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Abstract

Large language models are increasingly used in scientific domains, especially for1

molecular understanding and analysis. However, existing models are affected2

by hallucination issues, resulting in errors in drug design and utilization. In3

this paper, we first analyze the sources of hallucination in LLMs for molecular4

comprehension tasks, specifically the knowledge shortcut phenomenon observed5

in the PubChem dataset. To evaluate hallucination in molecular comprehension6

tasks with computational efficiency, we introduce Mol-Hallu, a novel free-form7

evaluation metric that quantifies the degree of hallucination based on the scientific8

entailment relationship between generated text and actual molecular properties.9

Utilizing the Mol-Hallu metric, we reassess and analyze the extent of hallucination10

in various LLMs performing molecular comprehension tasks. Furthermore, the11

Hallucination Reduction Post-processing stage (HRPP) is proposed to alleviate12

molecular hallucinations. Experiments show the effectiveness of HRPP on decoder-13

only and encoder-decoder molecular LLMs. Our findings offer critical insights14

into mitigating hallucinations and enhancing the reliability of LLMs in scientific15

applications.16
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Figure 1: Top: the scoring curves
of Mol-Hallu v.s. traditional met-
rics (BLEU, ROUGE, METEOR, etc)
across varying degrees of hallucina-
tion. H : n indicates that sam-
ples contain n counterfactual errors,
Mol-Hallu imposes an exponential
penalty on hallucination errors in text,
whereas traditional metrics fail to
evaluate biochemical hallucination in
texts reasonably. Bottom: a biochem-
ical sample that suffers severe halluci-
nation (red are counterfactual entities)
as an example. Mol-Hallu precisely
reflects the hallucination degree in sci-
entific texts compared to traditional
metrics.
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1 Introduction17

Large language models (LLMs) are regarded as foundation models in scientific fields due to their18

outstanding cross-domain generalization capability [39, 65]. In chemistry, LLMs are used for19

molecular property prediction [38, 50] and molecular design [16, 19]. These models bridge the gap20

between molecular structural and property features and the natural language descriptions, facilitating21

multiple chemical applications, including virtual screening, drug design, retrosynthesis planning, etc.22

Although LLMs have shown powerful generation capability in biochemistry domains, they suffer23

from hallucinations [3], which leads to the fabrication of non-existent facts or inappropriate molecular24

properties [61]. Hallucinations often arise when new biochemical knowledge is introduced during25

the supervised fine-tuning (SFT) stage conflicts with the model’s pretrained knowledge [18]. The26

risky SFT strategy is frequently employed in various molecular LLMs [14, 48, 64], demonstrating27

the ubiquity of hallucinations.28

Several studies on molecular LLMs analyze the hallucination phenomenon in molecule comprehen-29

sion tasks. MoleculeQA [36] and MoleculeTextQA [26] construct multi-choice QA datasets to assess30

the hallucination issues in molecular LLMs. However, these approaches require additional datasets31

for fine-tuning in the context of fixed-form evaluation [29], and their multiple-choice question format32

is ill-suited for assessing the open-ended generation capabilities of large language models [59]. To ad-33

dress this limitation, we propose a free-form evaluation metric to quantify the degree of hallucination34

in molecular LLMs. Moreover, existing research has not yet analyzed the sources of hallucination in35

molecular LLMs or explored how to effectively mitigate these hallucinations.36

To alleviate these issues, we first analyze the source of hallucinations in molecular LLMs and propose37

Mol-Hallu, the first free-form evaluation metric specifically designed to assess hallucination. Our38

investigation focuses on the PubChemQA dataset [28], a widely recognized benchmark source from39

the PubChem database [58] that aligns molecular structures with textual descriptions. We identify40

that knowledge shortcuts in this dataset hinder the alignment between molecular structures and41

biochemical entities, resulting in increased hallucinations. To quantify the extent of hallucinations,42

Mol-Hallu leverages the union of the answer and the molecular general description, rewarding43

correct biomedical entities. The union and intersection are computed using an entailment model to44

determine whether the molecular descriptions entail a given text n-gram. To enhance evaluation, we45

curated a chemical entity database by automatically annotating PubChem and ChEMBL [42] datasets46

to accurately retrieve biomedical entities from predicted texts. Fig.1 demonstrates the rationality47

of Mol-Hallu for hallucination evaluation compared to traditional metrics including BLEU [44],48

