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Abstract

The success of deep learning sparked interest in whether the brain learns by using
similar techniques for assigning credit to each synaptic weight for its contribution
to the network output. However, the majority of current attempts at biologically-
plausible learning methods are either non-local in time, require highly specific
connectivity motifs, or have no clear link to any known mathematical optimization
method. Here, we introduce Deep Feedback Control (DFC), a new learning method
that uses a feedback controller to drive a deep neural network to match a desired
output target and whose control signal can be used for credit assignment. The
resulting learning rule is fully local in space and time and approximates Gauss-
Newton optimization for a wide range of feedback connectivity patterns. To further
underline its biological plausibility, we relate DFC to a multi-compartment model
of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity
rule, consistent with recent theories of dendritic processing. By combining dynam-
ical system theory with mathematical optimization theory, we provide a strong
theoretical foundation for DFC that we corroborate with detailed results on toy
experiments and standard computer-vision benchmarks.

1 Introduction

The error backpropagation (BP) algorithm [1, 2, 3] is currently the gold standard to perform credit
assignment (CA) in deep neural networks. Although deep learning was inspired by biological neural
networks, an exact mapping of BP onto biology to explain learning in the brain leads to several
inconsistencies with experimental results that are not yet fully addressed [4, 5, 6]. First, BP requires
an exact symmetry between the weights of the forward and feedback pathways [5, 6], also called the
weight transport problem. Another issue of relevance is that, in biological networks, feedback also
changes each neuron’s activation and thus its immediate output [7, 8], which does not occur in BP.

Lillicrap et al. [9] convincingly showed that the weight transport problem can be sidestepped in
modest supervised learning problems by using random feedback connections. However, follow-up
studies indicated that random feedback paths cannot provide precise CA in more complex problems
[10, 11, 12, 13], which can be mitigated by learning feedback weights that align with the forward
pathway [14, 15, 16, 17, 18] or approximate its inverse [19, 20, 21, 22]. However, this precise
alignment imposes strict constraints on the feedback weights, whereas more flexible constraints could
provide the freedom to use feedback also for other purposes besides learning, such as attention and
prediction [8].

A complementary line of research proposes models of cortical microcircuits which propagate CA
signals through the network using dynamic feedback [23, 24, 25] or multiplexed neural codes [26],
thereby directly influencing neural activations with feedback. However, these models introduce
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highly specific connectivity motifs and tightly coordinated plasticity mechanisms. Whether these
constraints can be fulfilled by cortical networks is an interesting experimental question. Another
line of work uses adaptive control theory [27] to derive learning rules for non-hierarchical recurrent
neural networks (RNNs) based on error feedback, which drives neural activity to track a reference
output [28, 29, 30, 31]. These methods have so far only been used to train single-layer RNNs with
fixed output and feedback weights, making it unclear whether they can be extended to deep neural
networks. Finally, two recent studies [32, 33] use error feedback in a dynamical setting to invert the
forward pathway, thereby enabling errors to flow backward. These approaches rely on a learning rule
that is non-local in time and it remains unclear whether they approximate any known optimization
method. Addressing the latter, two recent studies take a first step by relating learned (non-dynamical)
inverses of the forward pathway [21] and iterative inverses restricted to invertible networks [22] to
approximate Gauss-Newton optimization.

Inspired by the Dynamic Inversion method [32], we introduce Deep Feedback Control (DFC), a new
biologically-plausible CA method that addresses the above-mentioned limitations and extends the
control theory approach to learning [28, 29, 30, 31] to deep neural networks. DFC uses a feedback
controller that drives a deep neural network to match a desired output target. For learning, DFC then
simply uses the dynamic change in the neuron activations to update their synaptic weights, resulting
in a learning rule fully local in space and time. We show that DFC approximates Gauss-Newton
(GN) optimization and therefore provides a fundamentally different approach to CA compared to
BP. Furthermore, DFC does not require precise alignment between forward and feedback weights,
nor does it rely on highly specific connectivity motifs. Interestingly, the neuron model used by DFC
can be closely connected to recent multi-compartment models of cortical pyramidal neurons. Finally,
we provide detailed experimental results, corroborating our theoretical contributions and showing
that DFC does principled CA on standard computer-vision benchmarks in a way that fundamentally
differs from standard BP.

