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Figure 1: Effect of Noise Degradation: GLIP (above, 2022) & MM-GIDNO (bottom, 2024b)
performance on COCO (Lin et al., 2015) for noises like turbulence, pixelation, and motion blur.

ABSTRACT

The impact of real-world noise on Open Vocabulary Object Detectors (OV-ODs)
is constrained by their architectural complexity and the scarcity of noise-annotated
datasets. Our empirical analysis, Robust Onion, uses controlled synthetic visual
degradations to mirror feature collapse of real-world noises and systematically
peel apart OV-OD components to assess their robustness. Our findings include:
Similar vision backbones show comparable robustness, driven by identical feature
collapse at similar layers. Pretraining, architectural nuances, and captions con-
tribute little to robustness. Robustness relies strongly on the image domain rather
than on annotations, explaining the similar impact of COCO and LVIS on robust-
ness (same images, different annotations), and how datasets like ODinW-13, with
large, isolated objects, can give a misleading impression of high robustness. These
insights point to potential research on cross-layer feature exchange and continual
learning strategies to improve robustness efficiently. Our findings highlight critical
directions for designing robust OV-ODs under challenging visual degradations.

1 INTRODUCTION

Vision Language Models (VLMs) have shown strong generalization in tasks like image-to-text re-
trieval (Saha et al., 2024), open-vocabulary classification (Abdelhamed et al., 2025), image caption-
ing (Cheng et al., 2025), and visual-question-answering (Huynh et al., 2025). The ability to adapt
without fine-tuning makes VLMs highly beneficial for applications where zero-shot is not just a con-
venience but a necessity. VLM based Open Vocabulary Object Detectors (OV-ODs) are rapidly
gaining attention for their utility and advantages in security (He et al., 2024), medical imaging (Yu
et al., 2025), environmental monitoring (Xue et al., 2024), and self-driving cars (Tian et al., 2024).

Real-world deployment of OV-ODs requires a critical understanding of their robustness against vi-
sual distortions / noise. OV-ODs are among the most complex deep learning models with many
moving components, such as vision-text backbones, fusion network, box predictors, alignment net-
works efc. However, analyzing real-world low-quality (LQ) and out-of-distribution noise is difficult



Under review as a conference paper at ICLR 2026

Real World Synthetic COCO Real World Synthetic COCO Synthetic COCO

] j L HW
Cloudy /| Turbulence Rain Snow /1" Motion Blur PG Severity 3 (3, 3)

T .,ﬁ{ } ? s,
Overcast ' Snow 1SO Rain ! Fog Focus Blur Severity 5 (3_512'3_1/2)
(a) Observable Collapse (b) Minimum collapse (c) Pixelation Severity

Figure 2: Synthetic COCO & Real-World BDDK100: GLIP-T synthetic noisy features collapse
(against clean image) aligns with real-world collapse, tuned such that they look ‘realistic’ (fig. 1)
for HQ-LQ pairs. All BDDK100 categories (noisy) in blue except highlighted (clean unavailable).

because matching high-quality (HQ) images counterparts to LQ images are scarce, making it
almost impossible to isolate noise effects and build well-annotated noise datasets. Hence, despite
their prevalence, the impact of distortions on VLMs-based OV-ODs remains largely unexplored.

Addressing the gap in robustness against real-world distortions (e.g. BDDK-100 (2020)), our novel
analysis, Robust Onion broadly categorizes noise-induced feature (variance) collapse (Ling et al.,
2023; Chai et al., 2023) into two categories: Observable (fig. 2a): noisy features form distinct clus-
ters separate from clean HQ features (e.g. cloudy, overcast), Minimal (fig. 2b): little / no observable
collapse (e.g. snow, rain). By carefully tuning synthetic noises, we mimic these feature collapses,
providing a practical proxy for real-world degradations (e.g. turbulence for observable, motion blur
for minimal). Increasing noise severity can change the collapse from minimal to observable (fig. 2c).
Robust Onion then empirically peels each component of OV-OD under these controlled noises.

To answer: “How do visual distortions impact complex models such as OV-ODs, and what are the
most effective directions to improve their robustness?”, our analysis frames four key questions: (1)
Among all bells and whistles (e.g. pretraining, fine-tuning & architectural modules), what limits
robustness? (2) Are larger models inherently more robust, or are other factors decisive? (3) Is ro-
bustness solely determined by the model, or do input images play a role? (4) Is it possible to leverage
language to improve robustness under visual noise? Our analysis pinpoints the key bottlenecks and
highlights why some noisy images may be easier to detect than others.

Robust Onion analysis of OV-ODs against visual distortions: Vision Backbone drives robustness:
Similar backbones exhibit comparable robustness due to resembling feature collapses at similar
depths. For backbones of sufficient scales (e.g. Swin-B), depth or size adds little to robustness,
regardless of bells and whistles of pretraining or overall architecture. Layer-wise robustness: Shal-
low layers are more adversely affected by noise; cross-layer information exchange can potentially
improve robustness. Dataset bias: ODinW-13 can give a false impression of robustness because it
features large and isolated objects. Domain over annotation: Image domain (detecting ‘on’ what)
matters far more than annotation type (detecting what), explaining similar robustness of COCO &
LVIS. Minimal language influence: Once the visual features are degraded, language/captions con-
tribute little to recover lost robustness. Each analysis includes [Takeaways & Model Design] high-
lighting key insights for designing robust OV-OD. We conclude by advocating for a cost-efficient
continual learning strategy catered to OV-ODs for improving robustness in a zero-shot setting.

2 RELATED WORK

VLMs and OV-ODs: Advances in vision-language pre-training (Radford et al., 2021; Minderer
et al., 2022) has led to transferring knowledge from VLMs to object detectors (Shen et al., 2024;
Gu et al., 2021; Zareian et al., 2021). Works like Alayrac et al. (2022); Tsimpoukelli et al. (2021);
Chen et al. (2022); Minderer et al. (2023); Zhao et al. (2024a) have shown strong object detection
capabilities through large-scale multimodal training. Versatile generalization of OV-ODs (Li et al.,
2025; Deng et al., 2024) makes them ideal for real-world applications, thereby understanding their
limitations (Bianchi et al., 2024; Zhang et al., 2024a) against real-world noises is important.

Robustness against Noise: Weather (rain, fog, turbulence) or artifacts (compression) pose sig-
nificant challenges in object detection (Mao et al., 2023; Qin et al., 2022; Chhipa et al., 2024;
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Zhang et al., 2024b; Yoo et al.,, 2024). Distortions cause loss of discriminative features, a
fundamental problem affecting all models (Shermeyer & Van Etten, 2019). However, de-
spite the prevalence of such visual noises(e.g. surveillance (Davila et al., 2023), satellite im-
agery (Patil et al.,, 2017), autonomous-driving (Tian et al., 2024), efc), their impact on VLMs
remains largely unexplored (Cheng et al., 2019; Li et al., 2019). Existing works use synthetic
noises to show improvement on real-world datasets like low-resolution person re-id (Pathak &
Rawat, 2025), driving in fog/rain (Gupta et al., 2024b). Recently, LRO.FM (Pathak et al., 2025)
benchmarked VLMs robustness for image classification. On the contrary, object detection is far
more complex with significant practical use. We present a comprehensive analysis of object de-
tection via SOTA OV-OD models, revealing bottlenecks and critical factors in their robustness.

