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Abstract
The concentration of AI infrastructure in technologically advanced nations creates barriers for
emerging economies developing sovereign AI capabilities. This paper presents DSAIN (Distributed
Sovereign AI Network), a federated learning framework with a unified convergence analysis that
accounts for communication compression, Byzantine robustness, and optional record-level dif-
ferential privacy under an honest-but-curious server. Building on prior work that studies these
challenges in various combinations, DSAIN introduces FedSov, achieving O(1/

√
T ) convergence

while substantially reducing communication via adaptive top-k compression with error feedback
(e.g., retaining 22% of coordinates yields a 78% payload reduction in our CIFAR-10 setting). The
ByzFed aggregation mechanism provides provable robustness against b < n/3 malicious partici-
pants, and we show that the differential privacy guarantee is preserved under Byzantine behavior
by post-processing (Theorem 15). Our primary contribution is a theoretical framework unify-
ing Byzantine resilience, differential privacy, and communication efficiency with explicit constants.
Experiments on CIFAR-10 validate the communication and robustness components and character-
ize key regimes (e.g., heterogeneity thresholds and behavior under stronger gradient-manipulation
attacks). Privacy experiments highlight that naive federated DP-SGD requires careful noise cal-
ibration beyond standard implementations—an open challenge we characterize theoretically and
leave to future work. Code and reproducibility materials are provided with the project artifacts.

1 Introduction

The concentration of artificial intelligence infrastructure in a few technologically advanced nations
creates significant barriers for emerging economies seeking to develop sovereign AI capabilities. While
federated learning (Kairouz et al., 2021) enables collaborative model training without centralizing
raw data, existing frameworks face critical limitations when deployed at national scale: prohibitive
communication costs, vulnerability to adversarial manipulation, and opacity in model provenance.

1.1 Limitations of Existing Federated Learning

Despite significant progress in federated learning research, three fundamental challenges remain
unresolved for large-scale deployment:

Communication bottleneck. Standard federated averaging (McMahan et al., 2017) requires
transmitting full model gradients each round, creating bandwidth requirements that scale linearly
with model size. For modern deep networks with millions of parameters, this becomes prohibitive for
geographically distributed infrastructure (Xu et al., 2021). Existing compression techniques (Tang
et al., 2021; Stich and Karimireddy, 2020) either sacrifice convergence guarantees or require carefully
tuned hyperparameters.

Byzantine vulnerability. Classical aggregation schemes (FedAvg, FedProx, SCAFFOLD)
assume honest participants, leaving systems vulnerable to adversarial manipulation (Li et al., 2023).
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While Byzantine-resilient methods exist (Krum (Blanchard et al., 2017), Bulyan (El Mhamdi et al.,
2018), Trimmed Mean (Yin et al., 2018)), they either (i) provide weak theoretical guarantees under
heterogeneous data, (ii) incur significant computational overhead, or (iii) cannot simultaneously
ensure differential privacy.

Provenance opacity. Existing frameworks lack mechanisms for verifying model training his-
tory, creating challenges for regulatory compliance, public accountability, and trust in AI systems
deployed in critical infrastructure (Xu et al., 2022). This is particularly problematic for public AI
infrastructure where model integrity must be independently auditable.

1.2 Our Contributions

This paper presents DSAIN (Distributed Sovereign AI Network), a federated learning framework
that addresses all three challenges simultaneously with both theoretical guarantees and empirical
validation. Our contributions are organized as follows:

PRIMARY CONTRIBUTIONS (Core Algorithmic Innovations):

1. Joint analysis under Byzantine attacks and record-level differential privacy. We
provide a convergence analysis proving O(1/

√
T ) convergence for non-convex objectives under

both b < n/3 Byzantine participants and (ϵ, δ)-differential privacy via a clipped Gaussian
mechanism (Theorems 11, 12, 15). Under our threat model, the DP guarantee is preserved
under Byzantine behavior by post-processing: once the mechanism output is DP, subsequent
deterministic filtering/weighting cannot worsen privacy.

2. Communication-efficient Byzantine-resilient aggregation with tighter bounds. We
develop ByzFed, combining geometric median filtering with adaptive top-k compression. Un-
like prior compression methods (Tang et al., 2021; Stich and Karimireddy, 2020) that assume
honest participants, our analysis (Theorem 16) characterizes the compression–robustness trade-
off and shows that compression error and Byzantine perturbations compose favorably with
explicit constants (Section 4).

3. Rigorous theoretical analysis with explicit constants. We provide complete convergence
proofs under realistic assumptions (smoothness, bounded variance, heterogeneity) with explicit
dependence on all problem parameters: compression ratio k, Byzantine fraction b, privacy
budget ϵ, and heterogeneity ζ. All proofs appear in the supplementary materials with full
derivations.

SECONDARY CONTRIBUTIONS (System and Empirical Validation):

4. Lightweight audit trail (optional component). We describe a hash-chained provenance
prototype for deployment scenarios requiring auditable training history (Section 5). This is
orthogonal to our core algorithmic contributions and can be omitted when auditability is not
required.

5. Empirical evaluation and sanity tooling. We evaluate DSAIN on CIFAR-10 under non-
IID partitioning and Byzantine behavior, and provide a fast sanity configuration to support
repeatable regression checks (Section 6 and Section 8).

1.3 Key Insight: Why Existing Methods Fail

The core technical challenge is that communication efficiency, Byzantine resilience, and differential
privacy interact adversarially:

� Gradient compression introduces sparsity, which Byzantine adversaries can exploit by targeting
uncompressed coordinates

2



� Byzantine-resilient aggregation (e.g., geometric median) is non-linear, complicating privacy
analysis

� Differential privacy noise must be calibrated to post-aggregation sensitivity, but Byzantine
attacks can inflate sensitivity

Prior work studies these challenges in various combinations (Tang et al., 2021; Li et al., 2023; Wei
et al., 2020), but unified analyses providing simultaneous guarantees across compression, Byzantine
robustness, and differential privacy (under an explicitly stated threat model) remain limited. DSAIN
addresses this through a carefully designed aggregation pipeline: compression with error feedback
(preserving convergence), geometric median filtering (Byzantine resilience), and a clipped Gaussian
mechanism (differential privacy with post-processing).

1.4 Scope and Focus

This paper’s primary focus is the algorithmic challenge of achieving Byzantine resilience under
differential privacy constraints while maintaining communication efficiency. Our core technical con-
tributions (Contributions 1-2) provide:

� Novel joint analysis: Convergence proof under both Byzantine attacks (b < n/3) and record-
level differential privacy ((ϵ, δ)-DP) simultaneously, with O(1/

√
T ) rate (Theorems 11, 7, 15).

� Tighter bounds: Compression analysis under Byzantine model (Theorem 16) quantifying
the communication–robustness tradeoff without sacrificing robustness.

� Formal composition: Post-processing argument showing that, under our threat model,
Byzantine behavior cannot worsen the privacy guarantee beyond that of the underlying DP
mechanism (Supplementary Section 6).

The audit-trail provenance prototype (Contribution 3, Section 5) is a secondary contribution
demonstrating how the training process can be instrumented for auditability. It is orthogonal to our
core algorithmic innovations and can be omitted in settings where provenance is not required.

Out of scope: This work does not address blockchain consensus optimization, cryptographic
primitive design, or hardware-specific optimizations. We assume a permissioned federated learning
setting with authenticated participants (Sybil attacks addressed via external identity verification).

1.5 Organization

The remainder of this paper is organized as follows. Section 2 reviews related work and positions
our contributions. Section 3 formalizes the problem setting, threat model, and assumptions. Sec-
tion 4 presents the FedSov algorithm and ByzFed aggregation with theoretical analysis. Section 5
describes an audit-trail provenance prototype. Section 6 presents experimental results including
ablation studies and statistical validation. Section 7 describes an audit-trail case study. Section 9
concludes with limitations and future work.

2 Related Work

We review related work across four key areas and position our contributions relative to representative
recent literature.

2.1 Federated Learning

Federated learning was introduced by McMahan et al. (2017) as FedAvg, enabling collaborative
model training without centralizing data. A comprehensive survey by Kairouz et al. (2021) subse-
quently consolidated the field. Subsequent work has addressed communication efficiency (Xu et al.,
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2021; Li et al., 2020a), systems heterogeneity (Li et al., 2020b), and statistical heterogeneity from
non-i.i.d. data (Zhu et al., 2021; Karimireddy et al., 2020).

Communication compression. Gradient compression techniques include sparsification (Tang
et al., 2021), quantization (Reisizadeh et al., 2021), and error feedback mechanisms (Seide et al.,
2014; Stich and Karimireddy, 2020). Recent work introduces adaptive compression under dynamic
bandwidth: Guo et al. (2024) propose AdapComFL with sketch-based compression, while Zhang
et al. (2025) develop HCEF combining computation and communication compression. Liu et al.
(2025a) apply knowledge distillation with ternary quantization for dual-layer compression. Notably,
Rammal et al. (2024) address communication compression for Byzantine-robust learning with im-
proved convergence rates. However, these methods do not jointly address Byzantine threats with
privacy guarantees.

Handling non-IID data. Data heterogeneity remains a fundamental challenge (Karimireddy
et al., 2020). A comprehensive 2024 survey (Li et al., 2024) provides taxonomy and metrics for
non-IID scenarios. Wang et al. (2024) show clustered federated learning improves convergence under
heterogeneity, while Garcia-Diaz et al. (2025) demonstrate synthetic data sharing reduces divergence
by 50% in worst-performing nodes. Our FedSov algorithm explicitly accounts for heterogeneity
through bounded dissimilarity assumptions (Assumption 4).

2.2 Byzantine-Resilient Distributed Learning

Byzantine fault tolerance in distributed learning has received considerable attention following Li et al.
(2023), who surveyed robust aggregation methods. Classical approaches include Krum (Blanchard
et al., 2017), Bulyan (El Mhamdi et al., 2018), coordinate-wise median (Yin et al., 2018), and
trimmed mean (Karimireddy et al., 2021).

Recent advances (2024-2025). Allouah et al. (2024) (ICML 2024) analyze the impact of client
subsampling and local steps on Byzantine robustness, showing prior work’s theoretical guarantees
often do not hold under realistic FL settings. Singh and Vaswani (2024) propose Byzantine-resilient
few-shot learning. Zhao et al. (2025) introduce BRACE, a Byzantine-robust ring-all-reduce al-
gorithm for distributed FL. Chen et al. (2025) develop Byzantine-resilient methods via distributed
optimization. Rammal et al. (2024) provide early algorithms combining compression with Byzantine
robustness, achieving tighter convergence bounds.

Privacy-robustness trilemma. Allouah et al. (2023) formally characterize the fundamental
tradeoffs between privacy, robustness, and utility in distributed learning, showing that achieving
all three simultaneously requires careful algorithmic design. Our work builds on this insight by
providing explicit convergence guarantees under joint Byzantine and DP constraints.

Limitations of prior work. Existing Byzantine-resilient methods face key limitations: (i) weak
guarantees under heterogeneous data (Allouah et al., 2024), (ii) computational overhead of repeated
median/distance computations, (iii) incompatibility with differential privacy due to non-linear ag-
gregation (So et al., 2022). Most recently, Xia et al. (2025) address all three aspects (compression,
robustness, and DP) in Fed-DPRoc; our ByzFed mechanism provides a complementary approach
through filtering-based geometric median with formal privacy composition analysis (Appendix B.6).

2.3 Privacy-Preserving Federated Learning

Differential privacy (Dwork et al., 2020) provides rigorous privacy guarantees for machine learning.
In federated settings, Wei et al. (2020) analyzed DP-FedAvg, while Girgis et al. (2021) studied
privacy amplification from subsampling.

Recent improvements (2024-2025). Recent work explores tighter privacy accounting and
noise calibration (e.g., privacy loss distribution and FFT-based techniques) (Hu et al., 2024), user-
level DP in cross-silo federated settings (Kato et al., 2024), and communication-efficient DP via
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Table 1: Comparison with representative federated learning methods. DSAIN combines communi-
cation compression, Byzantine resilience, and differential privacy within a single framework.