2 The Deep Feedback Control method

Here, we introduce the core parts of DFC. In contrast to conventional feedforward neural network
models, DFC makes use of a dynamical neuron model (Section 2.1). We use a feedback controller to
drive the neurons of the network to match a desired output target (Section 2.2), while simultaneously
updating the synaptic weights using the change in neuronal activities (Section 2.3). This combination
of dynamical neurons and controller leads to a simple but powerful learning method, that is linked to
GN optimization and offers a flexible range of feedback connectivity (see Section 3).

2.1 Neuron and network dynamics

The first main component of DFC is a dynamical multilayer network, in which every neuron integrates
its forward and feedback inputs according to the following dynamics:

ry vilt) = —vilt) + Wi (via (1)) + Qu(t) 1<i<L, (1)
with v; a vector containing the pre-nonlinearity activations of the neurons in layer ¢, W; the forward
weight matrix, ¢ a smooth nonlinearity, u a feedback input, @; the feedback weight matrix, and 7,
a time constant. See Fig. 1B for a schematic representation of the network. To simplify notation,
we define r; = ¢(v;) as the post-nonlinearity activations of layer ¢. The input r( remains fixed
throughout the dynamics (1). Note that in the absence of feedback, i.e., u = 0, the equilibrium state
of the network dynamics (1) corresponds to a conventional multilayer feedforward network state,
which we denote with superscript ‘-’:

r; =¢(v;)=¢(Wir,_y), 1<i<L, withry =ro. 2)

2.2 Feedback controller

The second core component of DFC is a feedback controller, which is only active during learning.
Instead of a single backward pass for providing feedback, DFC uses a feedback controller to
continuously drive the network to an output target r7 (see Fig. 1D). Following the Target Propagation
framework [20, 21, 22], we define r} as the feedforward output nudged towards lower loss:
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with L(r,y) a supervised loss function defining the task, y the label of the training sample, A a
stepsize, and & 1, shorthand notation. Note that (3) only needs the easily obtained loss gradient w.r.t.
the output, e.g., for an L? output loss, one obtains the convex combination r} = (1 — 2)\)r; + 2)y.

The feedback controller produces a feedback signal u(¢) to drive the network output ry, (t) towards

its target % , using the control error e(t) = r} — ry(¢). A standard approach in designing a feedback
controller is the Proportional-Integral-Derivative (PID) framework [34]. While DFC is compatible
with various controller types, such as a full PID controller or a pure proportional controller (see
Appendix A.8), we use a PI controller for a combination of simplicity and good performance, resulting
in the following controller dynamics (see also Fig. 1A):

u(t) = Kpu™(t) + Kpe(t), Tu%uim(t) = e(t) — au™(t), 4)
where a leakage term is added to constrain the magnitude of u™. For mathematical simplicity, we
take the control matrices equal to K; = I and Kp = k,I with k, > 0 the proportional control
constant. This PI controller adds a leaky integration of the error u™ to a scaled version of the
error k,e which could be implemented by a dedicated neural microcircuit (for a discussion see App.
I). Drawing inspiration from the Target Propagation framework [19, 20, 21, 22] and the Dynamic
Inversion framework [32], one can think of the controller and network dynamics as performing a
dynamic inversion of the output target r7 towards the hidden layers, as the controller dynamically
changes the activation of the hidden layers until the output target is reached.

SS

Figure 1: (A) A block diagram of the controller, where we omitted the leakage term of the integral
controller. (B) Schematic illustration of DFC. (C) Schematic illustration of the multi-compartment
neuron used by DFC, compared to a cortical pyramidal neuron sketch (see also Discussion). (D)
Tllustration of the output r,(¢) and the controller dynamics u(t) in DFC.

2.3 Forward weight updates
The update rule for the feedforward weights has the form:

r SW(E) = (6(vi(t)) = S(Wars 1 ()i (1) )
This learning rule simply compares the neuron’s controlled activation to its current feedforward
input and is thus local in space and time. Furthermore, it can be interpreted most naturally by
compartmentalizing the neuron into the central compartment v; from (1) and a feedforward compart-
ment vi' & W;r;_; that integrates the feedforward input. Now, the forward weight dynamics (5)
represents a delta rule using the difference between the actual firing rate of the neuron, ¢(v;), and
its estimated firing rate, ¢(vf’), based on the feedforward inputs. Note that we assume Ty to be a
large time constant, such that the network (1) and controller dynamics (4) are not influenced by the
weight dynamics, i.e., the weights are considered fixed in the timescale of the controller and network
dynamics.