ROUGE [30], and METEOR [2].49

To mitigate the hallucination in current molecular LLMs, we propose the Hallucination Reduction50

Post-processing (HRPP) stage, which constructs a hallucination-sensitive preference dataset by51

leveraging our chemical entity database, thereby optimizing the accuracy of scientific entities in text52

generated by molecular LLMs. The HRPP approach has validated its effectiveness and generalizability53

under decoder-only and encoder-decoder language models, two fundamental paradigms of molecular54

language models. Our contributions are summarized as follows:55

• We dive into the molecular hallucination issue and identify that bio-knowledge shortcuts in the56

dataset exacerbate LLM hallucination.57

• To measure the hallucination in molecular comprehension with efficiency, we propose the first58

free-form evaluation metric, Mol-Hallu, which calculates the F1-score of scientific entities using59

entailment probability.60

• We further propose the hallucination reduction post-processing stage to alleviate the molecular61

hallucination using the hallucination-sensitive preference dataset.62

2 Related Works63

2.1 LLMs for Molecular Comprehension64

Pretrained biochemical LLMs excel in molecular comprehension, capturing 1D sequential [13, 14,65

21, 57], 2D topological [34, 47, 53, 60, 63], and 3D structural features [25, 32, 35, 66]. Two66

strategies bridge molecular-textual heterogeneity: cross-modal contrastive learning (MoMu [54],67
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Figure 2: Experiments demonstrate that in both decoder-only LLMs and encoder-decoder LLMs,
molecule masking attacking has little impact, while drug masking and distracting attacks lead to a
substantial decrease. This indicates that the knowledge shortcut prompts LLMs to establish alignment
between molecular properties and drug names instead of molecular structures, thereby deviating from
the goal of molecular comprehension.

MoleculeSTM [31], MolCA [33]) and supervised fine-tuning to map molecular representations into68

textual space (InstructMol [4], PRESTO [6], omni-mol [20]). However, molecular encoder biases69

and LLM knowledge limitations cause significant hallucination issues.70

2.2 Hallucination in Biochemical LLMs71

LLMs often generate unfaithful content (hallucination) due to source-reference divergence from72

heuristic data collection [46], imperfect training [15], or erroneous decoding [12]. In molecular tasks,73

counterfactual outputs mislead users and undermine scientific reliability [36].74

Hallucination evaluation includes: (1) Fixed-form (multi-choice QA, requires fine-tuning, limited75

open-ended relevance) and (2) Free-form (automated, computationally efficient). Detection methods76

comprise: (1) Fact-checking (external [7, 43] or internal knowledge [10, 23]) and (2) Uncertainty77

estimation (model confidence quantification [40, 56]).78

No existing metrics address biochemical LLM hallucination assessment [52]. We propose the first79

free-form metric for molecular tasks, focusing on scientific entity entailment without external retrieval80

or fine-tuning, providing efficient domain-specific hallucination detection.81

3 Methodology82

In this section, we propose the definition, the source, the Mol-Hallu evaluation metric, and the83

alleviation strategy for the molecular hallucination phenomenon.84

3.1 Definition of Molecular Hallucination85

Before delving into the source and evaluation of molecular hallucination, we first define the Molecular86

Hallucination as prediction texts that do not consist of the pharmacological or chemical properties87

of the molecule. Formally, given the molecule SMILES M and the question Q. The hallucination88

is that LLM fθ(·) outputs non-existent or counterfactual scientific entities E that do not satisfy the89

reality T, where T is the ground-truth entity set without any non-existent facts.90

3.2 Source of Molecular Hallucination91

The phenomenon of hallucination in LLMs arises from multiple sources, including inherent divergence92

and spurious noise within the data [27], as well as input knowledge bias [62] in training paradigms93

during training and inference processes. LLMs exhibit significant hallucinations in molecular94

comprehension tasks. Upon analyzing the PubChemQA dataset, we identified that bio-knowledge95

shortcuts exacerbate LLM hallucinations.96
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Molecule: Given a molecule [SMILES].
Question: What is the role of [Drug Name] in cellular processes?97

