c- (—=N/log(N)))
is minimax optimal in precisely this situation where the strata map on to threshold classifiers (see

also |Castro and Nowak] (2008)); Cohn et al.| (1994); Burnashev and Zigangirov|(1974)), so we have
that there is a D € D such that with probability at least 9,

Ep[(h(X) = Y)?] > K (v + exp(c- (=N/log(N)))),

for some absolute constant K > 0, and therefore that:

251(9) = K (v + exp(c- (—=N/log(N)))) ,
for (X,Y) ~ D. O
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Additional Details Regarding Simulations

Details Regarding Simulations for Figure/[l]

In both simulations, each dataset contains 10,000 unlabeled instances. For each label budget from 80
to 140, we run 500 simulations. For each run, we compute the absolute difference between the mean
estimated by the algorithm and the true mean; we then report the 90th percentile of these 500 errors.

Details Regarding AFC Simulations

In each simulation, we construct the mapping from ZIP code to the probability of being Black
using the 10,000-patient sample drawn for that run. This means that the probability mapping X is
re-estimated in every simulation based on the ZIP code-race distribution within the sampled subset.

Additional Notes

Note 1 (Notes about Theorem|[I). When the dependence on the constants T and G is made explicit,
the rate is

[fws.ves —E[Y][P = O <GNZ1£Q)> .

Following|Aznag et al.|(2023), we treat G as a constant, and do the same for T. As discussed above
and shown here, the dependence on T vanishes for large N relative to omin, and for all other N, the
rate still holds with slightly larger constants (including a linear factor of T—1). We also discuss the
special cases when T € {0,1}.

Setting T = 0 allocates all labels to Variance-UCB, achieving optimal rates when both o, and the
label budget are sufficiently large. For sufficiently large N relative to o, T is no longer relevant to
the problem and the ordinary rate holds thanks to the main result oflAznag et al.|(2023). However, a
positive T ensures that at least some samples are drawn uniformly from every group, preserving the
guarantee of Theorem|l|with only slightly larger constants. For large label budgets, the effect of T
disappears and the optimal rates of|Aznag et al.|(2023) apply. Since the rate’s dependence on the

. . L A [ =1(9)
label budget remains unchanged (only the constants differ), we present the simplified rate O (1T>

in Theorem[]

When T is small (close to 0), we rely more heavily on the Variance-UCB adaptive sampling strategy,
which is reasonable if the label budget is large and/or oy is not too small. When 1 is large (close
to 1), the procedure defaults to simple stratified random sampling, ensuring the stated dependence on
the label budget in the theorem but resulting in slightly less optimal constants. In the final bounds, T
essentially appears as a constant in the denominator, but for sufficiently large label budgets, its effect
becomes negligible as the guarantees of the Variance-UCB procedure dominate.

The WarmStart in Algorithm 1 serves as a buffer, ensuring that Variance-UCB remains effective
when the overall label budget is small and the algorithm might otherwise undersample low-variance
groups. As|Aznag et al.|(2023)) discuss, the regret of Variance-UCB can scale inversely with oin, the
smallest group variance. By assigning each group a minimum number of samples, the warmstart helps
guarantee the algorithm’s fast-rate properties. For small N, the risk bound behaves as O(1/TN),
where T is the warmstart proportion. As N grows and the fast-rate conditions hold, the dependence
on T vanishes and the sharper rates of /Aznag et al.|(2023) apply. We follow|Aznag et al.|(2023) in
focusing only on the dependence on the label budget in the bound.

Note 2 (Note about Empirical Illustration.). Here present additional experiments using alternative
data-generating processes, varying degrees of class separation, and asymmetric class distributions.
We also consider the comparison of PartiBandits to alternative baselines.
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Figure 3: This plot compares the performance of PartiBandits to SRS when the labels are generated according

to the following logistic data generating process: X ~ Unif[0,1] and Y ~ Bernoulli(m) s