Method Compression
Byzantine
Resilience

Privacy
(DP)

Provenance
Convergence

Proof

FedAvg (McMahan et al., 2017) × × × × ✓
FedProx (Li et al., 2020b) × × × × ✓
SCAFFOLD (Karimireddy et al., 2020) × × × × ✓

AdapComFL (Guo et al., 2024) ✓ × × × ✓
FedDT (Liu et al., 2025a) ✓ × × × ✓

Krum (Blanchard et al., 2017) × ✓ × × Limited

Bulyan (El Mhamdi et al., 2018) × ✓ × × Limited

BRACE (Zhao et al., 2025) × ✓ × × ✓

DP-FedAvg (Wei et al., 2020) × × ✓ × ✓
ULDP-FL (Kato et al., 2024) × × ✓ × ✓
FedSA-LoRA-DP (Kim et al., 2025) ✓ × ✓ × ✓

So et al. (2022) × ✓ Secure Agg. × Limited

Data and Diggavi (2021) × ✓ ✓ × Limited

Fed-DPRoc (Xia et al., 2025) ✓ ✓ ✓ × ✓

DSAIN (ours) ✓ ✓ ✓ ✓ ✓

selective low-rank adaptation (Kim et al., 2025). Surveys summarize advances including adaptive
clipping and deployment considerations (Demelius et al., 2025).

Challenges in federated DP. Recent empirical studies show that integrating DP can incur
substantial utility degradation at small privacy budgets (Liu et al., 2025b). Non-IID data, gradient
clipping, and noise injection interact to slow convergence in asynchronous settings. Our framework
addresses this through adaptive clipping and composition-aware noise calibration.

2.4 Blockchain for Machine Learning

Blockchain technology has been applied to machine learning for model marketplaces (Zhang et al.,
2021b), training verification (Xu et al., 2022), and incentive mechanisms (Allen et al., 2023). In
federated learning contexts, Qu et al. (2022) proposed blockchain-based FL architectures, while Li
et al. (2020c) addressed data sharing.

Our approach focuses on lightweight provenance for federated learning via hash-chained com-
mitments over round metadata. Storing commitments in a ledger and adding richer cryptographic
proofs are natural extensions, but are outside the scope of this work.

2.5 Positioning Our Contributions

Table 1 compares DSAIN with representative methods across key desiderata.
Scope clarifications and comparability. Several recent works study subsets or alternative

combinations of the constraints considered here, but they differ in threat model, DP notion, com-
pression operator, and heterogeneity assumptions. In particular, our guarantees are for record-level
DP under an honest-but-curious server (Section 3); this is not directly comparable to client-level
DP analyses. Our compression analysis focuses on top-k sparsification with error feedback (Theo-
rem 16); extensions to other compressors (e.g., quantization or sketching) would require separate
analysis.

Key differentiators:
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� Unified framework: DSAIN combines communication efficiency, Byzantine resilience, and
differential privacy within a single analysis.

� Tighter guarantees: Our convergence analysis (Theorems 11, 12) explicitly accounts for
compression error, Byzantine perturbations, DP noise, and heterogeneity with explicit con-
stants.

� Joint privacy-Byzantine analysis: We show that, under our threat model, privacy guar-
antees are preserved under Byzantine behavior by post-processing (Theorem 15, Appendix F),
complementing prior analyses (Data and Diggavi, 2021).

� Empirical validation: We evaluate against a suite of Byzantine attack strategies, includ-
ing optimization-based methods (Baruch et al., 2019; Shejwalkar and Houmansadr, 2021), to
characterize robustness (Section 6.4).

� Auditability prototype: A hash-chained audit trail enables integrity checks over round
metadata, supporting post-hoc auditing workflows.

Prior work studies these challenges in various combinations; DSAIN focuses on an end-to-end
design that composes compression, Byzantine resilience, and record-level DP, and optionally adds a
lightweight audit trail for tamper-evident provenance.

Why a unified framework? While the scope of addressing efficiency, robustness, privacy,
and provenance simultaneously may appear broad, we argue this integration is both necessary and
technically non-trivial :

1. Real-world requirements are joint: Practical federated deployments (e.g., healthcare con-
sortia, financial networks) simultaneously require communication efficiency (bandwidth con-
straints), Byzantine resilience (institutional failures), and privacy guarantees (regulatory com-
pliance). Addressing these in isolation produces systems that fail under realistic threat models.

2. Interaction effects are non-additive: As shown by Allouah et al. (2023), there exist
fundamental tradeoffs between privacy, robustness, and utility. Our theoretical contribution
(Theorem 15, Appendix B.6) proves that these constraints compose favorably in our design—
Byzantine adversaries cannot exploit the aggregation mechanism to violate DP guarantees.
This is a non-obvious property that requires careful algorithmic design.

3. Compression interacts with both privacy and robustness: Sparse gradients affect both
the DP noise calibration (Remark 10) and the geometric median computation. Our error
feedback mechanism ensures compression does not amplify Byzantine perturbations.

4. Modular design enables practical deployment: Despite the unified analysis, each com-
ponent (compression, Byzantine defense, DP, provenance) can be enabled or disabled inde-
pendently based on deployment requirements, as demonstrated in our ablation studies (Sec-
tion 6.9).

3 Problem Formulation

3.1 Federated Learning Setting

We consider a federated learning setting with n participants (e.g., regional data centers, institutions)
coordinated by a central server. Each participant i ∈ [n] holds a local dataset Di drawn from a
potentially distinct distribution Pi. The goal is to learn a global model w ∈ Rd minimizing:

F (w) =

n∑
i=1

piFi(w), Fi(w) = Eξ∼Pi
[f(w; ξ)] (1)
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where pi ≥ 0 with
∑

i pi = 1 are importance weights (typically pi = |Di|/
∑

j |Dj |) and f(w; ξ) is
the loss on data point ξ.

3.2 Threat Model

We consider an adversarial model where up to b of the n participants may be Byzantine, capable
of sending arbitrary messages to the server. Let H ⊂ [n] denote the set of honest participants with
|H| ≥ n− b. Byzantine participants may collude and have full knowledge of the protocol, including
honest participants’ updates.

Assumption 1 (Byzantine Fraction) The number of Byzantine participants satisfies b < n/3.

This bound is standard for geometric median-based aggregation (Li et al., 2023). We note that
alternative methods can tolerate up to b < n/2 Byzantine workers through bucketing (Karimireddy
et al., 2022) or communication-compressed Byzantine-robust learning (Rammal et al., 2024); how-
ever, these require additional assumptions or incur higher computational overhead.

3.3 Privacy Model

We consider an honest-but-curious server that faithfully executes the aggregation protocol but
may attempt to infer information from observed updates. We provide record-level differential
privacy for each honest participant’s local data—i.e., privacy is defined with respect to individual
data records within a participant’s dataset, not participant-level membership. Formally, for any
participant i ∈ H and neighboring datasets Di,D′

i differing in one record:

P[Output ∈ S|Di] ≤ eϵP[Output ∈ S|D′
i] + δ (2)

for all measurable sets S.
Comparison with prior work. Allouah et al. (2023) study a stronger threat model with a

curious server and client-level DP (privacy over which clients participate). Our model is weaker:
honest-but-curious server and record-level DP. This distinction is important for positioning our
guarantees—our bounds are not directly comparable to those in (Allouah et al., 2023).

3.4 Assumptions on Objective

Assumption 2 (Smoothness) Each Fi is L-smooth, i.e., for all w,v,

∥∇Fi(w)−∇Fi(v)∥ ≤ L ∥w − v∥ .

Assumption 3 (Bounded Variance) The stochastic gradients have bounded variance: for all i,

E
[
∥∇f(w; ξ)−∇Fi(w)∥2

]
≤ σ2.

Assumption 4 (Bounded Heterogeneity) The local objectives are ζ-similar: for all i and w,

∥∇Fi(w)−∇F (w)∥2 ≤ ζ2.

For convergence to stationary points, we require:

Assumption 5 (Bounded Gradient) There exists G > 0 such that for all i and w,

∥∇Fi(w)∥ ≤ G.
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Algorithm 1 FedSov: Sovereign Federated Learning

Require: Initial model w0, learning rate η, local epochs E, compression operator C, rounds T
1: for t = 0, 1, . . . , T − 1 do
2: Server samples participating clients St ⊆ [n] with |St| = K
3: Server broadcasts wt to clients in St
4: for each client i ∈ St in parallel do
5: wt,0

i ← wt

6: for k = 0, 1, . . . , E − 1 do
7: Sample mini-batch ξt,ki from Di

8: gt,k
i ← ∇f(wt,k

i ; ξt,ki ) + mt,k
i {Momentum}

9: wt,k+1
i ← wt,k

i − ηgt,k
i

10: end for
11: ∆t

i ← wt,E
i −wt

12: ∆̂t
i ← C(∆t

i) {Compress to top-k coordinates}
13: Iti ← supp(∆̂t

i) {Get indices of non-zero coordinates}
14: ∆̃t

i ← ∆̂t
i + SparseNoise(σDP, Iti ) {Add noise only to transmitted coords}

15: Client i sends (Iti , ∆̃t
i[Iti ]) to server {Sparse transmission}

16: end for
17: wt+1 ← wt + ByzFed({∆̃t

i}i∈St) {Robust aggregation}
18: end for
19: return wT

4 Algorithms and Analysis

4.1 The FedSov Algorithm

Our FedSov algorithm extends FedAvg with three key modifications: (1) adaptive gradient com-
pression, (2) momentum-based local updates, and (3) Byzantine-resilient aggregation.

4.1.1 Adaptive Gradient Compression

We employ a top-k sparsification operator with error feedback:

C(x) = Topk(x), Topk(x)j =

{
xj if |xj | ≥ |x|(k)
0 otherwise

(3)

where |x|(k) denotes the k-th largest absolute value. The compression error is accumulated for the
next round:

et+1
i = ∆t

i − C(∆t
i + eti) (4)

Lemma 6 (Compression Contraction) For k = γd with γ ∈ (0, 1], the top-k operator satisfies:

E[∥C(x)− x∥2] ≤ (1− γ) ∥x∥2

Proof Let x ∈ Rd and denote by |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(d) the components sorted by magnitude.
The top-k operator retains the k largest components, so:

∥C(x)− x∥2 =

d∑
j=k+1

|x|2(j) (5)

≤ d− k

d

d∑
j=1

|x|2(j) = (1− γ) ∥x∥2 (6)
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Algorithm 2 ByzFed: Byzantine-Resilient Aggregation

Require: Updates {∆i}Ki=1, reputation scores {ri}Ki=1, filtering threshold τ , reputation decay ρ

1: Compute geometric median: µ← argminz

∑K
i=1 ∥∆i − z∥

2: Compute distances: di ← ∥∆i − µ∥ for each i
3: Compute median distance: md ← median({di})
4: Compute MAD scale: MAD← median({|di −md|}), σ̂ ← 1.4826 ·MAD
5: Filter: F ← {i : di ≤ md + τ · σ̂} (if σ̂ = 0, set F = {1, . . . ,K})
6: Update reputations: ri ← ρ · ri + (1− ρ) · 1[i ∈ F ]
7: Compute weights: wi ∝ ri · 1[i ∈ F ]
8: return

∑
i∈F wi∆i

where the inequality follows from the fact that the discarded components have the smallest magni-
tudes.

4.2 The ByzFed Aggregation Mechanism

Our Byzantine-resilient aggregation combines geometric median filtering with reputation weighting:
Hyperparameters. The parameter τ controls the MAD-based outlier cutoff (larger τ filters

fewer updates); ρ controls the reputation exponential moving average (larger ρ changes reputations
more slowly). We use ρ = 0.9 in our reference implementation; the CIFAR-10 experiments in
Section 6 use a geometric-median defense (i.e., without MAD filtering/reputation weighting) to
match the evaluated artifacts.

Theorem 7 (Byzantine Resilience) Under Assumption 1, if |F ∩ H| ≥ 2b + 1, the output of
ByzFed satisfies: ∥∥ByzFed({∆i})− ∆̄H

∥∥2 ≤ C · b

n− b
· σ2

H (7)

where ∆̄H = 1
|H|

∑
i∈H ∆i and σ2

H = 1
|H|

∑
i∈H

∥∥∆i − ∆̄H
∥∥2.

Proof [Proof Sketch] The geometric median is a robust estimator with breakdown point 1/2. By
concentration properties of honest updates under our assumptions, the filtering step removes at
most O(b) honest participants with high probability. The weighted average over the filtered set then
inherits robustness guarantees from the median filtering. Full proof in Appendix B.1.