Models HQ | Pix. Robustness
3  ANALYSIS SETUP GLEE-Lite-pretrain-Stage 14 42.59
GLEE-Plus-pretrain-Stage 14 44.00
Models: We analyze 6 publicly available OV- Etiiﬁff.r:lnsifgg: ; :Zzzz
ODs: RegionCLIP (RC, RCx4, 2022), GLIP GLEE-Plus-joint-Stage 2 60.44
(2022), FIBER (2022), MM-Grounding-DINO GLEE-Pro-joint-Stage 2 { 61.96
(MM-GDINO, 2024b), GLEE (2024), and YOLO-  GLEE-Lite-scaleup-Stage 353.70
World (YOLO, 2024). Figure 3 shows robustness  GLEE-Plus-scaleup-Stage 3160.34
of all models (backbones, fine-tuned & zero-shot). G(:;i';°;:;!:‘(’g'?ii::) Z;;
CNN-based ones (YOLO & RegionCLIP) are not as MM-GDINGT (O G) 020
robust as transformer ones, hence, not the main fo- MM-GDINO-T (0_G_GR){ 50.50

cus of our analysis. More in Supplementary. MM-GDINO-T (0_G_V){50.60 0.88
Datasets: We evaluate robustness on 3 benchmarks: MM:&Z;LS};&?&X; zg::z
COCO (val2017, 2015), LVIS (miniVal, 2019) and MM-GDINO-B* - ALL { 59.50
ODinW-13 (set of 13 datasets, 2022). COCO (80 MM-GDINO-L { 53.00
categories) and LVIS (1,203 categories) have same MM-GDINO-L* - ALL 1 60.30
images, but different annotations. For language, FIBERB 1 49.30
we use RefCOCO (2014), RefCOCO+ (2016), Re- il b
fCOCOg (2016), and Flickr30k (2015). Real-world FIBER-B*-Refcoco | 1550
Wider Face (Yang et al., 2016), naturally occurring FIBER-B*-RefCOCO+ ] 18.00
noisy images, is used to test our proposed solution. FIBER-B*-RefCOCOg {22.70
Framework: Figure 4 illustrates a general frame- 23:1 EQ; iizg
work for object detection. Input image and captions GLIPT (C){ 46.70
are processed through a pyramidal (multi-scale) vi- GLIP-T [5]{ 46.60
sion encoder (e.g. ResNet, Swin Transformer) and a GLIP-L [7]151.23
text encoder (e.g. BERT (2019), CLIP (2021), etc.), RegionCLIP R50 (RC) 1 60.98

. . . . RegionCLIP R50x4 (RCx4)- 64.94 . L |
respectively. Vision features are enhanced via FPN re-coco-#T{75.30 [ 4160 [ 0.00
(or pixel-decoder (GLEE)) followed by cross-self- RCx4-COCO-FT | 80.00 _

attention for fusion with text embeddings. These RCx4 Fully80-COCO-FT | 88.77
fused features are used to predict bounding boxes, RC-LVIS-FT{80.00
confidence scores, and class labels. RCx4-LVIS-FT {84.24
RCx4 Fully123-LVIS-FT{84.09
Noises: Analyzing noise requires measuring the YOLO-\TVorIdVZ»S»640 37.50
drop in performance relative to clean features i.e. YOLO-Worldv2-M-640{ 42.80
analysis of LQ-HQ input image pairs (rarely present YOLO-Worldv2-L-640 1 45.40
in the real world). Instead, we use the two cate- VOLO-Worldv2-L-640-LITE { 45.10
gories of feature collapse (fig. 2) to pick two con- YOLO-Worldv2-L (CLIP-L640 | 46.00
. . YOLO-Worldv2-X-640 46.70
trolled synthetic noises: turbulence for observable, YOLO-Worldv2-XL-640 1 2750

and motion blur for minimal. We also analyze pix-

Figure 3: All models on COCO (mAP):
Shade o robustness against pixelation. Fine-
tuned (COCO, LVIS, RefCOCO) in bold.

elation across severity (intensity). Pixelation (e.g.
compression, distant objects) is simulated via bicu-
bic interpolation: downsampling the image (H, W)
to (£, ¥5) and upscaling it back (Severity 3)'. Tur-

bulence (e.g. air (hot) movement) is simulated via pre-trained neural network (Mao et al., 2021).
Motion Blur (Gupta et al., 2024a) simulates motion (e.g. videos). These noises are only applied to

"'Unlike low-res images, downsampled images can have high resolution e.g. % = 256; Severity ‘s’: 2%, QES
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Figure 4: Simplified Open-vocabulary Object Detector: Trainable modules (black), may include
additional modules and losses. Text features are fused with Multi-scale Vision features (last 4 blocks
of visual encoder) via cross-self-attention, exchanging information across text and vision modality.
The role of each component in robustness against noise is described in listed sections. The vision
feature enhancer is commonly referred to as neck / FPN. Image modified from GLIP (2022).

0.6 0.2
*
= Sev3 % F Sev5 * GLEE
< * ° MM-GDINO
—~ o
5‘0,3 C) 0.1 *o .GLIP
£ ° . 8° @riBER
3 & 1 ko @~regioncLiP
< | P
09! 0.0} @ oo
0.0 0.3 0.7 1.0 0.0 0.1 0.3 0.4
Severity Relative Robustness (COCO, Pixelation)
(a) Performance decline w/ Severity (b) Accuracy & Robustness linearity

Figure 5: (a) Models start dropping performance around severity 3 (253, 2%). Shaded region encom-
passes the distribution of accuracy across all models, while solid line is mean accuracy. (b) Approx.
linear relationship between accuracy and robustness preserves the ranking of models (robustness o<
zero-shot accuracy). Fine-tuned models shown as stars. Both (a) & (b) are performed on pixelation.

the input image, leaving textual captions unchanged. Higher severity (4, 5) risks random predictions
(Accnoise = 0, fig. 5a). Thus, we judiciously use these only to support certain observations.

Evaluation: Metrics include AP (LVIS), mAP (COCO), and AP, (ODinW-13). We shall use
relative robustness (Chen et al., 2024; Schiappa et al., 2024) or ‘robustness’ as the key metric for
measuring a model’s robustness against noise. Relative Robustness = 1 — (Drop in Accuracy/Ac-
curacy) = 1 — (Acciean — ACCNoise ) JACCCIcan- Here, Accoiean and Acc noise denote accuracy on
original and noisy images. Relative Robustness is independent of absolute performance, enabling
cross-model / cross-dataset comparisons. We also observe a linear relationship between absolute
accuracy and relative robustness (Figure Sb). The outliers are mostly fine-tuned models, namely
RegionCLIP (¥, accuracy 1 & robustness 1), and FIBER-B (% accuracy | & constant robustness).

4  ANALYSIS

In the following sections, all the model variants shall be discussed, with special emphasis on zero-
shot ones. All analyses Y-axis will almost always represent robustness. Every observation is high-

lighted, with [Takeaways & Model Design] describing the insight to design a robust OV-OD.

4.1 MODEL-BASED ANALYSIS

Figure 6a shows a strong positive correlation between robustness and model size (entire detector +
text backbone) with pearson correlation on COCO / LVIS: 0.68 / 0.66 for pixelation, 0.78 / 0.72 for
turbulence, and 0.77 / 0.70 for motion blur?. Transformer detectors consistently outperform CNNs,
especially GLEE’s Swin-L & EVA-02-L variants higher robustness vs ResNet variant (< 19.4 size).

Figure 6b groups detectors by vision backbone (irrespective of modules like enhancers, fusion,
decoders, language backbones efc.), revealing: 1) Models with similar backbones show consis-

2Pearson correlation < 0.3 is none / weak and moderate for [0.3,0.7]
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Figure 6: (a) Larger models are more robust (e.g. GLEE), while ResNet ones (RegionCLIP, YOLO,
and GLEE variant) are least. Fine-tuned models as % . (b) Performance remains relatively consistent
across models with similar backbones. EVA-02 (303M) & Swin-L (195M), 24-blocks, have =~
robustness to Swin-B (12-blocks, 87M) on turbulence/motion blur. # of Parameters ‘M’ is millions.
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Figure 7: (a) No clear correlation, GLIP (green) robustness consistent regardless of pretraining size.
(b) Finetuning (color = finetuning dataset) improves RegionCLIP & FIBER-B, but hurts GLEE.

tent robustness across different configurations. 2) Larger backbones are almost always robust (e.g.
EVA-02). However, in general (turbulence & motion blur), depth of transformers is not crucial, i.e.
ResNet < Swin-T (12 blocks, 27M) < Swin-B (12 blocks, 87M) ~ Swin-L (24 blocks 195M) ~
EVA-02 (24 blocks 303M), where ~ indicates similar robustness. Similar trend observed on other
noises like Pixel drop, ISO, Salt-pepper, JPG compression, and Fog (Supplementary).