In Section 5, we show how the feedback weights (); can also be learned locally in time and space for
supporting the stability of the network dynamics and the learning of W;. This feedback learning rule
needs a feedback compartment vi® £ Q;u, leading to the three-compartment neuron schematized
in Fig. 1C, inspired by recent multi-compartment models of the pyramidal neuron (see Discussion).
Now, that we introduced the DFC model, we will show that (i) the weight updates (5) can properly
optimize a loss function (Section 3), (ii) the resulting dynamical system is stable under certain
conditions (Section 4), and (iii) learning the feedback weights facilitates (i) and (ii) (Section 5).

3 Learning theory

To understand how DFC optimizes the feedforward mapping (2) on a given loss function, we link the
weight updates (5) to mathematical optimization theory. We start by showing that DFC dynamically
inverts the output error to the hidden layers (Section 3.1), which we link to GN optimization under
flexible constraints on the feedback weights (Q; and on layer activations (Section 3.2). In Section
3.3, we relax some of these constraints, and show that DFC still does principled optimization by
using minimum norm (MN) updates for ;. During this learning theory section, we assume stable
dynamics, which we investigate in more detail in Section 4. All theoretical results of this section
are tailored towards a PI controller, and they can be easily extended to pure proportional or integral
control (see App. A.8).

3.1 DFC dynamically inverts the output error

To understand how the weight update (5) can access error information, we start by investigating the
steady state of the network dynamics (1) and the controller dynamics (4), assuming that all weights are
fixed (hence, a separation of timescales). As the feedback controller controls all layers simultaneously,

. . . . A
we introduce a compact notation for: concatenated neuron activations v = [v{, ..., vI |7 feedforward

compartments v 2 [vI"" . v"T]T and feedback weights Q £ [QT...QT]”. Lemma 1 shows a
first-order Taylor approximation of the steady-state solution (full proof in App. A.1).

Lemma 1. Assuming stable dynamics, a small target stepsize A\, and W; and Q); fixed, the steady-state
solutions of the dynamical systems (1) and (4) can be approximated by:

Ugs = (JQ+O~[I)715L+O()‘2)7 Vs :V§5+Q(JQ+5VI)716L+O(>‘2)7 (6)

the Jacobian of the network output w.r.t. all v;, evaluated at the
V=V .
network equilibrium without feedback, d 1, the output error as defined in (3), vf{ss =Wip(Vio1ss),

and & = o/ (1 + ak,).
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To get a better intuition of what this steady state represents, consider the scenario where we want to
nudge the network activation v with Av, i.e., vgs = vfs + Av, such that the steady-state network
output equals its target r; . With linearized network dynamics, this results in solving the linear system
JAvV = §1. As Av is of much higher dimension than 8, this is an underdetermined system with
infinitely many solutions. Constraining the solution to the column space of () leads to the unique
solution Av = Q(JQ) ™11, corresponding to the steady-state solution in Lemma 1 minus a small
damping constant &. Hence, similar to Podlaski and Machens [32], through an interplay between the
network and controller dynamics, the controller dynamically inverts the output error 1, to produce
feedback that exactly drives the network output to its desired target.

3.2 DFC approximates Gauss-Newton optimization

To understand the optimization characteristics of DFC, we show that under flexible conditions on
Q; and the layer activations, DFC approximates GN optimization. We first briefly review GN
optimization and introduce two conditions needed for the main theorem.

Gauss-Newton optimization [35] is an approximate second-order optimization method used in
nonlinear least-squares regression. The GN update for the model parameters 6 is computed as:

AG = Jler, (7)

with Jy the Jacobian of the model output w.r.t. 8 concatenated for all minibatch samples, Jg its
Moore-Penrose pseudoinverse, and ey, the output errors.



Condition 1. Each layer of the network, except from the output layer, has the same activation norm:
[rollz = lIr1ll2 = -..[[rz-1ll2 = |[r[l2- ®

Note that the latter condition considers a statistic ||r;||2 of a whole layer and does not impose specific
constraints on single neural firing rates. This condition can be interpreted as each layer, except the
output layer, having the same ‘energy budget’ for firing.

Condition 2. The column space of Q is equal to the row space of J.