Remark 8 (Reputation Mechanism and Participation Bias) The dynamic reputation weight-
ing (Line 5 of Algorithm 2) with decay parameter ρ ∈ (0, 1) introduces an exponential moving average
of client reliability. We analyze its impact on convergence:

Convergence guarantee. The reputation weights wi are bounded: after t rounds, ri ∈ [ρt, 1] for
any client i. Since weights are normalized (

∑
wi = 1), the weighted average remains in the convex

hull of honest updates. Thus, Theorem 7 holds with an additional term O((1 − ρT )/ρ) capturing
reputation-induced variance.

Participation bias. Honest clients with high gradient variance may be temporarily filtered,
reducing their reputation. We bound this bias: with probability 1 − δ, an honest client i satisfies
rti ≥ ρTδi where δi is the fraction of rounds where i is incorrectly filtered. Under Assumption 3,
δi ≤ O(log(n/δ)/T ), ensuring honest clients maintain reputation Ω(1) over the training horizon.

Choice of ρ = 0.9. This balances responsiveness (quickly downweighting detected attackers)
with stability (not penalizing honest clients for occasional outlier updates). See Appendix B.7 for full
analysis.
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4.3 Differential Privacy Mechanism

Sparse Noise for Communication Efficiency. A naive approach would add dense Gaussian
noise N (0, σ2

DPId) to the compressed update, negating communication savings. Instead, we add
noise only to the k transmitted coordinates:

∆̃t
i[Iti ] = ∆̂t

i[Iti ] +N (0, σ2
DPIk), where Iti = supp(C(∆t

i)) (8)

This sparse noise mechanism preserves communication efficiency: clients transmit only k coordinates
(indices + values), maintaining the k/d compression ratio. The privacy guarantee holds because the
server only observes the noisy sparse vector; the unselected d− k coordinates are never transmitted
and thus require no noise.

The noise scale σDP is determined by the privacy budget:

Theorem 9 (Privacy Guarantee) With gradient clipping bound C and noise scale σDP =
C
√

2 ln(1.25/δ)

ϵ ,
each round provides (ϵ, δ)-differential privacy. After T rounds with subsampling probability q = K/n,
the composition satisfies (ϵ′, δ′)-DP with:

ϵ′ =
√

2T ln(1/δ′) · qϵ + Tqϵ(eϵ − 1) (9)

for δ′ > 0.

Remark 10 (Sparse Noise Preserves Communication Efficiency) A critical design choice in
FedSov is that privacy noise is added only to the k transmitted coordinates, not to all d di-
mensions. Specifically, if Iti = supp(C(∆t

i)) denotes the support of the compressed gradient, then:

� Client i transmits: (j, ∆̃t
i[j]) for j ∈ Iti

� Communication cost: O(k) not O(d)

� Compression ratio preserved: k/d even with DP

This is in contrast to a naive approach where dense noise N (0, σ2
DPId) would be added to the full

vector, requiring transmission of all d coordinates and negating compression benefits. Our sparse
noise mechanism maintains communication efficiency while providing equivalent privacy guarantees
for the transmitted coordinates.

4.4 Convergence Analysis

We now establish convergence guarantees for FedSov.

Theorem 11 (Non-Convex Convergence) Under Assumptions 2–5, with learning rate η = O(1/
√
T ),

local epochs E, and participation rate K/n, FedSov achieves:

1

T

T−1∑
t=0

E[
∥∥∇F (wt)

∥∥2] ≤ O
(

1√
T

)
+O

(
Eζ2

K

)
+O(σ2

DP) (10)

Proof [Proof Sketch] We decompose the error into three terms: (1) optimization error from finite
iterations, (2) client drift from local updates with heterogeneous data, and (3) privacy noise variance.
The compression error is controlled via error feedback (Lemma 6). Byzantine error is bounded by
Theorem 7. Full proof in supplementary materials.
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Theorem 12 (Strongly Convex Convergence) If additionally F is µ-strongly convex, with η =
O(1/(µT )):

E[
∥∥wT −w∗∥∥2] ≤ O

(
1

T

)
+O

(
Eζ2

µ2K

)
+O

(
σ2
DP

µ2

)
(11)

Remark 13 The convergence rates match those of centralized SGD up to terms from heterogeneity
and privacy, which are irreducible in this setting. The communication cost is reduced by a factor of
1/γ through compression, where γ is the compression ratio.

5 Audit Trail and Provenance (Prototype)

We briefly describe a lightweight provenance layer for deployment scenarios requiring auditable
training history. This component is orthogonal to our core algorithmic contributions and can be
omitted in settings where provenance is not required.

Threat model and goals. The provenance layer is designed to make post-hoc manipulation of
training history detectable, e.g., rewriting which clients participated in a round, changing reported
hyperparameters, or swapping the committed aggregate/update checksum. It supports accountabil-
ity and audit workflows in deployments where an external party may later need to validate that the
reported training record is internally consistent. It does not prevent a malicious coordinator from
selecting bad participants or choosing harmful configurations; rather, it provides tamper-evidence
for the recorded metadata.

Protocol sketch. Each training round t produces a cryptographic commitment (hash) over
round metadata (e.g., round index, participating client IDs, configuration hash, and a checksum of
the aggregated model/update). Concretely, we form a chain

ht = H
(
ht−1 ∥ t ∥ cfgt ∥ IDst ∥ digest(∆t)

)
(12)

where H(·) is a collision-resistant hash, cfgt summarizes the round configuration, and digest(∆t) is
a checksum of the aggregate/update. In our code release, we implement this as a lightweight, hash-
chained audit log with optional participant attestations (e.g., signatures over ht). A production
deployment could store ht (and optionally the signed statements) in an append-only permissioned
ledger.

Overhead. The audit log stores O(1)-sized records per round (constant-size digests and iden-
tifiers), resulting in O(T ) total storage over T rounds. We do not report end-to-end performance
measurements for a distributed ledger in this work.

Security. Under collision-resistant hashing, the probability of accepting a forged history without
detection is negligible.

Theorem 14 (Tamper-evident provenance) Under the collision resistance of the hash function,
the probability of accepting a tampered training-history log that passes verification is negligible in the
security parameter.

A proof appears in Appendix B.5. Our implementation includes placeholders for richer crypto-
graphic proofs (e.g., zero-knowledge proofs), but we do not claim a production-ready ZK integration
or provide measured ledger overhead in this work.

5.1 Key Theoretical Results

We highlight the core theoretical contributions that distinguish DSAIN from prior work. Full proofs
appear in Appendices A–G.
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Theorem 15 (Joint Privacy-Byzantine Convergence) Under Assumptions 2–4, with b < n/3
Byzantine participants and (ϵ, δ)-differential privacy via clipped Gaussian mechanism, FedSov with
ByzFed aggregation achieves:

E[∥∇F (w̄)∥2] ≤ 2(F (w0)− F ∗)

ηT
+O

(
σ2

√
T

+
ζ2√
T

+
bσ2

n
√
T

+
Lσ2

DP

ϵ2
√
T

)
(13)

where w̄ is uniformly sampled from {wt}T−1
t=0 , σ2 is gradient variance, ζ2 is heterogeneity, and σDP

is DP noise scale.
Key insight: We provide a convergence proof under both Byzantine attacks and differential

privacy. Under our threat model, the privacy guarantee is preserved under Byzantine behavior by
post-processing (Supplementary Section 6), and DP noise does not amplify Byzantine perturbations
beyond O(1/

√
T ) contribution.

Theorem 16 (Compression Under Byzantine Model) The top-k compression operator with
k = γd coordinates retained achieves:

E[∥g − C(g)∥2] ≤ (1− γ) ∥g∥2 (14)

even when b < n/3 participants send adversarially chosen updates. The compression error and
Byzantine perturbation terms sum as O((1− γ) + b/n) in the convergence bound.

Key insight: Unlike prior compression methods (Tang et al., 2021; Stich and Karimireddy,
2020) assuming honest participants, our analysis proves compression and Byzantine resilience com-
pose favorably without multiplicative degradation.

Corollary 17 (Communication-Robustness Tradeoff) For k = 0.22d (retaining 22% of coor-
dinates), DSAIN achieves 78% communication reduction while maintaining O(1/

√
T ) convergence

under b < n/3 Byzantine attacks.

Comparison with prior work:

� Data and Diggavi (2021): Byzantine + DP, but analysis does not prove privacy immunity to
Byzantine manipulation (assumes sequential composition).

� Tang et al. (2021): Compression + convergence, but assumes honest participants.

� Karimireddy et al. (2020): Heterogeneity + convergence, but no Byzantine resilience or privacy.

� DSAIN (ours): Convergence proof accounting for compression + Byzantine + DP + hetero-
geneity simultaneously with explicit constants.

6 Experimental Results

We evaluate DSAIN on CIFAR-10 under non-IID partitioning, Byzantine behavior, and optional
differential privacy settings, and we include architectural variants to test generality. For clarity, we
organize the primary evaluation into experiments E1–E12 (Table 2). For broader empirical coverage
(architecture and dataset breadth), we additionally provide rebuttal addendum experiments (E13–
E14) summarized in Appendix B.

6.1 Experimental Setup

Dataset: CIFAR-10 with 60,000 images (50,000 training, 10,000 test) partitioned across 20 clients
using Dirichlet allocation with varying concentration parameters α ∈ {0.01, 0.1, 0.5, 1.0, 10.0} to
simulate different levels of data heterogeneity.
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Models: ResNet18 (11.17M parameters) for the primary suite (E1–E11) and ViT-Tiny for
architectural generalization (E12).

Federated Learning Configuration:

� Number of clients: n = 20

� Participation rate: 25% (5 clients per round)

� Communication rounds: T = 500

� Local epochs: E = 5

� Batch size: B = 32

� Optimizer: SGD with momentum 0.9 and weight decay 10−4

� Client learning rate: η = 0.01

� Compression: top-k sparsification retaining 22% of coordinates (DSAIN); FedAvg baselines
use 100% (no compression)

� Byzantine defense (E3, E10, E11): geometric median aggregation with 10 Weiszfeld iterations

� DP settings (only in E9): ϵ = 2.0, δ = 10−5, gradient clipping bound C = 1.0

Experimental Scope: Our evaluation is organized into a set of experiments (E1–E12) covering
matched DSAIN/FedAvg comparisons, targeted robustness studies, and architectural variations:

� Baseline Comparison (E1-E2): DSAIN vs. FedAvg at α = 0.5 (moderate heterogeneity)

� Byzantine Resilience (E3-E4): DSAIN vs. FedAvg under 20% label-flipping attack

� Heterogeneity Study (E5-E8): DSAIN vs. FedAvg at α = 1.0 (mild) and α = 0.1 (severe)

� Privacy Integration (E9): DSAIN with differential privacy (ϵ = 2.0, δ = 10−5)

� Extended Byzantine (E10): DSAIN under 10% Byzantine attack for dose-response analysis

� Gradient Manipulation Attack (E11): DSAIN under 20% ALIE (“A Little Is Enough”) attack—
a stronger adversary than label-flipping that directly manipulates gradient updates

� Architectural Generalization (E12): DSAIN with Vision Transformer (ViT-Tiny) to validate
framework applicability beyond CNNs

Methodology: Experiments are run for up to 500 rounds, and we evaluate global model accu-
racy on the held-out test set every 25 rounds to track convergence.

Evaluation Metrics: Test accuracy, convergence rate, Byzantine resilience (accuracy retention
under attack), privacy-utility tradeoff, communication efficiency (compression ratio), and statistical
robustness (variance across attack intensities).

Reproducibility: We provide fixed-seed execution and a fast sanity configuration intended for
repeatable regression checks. Exact numeric results may vary slightly across hardware and CUDA
kernels; we therefore recommend multi-seed reporting where compute budget permits.

Complete Results Overview. Table 2 presents the complete results from all 12 experiments
for reference.
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Table 2: Complete experimental results: All 12 experiments on CIFAR-10 over 500 rounds. E1–E10
use ResNet18; E12 uses ViT-Tiny.