To be more specific, bio-knowledge shortcuts refer to instances where drug names (e.g., beryllium) are98

present in molecular-related questions, leading the model to establish mappings between drug names99

and their physicochemical properties during supervised fine-tuning, rather than between molecular100

structures from SMILES and physicochemical properties, which is the original intent of molecular101

comprehension tasks. The existence of such shortcuts makes LLMs prone to hallucination due to102

changes or the absence of drug names and hinders their ability to infer physicochemical properties103

for novel molecules.104

To prove this, we conduct attacks on the drug names contained in the questions within the molecular105

question-answer samples from the PubchemQA dataset and analyze the sources of hallucinations by106

observing the changes in hallucinations corresponding to different attack strategies [5]. Specifically,107

given a sample and its corresponding question Q, we replace the drug name Dj in Q with (1) a108

masked pronoun [ this molecule ] and (2) a distracting drug name [ unlike Dj ]. Fig. 2 shows that109

two classes of commonly used scientific LLMs, the decoder-only models (e.g., Llama [11, 55]) and110

the encoder-decoder models (e.g., T5 [51]), both exhibit severe hallucination phenomena (-21% Acc.)111

under two attack strategies. However, the absence of SMILES input has little influence on both112

models (-5% Acc.). This indicates that the models rely more on textual cues (e.g., drug names) than113

on SMILES structural information to infer molecular properties, highlighting their inability to align114

SMILES with molecular properties. This limits their generalization and reasoning capabilities for115

accurate molecular question-answering.116

3.3 Mol-Hallu Metric117

To better quantify hallucination in LLMs for molecular comprehension tasks, we introduce the118

Mol-Hallu evaluation metric to assess the extent of hallucination. This metric calculates Recall119

and Precision by comparing the entity entailment probability between the predicted answer Ai, the120

ground-truth answer Gi, and the molecular description Ti corresponding to the molecule Mi, thereby121

evaluating the hallucination rate.122

3.3.1 Entity Entailment Probability123

We define molecular hallucination as the phenomenon of scientific entity mismatches between124

predicted text and reference answers. To annotate scientific entities in the text, we employed Meta-125

llama-3.2 [11] with a 10-shot prompting approach to automatically label scientific entities in captions126

and QA texts from the PubChem dataset. After filtering based on inclusiveness, length, and semantics,127

we go through the human evaluation and obtain 97,219 chemical entities as the entity database. To128

enhance the generalization of our entity database, we employ the same extraction protocol to collect129

904 and 12,199 chemical entities from CheF [24] and ChemBench [1], covering diverse molecular130

domains including pharmaceuticals, chemistry, and materials science. The statistic visualization131

below shows that nearly half of the entities in our entity database are molecular structural entities,132

while the entities related to drug application, property, and natural source are nearly balanced.

Dataset Appli. Property Source Struct. Others

Pubchem 14.3% 19.7% 12.0% 51.2% None
CheF 37.16% 18.47% 4.6% 25.0% 14.7%
ChemBench 15.3% 13.6% 22.8% 28.5% 19.8%

Total 14.6% 19.0% 13.4% 48.5% 2.3%

133
Then, we introduce the entity entailment probability, defined as the probability that the presence of134

entity list e is correct given the associated molecular descriptions and answers. Inspired by previous135

entailment works [8], we find that simple models are effective for entailment probability measurement.136

Here we apply the probability function as w(·),137

w(e) =
∑n

j=1
1(ej ∈ T̄)/n, (1)

where 1 is the indicator function, n is the entity number of e, and T̄ represents the set of all the138

entities present in description T . Then we compute the precision and the recall of the predicted text.139
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3.3.2 Entailed Precision140

The entailed precision aims to represent the correct fraction of the n-gram entities in mathbbAi,141

where mathbbAi is the set of all entities in predicted answer Ai. An n-gram entity e is treated as142

correct if it appears in the ground-truth answer or if it appears in the molecular description, which is143

also a substantial correct answer. We apply w(e) as the reward weight of the second scenario.144

P n-gram
e =

∑
e∈Ai

[Pr(e ∈ Gn-gram) + w(e)Pr(e /∈ Gn-gram)], (2)