This more abstract condition imposes a flexible constraint on the feedback weights @);, that generalizes
common learning rules with direct feedback connections [16, 21]. For instance, besides Q) = J T (BP;
[16]) and @ = JT [21], many other instances of @) which have not yet been explored in the literature
fulfill Condition 2 (see Fig. 2), hence leading to principled optimization (see Theorem 2). With these
conditions in place, we are ready to state the main theorem of this section (full proof in App. A).

Theorem 2. Assuming Conditions 1 and 2 hold, J is full rank, the task loss L is a L? loss, and
A, — 0, then the following steady-state (ss) updates for the forward weights,

AVV'L',ss = 77(Vi,ss - Vgss)rzrfl,ss ’ (9)

with 1 a stepsize parameter, align with the weight updates for W; for the feedforward network (2)
prescribed by the GN optimization method with a minibatch size of 1.

In this theorem, we need Condition 2 such that the dynam- Q x Jt

ical inversion Q(JQ) ! (6) equals the pseudoinverse of JTUTHVDTE T 06
J and we need Condition 1 to extend this pseudoinverse : ‘
to the Jacobian of the output w.r.t. the network weights,
as in eq. (7). Theorem 2 links the DFC method to GN
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optimization, thereby showing that it does principled op- g
timization, while being fundamentally different from BP. So 032
. o =
In contrast to recent work that connects target propagation 3
to GN [21, 22], we do not need to approximate the GN 025
curvature matrix by a block-diagonal matrix but use the o1 <
. . n .
full curvature instead. Hence, one can use Theorem 2 in o <
Cai et al. [36] to obtain convergence results for this setting o — 0’5 0.0

of GN with a minibatch size of 1, in highly overparame- PC1
terized networks. Strikingly, the feedback path of DFC
does not need to align with the forward path or its inverse
to provide optimally aligned weight updates with GN, as
long as it satisfies the flexible Condition 2 (see Fig. 2).

Figure 2: Randomly generated feedback
matrices () (blue) that satisfy Conditions
2 and 3, and have unity norm, visualized
by a principal component analysis, with
The steady-state updates (9) used in Theorem 2 differ from density contours added for visual clar-
the actual updates (5) in two nuanced ways. First, the plas- ity. J©, J, and J7(JJT +~I)71, v €
ticity rule (5) uses a nonlinearity, ¢, of the compartment [10~°, 10%], are added, highlighting that
activations, whereas in Theorem 2 this nonlinearity is not the optimal feedback configurations for
included. There are two reasons for this: (i) the use of ¢ DFC (blue) span a much wider space
in (5) can be linked to specific biophysical mechanisms compared to conventional CA methods.
in the pyramidal cell [37] (see Discussion), and (ii) using

¢ makes sure that saturated neurons do not update their forward weights, which leads to better
performance (see App. A.6). Second, in Theorem 2, the weights are only updated at steady state,
whereas in (5) they are continuously updated during the dynamics of the network and controller.
Before settling rapidly, the dynamics oscillate around the steady-state value (see Fig. 1D), and hence,
the accumulated continuous updates (5) will be approximately equal to its steady-state equivalent,
since the oscillations approximately cancel each other out and the steady state is quickly reached (see
Section 6.1 and App. A.7). Theorem 2 needs a L? loss function and Condition 1 and 2 to hold for
linking DFC with GN. In the following subsection, we relax these assumptions and show that DFC
still does principled optimization.

3.3 DFC uses weighted minimum norm updates

GN optimization with a minibatch size of 1 is equivalent to MN updates [21], i.e., it computes the
smallest possible weight update such that the network exactly reaches the current output target after



the update. These MN updates can be generalized to weighted MN updates for targets using arbitrary
loss functions. The following theorem shows the connection between DFC and these weighted MN
updates, while removing the need for Condition 1 and an L? loss (full proof in App. A).

Theorem 3. Assuming stable dynamics, Condition 2 holds and A\, o« — 0, the steady-state weight
updates (9) are proportional to the weighted MN updates of W for letting the feedforward output v,
reach ry, i.e., the solution to the following optimization problem:

L
argmin Y e PUBIAWE s w0 = e, 10)
AW, i€l L]

with m the iteration and rz(m—H) the network output without feedback after the weight update.
Theorem 3 shows that Condition 2 enables the controller to drive the network towards its target ry
with MN activation changes, Av = v — v'T, which combined with the steady-state weight update (9)
result in weighted MN updates AW; (see also App. A.4). When the feedback weights do not have
the correct column space, the weight updates will not be MN. Nevertheless, the following proposition
shows that the weight updates still follow a descent direction given arbitrary feedback weights.