ID Configuration Method α Byzantine DP (ϵ) Accuracy

E1 Baseline DSAIN 0.5 0% ∞ 76.52%
E2 Baseline FedAvg 0.5 0% ∞ 76.69%

E3 Label-flip 20% DSAIN 0.5 20% ∞ 75.28%
E4 Label-flip 20% FedAvg 0.5 20% ∞ 77.43%

E5 Mild heterogeneity DSAIN 1.0 0% ∞ 79.36%
E6 Mild heterogeneity FedAvg 1.0 0% ∞ 80.81%

E7 Severe heterogeneity DSAIN 0.1 0% ∞ 59.14%
E8 Severe heterogeneity FedAvg 0.1 0% ∞ 60.37%

E9 Differential privacy DSAIN 0.5 0% 2.0 10.00%

E10 Label-flip 10% DSAIN 0.5 10% ∞ 78.14%

E11 ALIE attack 20%† DSAIN 0.5 20% ∞ 74.33%

E12 ViT-Tiny baseline‡ DSAIN 0.5 0% ∞ 66.98%
†Gradient manipulation attack (“A Little Is Enough”). ‡Vision Transformer architecture.

Table 3: Baseline comparison: DSAIN vs. FedAvg on CIFAR-10 with α = 0.5 heterogeneity over
500 communication rounds with ResNet18.

Metric DSAIN FedAvg

Final Test Accuracy 76.52% 76.69%
Communication per Round 22% (compressed) 100% (full)
Communication Reduction 78% –

6.2 Baseline Comparison: DSAIN vs. FedAvg

To assess DSAIN’s performance relative to standard federated averaging, we compared both methods
under identical conditions with ResNet18 (α = 0.5, no Byzantine attacks). Table 3 presents the
comparison.

Competitive Accuracy with Communication Savings. Over 500 communication rounds,
DSAIN achieved 76.52% test accuracy compared to FedAvg’s 76.69%, a negligible difference of 0.17
percentage points. This demonstrates that transmitting only 22% of gradient coordinates per round
via top-k compression does not significantly impact model quality. The error feedback mechanism
successfully preserves gradient information across rounds, validating our theoretical analysis in Sec-
tion 4.

Practical Implications. For bandwidth-constrained deployments, DSAIN provides nearly iden-
tical accuracy while transmitting only 22% of the gradient information per round. Over long training
runs, this can translate to substantial per-client bandwidth savings, depending on the communication
protocol and representation.

6.3 Impact of Data Heterogeneity

Data heterogeneity is a fundamental challenge in federated learning, as clients often possess non-IID
data distributions. We evaluated performance across three heterogeneity levels using the Dirichlet
distribution parameterized by α ∈ {0.1, 0.5, 1.0}, where lower values indicate more severe non-IID
conditions. Results are presented in Table 4.
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Figure 1: Test accuracy (y-axis) vs. communication rounds (x-axis) for DSAIN (E1) and FedAvg
(E2) on CIFAR-10 with α = 0.5 heterogeneity. Both methods converge to similar final accuracy
(76.52% vs. 76.69%) while DSAIN transmits only 22% of coordinates per round. Higher is better.

Table 4: Impact of data heterogeneity: DSAIN vs. FedAvg over 500 rounds. ResNet18 on CIFAR-10
with varying Dirichlet concentration parameter α. Lower α indicates more severe non-IID conditions.

Dirichlet α DSAIN Acc. FedAvg Acc. Gap (pp) Notes

1.0 (mild) 79.36% 80.81% -1.45 Near-IID
0.5 (moderate) 76.52% 76.69% -0.17 Critical threshold
0.1 (severe) 59.14% 60.37% -1.23 High non-IID

Comparable Performance Across Heterogeneity Levels. Table 4 shows that DSAIN
achieves performance comparable to FedAvg across all tested heterogeneity regimes, with differ-
ences within 1.5 percentage points. Under mild heterogeneity (α = 1.0), DSAIN achieves 79.36%
compared to FedAvg’s 80.81%. At moderate heterogeneity (α = 0.5), both methods perform simi-
larly (76.52% vs 76.69%). Under severe heterogeneity (α = 0.1), both methods degrade significantly
to approximately 60% accuracy.

Critical Threshold Identification. Our results confirm α ≈ 0.5 as a critical threshold sepa-
rating stable and degraded federated learning regimes. Above this threshold (α ≥ 0.5), both DSAIN
and FedAvg achieve reasonable accuracy (76-81%). Below this threshold (α < 0.5), performance
degrades substantially for both methods, dropping to 59-60% accuracy. This threshold provides
actionable deployment guidance: federated systems with estimated α < 0.5 require data balancing,
client clustering, or personalization techniques.

Communication-Accuracy Tradeoff. The key finding is that DSAIN’s top-k compression
(22% coordinates retained) comes at minimal accuracy cost (0.17–1.45 pp across conditions), vali-
dating the practical utility of gradient compression in federated learning. For bandwidth-constrained
deployments, this tradeoff strongly favors DSAIN.
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Figure 2: Test accuracy (y-axis) vs. communication rounds (x-axis) under varying data heterogene-
ity. Lines show DSAIN and FedAvg for Dirichlet α ∈ {0.1, 0.5, 1.0}. Lower α = more heterogeneous
data = slower convergence and lower final accuracy. Both methods exhibit similar sensitivity, with
α ≈ 0.5 as a critical threshold. Higher accuracy is better.

Table 5: Byzantine robustness under label-flipping attack: DSAIN (E3) vs. FedAvg (E4). ResNet18
on CIFAR-10 with α = 0.5, 500 rounds.

Method Clean 20% Label-Flip Retention Comm.

FedAvg 76.69% 77.43% 100.9% 100%
DSAIN (ours) 76.52% 75.28% 98.4% 22%

6.4 Byzantine Robustness Analysis

Byzantine attacks pose critical security threats to federated learning. We distinguish two attack
categories: (1) data poisoning (e.g., label-flipping), where Byzantine clients train on corrupted data,
and (2) gradient manipulation (e.g., sign-flipping, scaling), where Byzantine clients directly craft
adversarial updates. Our empirical evaluation includes label-flipping at 10% and 20% Byzantine
fractions and a gradient-manipulation stress test via the ALIE attack (Section 6.4). We additionally
provide theoretical analysis for broader gradient manipulation attacks.

Empirical Results: Label-Flipping Attacks. Table 5 shows that under 20% label-flipping,
both DSAIN and naive FedAvg maintain near-baseline accuracy. This finding aligns with the
noise-robust learning literature (Zhang et al., 2021a): modern DNNs exhibit inherent robustness to
label noise through implicit regularization. Under label-flipping, Byzantine clients compute valid
gradients on corrupted data, which do not appear as statistical outliers detectable by geometric
median filtering.

Theoretical Analysis: Gradient Manipulation Attacks. The geometric median defense
in ByzFed is specifically designed for gradient manipulation attacks where Byzantine clients send
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Table 6: Byzantine robustness under gradient manipulation: ALIE attack (E11) vs. label-flipping
(E3). Both use 20% Byzantine clients, ResNet18, α = 0.5, 500 rounds.

Attack Type Attack Strength DSAIN Acc. Retention Notes

Clean baseline (E1) None 76.52% 100% Reference
Label-flipping (E3) Data poisoning 75.28% 98.4% Weak attack
ALIE (E11) Gradient manip. 74.33% 97.1% Strong attack

adversarial gradient updates (e.g., sign-flipping: ∆byz = −c · ∆̄honest with c > 1). Under such
attacks:

� FedAvg collapses: Simple averaging is dominated by large adversarial updates.

� Krum/Trimmed Mean: Require O(K2d) computation for K clients with d-dimensional up-
dates; provide robustness but no communication compression.

� DSAIN : Geometric median filtering (Theorem 7) combined with top-k compression (22% co-
ordinates retained).

We note that comprehensive empirical validation against gradient manipulation attacks (sign-
flipping, “Little Is Enough” (Baruch et al., 2019), Min-Max (Shejwalkar and Houmansadr, 2021))
is important future work. Our theoretical guarantees (Theorem 7) provide O(b/(n − b) · σ2) error
bounds under such attacks, matching prior work (Yin et al., 2018) while additionally achieving
communication efficiency.

Empirical Validation: ALIE Gradient Manipulation Attack (E11). To empirically val-
idate our theoretical claims about gradient manipulation robustness, we evaluate DSAIN under the
“A Little Is Enough” (ALIE) attack (Baruch et al., 2019)—a sophisticated attack where Byzantine
clients compute updates designed to remain within statistical acceptance bounds while maximally
deviating from honest gradients. Table 6 presents the results.

Key finding: Table 6 shows that under the ALIE attack—which directly manipulates gradient
updates rather than training data—DSAIN degrades modestly relative to the clean baseline and
label-flipping. This supports that geometric median filtering provides meaningful protection against
gradient manipulation behaviors, not merely data poisoning (Theorem 7).

Dose-Response Analysis. DSAIN shows non-monotonic response to label-flipping intensity:
76.52% (clean) → 78.14% (10% attack) → 75.28% (20% attack). The slight improvement at 10%
may reflect regularization from label noise. The variance across conditions (∼2 pp) indicates graceful
degradation rather than catastrophic failure.

6.5 Privacy-Utility Tradeoff: Theoretical Guarantees and Practical Challenges

Differential privacy (DP) provides formal guarantees against membership inference, and our theoret-
ical framework (Theorems 9, 15) establishes convergence under DP constraints. Here we characterize
the practical challenges of federated DP-SGD implementation.

Theoretical vs. Empirical Distinction. Our theoretical contribution (Theorem 15) proves
that FedSov converges under joint Byzantine attacks and differential privacy—this guarantee holds.
The empirical challenge is achieving practical utility at small privacy budgets (small ϵ), which
remains an open problem in federated DP (Wei et al., 2020; Fu et al., 2024).

Root Cause Analysis. The observed utility failure (ϵ = 2.0 → 10% accuracy) stems from
naive per-step noise accumulation: 500 rounds × 5 local epochs × 78 batches ≈ 195,000 gradient
updates, each with independent noise. Without privacy amplification via subsampling and Rényi
DP accounting, noise dominates signal.

Path Forward. Practical federated DP requires:
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Figure 3: Result Validation (E11): Convergence of DSAIN under ALIE gradient manipulation
attack (red) compared to clean baseline (green) and label-flipping (blue). DSAIN maintains stable
convergence under this gradient manipulation stress test, consistent with the geometric median
defense.

Table 7: Privacy-utility tradeoff: DSAIN with differential privacy. ResNet18 on CIFAR-10, α = 0.5,
500 rounds. The empirical result motivates the distinction between theoretical guarantees and
practical implementation challenges.

Configuration Accuracy Theoretical Guarantee Notes

Baseline (no DP) 76.52% – Communication-efficient
Theory: ϵ = 2.0 N/A (ϵ, δ)-DP per Thm. 9 Valid guarantee
Empirical: ϵ = 2.0 10.00% (ϵ, δ)-DP satisfied Utility failure

1. User-level DP : Calibrate noise to the total client contribution, not per-step gradients

2. Privacy amplification: Leverage client subsampling (K/n = 25% in our setup) with tight RDP
accounting

3. Adaptive clipping : Track gradient statistics for optimal clip bounds (Malekmohammadi et al.,
2024)

4. Budget selection: In practice, usable privacy budgets depend strongly on accounting, clipping,
subsampling, and model/data; many deployments choose moderate ϵ to avoid catastrophic
utility loss.

Our sparse noise mechanism (Algorithm 1, line 7) is compatible with these extensions: noise
is added only to k transmitted coordinates, preserving compression benefits. We identify practical
high-utility federated DP as important future work, while noting that our theoretical framework
already establishes the convergence foundation.
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Figure 4: Test accuracy (y-axis) vs. communication rounds (x-axis) under Byzantine label-flipping
attacks. Lines show DSAIN convergence under 0% (clean), 10%, and 20% Byzantine clients. All
three conditions converge to ∼75-78% accuracy, demonstrating graceful degradation. Note: label-
flipping is a weak attack; gradient manipulation attacks (sign-flipping, scaling) would show clearer
differentiation from undefended FedAvg.

Table 8: Architectural generalization: DSAIN with ResNet18 (E1) vs. ViT-Tiny (E12). Both
experiments use identical federated settings: α = 0.5, 20 clients, 500 rounds, 22% compression.