Figure 7a shows pre-training dataset size weakly affects the zero-shot robustness, which indirectly
means different pre-training datasets (& number of pre-training datasets). Example, GLIP show
steady robustness across different pretraining sizes (green dots). Pearson’s correlation on COCO /
LVIS: 0.34 / 0.28 for pixelation, 0.37 / 0.37 for turbulence, and 0.34 / 0.23 for motion blur.

Figure 7b evaluates the robustness of the COCO and LVIS fine-tuned models, with RegionCLIP
and FIBER-B gaining robustness, and adversely affecting GLEE. When fine-tuning significantly
improves performance, we observe a gain in robustness (RegionCLIP and FIBER-B); however, for
GLEE, this gain is minimal, resulting in no meaningful impact on robustness. Overall, fine-tun-
ing is not a universal robustness boost. Additionally, fine-tuning on COCO and LVIS (same images,
different annotations) has similar improvement/degradation for robustness, i.e. impact of fine-tuning
is influenced by the domain of images, while annotation plays a minimal role.

[Takeaways & Model Design] The robustness gap between ResNets (50 M) and large transformers
like Swin-L or EVA-02-L (195-303 M) is driven mainly by backbone size. GLEE’s ResNet vari-
ants remain less robust than transformer counterparts even with the same pipeline. The choice of
backbones decides the robustness, while other bells and whistles, like additional modules (e.g. MM-
GDINO/GLEE decoder), and extensive pre-training (e.g. MM-GDINO pre-trained on 9 datasets,
and GLEE on 18 via three stages of training efc.) play a minimal role. Given resource constraint
environments, Swin-B can be an amazing alternative to EVA-02 (4x bigger), and Swin-L (2x big-
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Figure 8: Pixelation Features UMAP: Multi-scale vision features, ‘#4° refers to the last layer
(layer #4 at 24-th blocks for Swin-L/EVA-02, and 12-th for Swin-T), last layer enhanced features
(Enhancer #4), and language fused features (Fusion #4). Dark patches (sev 5) overlapping with
lighter ones (sev 0) indicate sev 5 ~ sev 0, i.e. robustness. Other noises in supplementary

ger), with size/depth playing a limited role for sufficiently large backbones. Model design should
also incorporate explicit noise-robust training, without relying on pretraining and fine-tuning.

4.2 DEEPER INSIGHT INTO TRANSFORMERS: GLIP vs MM-GDINO vs GLEE

Figure 6b showed consistent robustness for Swin-L in GLIP, MM-GDINO, and GLEE, with a max-
imum difference in robustness of 0.15/0.08 in COCO/LVIS in all noise. This narrows down the
analysis to the feature of the vision backbone. Figure 8 illustrates the UMAP (2018) of the last
4 layers of the backbone, last layer feature for feature enhancer and fusion network. Ideally, the
models shouldn’t distinguish between severities, i.e. sev 5 features behave like (overlap) HQ sev 0
features. Explanation with t-SNE plots and other noises is provided in Supplementary.

1) Backbone (Layer #1,#2,#3,#4): Deeper layers overlap features across severities more (sev 3 &
sev 5), showing that early layers are more vulnerable to noise. Shallow layers (# 1 & #2) at the
same depth (2 & 4 blocks) have similar feature collapse across all models, despite architectural
differences, partially explaining why similar depth backbones have identical robustness (fig. 6b).

2) Enhancer: For all models, the feature enhancer is just a convolutional block on backbone fea-
tures. From a robustness perspective, feature enhancer serves no utility (part of “bells and whistles™)
i.e. ‘enhancement’ of backbone last layer does not affect overlap of severities.

3) Fusion: Fusion cross-exchanges vision features (across receptive fields / layers) with language.
While language does not significantly impact robustness (sec 4.4), information exchange between
spatial tokens for all layers 192 x 192,96 x 96,48 x48, 24 x 24, induces robustness in the last layer
(24 x24), as evidenced by the significant overlap between features of sev 5 and sev 0 for all models.

[Takeaways & Model Design] Cross-exchange of information between vision layers should help
impart robustness across layers. However, validating this feature exchange design is beyond the
scope of our analysis (computational infeasibility, section 5). Backbones at similar depth have
similar feature collapse, partly explaining why similar backbones have similar robustness.

4.3 ROBUSTNESS AS A FUNCTION OF DATASET

Figure 9a illustrates larger (> 96 x 96) object detection is more robust to noise than the smaller
ones (< 32 x 32). Figure 9b illustrates that almost all detectors are highly robust when there is

only one object to detect. As the number of objects/image goes above 3, robustness starts to see a
drop, eventually saturating around 10 or more objects/image. The jitter in robustness after 29 objects
likely stems from the small sample size in that bin. Figure 9c illustrate the IOU of overlapping ob-
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Figure 9: (a) Larger objects are more robust. (b) Models are very robust when the # of objects in
an image is < 3, the jumps after > 25 objects are likely due to very few samples in that range. (c)
Constant robustness across degrees of overlap between objects (not a function of occlusion). (a,b,c)
are zero-shot models on COCO for pixelation. Other noises in supplementary.
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Figure 10: (left) Dataset Dependent Robustness Average ODinW-13 is more immune to noise
than COCO & LVIS (comparable robustness) for transformers on pixelation (sev 4). (right) Class-
wise robustness Some COCO classes are more robust (shade of blue) than others, with moderate
correlation with object size (dot size). Classes grouped in bins of frequency (log) for GLIP-T.

jects i.e. occlusion, has hardly any impact on robustness (counter-intuitive). Cluttering (or business)
in an image is a function of both the number and the occlusion of objects. Hence, it’s safe to say
that cluttered images are indifferently affected. Models follow the rankings in fig. 6b (pixelation).

Figure 10 (left) shows ODinW-13 maintains high robustness scores of ~ 0.6 across models, nearly
twice that of LVIS and COCO, which exhibit similar robustness. This supports fig. 7b, confirming
robustness relies more on the image domain (same images for COCO & LVIS) rather than the an-
notation type. Key differences: 1) Object Size: Only ~ 10% of ODinW-13 objects are very small
(< 32 x 32) versus ~ 42% in COCO and ~ 58% in LVIS (fig. 9a). 2) Objects Density ODinW-13
has ~ 50% images with single object, versus ~ 12% for COCO and ~ 38% for LVIS (fig. 9b).

Figure 10 (right) shows that robustness varies by object class, moderately reflected by average ob-
ject size (size of dot). For pixelation, robustness correlates with mean class size for COCO / ODinW-
13 as 0.52/0.45. On COCO, categories like parking meter, stop sign, and toilet are easiest to detect,
while for ODinW-13 classes like lobster, jellyfish, and hand are easiest (Supplementary). In con-
trast, robustness shows almost no correlation (Pearson) with class frequency (r~ 0.02 for COCO,
~ 0.021 for ODinW-13), suggesting how often a class appears does not drive robustness. This
explains why LVIS’s long-tail distribution, simply adds rare classes to COCO, exhibits similar ro-
bustness to COCO. A possible explanation for the disproportionate robustness of certain objects is
that they usually appear alone (e.g. a single traffic signal), and may be easier to detect (fig. 9b).

[Takeaways & Model Design] Models are inherently robust w/o a critical need for explicit robust-
ness for large, singular objects. Conversely, datasets like ODinW-13 can thus overstate robustness,
rather reflecting models’ true robustness. Robustness seems to largely depend on diverse image
domains rather than annotation (detecting on what is more important than what, COCO ~ LVIS).

4.4 EXPRESSIVENESS OF CAPTIONS AND PROMPT ENGINEERING

Figure 11a shows that fine-tuning on the REC datasets (RefCOCO, RefCOCO+, and RefCOCOg)
results in similar robustness with a minor drop in performance for RefCOCO+. Empirically, this
implies the descriptive nature (expressiveness) of captions or text prompts used in training has seem-
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Figure 11: (a) REC fine-tuned FIBER evaluated on COCO. Despite training on captions with differ-
ent degrees of expressiveness (RefCOCOg is most descriptive), robustness varies slightly, indicating
limited impact on robustness. (b) Evaluation on Flickr30k with test captions modified with textual
context of pixelation (light) (vs original (dark)), has minimal impact on robustness of GLIP variants.

ingly weak/limited impact on robustness. REC datasets are based on COCO images with differently
phrased captions; RefCOCO contains simple expressions, while RefCOCO+ has appearance-based
prompts, and RefCOCOg includes more elaborate and detailed language.