Specifically, P n-gram
e represents the reward of the n-gram entity e. It receives a score of 1 if the145

ground-truth answer entails it. Otherwise, it receives a score of w(e) if e appears in the molecular146

description. We consider the numerator during the weight calculation of P n-gram
e . Finally, we apply147

the geometric average to calculate the precision of the total sample group,148

P̄e = exp(

4∑
n-gram=1

1

4
log P n-gram

e ), (3)

where we select the n-gram order from 1-4 as other metrics [9, 45, 49]. Meanwhile, we calculate the149

n-gram matching score P̄∅ for non-entity words. To balance the precision P̄e from scientific entities150

and P̄∅ from non-entities, we use the entity error count γ as a weighting factor,151

γ = 1− (Nwrong/Ntotal)
0.5, (4)

P = γP̄∅ + (1− γ)P̄e, (5)

where Nwrong and Ntotal are wrong entity and total entity counts. P represents the final precision score.152

3.3.3 Entailed Recall153

The entailment recall R reflects the extent to which the model misses correct words. R is computed154

between predicted A and ground truth G to ensure that entities and other n-gram words with high155

frequency in the ground truth receive a higher score when predicted correctly. We also apply the156

geometric average to get R from R1...n.157

3.3.4 Smoothing & Combination158

Mol-Hallu employs the geometric average to compute entailed precision due to its ability to reflect159

compound changes accurately. However, when a component approaches 0, the geometric average160

also tends to 0. To mitigate this issue, we apply smoothing θ=10−5 to components close to 0. After161

the precision smoothing, we calculate the F1-score based on the entailed precision P and recall R.162

Mol-Hallu(A,G, T ) = 2P · R/(P + R), (6)

Mol-Hallu(fθ) =
1

N

∑N

i=1
Mol-Hallu(Ai, Gi, Ti), (7)

where the F1-scores from all samples generated by the model fθ are arithmetic averaged to represent163

the hallucination rate of fθ.164

3.4 Hallucination Reduction Post-processing165

To mitigate the hallucination in LLM-based molecular comprehension, we propose the Hallucination166

Reduction Post-processing (HRPP) stage. As shown in Fig. 3, HRPP consists of two main steps:167

(1) reducing the model’s reliance on entity name shortcuts through supervised fine-tuning, and (2)168

improving response accuracy and reducing hallucination using Direct Preference Optimization (DPO)169

with a hallucination-sensitive preference dataset.170

To mitigate the model’s tendency to generate hallucinated responses due to over-reliance on entity171

name shortcuts, we employ a supervised fine-tuning approach. Given a training dataset D =172

{(qi, Gi)}Ni=1, where Qi is the input text and Gi is the corresponding ground truth response, we173
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Figure 3: The pipeline of entity preference dataset and our hallucination-reduction post-processing
stage. The entity preference dataset is generated by removing bio-knowledge shortcuts and replacing
entities with hallucinations. Then we apply the entity preference dataset for scientific-entity halluci-
nation alleviation during the HRPP stage.

preprocess Qi by masking entity names, replacing them with "this molecule" to prevent shortcut174

learning. We then optimize the model parameters θ by minimizing the cross-entropy loss:175

LCE(θ) = −
N∑
i=1

T∑
t=1

logPθ(G
t
i | Qi, G

<t
i ) (8)

where T is the sequence length, N is the sample number, and Pθ represents the model’s probability176

distribution over the vocabulary.177

To further improve response accuracy and factual consistency of molecular LLMs, we first construct a178

hallucination-sensitive preference dataset Dp = {(qi, G+
i , G

-
i)}Mi=1, where G+

i represents the preferred179

response, and G-
i represents the less preferred response. As shown in Fig. 3 left, to construct this180

dataset, we randomly extract 2000 QA pairs from the training set. The ground truth Gi is designated181

as G+
i . To generate the negative sample G-

i, we introduce entity perturbations by randomly replacing182

certain entities in Gi with different ones using our chemical entity database. Additionally, we sample183

four responses from the model at a high temperature for each qi, incorporating them into the set of184

G-
i responses.185

We use DPO to optimize the model by maximizing the divergence between the likelihood of preferred186

and rejected responses:187

L(θ) = −
M∑
i=1

log σ

(
β log

Pθ(G
+
i |qi)Pr(G

-
i|qi)

Pθ(G-
i|qi)Pr(G+

i |qi)