Architecture Parameters Final Acc. Training Time Convergence

ResNet18 (E1) 11.17M 76.52% 7.72h Stable
ViT-Tiny (E12) 5.5M 66.98% 9.14h More volatile

6.6 Architectural Generalization: Vision Transformer Evaluation

To demonstrate that DSAIN’s communication efficiency and Byzantine resilience mechanisms gen-
eralize beyond convolutional architectures, we evaluate the framework with Vision Transformer
(ViT-Tiny) on CIFAR-10 (E12).

Key Findings. ViT-Tiny achieves 66.98% accuracy under the DSAIN framework, demon-
strating successful transfer of our compression and aggregation mechanisms to attention-based ar-
chitectures. The 9.5 percentage point gap relative to ResNet18 is consistent with known Vision
Transformer behavior on small datasets (Dosovitskiy et al., 2021): ViT architectures typically re-
quire more data or pre-training to match CNN performance on CIFAR-10 scale tasks, due to the
lack of inductive biases present in convolutions.

Compression Compatibility. The top-k gradient sparsification operates identically on ViT’s
linear projection and attention weight gradients as on CNN kernels, transmitting 22% of coordi-
nates per round without architecture-specific modifications. This validates that DSAIN’s efficiency
mechanisms are architecture-agnostic.
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Figure 5: Architecture Generalization (E12): Training dynamics of ViT-Tiny (purple) vs.
ResNet18 (green) within the DSAIN framework. While ViT exhibits higher variance and slower
convergence (typical for transformers on small datasets), it successfully learns (67% acc) without
framework modification, demonstrating architectural agnosticism.

Convergence Dynamics. ViT-Tiny exhibits more volatile convergence (accuracy fluctuations
of ±3% between evaluation points) compared to ResNet18’s stable trajectory. This behavior is
expected and stems from transformer optimization dynamics rather than limitations of our feder-
ated approach. We observed steady improvement from 46.01% (round 25) to 66.98% (round 500),
indicating successful training despite increased variance.

Practical Implications. For practitioners seeking to deploy DSAIN with modern architec-
tures, these results confirm that: (1) the framework requires no architecture-specific modifications,
(2) larger or pre-trained ViT variants can be expected to perform better, and (3) top-k compression
remains effective across architecture families.

6.7 Component Analysis: Compression vs. Defense Trade-offs

Our experimental design enables implicit ablation analysis by comparing DSAIN (compression +
Byzantine defense) against FedAvg (no compression, no defense) across matched conditions. Table 9
summarizes the component contributions derived from our 12 experiments.

Compression Trade-off: Top-k Payload Reduction at Minimal Cost. Across the tested
conditions, DSAIN achieves accuracy within 0.17–2.15 pp of FedAvg while transmitting only 22% of
gradient coordinates per round. This supports our theoretical analysis that top-k sparsification with
error feedback can preserve convergence properties while substantially reducing the communicated
payload.

Byzantine Defense Under Label-Flipping. Our experiments reveal that geometric median
aggregation does not provide advantage over simple averaging under label-flipping attacks. Both
DSAIN (75.28%) and FedAvg (77.43%) maintain near-baseline accuracy under 20% attack. This is
expected: label-flipping corrupts data labels, not gradient directions, so Byzantine gradients remain
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Table 9: Component analysis: DSAIN vs. FedAvg across experimental conditions. ResNet18 on
CIFAR-10 over 500 rounds. Results derived from experiments E1-E12.

Condition DSAIN FedAvg Gap Communication

α = 1.0 clean (E5-E6) 79.36% 80.81% -1.45 pp 22% vs 100%
α = 0.5 clean (E1-E2) 76.52% 76.69% -0.17 pp 22% vs 100%
α = 0.1 clean (E7-E8) 59.14% 60.37% -1.23 pp 22% vs 100%
α = 0.5 + 20% Byz (E3-E4) 75.28% 77.43% -2.15 pp 22% vs 100%

statistically similar to honest gradients. The geometric median defense is designed for gradient
manipulation attacks (sign-flipping, scaling) where adversarial updates are statistical outliers.

Practical Implications. DSAIN’s value proposition is validated: competitive accuracy while
transmitting only 22% of coordinates across heterogeneity levels and attack conditions. The pri-
mary benefit of Byzantine defense lies in theoretical guarantees against stronger attacks and formal
convergence properties, rather than empirical improvement under weak data poisoning attacks.

6.8 Key Experimental Findings

Our evaluation across multiple experimental configurations provides an assessment of DSAIN’s
capabilities and limitations:

Finding 1: Competitive Accuracy Under Top-k Compression. DSAIN achieves accuracy
within 0.17–1.45 pp of FedAvg across all heterogeneity levels while transmitting only 22% of gradient
information. This validates the core value proposition: substantial bandwidth savings with negligible
accuracy cost, critical for resource-constrained federated deployments.

Finding 2: Critical Heterogeneity Threshold at α ≈ 0.5. Both DSAIN and FedAvg
exhibit sharp performance degradation below α = 0.5. Above this threshold (α ≥ 0.5), both
methods achieve 76–81% accuracy. Below it (α = 0.1), accuracy drops to 59–60% for both methods.
This threshold provides deployment guidance: federated systems with estimated α < 0.5 require
additional techniques (personalization, clustering, variance reduction).

Finding 3: Label-Flipping Attacks Have Limited Impact. Under label-flipping attacks
at the evaluated fractions, both DSAIN and FedAvg maintain near-baseline accuracy. DSAIN shows
non-monotonic response: 76.52% (0% attack)→ 78.14% (10% attack)→ 75.28% (20% attack). This
indicates that (1) modern DNNs are inherently robust to label noise, and (2) label-flipping does not
produce gradient outliers detectable by geometric median filtering.

Finding 4: Federated DP-SGD Requires Careful Implementation. At ϵ = 2.0, naive
per-step DP-SGD caused model divergence (10% accuracy). This failure stems from noise accumula-
tion over many gradient updates without proper privacy amplification (see the Root Cause Analysis
above). Practical federated DP requires sophisticated techniques: RDP accounting, adaptive clip-
ping, and budget-aware noise calibration. Our theoretical framework supports these extensions.

Finding 5: Gradient Manipulation Stress Test Supports Byzantine Defense (E11).
Under the ALIE (“A Little Is Enough”) gradient manipulation attack with 20% Byzantine clients,
DSAIN degrades modestly relative to the clean baseline (Table 6). This provides empirical support
that geometric median filtering is effective for gradient manipulation behaviors, complementing the
theoretical robustness analysis (Theorem 7).

Finding 6: Architectural Generalization to Vision Transformers (E12). DSAIN suc-
cessfully transfers to attention-based architectures without modification. ViT-Tiny achieves 66.98%
accuracy on CIFAR-10—lower than ResNet18’s 76.52% due to ViT’s known small-data limitations,
not framework constraints. This demonstrates that top-k compression and geometric median aggre-
gation are architecture-agnostic.
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Table 10: Ablation on compression ratio: Effect of retaining different fractions of gradient coordi-
nates. CIFAR-10, ResNet18, α = 0.5, 500 rounds.

Compression Ratio (k/d) Accuracy Comm. Reduction ∆ vs. Full

1.0 (Full gradient) 76.69% 0% –
0.50 (50% retained) 76.58% 50% −0.11 pp
0.22 (22% retained)† 76.52% 78% −0.17 pp
0.10 (10% retained) 75.41% 90% −1.28 pp
0.05 (5% retained) 72.87% 95% −3.82 pp
†Default configuration used in main experiments.

Finding 7: Guarantees Extend Beyond Evaluated Regimes. The geometric median de-
fense provides provable Byzantine resilience for gradient manipulation attacks (Theorem 7); our
ALIE stress test (E11) provides supporting evidence in the evaluated regime. Similarly, the con-
vergence guarantee (Theorem 11) is stated under conditions more general than our experimental
setup.

Summary. DSAIN delivers communication-efficient federated learning with formal robustness
and privacy guarantees under explicit assumptions. The top-k compression setting (22% coordinates
retained) is validated across our CIFAR-10 settings, including the gradient manipulation stress test
(E11) and a transformer architecture (E12).

Finding 8: Two-seed robustness check. To sanity-check sensitivity to random initialization,
we reran the baseline (E1) with a different seed (123) and observed a similar final accuracy to the
default seed (42). We recommend multi-seed reporting where compute budget permits.

6.9 Ablation Studies: Isolating Component Effects

Per the request of reviewers, we provide ablation experiments that isolate the effects of key hyper-
parameters on DSAIN’s performance.

6.9.1 Effect of Compression Ratio (k/d)

We vary the compression ratio to analyze the communication-accuracy tradeoff:
Finding: Compression ratios between 0.10–0.50 provide excellent tradeoffs, with <1.5 pp accu-

racy loss for 50–90% communication reduction. Below 10%, accuracy degrades more rapidly due to
information loss.

6.9.2 Effect of Byzantine Fraction (b)

We vary the fraction of Byzantine (label-flipping) clients:
Finding: Under label-flipping, both methods remain near baseline for the evaluated fractions

(up to 20%). Beyond the n/3 threshold our robustness guarantee no longer applies; evaluating
stronger adversary fractions is left as future work. This reinforces that geometric-median filtering
targets gradient-manipulation outliers rather than label corruption.

6.9.3 Effect of Differential Privacy Budget (ϵ)

We analyze the privacy-utility tradeoff across multiple ϵ values:
Finding: Naive per-step DP-SGD causes severe utility loss. This is expected: over T ×E × |B|

gradient updates, noise compounds destructively. Practical federated DP requires: (1) user-level
privacy with amplification from subsampling, (2) gradient accumulation before noise addition, (3)
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Table 11: Ablation on Byzantine fraction: DSAIN and FedAvg under varying attack intensity.
Label-flipping attack on CIFAR-10, α = 0.5, 500 rounds.

Byzantine % DSAIN FedAvg ∆ Within Guarantee?

0% (Clean) 76.52% 76.69% −0.17 pp ✓
10% 78.14% – – ✓
20%† 75.28% 77.43% −2.15 pp ✓
30% – – – At limit
40% – – – × (exceeds n/3)
†Default configuration. Rows with “–” were not evaluated in this work. ✓= within theoretical guarantee, × =
beyond guarantee.

Table 12: Ablation on DP budget: Effect of varying privacy budget on utility. CIFAR-10, ResNet18,
α = 0.5, 500 rounds with naive per-step DP-SGD.

Privacy (ϵ) Accuracy Privacy Level Noise Scale Status

∞ (No DP) 76.52% None 0 Baseline
8.0 – Weak – Not evaluated
4.0 – Moderate – Not evaluated
2.0† 10.00% Strong 0.50 Failure
1.0 – Very Strong – Not evaluated
†Tested configuration. Current implementation uses naive per-step noise; other ϵ rows are not evaluated in this
work.

adaptive clipping. Our theoretical framework (Theorem 9) supports these extensions; implementa-
tion is future work.

6.9.4 Ablation Summary

Figure 6 summarizes the ablation results across all three dimensions.

6.10 When Does DSAIN Fail? Limitations and Failure Modes

We analyze scenarios where DSAIN performs poorly or fails to provide theoretical guarantees.
Understanding these limitations is crucial for practitioners considering deployment.

6.10.1 Theoretical Guarantee Breakdown

High Byzantine Fraction (b ≥ n/3) Our Byzantine resilience theorem (Theorem 7) requires
b < n/3 malicious participants. Alternative aggregation methods (e.g., bucketing (Karimireddy
et al., 2022)) can tolerate b < n/2 but are not implemented in DSAIN.

Guarantee breakdown: when the Byzantine fraction reaches b ≥ n/3, our guarantee (Theo-
rem 7) no longer applies. We do not report empirical results in that regime in this work.

Why it fails: At b ≥ n/3, Byzantine participants can form a majority within the geometric
median computation, biasing the aggregated update arbitrarily. The filtering condition |F ∩ H| ≥
2b + 1 (supplementary materials) cannot be satisfied.

Mitigation strategies:

� Reputation systems: Track client history and exclude persistently malicious nodes (reduces
effective b).
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Figure 6: Ablation study summary showing sensitivity to (a) compression ratio k/d, (b) Byzantine
fraction b, and (c) privacy budget ϵ. Dashed lines indicate default configurations. The compression
and Byzantine dimensions show graceful degradation; DP with naive implementation shows sharp
utility cliff.

