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Causal Bayes nets (CBNs) are probabilistic models in which causal influences between random
variables are expressed via the use of graphs with nodes in these graphs being the random variables
and directed edges indicating the direction of causality between them [Pearl, 2009, Bareinboim et al.,
2020]. Every such directed acyclic graph (DAG) with latent (unobserved) nodes has a corresponding
acyclic directed mixed graph (ADMG) which is obtained from the DAG through latent projection which
simplifies the DAG whilst preserving its causal d-separation properties [Richardson et al., 2012, Pearl,
2009].

For an ADMG with no bidirected edges (thus, no latent variables, equivalent to a CBN over a
DAG), it is always possible to derive any interventional distribution from the joint distribution over
the variables in the DAG using the truncated factorization [Pearl, 2009]. However, more generally, in
the presence of unobserved confounding (e.g. models having bidirected edges in the ADMG) this is
no longer true and only certain interventional distributions can be derived from the observed variables
[Shpitser, 2008, Bareinboim et al., 2020]. Pearl’s do-calculus [Pearl, 2009] is a set of three algebraic
distribution transformations which it has been shown are necessary and sufficient for deriving the in-
terventional distribution where this is possible [Shpitser, 2008]. These algebraic transformations can
be applied ad-hoc or, more systematically, using Shpitser’s ID algorithm to derive a desired interven-
tional distribution [Shpitser, 2008]. More recently, the specific conditions under which any particular
interventional distribution can be determined from the observed variables using do-calculus or some
other systematic algorithm, has been simplified in terms of fixing operations and reachable subgraphs
in causal ADMGs [Richardson et al., 2012]. Exploiting the same reasoning, Richardson et al. [2012]
show how fixing operations can be combined in a simple algorithm which achieves the same result.

This algorithm, as with most algorithms for causal inference, is expressed in terms of CBNs using
random variables and classical probabilities where probabilistic conditioning indicates the direction of
causal inference in an ADMG. Such causal identification algorithms rely on simultaneous manipulation
of the ADMG, tracking the consequence of such manipulations on the corresponding (joint) distribution
over that graph. As long as the appropriate Markov property holds [Bareinboim et al., 2020], which
guarantees the consistency of the distribution with the CBN, then this is a valid procedure for deriving
the desired interventional distribution. Nonetheless, there are many practical settings where proba-
bilistic modelling is inappropriate, such as relational databases [Patterson, 2017], hardware description
languages, distributed systems modelled by Petri nets and most modern machine learning algorithms
[Little, 2019]. In these settings there is no such Markov property therefore it appears that the existing
causal identification algorithms are inapplicable in these wider, non-probabilistic applications.

A different and more recently explored direction which might circumvent this limitation is to change
the fundamental axiomatic basis of the modelling language to use (monoidal) category theory instead.
This amounts to a fundamental reformulation of CBNs that, rather than organizing causal models
around sets, measure theory and graph topology which requires the additional complexity of Markov
properties to bind these together, instead views CBNs from the simpler and more abstract vantage
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point of structured compositional processes. Causal modelling and inference in terms of string diagrams
representing such processes has shown considerable promise. Building on work by Fong [2013], Cho
and Jacobs [2019] formulated the essential concepts of Bayesian reasoning as strings, following which
Jacobs et al. [2021] provided an exposition of causal identification under a slightly extended form of
the front-door causal scenario for affine Markov categories [Fritz, 2020]. Since then, string analogues
of do-calculus and d-separation have been described [Yin and Zhang, 2022, Fritz and Klingler, 2023]
and explicit description of extensions of the categorical string diagram approach to causal modelling
in non-probabilistic settings such as machine learning [Cakiqi and Little, 2022].

Symmetric monoidal categories (SMCs) are algebraic structures which capture the notion of simul-
taneous sequential and (in our application) parallel composition of maps between types. Examples of
such categories include ordinary sets and functions between these sets with the cartesian product indi-
cating parallel composition, the category of sets and relations [Fong, 2013], (affine) Markov categories
of sample spaces with conditional distributions modelled by sets and probability monads between them
[Fritz, 2020] or other non-deterministic monads in arbitrary semifields [Cakiqi and Little, 2022].

Here we present our main result. Richardson et al. [2012, Theorem 49] is a re-formulation of the
ID algorithm [Shpitser, 2008] for causal identification in general causal models with latent variables,
in terms of fixing operations on conditional ADMGs (CADMGs). In this section we provide a purely
syntactic description of the same algorithm which uses only the structural information in the ADMG.

In the ADMG G, consider the set of cause A ⊂ VG and effect variables Y ⊂ VG , where A and Y
do not intersect. Now consider the set of variables Y⋆ = anG

VG\A
(Y) and D⋆ the set of districts of

the subgraph GY⋆ . The signature of the syntactic causal effect, ΣG
Y|do(A), of A on Y is identifiable if,

for every district D′ ∈ D⋆ the set of nodes VG\D′ is a valid fixing sequence. If identifiable, this causal
effect is given by the following composite signature manipulation,

ΣG
Y|do(A) = HideY⋆\Y

( ⋃
D′∈D⋆

Simple
(
FixseqVG\D′

(
ΣF))) . (1)

For the case of the front-door ADMG, used for instance in mediation analysis, applying (1) obtains
the following signature,

ΣG
Y |do(X) =

({
X,X ′, Y, Z

}
, {x, y, z} ,

{
x′ : 1 → X ′, z : X → Z, y : X ′Z → Y

})
. (2)

This is the purely syntactic categorical analogue of the front-door adjustment formula. As an example
interpretation, consider the Markov category with discrete sample spaces X ′ 7→ ΩX , Z 7→ ΩY , Y 7→ ΩY

and with conditional distributions x′ 7→ p (X ′), z 7→ p (Z|X) and y 7→ p (Y |X,Z), then (2) is the
familiar discrete interventional distribution [Pearl, 2009],

p (Y = y|do (X = x)) =
∑
z∈ΩZ

p (Z = z|X = x)
∑

x′∈ΩX

p
(
Y = y|X ′ = x′, Z = z

)
p
(
X ′ = x′

)
. (3)

As another example interpretation, consider potential function models in machine learning in which
the variables X,Y, Z are arbitrary sets, then we derive the following potential model

f (y|do (x)) = min
z∈Z

f (z|x) + min
x′∈X

[
f
(
y|x′, z

)
+ f

(
x′|
)]

. (4)
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