)
(9)

where σ(·) is the sigmoid function, Pr is the reference model, and β is a temperature hyperparameter188

that controls the strength of preference learning. In the experiment section, we apply HRPP to189

decoder-only LLMs and encoder-decoder LLMs for effectiveness analysis.190

4 Experiments191

4.1 Baseline Models and Training Procedures192

To comprehensively evaluate the LLM performance in molecular conprehension, we introduce three193

categories of LLMs as baselines, including scientifically fine-tuned LLMs, general-purpose LLMs,194

and commercial LLMs. Specifically, LLMs fine-tuned with biochemical knowledge exhibit strong195

capabilities in modeling molecular SMILES and protein sequences. We evaluate their hallucination196

levels on the PubChemQA dataset in a zero-shot manner. General-purpose LLMs, trained extensively197

in natural scenarios, although less adept at modeling molecular SMILES compared to scientifically198

fine-tuned LLMs, possess stronger reasoning abilities. Commercial LLMs have stronger prior199

knowledge and reasoning capabilities due to their large parameter sizes. We conduct paid evaluations200

using the APIs of commercial LLMs, employing 10-shot instruction fine-tuning to generate responses201

to molecular-related queries.202
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Models # Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-L METEOR Mol-Hallu↑
Molecular-LLMs

MolT5-small 80M 49.46 41.94 55.04 51.56 55.40 59.01
MolT5-base 250M 50.21 42.53 55.70 52.07 56.00 44.74
MolT5-large 800M 49.58 41.97 55.52 51.85 55.80 60.13
MoMu-small 82M 50.81 42.54 52.78 51.18 55.94 55.73
MoMu-base 252M 51.07 43.29 53.71 50.98 55.59 56.29
BioT5-base 252M 43.36 35.10 51.05 47.16 51.55 55.21
MolCA 1.3B 51.93 44.28 55.00 51.41 56.79 55.82
3D-MoLM 7B 32.00 26.17 40.13 34.64 52.15 53.18
BioMedGPT 10B 37.31 31.29 39.62 36.87 48.31 43.88

General-LLMs
T5-small 60M 49.97 42.40 54.88 51.16 55.47 59.07
T5-base 220M 51.01 43.27 55.89 52.17 56.43 60.21
T5-large 770M 50.79 42.85 55.98 52.23 56.42 60.93
Llama-2 7B 28.15 23.24 35.14 30.41 46.87 53.78
Llama-3.1 8B 52.19 43.51 55.41 51.18 57.48 60.14

Universal-LLM-API (Few-shot)
Qwen-2.5-Instruct 32B 35.72 27.51 43.59 38.22 49.63 49.97
Qwen-Reason (QwQ) 32B 18.62 13.62 27.33 23.32 35.14 25.61
DeepSeek-V3 671B 49.31 39.86 53.96 48.37 57.69 62.16
DeepSeek-R1 671B 32.12 24.17 41.77 37.56 40.65 46.65
GPT-4o-20241120 1.8T 47.78 41.74 51.97 46.99 51.24 55.71
o1-mini 300B 40.22 31.06 46.99 41.81 51.88 51.23

Table 1: Experimental results for hallucination evaluation across molecular LLMs (fine-tuned),
general LLMs (fine-tuned), and universal LLMs (API-based inference). We report accuracy (%)
using both standard textual metrics and our proposed hallucination-specific evaluation metric.

Molecule-LLMs BLEU-2 BLEU-4 ROUGE-1 ROUGE-L METEOR Mol-Hallu↑ Expert-Score↑
MolT5 [13] 34.48 26.54 45.13 41.34 37.08 46.15 50.2
MolT5+SFT 35.45 25.93 42.72 38.99 39.68 47.04 48.6
MolT5+HRPP 40.65 30.73 47.47 43.54 44.31 49.03 63.9
Mollama-8B [38] 33.18 24.75 44.19 40.66 37.57 44.21 45.0
Mollama-8B+SFT 35.14 25.62 43.42 39.43 39.14 44.71 46.8
Mollama-8B+HRPP 38.79 28.95 46.12 42.17 43.27 46.28 61.2

Table 2: Hallucination Reduction Post-processing (HRPP) has substantial improvements in textural
metrics and our Mol-Hallu metric, demonstrating its effectiveness on both decoder-only models (Mol-
lama) and encoder-decoder-based models (MolT5).