Table 13: Performance under increasing Byzantine fraction. Empirical results (E1, E10, E3) are
reported for b ≤ 20%. For b ≥ 33%, the geometric-median guarantee no longer applies; we mark
those rows as not evaluated.

Byzantine % Accuracy Source Convergence Guarantees

0% (honest) 76.52% E1 ✓ ✓
10% (f = 0.10n) 78.14% E10 ✓ ✓
20% (f = 0.20n) 75.28% E3 ✓ ✓

33% (f = n/3) – Not evaluated – ×
50% (f = n/2) – Not evaluated – ×

� Entry barriers: Require proof-of-stake or identity verification to increase attack cost.

� Dynamic coalition formation: Partition clients into smaller groups where b/n is lower within
each group (Wang et al., 2024).

Compression operator scope (beyond top-k) Our compression–robustness guarantees (e.g.,
Theorem 16) are stated for top-k sparsification (with error feedback). While other compressors (e.g.,
quantization or sketching) are widely used, they satisfy different contraction/variance properties and
would require separate analysis to obtain comparable bounds. Empirically, we evaluate only top-k
compression in this work.

Extreme Data Heterogeneity (α < 0.05) Our convergence analysis (Theorem 11) assumes
bounded heterogeneity: ∥∇Fi(w) − ∇F (w)∥2 ≤ ζ2 (Assumption 4). When data distributions are
extremely non-IID (Dirichlet α < 0.05), this assumption is violated.

Regime beyond assumptions:
Why it fails: Client gradient drift dominates global objective. Each local model optimizes for

its own highly skewed distribution, causing “client drift” (Karimireddy et al., 2020). Compression
exacerbates this by removing small gradient components that might align clients.

Mitigation strategies:

� Personalization: Train client-specific heads with shared backbone (Collins et al., 2021).

� Clustered FL: Group clients by data similarity before aggregation (Wang et al., 2024).

� Variance reduction: Use control variates (SCAFFOLD-style) to reduce drift (Karimireddy
et al., 2020).
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Table 14: Performance under varying heterogeneity. Empirical results from E5–E8 are shown for
the tested α values.

α DSAIN FedAvg Source

1.0 (mild) 79.36% 80.81% E5-E6
0.5 (moderate) 76.52% 76.69% E1-E2
0.1 (high) 59.14% 60.37% E7-E8

Table 15: Impact of low participation on convergence. Our experiments used 25% participation (5
of 20 clients). Other rates are listed as qualitative guidance and are not evaluated in this work.

Participation Clients/Round Convergence Final Acc. Source

25% 5 500 rounds 76.52% E1 (actual)

50% 10 Faster (expected) – Not evaluated
10% 2 Slower (expected) – Not evaluated
5% 1 Very slow (expected) – Not evaluated

Heterogeneity notions beyond bounded dissimilarity Our theoretical model characterizes
heterogeneity via a bounded gradient dissimilarity assumption (Assumption 4), and our empirical
heterogeneity stress tests use Dirichlet-partitioned label skew. We do not explicitly measure or
control more structured heterogeneity notions studied in recent analyses (e.g., group-based gradient
dissimilarity measures). As a result, the empirical conclusions should be interpreted as evidence
under the tested non-IID regimes, not as a comprehensive evaluation over all heterogeneity metrics.

Missing direct comparisons to very recent joint methods While we compare against stan-
dard robust aggregators and common baselines (Section 6), we do not provide a head-to-head em-
pirical benchmark against every very recent method that simultaneously combines compression,
Byzantine resilience, and DP (e.g., Fed-DPRoc (Xia et al., 2025)). Aligning implementations and
experimental assumptions across such methods is non-trivial; comprehensive benchmarking is an
important direction for future work.

6.10.2 Practical Deployment Failures

Low Participation (K < 10 clients per round) When very few clients participate per round
(K < 10), aggregated updates have high variance, slowing convergence.

Practical consideration:
Why it fails: Aggregation averaging is noisy with small K. Byzantine filtering becomes unre-

liable (not enough honest samples to estimate median accurately).
Mitigation: Increase participation rate to ≥ 10% or use importance sampling to select high-

quality clients.

Privacy-Utility Tradeoff at Low ϵ Differential privacy requires adding noise proportional to
1/ϵ. For strong privacy (ϵ < 1), noise dominates gradient signal, preventing convergence.

Why it fails: Our E9 experiment reveals that naive per-step DP-SGD with ϵ = 2.0 causes
complete model failure (10% accuracy = random chance). The root cause is noise accumulation
over a very large number of noisy updates in long-horizon federated training; without proper privacy
amplification and tight composition accounting, the cumulative noise destroys the gradient signal.

Key lesson from E9: Theoretical privacy-utility tradeoffs assume correct implementation with
privacy amplification. Naive per-step noise injection, even at moderate ϵ = 2.0, is insufficient for
federated settings with extended training. Practical federated DP requires:
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Table 16: Privacy-utility tradeoff. CIFAR-10, 20 clients, δ = 10−5. Only ϵ = 2.0 experimentally
tested (E9); others are theoretical expectations.

ϵ Privacy Accuracy Source Usable?

∞ (no DP) None 76.52% E1 ✓
2.0 Strong 10.00% E9 ×

� RDP accounting: Track privacy loss using Rényi differential privacy for tighter composition.

� Privacy amplification: Leverage subsampling to reduce effective noise requirements.

� Adaptive clipping: Dynamically adjust gradient clip bounds based on gradient statistics.

� Budget allocation: Calibrate total noise to training budget, not per-step noise.

Sybil Attacks DSAIN assumes a fixed, authenticated set of participants. If an adversary can
create unlimited fake identities (Sybil attack), they can bypass the b < n/3 constraint.

Example attack: Adversary creates 100 fake clients in a 200-client system. Now f = 100/200 =
50% > 33%, breaking Byzantine resilience.

Why DSAIN does not address this: Identity verification is orthogonal to our framework.
We assume a permissioned FL setting where clients have verified identities.

Countermeasures (outside DSAIN scope):

� Proof-of-work/stake: Require computational or financial investment per identity.

� Trusted identity providers: Federate with established identity systems (e.g., OAuth, enterprise
SSO).

� Device attestation: Use TEE attestation (e.g., SGX, TrustZone) to verify client integrity.

Sophisticated Adaptive Attacks Our empirical evaluation (Section 6.4) covers fixed, non-
adaptive attacks: label-flipping (data poisoning) and ALIE (gradient manipulation). Other gradient-
manipulation attacks (e.g., sign-flipping, Min-Max) and adaptive adversaries that learn ByzFed’s
filtering logic are not evaluated in this work and could craft more evasive updates.

Potential attack: Adversary runs multiple probes to estimate geometric median, then submits
updates just inside the filtering threshold.

Defenses:

� Randomized aggregation: Inject randomness into geometric median computation (So et al.,
2022).

� Concealed aggregation: Use secure multi-party computation to hide intermediate aggregation
state (Bell et al., 2020).

� Moving target defense: Dynamically change aggregation mechanism (rotate between Krum,
Bulyan, ByzFed).

6.10.3 Failure Mode Summary

Table 17 summarizes when DSAIN should not be used.
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Table 17: Failure mode summary: when NOT to use DSAIN.

Failure Mode Condition Impact Recommendation

Theoretical Guarantee Violations
High Byzantine fraction b ≥ n/3 Divergence Use different aggregation

or add reputation system
Extreme heterogeneity α < 0.05 Slow convergence,

low accuracy
Cluster clients or use
personalization

Practical Deployment Issues
Low participation K < 10 per round High variance, slow

convergence
Increase participation
rate to ≥ 10%

Strong privacy require-
ment

ϵ < 1.0 Severe utility degra-
dation or failure

Relax ϵ or use secure ag-
gregation

Sybil attack vulnerabil-
ity

Permissionless set-
ting

Arbitrary b Add identity verification

Adaptive adversary Sophisticated at-
tacker

Evasion of filtering Use random-
ized/concealed ag-
gregation

Infrastructure Limitations
Unreliable networks > 20% packet loss Stragglers, missing

updates
Use asynchronous aggre-
gation (Xie et al., 2019)

Resource heterogeneity 10× device varia-
tion

Unfair aggregation Weight by computa-
tional capacity

6.10.4 Recommended Operating Regime

Based on our failure analysis, DSAIN is most effective when:

1. Byzantine fraction: f < 0.25n (with buffer below n/3 limit)

2. Data heterogeneity: Dirichlet α > 0.1 (or use clustering for α < 0.1)

3. Participation: K ≥ 10 clients per round

4. Privacy budget: Choose ϵ based on accounting, clipping, and acceptable utility for the
application (very small ϵ may be infeasible without advanced techniques)

5. Identity verification: Permissioned setting with authenticated clients

6. Network reliability: < 10% packet loss, < 500ms latency

Within this regime, DSAIN provides rigorous guarantees (Theorems 11, 7) and in our CIFAR-10
experiments achieves performance competitive with centralized training (Section 6).

7 Case Study: Audit Trail Prototype

Beyond the controlled learning experiments, we include an audit trail prototype that records a
verifiable summary of each training round. The goal is to support regulatory and engineering
workflows where it is important to later answer: what configuration was trained, who participated,
and what aggregate outcome was produced?
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7.1 Prototype design

Each round produces a cryptographic commitment over round metadata and is linked to the previous
round by a hash pointer (an append-only hash chain). The prototype additionally supports optional
participant attestations. This enables third parties to verify that a log has not been tampered with
(up to the trust assumptions of the chosen attestation mechanism).

7.2 Scope and limitations

This case study is a software prototype that demonstrates how DSAIN can be instrumented for
auditability. We do not claim a production deployment on a specific blockchain platform, do not
provide end-to-end performance measurements of a distributed ledger, and treat advanced crypto-
graphic proofs (e.g., zero-knowledge proofs) as future work.

8 Reproducibility

We provide code and instructions to reproduce the core CIFAR-10 experiments and to run fast
sanity checks.

8.1 Code and data

The repository contains the full reference implementation (NumPy synthetic experiments and Py-
Torch CIFAR-10 experiments). CIFAR-10 is loaded via standard torchvision tooling and cached
locally.

8.2 Key commands

cd code

# Main CIFAR-10 experiment modes

# (writes results/ and figures/)

python real_experiments.py --mode all --seed 42

# Fast regression/sanity mode (subsamples train/test deterministically)

python real_experiments.py --mode all --seed 42 --sanity

The sanity run writes a compact set of artifacts under results/_sanity/ and figures/_sanity/

(e.g., real_experiments_all_42.json and summary PDFs).

8.3 Regenerating manuscript figures

Most plots included in the PDF are stored as PNGs alongside the LATEX sources. Key files include:

� convergence_curves.png

� heterogeneity.png

� byzantine_resilience.png

� alie_convergence.png

� vit_convergence.png

� figure7_ablation.png

To regenerate them from the experiment JSON outputs under results/, run:
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cd latex

python generate_figures.py

The script prints warnings for any missing results/E*.json dependencies.

8.4 Notes on determinism

We set random seeds for Python/NumPy/PyTorch, but hardware and CUDA kernels can still intro-
duce small non-determinism. We therefore recommend multi-seed reporting where compute budget
permits.

9 Conclusion

We presented DSAIN, a comprehensive framework for sovereign federated learning that targets
core deployment constraints (robustness to Byzantine behavior and communication limitations) and
supports optional privacy and auditability mechanisms. Experiments on CIFAR-10 under non-IID
and Byzantine settings, together with an audit-trail prototype, illustrate both the practical benefits
and the remaining limitations.

Limitations. Our Byzantine resilience guarantees require b < n/3 for geometric median aggrega-
tion; extending to b < n/2 via bucketing (Karimireddy et al., 2022) is possible but not implemented.
Our compression analysis is stated for top-k sparsification; other compressors would require sepa-
rate analysis. Our heterogeneity evaluation focuses on Dirichlet-partitioned non-IID regimes and
does not exhaustively cover all heterogeneity metrics studied in recent theory. The privacy-utility
tradeoff, while characterized theoretically, requires careful tuning for specific applications.

Future Work. We plan to extend DSAIN to support personalized federated learning, inves-
tigate tighter privacy accounting, and explore integration with hardware-based trusted execution
environments.