Figure 11b evalautes GLIP variants on Flickr30k
via 2 sets of captions: 1) Normal: Original captions
from the dataset (dark). 2) LLM-generated: Original
captions fed into an LLM (Mishra et al., 2024) gen-
erating five augmented variants, infused with context
of pixelation/low-resolution (light). For example, “A
boy smiles in front of a stony wall in a city” becomes

“In a low-resolution cityscape, a boy’s smile is cap- ~ *iwob o o0 o o0 et (o
tured against a rough stone wall”. Evaluation occurs =" © <" B e e
on the average of vision embedding fused with 5 LR
captions. Modified caption variants exhibit consis-
tent robustness across severity levels across models;
thus, it’s safe to say prompt engineering test captions
to introduce noise-awareness have almost no impact.
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Figure 12: Similar robustness for fine-
grained vs Superclass: GLIP-T on ODinW-
13 with pixelation. Datasets with accuracy
~ (0 not shown, 1-class datasets ‘reworded’
& multiple classes clubbed as ‘superclass’.
Figure 12 compares ODinW-13 evaluation using

descriptive fine-grained prompts with coarse-grained superclass prompts (multiple classes grouped),
and reworded class labels (dataset with 1 class). The small difference in robustness (mean A of
~ (.14 for pixelation, ~ 0.17 for turbulence, ~ 0.12 for motion blur, and negligible A overall)
can be attributed to lower performance on coarse-grained superclass annotations (linearity between
robustness & accuracy (fig. 5b)). On average, superclass annotations have limited impact on robust-

ness. We only analyze 8 / 13 ODinW-13 datasets, ignoring cases where accuracy ~ 0 (random).

[Takeaways & Model Design] The above findings suggest that expressive captions (during fine-
tuning), and prompts engineered with the context of degradations (during evaluation) do not sig-
nificantly improve robustness. Combining these, with previously observed results like the marginal
impact of text backbone (fig. 6b), and annotations (section 4.3), its safe to say that expressiveness
or distortion-aware augmentation of prompts has minimal influence on ‘visual’ robustness.
To our knowledge, we are among the first to demonstrate this limited role of language, hinting that
future robustness efforts targeting vision modality is likely to yeild more success. Another poten-
tial direction is to re-train models with prompts injected with noise context, rather than only at
evaluation. This would require a new caption—image alignment and is therefore left as future work.

5 VALIDATION OF OUR ANALYSIS: LR-TKO+ & LR-TKO++

Our analysis has highlighted two key model designs: 1) Cross-exchanging information across back-
bone layers: This requires architectural redesign, which requires re-training and is computationally
very expensive e.g. GLEE was trained on 64 GPUs across 18 datasets. We leave this as future work.
2) Visual backbone is the primary determinant of robustness, with shallow layers getting most ad-
versely affected. We shall ignore text modality and other components (neck, fusion, efc.) to motivate
a lightweight robustness solution for shallow layers, catered to real-world deployment (zero-shot).
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Table 1: Ablation of Continual Learning. Table 2: GLIP-T Results on COCO (mAP) & Real-
World Wider face (Yang et al., 2016). LR-TKO+ is mod-
ified LR-TKO for hierarchical transformers

Distortion on| COCO ODinW-13
LR-TKO+ | mAP RR |avg AP RR
Uniform [27.81 0.60| 37.78 0.90 Model Backbone | COCO (Pixelation) | Wider face
Background |27.72 0.59| 36.84 0.88 GLIP-T [5] | # Params | Sev 1[Sev 2[Sev 3| AP |AP50
Random [27.35 0.59| 36.64 0.87 Zero-shot 27.5M | 46.0 | 42.0 | 26.2 || 12.57|26.00
GT boxes LR-TKO+ 29.1M | 445|414 | 28.2 {|13.32|29.88

(LR-TKO++) PR () st (R LR-TKO++ | 29.1 M | 455 | 41.7 | 28.4 ||13.99 | 29.88

Background: Improving robustness ideally shouldn’t rely on the test domain, nor should it lose
the generalization of VLMs. Previous approaches include RobustSAM (Chen et al., 2024), Super-
Resolution (Gao et al., 2023), Test-Time Adaptation (Hakim et al., 2025) etc. However, these ap-
proaches are either computationally too heavy for OV-ODs (/3-5 transformer) or require the knowl-
edge of the test domain. Distillation needs two OV-ODs, Super-Resolution is already too heavy in
addition to OV-OD (& unreliable zero-shot super-resolution), and Test-Time Adaptation trains on
test data (and modifies pretrained weights). Efforts rarely overlap with object detectors (because of
complexity), and are restricted to smaller CNN-based Faster-RCNNs or less complex tasks.

LR-TKO0+: We extend LR-TKO (Pathak et al., 2025), an existing approach for low-resolution clas-
sification (preserves zero-shot), to hierarchical transformers (e.g. Swin) for object detection. Unlike
the original LR-TKO, which uses a costly distillation setup, we only retain the cost-efficient trainable
tokens and remove the teacher-student design. At every layer (especially shallow layers), we insert
a fixed 32 x 32 set of trainable spatial tokens, interpolated to match the layer’s spatial resolution
and added to the frozen feature maps. Interpolating a small number of tokens has two advantages:
1) Flexible hierarchy: Original LR-TKO attaches a fixed number of prompts to every ViT token,
thus cannot accommodate varying H x W, while interpolation can match varying spatial resolution
per layer. 2) Lower overhead: For a 600 x 600 Swin-T input, our 32 x 32 tokens add only 5.7%
parameters, compared to 22.5% for fixed-token design. We denote this extension as LR-TKO0+.

LR-TKO++: On top of LR-TKO+, we introduce a lightweight & cost-efficient continual learn-
ing strategy to mimic real-world degradations. Unlike distillation (which requires two passes for
teacher & student), continual learning has no additional cost (single forward pass). Training be-
gins with clean images and gradually introduces pixelation inside ground-truth boxes for the first
T, = 10 epochs, with linearly increasing probability. This helps the model detect pixelated fore-
ground objects against familiar clean HQ backgrounds. After 77, we progressively perturb regions
outside GT boxes, again with increasing probability, while continuing to sample pixelated GT boxes.
This targeted curriculum, denoted LR-TKO0++, encourages robust object features under degradation,
outperforming uniform or random, or background perturbation (table 1).

Results. Trained on a 3,000-image Flickr30k subset, LR-TKO+ and LR-TKO++ improve robust-
ness on COCO and the real-world Wider Face dataset under pixelation (table 2). Trained for severe
3 pixelation, LR-TKO+ shows slight drops at lower severity of noise (1 & 2), but the LR-TKO++
approach of gradually transitions from HQ-to-pixelated images, minimizing this drop. LR-TKO++
shows gains over the random augmentation approach of LR-TKO0+ while maintaining efficiency. It’s
to be noted that the entire GLIP-T was frozen for this training, only impacting the visual back-
bone. These results illustrate how insights from our analysis can inspire cost-efficient extensions to
improve robustness in real-world noisy conditions. More in Supplementary.