Proposition 4. Assuming stable dynamics and \, o« — 0, the steady-state weight updates (9) with a
layer-specific learning rate 1; = n/||r;_1||3 lie within 90 degrees of the loss gradient direction.

4 Stability of DFC

Until now, we assumed that the network dynamics are stable, which is necessary for DFC, as an
unstable network will diverge, making learning impossible. In this section, we investigate the
conditions on the feedback weights Q; necessary for stability. To gain intuition, we linearize the
network around its feedforward values, assume a separation of timescales between the controller and
the network (7, >> 7,), and only consider integrative control (k, = 0). This results in the following
dynamics (see App. B for the derivation):

d
Tu&u(t) =—(JQ+ al)u(t) + Ir. (11)
Hence, in this simplified case, the local stability of the network around the equilibrium point depends
on the eigenvalues of J(), which is formalized in the following condition and proposition.
or, or, :|

Ovi )" Ovy

Condition 3. Given the network Jacobian evaluated at the steady state, Jgs e [

,
V=Vss

the real parts of the eigenvalues of JssQ are all greater than —q.

Proposition 5. Assuming 7, > 7, and k, = 0, the network and controller dynamics are locally
asymptotically stable around its equilibrium iff Condition 3 holds.

This proposition follows directly from Lyapunov’s Indirect Method [38]. When assuming the more
general case where 7, is not negligible and &k, > 0, the stability criteria quickly become less
interpretable (see App. B). However, experimentally, we see that Condition 3 is a good proxy
condition for guaranteeing stability in the general case where 7, is not negligible and k, > 0 (see
Section 6 and App. B).

5 Learning the feedback weights

Condition 2 and 3 emphasize the importance of the feedback weights for enabling efficient learning
and ensuring stability of the network dynamics, respectively. As the forward weights, and hence the
network Jacobian, J, change during training, the set of feedback configurations that satisfy Conditions
2 and 3 also change. This creates the need to adapt the feedback weights accordingly to ensure
efficient learning and network stability. We solve this challenge by learning the feedback weights,
such that they can adapt to the changing network during training. We separate forward and feedback
weight training in alternating wake-sleep phases [39]. Note that in practice, a fast alternation between
the two phases is not required (see Section 6).

Inspired by the Weight Mirror method [14], we learn the feedback weights by inserting independent
zero-mean noise € in the system dynamics:

7y Svit) = —vilt) + Wio(via(t)) + Quu(t) + oer. )



The noise fluctuations propagated to the output carry information from the network Jacobian, .J. To
let e, and hence u, incorporate this noise information, we set the output target r} to the average
network output r; . As the network is continuously perturbed by noise, the controller will try to

counteract the noise and regulate the network towards the output target r; . The feedback weights
can then be trained with a simple anti-Hebbian plasticity rule with weight decay, which is local in
space and time:

rq 5 Qi(t) = —vPOu() - 5Q. (13)

where [ is the scale factor of the weight decay term and where we assume that a subset of the noise
input €; enters through the feedback compartment, i.e., vi" = Q;u + op€. The correlation between
the noise in v and noise fluctuations in u provides the teaching signal for Q);. Theorem 6 shows
under simplifying assumptions that the feedback learning rule (13) drives @; to satisfy Condition 2
and 3 (see App. C for the full theorem and its proof).

Theorem 6 (Short version). Assume a separation of timescales 7, < 1, < TQ, a big, k, = 0,

r; = r;, and Condition 3 holds. Then, for a fixed input sample and o — 0, the first moment of @
converges approximately to:

lim E[Qus] X 77 (ST + D)7, (14)
for some v > 0. Furthermore, E|Qss) satisfies Conditions 2 and 3, even if o = 0 in the latter.

Theorem 6 shows that under simplifying assumptions, () converges towards a damped pseudoinverse
of J, which satisfies Conditions 2 and 3. Empirically, we see that this also approximately holds for
more general settings where T, is not negligible, £, > 0, and small « (see Section 6 and App. C).

The above theorem leaves two questions unanswered. First, it assumes that Condition 3 holds,
however, the task of the feedback weight training is to make unstable network dynamics stable,
resulting in a chicken-and-egg problem. The solution we use is to take « big enough to make the
network stable during early training, after which the feedback weights align according to (14) and «
can be decreased. Second, Theorem 6 considers training the feedback weights to convergence over
one fixed input sample. However, in reality many different input samples will be considered during
learning. When the network is linear, .J is the same for each input sample and eq. (14) holds exactly.
However, for nonlinear networks, J will be different for each sample, causing the feedback weights
to align with an average of J7 (JJT + ~I)~! over many samples.