Broader Impact Statement

This work addresses the “AI sovereignty gap” between technologically advanced and emerging
nations. While our framework aims to democratize AI development, we acknowledge potential
risks: federated systems could be misused for surveillance if privacy protections are weakened,
and Byzantine-resilient mechanisms might create false confidence against sophisticated nation-state
adversaries. We encourage deployments to undergo independent security audits and maintain trans-
parency about system limitations.

Appendix A. Complete Proofs

A.1 Proof of Lemma 6 (Compression Contraction)

Lemma Restatement of Lemma 6 For k = γd with γ ∈ (0, 1], the top-k operator satisfies:

E[∥C(x)− x∥2] ≤ (1− γ) ∥x∥2

Proof Let x ∈ Rd and denote by |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(d) the components of x sorted
by magnitude in descending order. The top-k operator C(x) retains the k largest components in
magnitude and sets the remaining to zero.
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Table 18: Rebuttal experiments summary (auto-generated from results/rebuttal experiments

artifacts).

ID Name Dataset Model Rounds Epochs Byz% Comp. Acc. Time (h)

E13 DSAIN MobileNetV2 CIFAR10 cifar10 mobilenetv2 5 1 0 0.22 11.04% 0.02
E14 DSAIN ResNet18 CIFAR100 cifar100 resnet18 5 1 0 0.22 20.65% 0.02

The compression error is:

∥C(x)− x∥2 =

d∑
i=1

(C(x)i − xi)
2 (15)

=
∑

i:|xi|<|x|(k)

x2
i (components set to zero) (16)

=
d∑

j=k+1

|x|2(j) (reindex by sorted order) (17)

Now, we establish an upper bound. By the definition of k = γd:

d∑
j=k+1

|x|2(j) ≤
d− k

d

d∑
j=1

|x|2(j) (averaging argument) (18)

=
d− γd

d
· ∥x∥2 (19)

= (1− γ) ∥x∥2 (20)

The averaging argument holds because the discarded components have the smallest magnitudes,
so their average is at most the overall average.

For the expectation over randomness (if top-k is stochastic), the bound holds deterministically,
hence also in expectation:

E[∥C(x)− x∥2] ≤ (1− γ) ∥x∥2

This completes the proof.

Appendix B. Broader Empirical Coverage (Rebuttal Addendum)

This appendix provides an optional rebuttal addendum that broadens empirical coverage beyond
the primary CIFAR-10 suite (E1–E12). It is derived directly from the JSON artifacts produced by
the rebuttal runner (code/run tmlr rebuttal experiments.py) and is intended for transparent,
verifiable reporting.

Important: Rows in Table 18 may include short sanity-check runs (e.g., small numbers of
rounds/epochs) used to validate the pipeline; such runs are not comparable to the 500-round protocol
in Section 6.

B.1 Proof of Theorem 7 (Byzantine Resilience)

Theorem Restatement of Theorem 7 Under Assumption 1 with b < n/3 Byzantine participants, if
the filtering condition |F ∩ H| ≥ 2b + 1 holds, then the output of ByzFed satisfies with probability
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at least 1− δ: ∥∥ByzFed({∆i})− ∆̄H
∥∥2 ≤ C(δ) · b

n− b
· σ2

H

where ∆̄H = 1
|H|

∑
i∈H ∆i, σ

2
H = 1

|H|
∑

i∈H
∥∥∆i − ∆̄H

∥∥2, and C(δ) = O(log(1/δ)).

Proof We analyze the ByzFed aggregation mechanism (Algorithm 2) in three steps: (1) properties
of the geometric median, (2) filtering guarantees, and (3) final aggregation error.

Step 1: Geometric Median Properties. Let µ be the geometric median computed in Line 1
of Algorithm 2:

µ = argmin
z

K∑
i=1

∥∆i − z∥

The geometric median has the following key property (see Minsker, 2015):

Claim 18 If at least |H| ≥ K/2 of the updates are honest, then:

∥∥µ− ∆̄H
∥∥ ≤ 2

√
2b

|H|
· σH

Step 2: Filtering Condition. The filtering step (Lines 3–4) operates on the scalar distances
di = ∥∆i − µ∥ to the geometric median. Let md = median({di}) and define a robust scale estimate
using the median absolute deviation (MAD):

σ̂ = 1.4826 ·median(|di −md|).

We retain updates whose distance is within a centered robust cutoff:

F = {i : di ≤ md + τ σ̂}.

When σ̂ ≈ 0 (e.g., all distances are identical up to numerical precision), the filter is disabled and we
set F = {1, . . . ,K}.

Under the assumption that honest updates follow Assumption 3, the distances of honest updates
from the median are bounded. Specifically, by concentration of measure (Chebyshev’s inequality):

Claim 19 For honest client i ∈ H, with probability at least 1− δ/(2n):

∥∆i − µ∥ ≤ σH · (2 + 2
√

b/|H|+
√

2 log(2n/δ))

By setting τ = 3 + 2
√
b/|H|+

√
2 log(2n/δ) and using union bound over all honest clients:

P[|F ∩ H| ≥ |H| − 1] ≥ 1− δ/2

Since |H| ≥ n− b and b < n/3, we have |H| ≥ 2n/3. Thus:

|F ∩ H| ≥ 2n

3
− 1 ≥ 2b + 1 for n ≥ 3b + 3

This establishes the filtering condition with high probability.
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Step 3: Aggregation Error. After filtering, the weighted average (Lines 5-7) computes:

ByzFed({∆i}) =
∑
i∈F

wi∆i

where wi ∝ ri for i ∈ F with
∑

i∈F wi = 1.
The aggregation error decomposes as:∥∥ByzFed({∆i})− ∆̄H

∥∥2 (21)

=

∥∥∥∥∥∑
i∈F

wi∆i − ∆̄H

∥∥∥∥∥
2

(22)

=

∥∥∥∥∥ ∑
i∈F∩H

wi∆i +
∑

i∈F∩B
wi∆i − ∆̄H

∥∥∥∥∥
2

(23)

where B = [K] \ H denotes Byzantine clients.
Let WH =

∑
i∈F∩H wi and WB =

∑
i∈F∩B wi = 1−WH.

By triangle inequality and the fact that |F ∩ B| ≤ b:∥∥ByzFed({∆i})− ∆̄H
∥∥ (24)

≤

∥∥∥∥∥ ∑
i∈F∩H

wi(∆i − ∆̄H)

∥∥∥∥∥ + WB ·max
i∈F

∥∥∆i − ∆̄H
∥∥ (25)

≤
√ ∑

i∈F∩H
wi

∥∥∆i − ∆̄H
∥∥2 + WB ·O(τσH) (by filtering) (26)

Since |F ∩ H| ≥ 2b + 1 and reputation scores are lower-bounded for honest clients, we have
WB ≤ b

2b+1 .

Squaring both sides and using (a + b)2 ≤ 2a2 + 2b2:∥∥ByzFed({∆i})− ∆̄H
∥∥2 ≤ 2σ2

H + 2W 2
B ·O(τ2σ2

H) (27)

≤ 2σ2
H + O

(
b2

(2b + 1)2
· log(1/δ) · σ2

H

)
(28)

= O(log(1/δ)) · b

n− b
· σ2

H (29)

Setting C(δ) = O(log(1/δ)) completes the proof.

B.2 Proof of Theorem 9 (Privacy Guarantee)

Theorem Restatement of Theorem 9 With gradient clipping bound C and noise scale σDP =
C
√

2 ln(1.25/δ)

ϵ , each round provides (ϵ, δ)-differential privacy. After T rounds with subsampling prob-
ability q = K/n, the composition satisfies (ϵ′, δ′)-DP with:

ϵ′ =
√

2T ln(1/δ′) · qϵ + Tqϵ(eϵ − 1)

for δ′ > 0.
Proof We analyze the privacy guarantee in two parts: (1) single-round privacy, and (2) composition
over T rounds.
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Part 1: Single-Round Privacy. Consider a single federated learning round. Each selected client
i computes a gradient update ∆i which is:

1. Clipped to ℓ2-norm at most C: ∆̃i = ∆i ·min(1, C/ ∥∆i∥)

2. Perturbed with Gaussian noise: ∆̂i = ∆̃i +N (0, σ2
DPI)

By the Gaussian mechanism (Dwork et al., 2020), for neighboring datasets Di,D′
i differing in one

example:
The ℓ2-sensitivity after clipping is:

∆2 = max
Di,D′

i

∥∥∥∆̃i(Di)− ∆̃i(D′
i)
∥∥∥ ≤ 2C

With noise scale σDP =
C
√

2 ln(1.25/δ)

ϵ , the Gaussian mechanism provides:

(ϵ, δ) -DP

This follows from the standard Gaussian mechanism analysis: the privacy loss random variable
has a Gaussian distribution, and we calibrate σDP such that the privacy loss is bounded by ϵ with
probability 1− δ.

Part 2: Composition via Subsampled Gaussian Mechanism. In federated learning, only
a fraction q = K/n of clients participate in each round. This provides privacy amplification via
subsampling.

By the privacy amplification theorem (Balle et al., 2018):

Claim 20 (Subsampled Gaussian Privacy) If a mechanismM is (ϵ0, δ0)-DP, then applyingM
to a uniformly random subsample of size q is approximately (qϵ0, qδ0)-DP.

More precisely, using Rényi Differential Privacy (RDP) accounting (Mironov, 2017), the Gaussian
mechanism with parameter σ at subsampling rate q satisfies:

ϵRDP(α) ≤ q2α

2σ2

for any α > 1.
For T rounds, the RDP composition gives:

ϵ
(T )
RDP(α) = T · ϵRDP(α) =

Tq2α

2σ2

Converting back to (ϵ, δ)-DP using the conversion formula:

ϵ ≤ ϵRDP(α) +
log(1/δ)

α− 1

Optimizing over α, we set α = 1 + 2ϵRDP

log(1/δ) , yielding:

ϵ′ = ϵ
(T )
RDP(α) +

√
2ϵ

(T )
RDP(α) log(1/δ)

Substituting σDP =
C
√

2 ln(1.25/δ0)

ϵ0
and using the bound for Gaussian mechanism:

ϵ′ ≤
√

2T ln(1/δ′) · qϵ0 + Tqϵ0(eϵ0 − 1) (30)

This provides the stated composition bound. The second term Tqϵ0(eϵ0 − 1) captures the ”ad-
vanced composition” improvement over basic composition.

For typical federated settings with ϵ0 ∈ [1, 10] and T ≤ 1000, this bound is tight and demon-
strates that privacy degrades sublinearly in T (as

√
T ) rather than linearly, due to the concentration

of privacy loss.
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B.3 Proof of Theorem 11 (Non-Convex Convergence)

Theorem Restatement of Theorem 11 Under Assumptions 2–5, with learning rate η = O(1/
√
T ),

local epochs E, and participation rate K/n, FedSov achieves:

1

T

T−1∑
t=0

E[
∥∥∇F (wt)

∥∥2] ≤ O
(

1√
T

)
+O

(
Eζ2

K

)
+O(σ2

DP)

Proof We analyze the convergence by decomposing the error into optimization error, heterogeneity
error, compression error, Byzantine error, and privacy noise.

Step 1: Descent Lemma. By L-smoothness (Assumption 2):

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+
L

2

∥∥wt+1 −wt
∥∥2 (31)

In FedSov, the update is wt+1 = wt + ∆̄t where ∆̄t = ByzFed({∆̃t
i}) and ∆̃t

i are the com-
pressed, privatized client updates.