6 CONCLUSION

Robust Onion provides a detailed analysis of robustness against visual distortions in OV-ODs, sys-
tematically ‘peeling’ each component, to assess their individual impact. Analyzing state-of-the-art
detectors under realistic, yet underexplored, visual distortions (mirroring real-world noise feature
collapse) reveals: 1) Vision backbone dominates robustness, outweighing architectural variations or
pre-training choices. 2) Shallow layers are most noise-sensitive, and datasets biased toward large,
isolated objects can falsely suggest high robustness. 3) Prompt or caption expressiveness has min-
imal effect on robustness during both inference and fine-tuning. Our results include promising di-
rections such as continual learning, LR-TKO++, and cross-layer information sharing. Robust Onion
provides a clear, actionable roadmap for advancing the robustness of next-generation OV-OD.
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7 REPRODUCIBILITY STATEMENT

All the models used in this work are publicly available (open-source githubs), with results (HQ
results) verified from their official GitHub and paper. The code for reproducing all the noises men-
tioned in the paper is also open source and will additionally be made available with this paper GitHub
upon acceptance, along with all results. All analysis done for pixelation can simply be replicated by
1 line of code for resizing : (H, W) — (£, %) — H,W. Models were evaluated on 1 48GB GPU
on A6000 (Ampere) GPUs. Our proposed research direction code is taken from LR-TKO (Pathak
et al., 2025) open source code, with GLIP (Li et al., 2022) open source code used as a base to train
GLIP-T model. No hyperparameters were modified, and the code simply adds the tokens to the
Swin-T backbone.
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A APPENDIX

A  MOTIVATION

Image perturbations significantly affects the performance of the detection models. As, we increase
the severity, models often misclassify objects (Figure 13) and fail to preserve accurate bounding box
predictions (Figure 16). Some samples of the perturbations are shown in Figure 18. Some sample
detections on images without synthetic perturbations is shown in Figure 17. This shows the model
fails to detect accurately even on the most prominent class (person).

Cloc Clock Clock Traffic Light

$ ¢ & @ ¢

Clock Clock Clock Clock Umbrella Umbrella Fire Hydrant

A A W‘E 9

M Clock < | . ‘
1 1.4

Figure 13: Progressive Pixelation: GLIP (Li et al., 2022) (top) and MM-GDINO (Zhao et al.,
2024b) (bottom); performance degrades on COCO image (888 x 924) from left (clean) to right
(pixelated) via downsampling by %

Cloudy Overcast
Partial Feature Collapse
(overlapping ‘lumps’)

Snow Rain
Minimum Feature Collapse

Figure 14: Real World BDD-100K all Feature Collapses.

Figure 16 is the continuation of Figure 13 indicating how as severity of pixelation is increased,
GLIP detection ability degrades. Two visible degradations are: 1) Model can’t detect multiple
objects instead clubs them all under one detection at lower severity 2) Model loses the capability of
detecting small sized objects.

B MODEL Z00O

In Table 3, we present the details of all the benchmark models considered, including their vi-
sual backbones, sizes, and the corresponding pre-trained datasets along with their sizes. Region-
CLIP (Zhong et al., 2022) and GLEE (Wu et al., 2024) are the models which has a ResNet-based
visual backbone. On the other hand, models like FIBER (Dou et al., 2022), GLIP (Li et al., 2022),
MM-GDINO (Zhao et al., 2024b), and GLEE (Wu et al., 2024) leverage Swin Transformers. No-
tably, the GLEE (Wu et al., 2024) model uses EVA-02 Large backbone, which is the largest
backbone considered in the study and greatly contributes to the higher robustness.

15



Under review as a conference paper at ICLR 2026

Motion Blur JPG Compression Fog Focus / Gaussian Blur
Minimum Feature Collapse

Turbulence Snow Rain ISO - Blur
Partial Feature Collapse (overlapping ‘lumps’)

Figure 15: Synthetic Noises mimicking Real World all Feature Collapses.

H W
16’ 16
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32’32)

Severity 3 (%,%) Severity 4 (2, %) Severity 5 (

Figure 16: Models progressive degradation with pixelation.

C DATASET DESCRIPTIONS

We evaluate the zero-shot performance of object detectors on three standard benchmarks to analyze
robustness against pixelation: COCO (Lin et al., 2015) (val2017): Contains 5,000 images with 80
object categories. The validation set includes approximately 36,781 object instances. LVIS (Gupta
et al., 2019; Kamath et al., 2021) (MiniVal): A long-tail detection dataset comprising 1,203 object
categories. The MiniVal set contains 5,000 images with about 62,397 object instances. ODinW-
13 (Li et al., 2022): A collection of 13 small out-of-distribution datasets, totaling approximately
3,235 images across diverse domains.

It’s important to note that COCO and LVIS share the same image set but differ in their annotations
and train/val/test splits. Regarding object categories, LVIS can be considered a superset of COCO,
with COCOQO’s 80 categories being a subset of LVIS’s 1,203 categories. This relationship allows for
interesting cross-dataset comparisons and analyses.
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GLIP

MMGDINO

Figure 17: Sample detections results on real world images collected from internet without
synthetic perturbations.

PIXELATION

MOTION BLUR

TURBULENCE

Figure 18: Samples from noise perturbations

For deeper insights and training our proposed solution, we utilize the Flickr30k Entities (Plummer
et al., 2015) dataset, which contains 31,783 images and 275,775 bounding boxes. This dataset is
commonly employed in pretraining zero-shot models (referred to as “Gold”) or fine-tuning them
(referred to as “MDETR” data).

Wider face (Yang et al., 2016) has a lot of tiny faces (pixelation when resized to 224 x 224) in a
variety of real-world settings. We used the validation set of Wider face dataset for evaluation, which
contains 3226 images and 39496 annotated faces.

C.1 REFERRING EXPRESSION COMPREHENSION TASK (REFCOCO, REFCOCO+,
REFCOCOG)

Referring Expression Comprehension (REC) is a task, in which, given an image and an expression
(for example, "A red colored ferrari”), the model should detect the region corresponding to the

17
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Table 3: Benchmark Models (6 Models and 45 Backbones): Pre-training is image-text pairs from
datasets like Object365 (Shao et al., 2019), Openlmages (Krasin et al., 2017), GoldG (Kamath et al.,
2021), CC (Sharma et al., 2018), etc. Visual Backbone uses Swin-Transformer (Liu et al., 2021)
(mostly) and ResNets (He et al., 2015).

Models \ # Backbones and Size (in Million) \ Pretraining Datasets and Size (in Million)
RegionCLIP \ 8 ResNets (RN50 & RN50x4) \ 65-114 \ CC3M, COCO Caption \ 3-3.1
FIBER 6 Swin-Transformers 252 COCO, CC, SBU, VG 13
(Swin-Base)
5 Swin-Transformers } 0365, GoldG (Flickr30K+VG+GQA) :
GLIP (4 Swin-Tiny & 1 Swin-Large)| 22 #30] ™ "ccam, sBU, cC12Mm, o1 0.66-27
9 Swin Trans (5 Swin-Tiny, [174-343 0365, GoldG, OI, GRIT,
MM-GDINO| 2 Swin-Base, 2 Swin-Large) V3Det,COCO, RefCOCO, 1.7-13
RefCOCO+, RefCOCOg
7 YOLOvVS8(1 YOLOVS-S,
YOLO 1 YOLOvV8-M, 3 YOLOvV8-L, | 76-168 0365, GoldG, CC3M 1.4-1.6
1 YOLOv8-X, 1 YOLOVS-XL)
3 ResNets (RN50), Stage-1: 0365, OI;
3 EVA-02 Large, Stage-2: COCO, LVIS, BDD, Stage-1: 3.6
GLEE 3 Swin Transformers 121-476 YTVIS19, YTVIS21, OVIS, Stage-2: 0.9
(Swin-Large) RefCOCO, RefCOCO+, RefCOCOg, |Stage-3: 7.3
VG, VOS ,RVOS , UVO,
UVO-dense ; Stage-3: SA1B , GRIT

expression. This task was evaluated on RefCOCO, RefCOCO+, and RefCOCOg, which is derived
by the detail in the expressions.

RefCOCO: RefCOCO was collected using an interactive two-player game called ReferltGame,
where one player described a target object in an image, and the other had to identify it. As a re-
sult, the referring expressions in RefCOCO are typically short and direct, averaging around 3—4
words. These expressions commonly include both appearance and spatial cues. Example: "The red
and white checkered table on the left”

RefCOCO+: RefCOCO+ was also created using the same ReferltGame framework, but with one key
restriction: annotators were not allowed to use absolute spatial terms (such as “left,” “right,” “top,”
etc.). This restriction forces the referring expressions to rely solely on appearance, attributes, and
relative object descriptions, rather than location-based cues. Example: “The giraffe with lowered
head”.

RefCOCOg: Unlike RefCOCO and RefCOCO+, it was collected offline (not through a game), by
making annotators write longer and more natural, descriptive, and contextual expressions. On av-
erage, expressions in RefCOCOg are around 8 to 9 words long, often including complex language,
object relationships, and scene-level reasoning. Example: ”An adult giraffe scratching its back with
its horn”.