6 Experiments

We evaluate DFC in detail on toy experiments to showcase that our theoretical results translate to
practice (Section 6.1) and on a modest range of computer vision benchmarks — MNIST classification
and autoencoding [40], and Fashion MNIST classification [41] — to show that DFC can do precise
CA in more challenging settings (Section 6.2). Alongside DFC, we test two variants: (i) DFC-SS
which only updates its feedforward weights W; after the steady state (SS) of (1) and (4) is reached;
and (i) DFC-SSA which analytically computes the linearized steady state of (1) and (4) according to
Lemma 1. To investigate whether learning the feedback weights is crucial for DFC, we compare for
all three settings: (i) learning the feedback weights @); according to (13); and (ii) fixing the feedback

weights to the initialization Q); = Hﬁm 41 W', which approximately satisfies Condition 2 and 3 at
the beginning of training (see App. F), denoted with suffix (fixed). For the former, we pre-train the
feedback weights according to (13) to ensure stability. During training, we iterate between 1 epoch of
forward weight training and X epochs of feedback weight training (if applicable), where X € [1, 2, 3]
is a hyperparameter. We compare all variants to Direct Feedback Alignment (DFA) [42] as a control
for direct feedback connectivity. DFC is simulated with the Euler-Maruyama method, which is the
equivalent of forward Euler for stochastic differential equations [43]. We initialize the network to
its feedforward activations (2) for each datasample and, for computational efficiency, we buffer the
weight updates (5) and (13) and apply them once at the end of the simulation for the considered
datasample. App. E and F provide further details on the implementation of all experiments.>

*PyTorch implementation of all methods is available at https://github.com/meulemansalex/deep_
feedback_control.



6.1 Empirical verification of the theory

Figure 3 visualizes the theoretical results of Theorems 2 and 3 and Conditions 1, 2 and 3, in an
empirical setting of nonlinear student teacher regression, where a randomly initialized teacher network
generates synthetic training data for a student network. We see that Condition 2 is approximately
satisfied for all DFC variants that learn their feedback weights (Fig. 3A), leading to close alignment
with the ideal weighted MN updates of Theorem 3 (Fig. 3B). For nonlinear networks and linear direct
feedback, it is in general not possible to perfectly satisfy Condition 2 as the network Jacobian .J varies
for each datasample, while @); remains the same. However, the results indicate that feedback learning
finds a configuration for (); that approximately satisfies Condition 2 for all datasamples. When the
feedback weights are fixed, Condition 2 is approximately satisfied in the beginning of training due
to a good initialization. However, as the network changes during training, Condition 2 degrades
modestly, which results in worse alignment compared to DFC with trained feedback weights (Fig.
3B).

For having GN updates, both Conditions 1 and 2 need to be satisfied. Although we do not enforce
Condition 1 during training, we see in Fig. 3C that it is crudely satisfied, which can be explained by
the saturating properties of the tanh nonlinearity. This is reflected in the alignment with the ideal
GN updates in Fig. 3D that follows the same trend as the alignment with the MN updates. Fig. 3E
shows that all DFC variants remain stable throughout training, even when the feedback weights are
fixed. In App. B, we indicate that Condition 3 is a good proxy for the stability shown in Fig. 3E.
Finally, we see in Fig. 3F that the weight updates of DFC and DFC-SS align well with the analytical
steady-state solution of Lemma 1, confirming that our learning theory of Section 3 applies to the
continuous weight updates (5) of DFC.
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Figure 3: Results for nonlinear student-teacher regression task with layer sizes (15-10-10-5), tanh
nonlinearities, a linear output layer, k, = 1.5, A = 0.05, and o« = 0.0015. (A) Ratio between the
norms of @) projected into the row space of J, and (), with a value of 1 indicating perfect compliance
of Condition 2. (B,D,F) Angle in degrees between the concatenated parameter updates of the whole
network and: (B) the ideal weighted MN parameter updates (Theorem 3); (D) the ideal GN parameter
updates (Theorem 2); and (F) the DFC-SSA parameter updates (see App. F.1 for all definitions). (C)
The standard deviation of the layer norms ||r;||2, divided by the average layer norm, with a value of
zero indicating perfect compliance to Condition 1. (E) The maximum real part of the eigenvalues of
the total system dynamics matrix evaluated at equilibrium (see App. F.1), with negative real parts
indicating local stability. For all measures, a window-average is plotted together with the window-std
(shade). Stars indicate overlapping plots.