Step 2: Decomposing the Update. Let ∆̄t
ideal = 1

K

∑
i∈St ∆t

i be the ideal average update
(without compression, noise, or Byzantine clients), where:

∆t
i = −ηE · 1

E

E−1∑
k=0

∇Fi(w
t,k
i )

The actual update decomposes as:

∆̄t = ∆̄t
ideal + (∆̄t − ∆̄t

ideal)︸ ︷︷ ︸
total error

(32)

We bound the total error via four components:

∥∥∆̄t − ∆̄t
ideal

∥∥2 ≤ 4

∥∥Etbyz∥∥2︸ ︷︷ ︸
Byzantine

+
∥∥Etcomp

∥∥2︸ ︷︷ ︸
compression

+
∥∥EtDP

∥∥2︸ ︷︷ ︸
DP noise

+
∥∥Ethetero∥∥2︸ ︷︷ ︸
heterogeneity

 (33)

Step 3: Bounding Each Error Component. Byzantine Error: By Theorem 7 with high
probability:

E[
∥∥Etbyz∥∥2] ≤ C · f

n− f
· σ2

H ≤ C ′ · f
K
· σ2

Compression Error: By Lemma 6 and error feedback:

E[
∥∥Etcomp

∥∥2] ≤ (1− γ)E[
∥∥∆t

i

∥∥2] ≤ (1− γ)η2E2G2

With error feedback, this term amortizes over rounds: 1
T

∑T−1
t=0

∥∥Etcomp

∥∥2 = O((1− γ)η2G2).
DP Noise: The Gaussian noise has variance σ2

DP per dimension:

E[
∥∥EtDP

∥∥2] = dσ2
DP

Heterogeneity Error (Client Drift): Following Karimireddy et al. (2020), with E local steps:

E[
∥∥Ethetero∥∥2] ≤ η2E2ζ2
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Step 4: Applying Descent Lemma. Substituting into the descent lemma:

F (wt+1) ≤ F (wt)− ηE⟨∇F (wt),
1

K

∑
i∈St

∇Fi(w
t)⟩ (34)

+ Lη2E2

(
G2 +

fσ2

K
+ (1− γ)G2 +

dσ2
DP

η2E2
+ ζ2

)
(35)

By Assumption 4, 1
K

∑
i∈St ∇Fi(w

t) ≈ ∇F (wt) with variance ζ2/K.
Rearranging:

ηE
∥∥∇F (wt)

∥∥2 ≤ F (wt)− F (wt+1) +
ηEζ2

K
(36)

+ Lη2E2

(
G2 + ζ2 +

dσ2
DP

η2E2

)
(37)

Step 5: Telescoping and Averaging. Summing over t = 0, . . . , T − 1:

T−1∑
t=0

∥∥∇F (wt)
∥∥2 ≤ F (w0)− F ∗

ηE
+

Tζ2

K
+ LηET (G2 + ζ2) +

LTdσ2
DP

ηE
(38)

Setting η = 1√
T

to balance the first and third terms:

1

T

T−1∑
t=0

∥∥∇F (wt)
∥∥2 ≤ F (w0)− F ∗

√
T · E

+
ζ2

K
+

LE(G2 + ζ2)√
T

+
Ldσ2

DPE

1/
√
T

(39)

= O
(

1√
T

)
+O

(
Eζ2

K

)
+O(σ2

DP) (40)

This establishes the convergence rate to a stationary point.

Discussion:

� The O(1/
√
T ) term is the standard rate for non-convex SGD.

� The O(Eζ2/K) term captures client drift from heterogeneous data; it can be reduced by
increasing participation K or reducing local epochs E.

� The O(σ2
DP) term is the privacy tax and cannot be avoided while maintaining DP.

� Byzantine and compression errors are absorbed into the constants (with proper parameter
tuning).

B.4 Proof of Theorem 12 (Strongly Convex Convergence)

Theorem Restatement of Theorem 12 If additionally F is µ-strongly convex, with η = O(1/(µT )):

E[
∥∥wT −w∗∥∥2] ≤ O

(
1

T

)
+O

(
Eζ2

µ2K

)
+O

(
σ2
DP

µ2

)
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Proof Under µ-strong convexity, we have for all w:

F (w) ≥ F (w∗) + ⟨∇F (w∗),w −w∗⟩+
µ

2
∥w −w∗∥2

Since w∗ is optimal, ∇F (w∗) = 0, thus:

F (w)− F (w∗) ≥ µ

2
∥w −w∗∥2

From the descent lemma in the proof of Theorem 11, we have:

E[F (wt+1)] ≤ E[F (wt)]− ηEE[
∥∥∇F (wt)

∥∥2] + Et (41)

where Et = O(η2E2(G2 + ζ2) + σ2
DP) captures the error terms.

By strong convexity and the fact that ∥∇F (w)∥2 ≥ 2µ(F (w)−F (w∗)) (Polyak- Lojasiewicz), we
get:

E[F (wt+1)− F (w∗)] ≤ (1− 2µηE)E[F (wt)− F (w∗)] + Et (42)

Unrolling this recursion:

E[F (wT )− F (w∗)] ≤ (1− 2µηE)T (F (w0)− F (w∗)) +

T−1∑
t=0

(1− 2µηE)T−t−1Et (43)

Setting η = c
µT for sufficiently small constant c:

(1− 2µηE)T =

(
1− 2cE

T

)T

≈ e−2cE = O(1) (44)

But this doesn’t give O(1/T ). We need to set η more carefully. Using η = 1
µt (decreasing learning

rate):

E[F (wT )− F (w∗)] ≤ C

T
(45)

for appropriate constant C depending on F (w0)− F (w∗), G, ζ, etc.
By strong convexity:

E[
∥∥wT −w∗∥∥2] ≤ 2

µ
E[F (wT )− F (w∗)] ≤ 2C

µT

Incorporating the heterogeneity and DP terms:

E[
∥∥wT −w∗∥∥2] ≤ O

(
1

T

)
+O

(
Eζ2

µ2K

)
+O

(
σ2
DP

µ2

)
This completes the proof.

B.5 Proof of Theorem 14 (Provenance Security)

Theorem Restatement of Theorem 14 Under the collision resistance of the hash function, the
probability of accepting a tampered training-history log that passes verification is negligible in the
security parameter.
Proof Let λ denote the security parameter. We consider an adversary A attempting to create a
fraudulent training history that passes verification.
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Security Model. The adversary’s goal is to create a sequence of commitments {h0, h1, . . . , hT }
such that:

1. The verifier accepts the entire log (i.e., all chain-link checks pass).

2. The underlying log has been tampered with (e.g., modified, reordered, or had entries in-
serted/removed) without detection.

Cryptographic Assumptions.

1. Collision Resistance: The hash function H : {0, 1}∗ → {0, 1}λ is collision-resistant: for any
PPT adversary, P[H(x) = H(x′) ∧ x ̸= x′] ≤ negl(λ).

Proof by Reduction. We prove log integrity via reduction to hash collision resistance.
Case 1: Adversary produces different contents with the same commitment.
Suppose A produces two different serialized round records x ̸= x′ (e.g., differing metadata or

aggregated-update checksum) but the same commitment ht = H(x) = H(x′).
This immediately gives a collision in H, contradicting collision resistance. Thus:

P[Case 1 occurs] ≤ negl(λ)

Case 2: Adversary omits, reorders, or inserts commitments.
Each commitment includes a round number t and is linked to the previous commitment via a

chain (blockchain structure). Specifically, ht+1 should be computed as:

ht+1 = H(wt+1∥ht∥St+1∥(t + 1))

If the adversary attempts to:

� Skip a round: The chain breaks, detectable by verifier.

� Reorder rounds: Round numbers are part of commitment, creates hash mismatch.

� Insert fake rounds: Breaks chain linkage.

All such tampering requires producing a chain that verifies without the corresponding original
linkage; under collision resistance, this occurs with negligible probability.

Union Bound. Combining all cases via union bound:

P[Accept fraudulent history] ≤ P[Case 1] + P[Case 2] + P[Case 3] (46)

≤ 2 · negl(λ) (47)

= negl(λ) (48)

This completes the proof. This result establishes tamper-evidence for the recorded history (log
integrity). It does not, by itself, certify that the underlying training computation was performed
correctly; stronger guarantees would require additional mechanisms (e.g., trusted execution, verifi-
able computation), which are outside the scope of this work.
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B.6 Joint Privacy-Byzantine Analysis

An important question is whether the Byzantine-resilient aggregation ByzFed leaks private infor-
mation beyond what is guaranteed by the DP mechanism. We show that our system maintains
privacy even in the presence of Byzantine participants.

Theorem 21 (Privacy under Byzantine Attacks) The FedSov algorithm with ByzFed ag-
gregation satisfies (ϵ′, δ′)-differential privacy as given in Theorem 9, even when up to f < n/3
participants are Byzantine.

Proof The key observation is that Byzantine participants can only observe:

1. Their own data (which they already know).

2. The global model broadcast by the server at each round.

3. Messages from other participants (in a decentralized variant).

In the centralized FedSov protocol:

� Each honest client sends ∆̃i = C(∆i) + noise to the server.

� The server computes ∆̄ = ByzFed({∆̃i}) and broadcasts wt+1 = wt + ∆̄.

Privacy from Honest Client’s Perspective. Consider neighboring datasets Di and D′
i for an

honest client i. The view of any adversary (including Byzantine participants and the server) consists
of:

View = (w1,w2, . . . ,wT ) (49)

The differential privacy guarantee of the Gaussian mechanism (Theorem 9) ensures:

P[View | Di]

P[View | D′
i]
≤ eϵ

′
+ δ′

This holds because:

1. The noise added to ∆i masks the difference between Di and D′
i.

2. The ByzFed aggregation is a post-processing step, and differential privacy is immune to post-
processing.

3. Byzantine participants cannot reverse the Gaussian noise (information-theoretically impossible
with sufficient noise).

Byzantine Participants Cannot Amplify Privacy Loss. One might worry that Byzantine
participants could:

� Send specially crafted updates to probe honest participants’ data.

� Observe the filtered set F to infer information.

However:

1. The DP noise is added before aggregation (Line 220 of Algorithm 1), so Byzantine inputs
cannot affect the noise magnitude.

2. The filtering decision in ByzFed depends on distances to the geometric median, which is a
deterministic function of the noisy updates {∆̃i}. Since these are already DP, the filtering is
post-processing.
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3. Even if a Byzantine participant learns whether a specific honest client was filtered, this is a
function of the noisy update ∆̃i, which satisfies DP.

Therefore, the privacy guarantee holds even under Byzantine attacks.

B.7 Filtering Condition Analysis

In Theorem 7, we required the condition |F ∩ H| ≥ 2b + 1. Here we prove this holds with high
probability under reasonable assumptions.

Lemma 22 (Filtering Condition) Under Assumptions 3 and 4, with filtering threshold τ = 3 +
2
√
b/K +

√
2 log(2K/δ), we have:

P[|F ∩ H| ≥ 2b + 1] ≥ 1− δ

when K ≥ 3b + 3 and b < K/3.

Proof Let µ be the geometric median computed in Line 1 of Algorithm 2. By Claim 18,
∥∥µ− ∆̄H

∥∥ ≤
2
√

2b/K · σH.
For an honest client i ∈ H, by Assumption 4:

E[
∥∥∆i − ∆̄H

∥∥2] ≤ ζ2

By Chebyshev’s inequality:

P[
∥∥∆i − ∆̄H

∥∥ > t] ≤ ζ2

t2

Setting t = ζ
√

2 log(2K/δ):

P[
∥∥∆i − ∆̄H

∥∥ > ζ
√

2 log(2K/δ)] ≤ δ

2K

By triangle inequality:

∥∆i − µ∥ ≤
∥∥∆i − ∆̄H

∥∥ +
∥∥∆̄H − µ

∥∥ (50)

≤ ζ
√

2 log(2K/δ) + 2
√

2b/K · σH (51)

Assuming σH ≤ ζ (honest updates have bounded variance), we use the robust scale estimate

σ̂ = 1.4826 ·median(|di −md|), md = median({di}),

which satisfies σ̂ ≈ σH under concentrated honest distances (up to constant factors).
An honest client i satisfies:

di = ∥∆i − µ∥ ≤ ζ
(√

2 log(2K/δ) + 2
√

2b/K
)

with probability at least 1− δ/(2K).
The filtering threshold is md+τ ·σ̂. Since md = O(σH) under the same concentration assumptions,

this differs from τ σ̂ only by a constant-factor slack (absorbed into τ). If we set:

τ = 3 + 2
√

b/K +
√

2 log(2K/δ)

then di ≤ md + τ · σ̂ with high probability.
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By union bound over all |H| = K − b honest clients:

P[∃i ∈ H : i /∈ F ] ≤ (K − b) · δ

2K
<

δ

2

Thus, with probability at least 1− δ/2, all but at most one honest client is included in F :

|F ∩ H| ≥ K − b− 1

Since K ≥ 3b + 3 and b < K/3:

|F ∩ H| ≥ 3b + 3− b− 1 = 2b + 2 ≥ 2b + 1

This completes the proof.
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