9 <.

NOTE: REC dataset results are not reported in the main paper, since they have abnormally high
robustness scores. The reason behind the high robustness of the REC fine-tuned models is the low
accuracy of FIBER-B REC finetuned models on COCO (and LVIS), which results in a small drop
in accuracy on noises (random predictions remain random), giving “abnormally high robustness
scores” (Pathak et al., 2025).

D ADDITIONAL FIGURE / DETAILS IN MAIN SUBMISSION

D.1 FIGURE 3

Here we show the robustness scores for all models perturbed with atmospheric turbulence in Fig-
ure 19a and with motion blur in Figure 19b.
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Models HQ | MB [Robustness
GLEE-Lite-pretrain-Stage 14 42.59 | 26.39
GLEE-Plus-pretrain-Stage 1 44.00 | 36.89

GLEE-Pro-pretrain-Stage 14 50.83 | 39.89
GLEE-Lite-joint-Stage 2{54.96 | 32.48
GLEE-Plus-joint-Stage 2{60.44 | 44.10
GLEE-Pro-joint-Stage 2 61.96 | 46.34
GLEE-Lite-scaleup-Stage 3 53.70 | 31.20
GLEE-Plus-scaleup-Stage 3 60.34 | 42.84
GLEE-Pro-scaleup-Stage 3 61.71 | 45.28
GDINO-T Swin-T (O_G_CAP4) { 48.50 | 30.90
MM-GDINO-T (O_G){ 50.40 | 32.70
MM-GDINO-T (O_G_GR){ 50.50 | 33.00
MM-GDINO-T (O_G_V){50.60 | 32.55
0.64 MM-GDINO-T (O_G_GR_V){ 50.40 | 33.13
MM-GDINO-B (0_G_V){52.50 | 38.15
MM-GDINO-B* - ALL {59.50 | 42.05
MM-GDINO-L{ 53.00 | 38.45

MM-GDINO-L* - ALL{ 60.30 | 42.75

FIBER-B{ 49.30 | 33.53

FIBER-B*-COCO-FT {58.40 | 39.66
FIBER-B*-LEVIS-FT{ 50.70 | 35.60
FIBER-B*-RefCOCO { 15.50 | 12.37
FIBER-B*-RefCOCO+ 4 18.00 | 13.38
FIBER-B*-RefCOCOg{ 22.70 | 17.22

GLIP-T (A){ 42.90 | 25.40

GLIP-T (B){44.90 | 27.57

GLIP-T (C){46.70 | 29.92

GLIP-T [5]4 46.60 | 29.55

GLIP-L [7]151.23 | 36.06

RegionCLIP R50 (RC){ 60.98 | 28.82
RegionCLIP R50x4 (RCx4)4 64.94 | 39.67
RC-COCO-FT 75.30 | 46.47
RCx4-COCO-FT{80.00 | 53.91

RCx4 Fully80-COCO-FT{ 88.77 | 62.05
RC-LVIS-FT 80.00 | 47.58

RCx4-LVIS-FT{ 84.24 | 53.39

RCx4 Fully123-LVIS-FT{ 84.09 | 53.43
YOLO-Worldv2-5-6404 37.50 | 20.30
YOLO-Worldv2-M-640 1 42.80 | 24.40
YOLO-Worldv2-L-640 1 45.40 | 27.40
YOLO-Worldv2-L-640-LITE 45.10 | 28.20
YOLO-Worldv2-L (CLIP»LX“»640 46.00 | 28.20
YOLO-Worldv2-X-6404 46.70 | 29.50
YOLO-Worldv2-XL-640 1 47.50 | 29.90

Models HQ [Turb.Robustness
GLEE-Lite-pretrain-Stage 14 42.59 | 12.33
GLEE-Plus-pretrain-Stage 14 44.00 | 28.28
GLEE-Pro-pretrain-Stage 14 50.83 | 27.30
GLEE-Lite-joint-Stage 2 54.96 | 14.72
GLEE-Plus-joint-Stage 2 60.44 | 32.89

GLEE-Pro-joint-Stage 2 61.96 | 32.50
GLEE-Lite-scaleup-Stage 3{53.70 | 14.40
GLEE-Plus-scaleup-Stage 3 60.34 | 31.73
GLEE-Pro-scaleup-Stage 3{61.71 | 31.50

GDINO-T Swin-T (O_G_CAP4) { 48.50 | 18.00
MM-GDINO-T (0O_G){ 50.40 | 18.90
MM-GDINO-T (O_G_GR){50.50 | 19.20
MM-GDINO-T (0O_G_V){50.60 | 19.00
MM-GDINO-T (O_G_GR_V){ 50.40 | 19.20
MM-GDINO-B (0_G_V){52.50 | 27.25
MM-GDINO-B* - ALL {59.50 | 29.90
MM-GDINO-L{ 53.00 | 28.45
MM-GDINO-L* - ALL{ 60.30 | 31.80
FIBER-B{ 49.30 | 23.09
FIBER-B*-COCO-FT { 58.40 | 28.40
FIBER-B*-LEVIS-FT{50.70 | 25.19
FIBER-B*-RefCOCO{ 15.50 | 9.86
FIBER-B*-RefCOCO+ 4 18.00 [ 9.74
FIBER-B*-RefCOCOg - 22.70 | 13.06
GLIP-T (A){42.90 | 12.79

GLIP-T (B){44.90 | 15.81

GLIP-T (C){46.70 | 18.14

GLIP-T [5]4 46.60 | 18.05

GLIP-L [7]151.23 | 26.36

RegionCLIP R50 (RC){ 60.98 | 8.22
RegionCLIP R50x4 (RCx4)4 64.94 | 17.32
RC-COCO-FT{ 75.30 | 27.84
RCx4-COCO-FT 1 80.00 | 34.33

RCx4 Fully80-COCO-FT{88.77 | 36.98
RC-LVIS-FT{80.00 | 25.90
RCx4-LVIS-FT{84.24 | 33.49

RCx4 Fully123-LVIS-FT{84.09 | 32.20
YOLO-Worldv2-5-6404 37.50 | 6.80
YOLO-Worldv2-M-640142.80 | 11.30
YOLO-Worldv2-L-640{ 45.40 | 14.50
YOLO-Worldv2-L-640-LITE{ 45.10 | 12.50
YOLO-Worldv2-L (CLIP-L)(‘;—640 46.00 | 12.90
YOLO-Worldv2-X-6404 46.70 | 14.50
YOLO-Worldv2-XL-640 1 47.50 | 14.30

0.84

0.00

0.00

(a) Robustness scores for all models under atmo- (b) Robustness scores for all models under mo-
spheric turbulence perturbation tion blur perturbation
Figure 19

D.2 FIGURE 5B
Figure 5b showed results for COCO; here we show results for Accuracy vs Robustness for LVIS.

A similar linear relationship between robustness and accuracy of Zero-shot detectors exists, except
for fine-tuned models (shown in stars).

D.3 FIGURE 12
Figure 12 shows only 8 datasets out of 13 OdinW-13 datasets. This is because either Fine-grained or

superclass evaluation accuracy at sev 3 is so close to random prediction that it can’t be reliably used
to make any inference. Near random prediction models achieve abnormal robustness scores Pathak
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Figure 20: Accuracy, Robustness linear relationship. Same details as those of Figure 5b.

et al. (2025). The super class annotation was obtained from the official annotation of OdinW-13.
The superclass for OdinW-13 datasets are as follows (super category written in brackets):

AerialMaritimeDrone (movable-objects), Aquarium (creatures), CottontailRabbits (Cottontail-
Rabbit), EgoHands (hands), NorthAmericaMushrooms (mushroom), Packages (packages), Pas-
calVOC (VOC), pistols (Guns), pothole (potholes), Raccoon (raccoons), Shellfish (shellfish),
thermalDogsAndPeople (dog-person), VehiclesOpenlmages (vehicles)

Some datasets don’t have meaningful supercategories; hence, they were removed during evaluation.
The datasets like AerialMaritimeDrone, PascalVOC, and Aquarium have supercategories that do
not align with their class labels. Others, like Egohands, Packages, Raccoons, Pistols, and Cottontail
Rabbits, have matching/similar supercategories and class labels because they have have only one
class.
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Figure 21: (a) shows the superclass prompting performance with the motion blur perturbation (b)
shows the superclass prompting performance with the turbulence perturbation. This follows the
same trend as the pixelation perturbation, where the superclass/finegrained prompting doesn’t vary
the performance.