where So = —1/v and 81 = 2/v. This corresponds to a Logit-type DGP, with 1/v governing the steepness
of the logistic curve. For each label budget, we generate 500 hypothetical datasets in this way, apply SRS and
PartiBandits to each, and compute the resulting error rates. We then take the 90th percentile of these error rates
to obtain a classical 90% high-probability/confidence bound. PartiBandits eventually outperforms SRS with
relatively fewer samples, with performance gains becoming more pronounced when X better predicts Y and v
decreases.
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Figure 4: This plot compares the performance of PartiBandits to SRS when the labels are generated
according to the following asymmetric probit data generating process: X ~ Unif[—5,5] and YV ~
Bernoulli(®((1/v) (X —0.25))), where ®(-) denotes the standard normal CDF. This corresponds to a Probit-
type DGP, with 1/v controlling the steepness of the probability curve and X & 0.25 marking the midpoint
threshold. For each label budget, we generate 500 hypothetical datasets in this way, apply SRS and PartiBandits
to each, and compute the resulting error rates. We then take the 90th percentile of these error rates to obtain a
classical 90% high-probability/confidence bound. PartiBandits eventually outperforms SRS with relatively fewer
samples, with performance gains becoming more pronounced when X better predicts Y and v decreases.
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Figure 5: This plot compares the performance of PartiBandits to SRS and Thompson sampling and SRS for label
budgets from 10 to 100. Here, X ~ Unif[0,1] and Y = 1{X > 0.5}, with a fixed fraction of Y”’s (between
0% and 10%) randomly flipped to introduce noise. The proportion of flipped labels is equal to v by definition.
For each label budget, we generate 500 hypothetical datasets in this way, apply SRS, Thompson sampling,
and PartiBandits to each, and compute the resulting error rates. To execute the Thompson sampling, we use
the standard Beta-Bernoulli Thompson Sampling algorithm with an uninformative prior Beta(1,1). At each
round, the algorithm samples a success probability from each arm’s posterior, selects the arm with the highest
draw, observes a Bernoulli reward, and updates the corresponding posterior. In our setup, we ran 7' = 3000
rounds with K = 3 arms (true p = (0.1, 0.5, 0.8)) for the prototype and K = 5 bins over [0, 1] with a threshold
of 0.5 for the binned variant. We then take the 90th percentile of these error rates to obtain a classical 90%
high-probability/confidence bound. PartiBandits eventually outperforms SRS and Thompson sampling with
relatively fewer samples, with performance gains becoming more pronounced when X better predicts Y and v
decreases. We also observe that, over time, Thompson sampling ceases to yield better mean estimates, consistent
with theoretical results suggesting that this procedure can yield biased mean estimates in common settings (Shin
et al., 2019).

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While “[Yes] ” is generally preferable to * ”, it is perfectly acceptable to answer ”
provided a proper justification is given (e.g., “error bars are not reported because it would be too
computationally expensive” or “we were unable to find the license for the dataset we used”). In
general, answering “ ”or “[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
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main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and the introduction are directly supported by the
Theorems and the empirical results in our paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the assumptions required for our theoretical results to hold. We
also state the parameters and contours of the simulations we conducted.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper does provide the full set of assumptions for each theoretical results.
The complete and correct proofs are available in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides the details behind the simulations we conducted, the
specific data generating processes, etc. The code for the monte carlo simulations is available
in the supplementary material. The data for the AFC simulations cannot be provided as
it contains highly sensitive personal identifying information and would present significant
ethics concerns if released.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As noted above, we will the data and code for the monte carlo simulations will
be made available in the supplemental material. However, this cannot be done for the AFC
data for the reasons discussed above.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see the answers above regarding data and code and the details for
conducting our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The simulations do not report “error bars”, however, the main metric in the
simulations is the 90% confidence bound on the estimation error, which functions as the
upper end of a confidence interval on the estimation error. Thus, the experimental results
already incorporate a measurement of uncertainty.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the procedure for the monte carlo simulations which are quite
simple and do not take long to run.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that this submission complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work contributes positively by reducing the number of data intrusions
required to obtain accurate estimates, which can minimize burden, cost, and potential harm
in sensitive applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use pretrained language models, image generators, or scraped
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: All datasets and code packages used in this paper are properly credited,
and their licenses (including CC-BY 4.0 and equivalent open-source licenses) have been
reviewed and respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new R package, PartiBandits, and provide documentation,
usage examples, and licensing information alongside the code.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not invovle crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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