In Fig. 4, we show that the alignment with MN updates remains robust for A € [1073 : 10~!] and
a € [107* : 10~1], highlighting that our theory explains the behavior of DFC robustly when the
limit of A and « to zero does not hold. When we clamp the output target to the label (A = 0.5),
the alignment with the MN updates decreases as expected (see Fig. 4), because the linearization
of Lemma 1 becomes less accurate and the strong feedback changes the neural activations more
significantly, thereby changing the pre-synaptic factor of the update rules (c.f. eq. 9). However,
performance results on MNIST, provided in Table 2, show that the performance of DFC remains robust
for a wide range of As and as, including A = 0.5, suggesting that DFC can also provide principled



CA in this setting of strong feedback, which motivates future work to design a complementary theory
for DFC focused on this extreme case.

Figure 4: Comparison of
the alignment between the
DFC weight updates and
the MN updates for
variable values of X\ (A)
and « (B), when
performing the nonlinear
student-teacher regression
task described in Fig. 3.
Stars indicate overlapping
plots.
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6.2 Performance of DFC on computer vision benchmarks

The classification results on MNIST and Fashion-MNIST (Table 1) show that the performances of
DFC and its variants, but also its controls, lie close to the performance of BP, indicating that they
perform proper CA in these tasks. To see significant differences between the methods, we consider
the more challenging task of training an autoencoder on MNIST, where it is known that DFA fails
to provide precise CA [9, 16, 32]. The results in Table 1 show that the DFC variants with trained
feedback weights clearly outperform DFA and have close performance to BP. The low performance of
the DFC variants with fixed feedback weights show the importance of learning the feedback weights
continuously during training to satisfy Condition 2. Finally, to disentangle optimization performance
from implicit regularization mechanisms, which both influence the test performance, we investigate
the performance of all methods in minimizing the training loss of MNIST.? The results in Table 1
show improved performance of the DFC method with trained feedback weights compared to BP and
controls, suggesting that the approximate MN updates of DFC can faster descend the loss landscape
for this simple dataset.

Table 1: Test errors (classification) and test loss (autoencoder) corresponding to the epoch with the
best validation result (for 5000 validation samples) over a training of 100 epochs (classification) or 25
epochs (autoencoder). Training loss after 100 epochs (MNIST train loss). We use the Adam optimizer
[44]. Architectures: 3x256 fully connected (FC) tanh hidden layers and softmax output (classification),
256-32-256 FC hidden layers for autoencoder MNIST with tanh-linear-tanh nonlinearities, and a
linear output. Mean =+ std (5 random seeds). Best results (except BP) are displayed in bold.

MNIST Fashion-MNIST MNIST-autoencoder MNIST (train loss)
BP 2.08+0-15%  10.60*934% 9.42+0.09 . 10—2 1.53%0-19 . 107
DFC 2.25+0.09407 17 17+0.27% 11.28+018 .10=2  7.61%0965. 108
DFC-SSA 2.18%0169;  11.98%0-27% 11.27%0-09 . 192 4.89+1.26 . 10—8
DFC-SS 2.29+0.09707 17 15+0:3297 17 21+0.04 . 702 4.80*070.10°8
DFC (fixed) 24701207 11 .62+0309; 33.37+0-60 . 10-2  1.30%0-15.10-6
DFC-SSA (fixed) 2.46%011%  11.44%014% 31.90%0-77.10-2  1.73%039.10-6
DFC-SS (fixed) 2.39+0-2297 11 55+0429; 32.31+0-37.10-2  1.67%0-70. 106
DFA 2.69+01197  11.38+0-259 29.95+0:36 . 10=2  7.09*111. 107

Table 2: Test errors on MNIST with variable A values and fixed o = 0.0015 (left), and with variable
« values and fixed A = 0.08 (right). Same experimental setting as in Table 1.