D.4 FIGURE 6A

Figure 6a showed results for COCO, here we show results for Robustness vs model size for LVIS at
sev3 and sev5 in Figure 22. We also show the results for real world noises in Figure 23
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Figure 22: Robustness vs model size for pixelation severities. Same details as that of Figure 6a.
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Figure 23: Robustness vs model size for real world noises. Same details as that of Figure 6a.

D.5 FIGURE 6B

Figure 6b showed results for COCO & LVIS for sev 3, here we show results for sev 5. Performance
is consistent across backbones here as well. Since accuracy is so low, close to random predictions,
the outlier behavior can be not be used to draw reliable conclusions.
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Figure 24: Robustness vs Backbone Size at sev 4 and sev 5. Same details as that of Figure 6b.

D.6 FIGURE 7A

Figure 7a showed the results for effect of pretraining dataset size in robustness for all noises. Here
we show the same trend for all severity in Figure 25
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Figure 25: Robustness vs Dataset Size for all severity. Same details as that of Figure 7a.
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D.7 FIGURE 7B

Figure 7b showed the effect of finetuning on COCO and LVIS on robustness. Here we show the
effect of finetuning for all noises in Figure 26 and for all noises in Figure 27
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Figure 26: Effect of finetuning on robustness across severity. Same details as that of Figure 7b.
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Figure 27: Effect of finetuning on robustness across noises. Same details as that of Figure 7b.

D.8 FIGURE 8

Figure 8 showed, UMAP plot of features, here we show t-SNE plot for the same.

For GLIP, backbone features ‘B’ (the last 4 layers of backbone, By, Bs, Bs, and B,) are used for
Swin-T transformers with blocks partitions as [2,2,6,2]. These multi-scale features (features from
different intermediate backbone layers) are passed through a neck network, which are simple inter-
mediate convolutional layers (channels — channels), such as C(D — 256) & H(256 — 256), on
these backbone features creating ‘A" features as N1, Vo, N3, Ny& N5, where N3 = H1(C1(By)) ||

No=H, (02(33)-1-61(84)) | N1=H3 (03(32)+62(B3)+01(B4)) | Ny =Ha (01(34)) | N5 =
Hs (H4 (Cl (84)) ) The Fusion network induces text context into vision neck features, generating

‘F> features as Fi, Fa, F3, Fu, F5 for N1, Na, N3, Ny, N5 respectively. For plotting, we use
Bla BZ, B3a B43N4> &-7:4

For MMGDINO (Swin-Large), backbone features ‘B’ (31, Bs, Bs, and 34) are used with 24 blocks
partitioned as [2,2,18,2]. These multi-scale features are passed through a neck network, which
produces neck ‘N features as N7, N2, N3, Ny, and N5. Here, the neck is a simple convolutional
network, Nl = Cl(Bl) || NQ = CQ(BQ) || Ng = 63(83) H N4 = C4(B4) || ./\[5 = C5(B4) This
extra neck feature N5 is termed as extra_convs in the original code. The Fusion network consists of
an encoder-decoder structure, with early fusion, meaning the encoder fuses the textual feature in the
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~ GLIP-T [5] 1.0
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Figure 28: All noises for all backbones.. Same details as those of Figure 6b.

vision feature at both the encoder and decoder stages. To maintain uniformity with GLIP, we plot
only encoder fused features as its much closer to the parameter size of GLIP fusion transformers.
Fused features ‘F” correspond to neck features as N1 — F1, No — Fo, N3 — F3, Ny — F4, and
N5 — Fs. For plotting, we use By, Ba, B3, B4, N5, &Fs.

For GLEE, model EVA-02 24 layers are partitioned similarly to MM-GIDNO ViT-Large as
[2,2,18,2]. While the model only uses the last layer of the backbone feature B, we have plot-
ted intermediate features By, Bo, Bs, and By for fair comparison. Neck in this model is actually
part of Spatial pyramid transformer structure with N7 = H;1(C1(Bs)) || Na = H2(C2(By)) ||
N3 = H3(C3(By)) || No = MaxPool(Hs(C3(By))) creating 4 neck features, called ‘p3’, ‘p4’,
‘pS’, and ‘p6’, in the original code. Similar to MMGIDNO there is an encoder-decoder structure
in fusion network, with “early fusion”. We only use encoder to show effect of fusion, generating
generating ‘F features as Fi, Fo, F3, Fy for N1, Na, N3, Ny, respectively. For plotting, we use
Bla BZ, BS? B49N47 &-7:4

[0 Sev 0 (HQ)
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Figure 29: Pixelation Features t-SNE: Same details as those of Figure 8.
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Il Motion Blur
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Figure 30: Features UMAP: Same details as those of Figure 8, for motion blur (above) and atmo-
spheric turbulence (bottom), with noise implemented on COCO. Only 1 severity.

D.9 FIGURE 9A

Figure 9a showed results for COCO at sev 3. Here we show results at sev 5 as well in Figure 33 and
results for real world noises in Figure 32. The size of objects was determined by official annotation
in COCO. The objects are categorized into three size bins—small, medium, and large—based on the
area of their bounding boxes in pizels?. These bins are defined as: small for areas in the range (0 ,
322], medium for (322, 962], and large for (962, (1e°)?].

D.10 FIGURE 9B

Figure 9b showed results for COCO at sev 3. Here we show results at sev 4 and sev 5 in (fig. 35)
and results for real world noises in Figure 34. The image was divided by the number of ground truth
boxes per image. Buckets with number of images > 20 were retained. After applying the filter, we
got around 39 buckets. For each visualization, we have shown only the odd-number bucket after the
10th bucket.

D.11 FIGURE 9C
Figure 9c showed results for COCO at sev 3. Here we show results at sev 4 and sev 5 in fig. 37

and real world noises in Figure 36. Images was divided by the summations of IOUS per image. The
images are binned based upon various occlusion IOU ranges as mentioned in Fig 9c. The normalized
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Figure 31: Features t-SNE: Same details as those of Figure 8, for motion blur (above) and atmo-
spheric turbulence (bottom), with noise implemented on COCO, only 1 severity.
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Figure 32: Robustness vs Object Size for all perturbations. Same details as that of Figure 9a.

per-image occlusion IOU are computed as follows:

Z IOU(Bi, Bj)
(i,§)€O

ey

IOUimage =

U B;UB;
(i,))€0

where, O is the set of all pairs of overlapping bounding boxes (B;, B;). Further, the IOU bins with
fewer than 50 images are removed to reduce the noise during the robustness evaluation process.
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Figure 33: Robustness vs Object Size for pixelation at sev 3 & 5. Same details as that of Figure 9a.
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Figure 34: Robustness vs num of objects/image for all noise perturbations. Same details as those

of Figure 9b.
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Figure 35: Robustness vs num of objects/image at sev 4 and 5. Same details as those of Figure 9b.

Buckets with number of images ¢ 50 were kept. After applying the filter, we got 5 bins, which are

shown on X-axis.
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Figure 36: Robustness vs occlusion with real world perturbation on COCO. Same details as that

of Figure 9c.
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Figure 37: Robustness vs occlusion Sev 4 for COCO. Same details as that of Figure 9c.
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Figure 38: Robustness of dataset under real world perturbations (left) Robustness of dataset
under turbulence perturbation (right) Robustness of dataset under motion blur perturbation. Same
details as that of Section 4.3

D.12 FIGURE 10 (LEFT)

Even with real world perturbations, the ODinW-13 maintains high robustness scores of ~ 0.7 across
models. However, in motion blur the overall robustness is higher across models over all the datasets
due to minimal perturbation effect of motion blur.

D.13 FIGURE 10 (RIGHT)

Section 4.3 (right) showed results for COCO classes at sev 3. Here we consider robustness vs. class
for ODinW-13. For each category, we have three metrics: 1) accuracy of GLIP-T model, 2) average
size of the objects (computed via mean IOU), 3) frequency of classes (# of times certain classes
appear). We first cluster the categories based on the log of frequency of classes (the values indicated
are the log range in each cluster). For COCO, we cluster with K=6, while for ODinW-13 clustering
size is 10. Color indicates the robustness, a darker shade indicates higher robustness. The size of
nodes indicates the mean IOU. We have only shown classes with # of instances for that category
>100 for COCO and >10 for ODinW-13. Additionally, a lot of OdinW-13 classes overlap across
classes, hence, we chose only the first occurrence of such classes.

D.14 ROBUSTNESS ANALYSIS WITH SWIN-L BACKBONE

Figure 40 shows robustness is consistent across GLIP, MM-GDINO, and GLEE models with the
Swin-L backbone. For pixelation, the maximum difference in robustness for COCO is 0.15 at sev
3, 0.09 at sev 4 & 5, while for LVIS, the differences are 0.08 at sev 3, 0.09 at sev 4, and 0.06 at
sev 5. These values imply that if the model shares a similar backbone, other bells and whistles (e.g.
modules, training strategy, and losses efc.) play a minimal role in increasing robustness, namely 1)
Decoder: MM-GDINO and GLEE have an encoder-decoder architecture, while GLIP doesn’t (only
encoder). 2) Pretraining dataset: Already established in fig. 7a. 3) Pretraining strategy: GLEE’s
three stages of pre-training (stage 1) and stage 2-3 finetuning has minimal impact on robustness
on large EVA-02 backbone, all showing similar robustness for sev 3. 4) Training losses: Different
losses in GLEE, GLIP, and MM-GDINO.
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Figure 39: Robustness vs categories for ODinW-13 at sev 3. Same details as that of Figure 10

(right).
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Figure 40: Swin-L backbone consistent performance across models (Sev 3). Different modules
across models (e.g. loss, pertaining etc.) have minimal impact on robustness if the backbone is
similar. Pattern on COCO is consistent on all noises (impact of the domain of images).

E DATASET ANALYSIS

E.1 COCO/LVIS vs ODINW-13

This section presents a detailed comparison between the COCO / LVIS and ODinW-13 datasets,
highlighting key differences between the datasets that might be contributing to the difference be-
tween performances in the model.

Object Size Distribution: As shown in Figure 9a, LVIS has approximately 60% of objects below
322 pixels compared to 40% in COCO. Small objects lose distinguishing features rapidly when we
perturb the images.

Spatial Characteristics: LVIS exhibits higher object density, occlusion rates (Figure 9c), and
boundary complexity, exacerbating feature ambiguity at lower resolutions.
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Figure 41: (a) LVIS shows a higher proportion of small objects compared to COCO, contribut-
ing to its greater vulnerability to resolution degradation. On the other hand ODinW-13 has much
larger objects. (b) Number of small objects are more common in LVIS dataset and least common
in ODinW-13 dataset. (c) Occlusion patterns reveals denser objects per image in LVIS, lowering
the detection performance overall. (d) Shows the distribution of number of objects per image across
dataset. ODinW-13 has the least number of objects per image across all the images.
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Figure 42: LrTKO+ Trainable prompts added at every frozen layer of transformer.

F CURRICULUM LEARNING

F.1 CURRICULUM LEARNING: FOREGROUND PERTURBATION (LRTKO++)

Previous works (Jarca et al., 2024; Cui et al., 2022; Kong et al., 2023; Saadabadi et al., 2024) have
used Curriculum Learning to improve robustness against low resolution as an alternative to random
augmentation. Curriculum Learning (Bengio et al., 2009; Hacohen & Weinshall, 2019) refers to the
technique of training models, where models are slowly introduced to an increasing difficulty level.
We adapt this training methodology, where the model starts with high-quality data (sev 0, easy) and
gradually introduces more challenging pixelated images (sev € [1,2, 3, 4]) as training progresses.
Models incrementally learn to adapt to new pixelated data distributions.
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However, the general curriculum learning is not catered for object detection specificity. Hence, we
progressively introduce pixelation only within the ground truth (GT) Box regions. This helps the
model learn to detect pixelated objects (foreground) against the ‘familiar’ high-quality surrounding
(background, region outside GT box). For the first threshold 77 = 10" epochs, we randomly apply
the pixelation perturbation only within the GT box, with a probability linearly increasing from [0,1]
from 0" — T}" epochs. After the threshold 7} epochs, we randomly perturb all regions outside the
GT Box, progressively increasing the probability of perturbation from [0,1] until the final epoch,
while GT box is sampled from severity € [1, 2, 3, 4] with a probability of 1.

F.2  BACKGROUND PERTURBATION

Similar to Foreground Perturbation discussed in the previous section F.1, we replace the order of per-
turbation. Until the first threshold 7} = 10*" epochs, we randomly apply the pixelation perturbation
region outside the GT box, with a probability linearly increasing from [0,1] from 0" — T" epochs.
After the threshold 77 epochs, we randomly perturb all regions inside the GT Box, progressively
increasing the probability of perturbation from [0,1] until the final epoch. while the region outside
the GT box is sampled from severity € [1, 2, 3, 4] with a probability of 1

F.3 RANDOM PERTURBATION

As training progresses, the number of patches per image grows proportionally with the train-
ing epoch, reaching up to 50 patches by the final epoch. Additionally, the size range of each
patch expands linearly over time, with the height and width are randomly selected from the range
(0, min(H, W) - [epochcyrrent/€pochiotal]). Following the approach described in section F.1, all
regions within these patches are randomly perturbed. The likelihood of perturbation also increases
progressively throughout training, from O to 1. For each patch, the severity of perturbation is from
severity € [1,2,3,4].

Figure 43: Foreground Continual Learning RGB example. Epochs 1-10 (T1) only foreground
Ground-truth bounding boxes are blurred. Image taken from Flickr30k Entities

Figure 44: Foreground Continual Learning RGB example. Epochs 10 (T1) - 30 (max epochs)
Both foreground & Backgroud gets blurred. Image taken from Flickr30k Entities
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G ETHICAL CONSIDERATIONS & LIMITATION

The diagnostic nature of our study does not obviate its ethical ramifications. We summarize the
principal concerns and corresponding mitigation strategies below.

Dual use and surveillance amplification. Improved robustness to real-world noises can strengthen
downstream systems deployed in closed-circuit television (CCTV), remote sensing, or mobile and
aerial surveillance. While valuable for public-safety tasks (e.g., disaster response, wildlife monitor-
ing), the same capability reduces the technical barrier to pervasive or covert tracking. Practitioners
should adopt privacy-preserving measures and obtain explicit consent before deployment.

Bias propagation under domain shift. Robustness is correlated with object scale and scene com-
position (Sec.4.4). Small or cluttered objects exhibit sharper accuracy degradation, risking the
entrenchment of dataset biases. In safety-critical contexts (autonomous driving, assistive vision),
missed detections of minority classes may exacerbate inequities. Future work should couple robust-
ness evaluation with disaggregated fairness audits spanning demographic, geographic, and socio-
economic strata.

Environmental footprint. We demonstrate that larger transformer backbones (e.g., EVA-02) con-
fer superior robustness. However, training and inference at this scale incur substantial energy and
carbon costs. We argue for future works to explore parameter-efficient robustness techniques—such
as targeted fine-tuning or curriculum learning on degraded inputs—to balance ethical imperatives of
performance and sustainability.carbon emissions in line with emerging standards.

Limitations and future safeguards. Our scope is restricted to inference-side analysis at the mo-
ment. Based on learning that cross-exchanging information across the backbone layers can po-
tentially help robustness remains limited to visualization of test time features. Designing a novel
architecture with this kind of feature enhancer is out of the scope of the resource at hand.

Additionally, the current analysis simulates noise in a synthetic environment. We advocate an ex-
panded robustness-and-ethics benchmark that integrates fairness diagnostics, privacy-leakage as-
says, and real footage, all collected under informed consent.

By foregrounding these issues, we aim to ensure that advances in robust zero-shot detection progress
hand-in-hand with proactive mitigation of societal risks.
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