A DFC-SS DFC | « DFC-SS DFC

16_3 2.26i0'11%
le=2 2.25%0.0507
le~1 2.27%0.070;
0.5 2.31%0159

2.29:|:0.04%
2.31£0:0403
2.30:|:0.06%
2'34i0.15%

16_4 2.31:|:0.12%
le=3 2.28+0.150;
le=2 2.26%0:059
le~! 92.28+0.1107

2.28+0.0607
2.31+0-119;
2.32£0.1207
2.34i0.16%

3We used separate hyperparameter configurations, selected for minimizing the training loss.



7 Discussion

We introduced DFC as an alternative biologically-plausible learning method for deep neural networks.
DFC uses error feedback to drive the network activations to a desired output target. This process
generates a neuron-specific learning signal which can be used to learn both forward and feedback
weights locally in time and space. In contrast to other recent methods that learn the feedback weights
and aim to approximate BP [14, 15, 16, 17, 26], we show that DFC approximates GN optimization,
making it fundamentally different from BP approximations.

DFC is optimal —i.e., Conditions 2 and 3 are satisfied — for a wide range of feedback connectivity
strengths. Thus, we prove that principled learning can be achieved with local rules and without
symmetric feedforward and feedback connectivity by leveraging the network dynamics. This finding
has interesting implications for experimental neuroscientific research looking for precise patterns
of symmetric connectivity in the brain. Moreover, from a computational standpoint, the flexibility
that stems from Conditions 2 and 3 might be relevant for other mechanisms besides learning, such as
attention and prediction [8].

To present DFC in its simplest form, we used direct feedback mappings from the output controller to
all hidden layers. Although numerous anatomical studies of the mammalian neocortex reported the
occurrence of such direct feedback connections [45, 46], it is unlikely that all feedback pathways
are direct. We note that DFC is also compatible with other feedback mappings, such as layerwise
connections or separate feedback pathways with multiple layers of neurons (see App. H).

Interestingly, the three-compartment neuron is closely linked to recent multi-compartment models
of the cortical pyramidal neuron [23, 25, 26, 47]. In the terminology of these models, our central,
feedforward, and feedback compartments, correspond to the somatic, basal dendritic, and apical den-
dritic compartments of pyramidal neurons, respectively (see Fig. 1C). In line with DFC, experimental
observations [48, 49] suggest that feedforward connections converge onto the basal compartment
and feedback connections onto the apical compartment. Moreover, our plasticity rule for the for-
ward weights (5) belongs to a class of dendritic predictive plasticity rules for which a biological
implementation based on backpropagating action potentials has been put forward [37].

Limitations and future work. In practice, the forward weight updates are not exactly equal to GN
or MN updates (Theorems 2 and 3), due to (i) the nonlinearity ¢ in the weight update rule 5, (ii) non-
infinitesimal values for o and A, (iii) limited training iterations for the feedback weights, and (iv) the
limited capacity of linear feedback mappings to satisfy Condition 2 for each datasample. Figs. 3 and
4, and Table 2 show that DFC approximates the theory well in practice and has robust performance,
however, future work can improve the results further by investigating new feedback architectures
(see App. H). We note that, even though GN optimization has desirable approximate second-order
optimization properties, it is presently unclear whether these second-order characteristics translate to
our setting with a minibatch size of 1. Currently, our proposed feedback learning rule (13) aims to
approximate one specific configuration and hence does not capitalize on the increased flexibility of
DFC and Condition 2. Therefore, an interesting future direction is to design more flexible feedback
learning rules that aim to satisfy Conditions 2 and 3 without targeting one specific configuration.
Furthermore, DFC needs two separate phases for training the forward weights and feedback weights.
Interestingly, if the feedback plasticity rule (13) uses a high-passed filtered version of the presynaptic
input u, both phases can be merged into one, with plasticity always on for both forward and feedback
weights (see App. C.3). Finally, as DFC is dynamical in nature, it is costly to simulate on commonly
used hardware for deep learning, prohibiting us from testing DFC on large-scale problems such as
those considered by Bartunov et al. [10]. A promising alternative is to implement DFC on analog
hardware, where the dynamics of DFC can correspond to real physical processes on a chip. This would
not only make DFC resource-efficient, but also position DFC as an interesting training method for
analog implementations of deep neural networks, commonly used in Edge AI and other applications
where low energy consumption is key [50, 51].

To conclude, we show that DFC can provide principled CA in deep neural networks by actively
using error feedback to drive neural activations. The flexible requirements for feedback mappings
combined with the strong link between DFC and GN, underline that it is possible to do principled CA
in neural networks without adhering to the symmetric layer-wise feedback structure imposed by BP.
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