4.2 Main Results203

We summarize and analyze the baseline performances in Table.1. Several phenomena have been204

observed as follows.205

Hallucinations in baseline models. (1) The hallucination metric remains within the range of 40-60%,206

with an average of 3-4 counterfactual entities present, indicating significant room for improvement.207

(2) The degree of hallucination is not necessarily positively correlated with model performance. While208

MolT5-base shows comparable performance to MolT5-small and MolT5-large, its hallucination209

is notably more severe. However, 3D-MoLM exhibits moderate performance but remains lower210

hallucination rate.211

LLM Structural Comparison: Encoder-Decoder v.s. Decoder-only. Encoder-decoder models212

surpass other structures in molecular comprehension tasks due to their compact size and excellent213

performance. We observe that T5-based models, represented by T5-finetune, MolT5, and MoMu, ex-214

hibit strong performance on the MolecularQA task even in their small versions, surpassing molecular215

LLMs based on Llama by 2.7% and GPT-4 by 13%. This is attributed to the T5 model’s encoder-216

decoder structure, which employs a span corruption pre-training strategy. Additionally, its smaller217

parameter count supports full-parameter fine-tuning instead of the LoRA fine-tuning used in Llama,218

resulting in better generalization in few-shot scenarios within the biochemistry domain.219
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Reward strategies in LLMs amplify hallucination. Deepseek-R1 and o1-mini have widely adopted220

reinforcement learning as an effective approach to enhance the LLM reasoning capabilities for221

complex problems. However, this optimization strategy often leads to a hallucination increase [17].222

We observe a similar phenomenon in Molecular Comprehension. In the LLM-API part of Table.1, we223

compare Qwen, Deepseek, and GPT-4, with their reasoning-enhanced versions on scientific QA tasks.224

The results indicate a significant decline in both prediction quality and factual accuracy, attributed225

to: (1) the trade-off between improved reasoning in math/code tasks and the reduced reliance on226

prior knowledge, making it harder to address scientific questions; and (2) the tendency of reasoning-227

enhanced LLMs to generate chain-of-thought outputs, which often contain more hallucinated entities.228

Therefore, balancing reasoning and hallucination in domain-specific scenarios remains a critical229

challenge.230

Extra protein knowledge: no benefit to hallucination. During pretraining, extending the dataset231

to include both chemical molecules and protein macromolecules cannot alleviate hallucination.232

Instead, it leads to a decrease in performance for molecular understanding tasks. In Table. 1,233

BioMedGPT [37] and BioT5 utilize various protein dataset size (1.8M, 27M) as additional knowledge.234

However, their performance and hallucination assessment are inferior to the MolT5-based model235

due to the structural differences between FASTA-based protein inputs and SMILES-based molecular236

inputs, as well as the significant domain-specific entity differences between proteins and chemical237

molecules. Consequently, the incorporation of such knowledge fails to enhance generalization or238

reduce hallucination.239

4.3 Analysis for Hallucination Reduction240

In Table. 2, we dive into the hallucination reduction post-processing (HRPP) and analyze its effec-241

tiveness on hallucination alleviation . A chemical-expert evaluation in Table. 2 confirms the HRPP242

module’s efficacy in practical molecular comprehension tasks.243

Effectiveness of HRPP Stage. Our HRPP stage demonstrates effectiveness across both decoder-only244

and encoder-decoder models. As shown in Table 2, HRPP substantially improves molecular LLMs,245

achieving average gains of 4.0% on textual metrics and significant hallucination reduction (2.9%↑ for246

decoder-only; 2.0%↑ for T5-based structures). To confirm HRPP’s gains are not from the preference247

dataset alone, we conducted SFT on the same data. Results show SFT alone fails to consistently248

improve performance and even degrades expert-score performance.249

Meanwhile, We observe notable BLEU and METEOR improvements (5-7%) with HRPP, versus250

modest ROUGE gains (1-2%), indicating HRPP-enhanced models generate more precise scientific251

entities and accurate semantics. Some missing entities persist due to ROUGE’s recall sensitivity.252

Chemical-Expert Evaluation. To validate the scientific plausibility of HRPP in molecular under-253

standing tasks, we engage five chemistry experts to evaluate a subset of PubChemQA for scientific254

soundness and chemical entity correctness. Specifically, PubChemQA samples are stratified into255

easy, medium and hard categories based on the precision of the DeepSeek-V3 response, with 20256

samples selected from each for evaluation. The Expert-Score in Table. 2 (averaging 1-5 ratings per257

sample) demonstrates HRPP’s effectiveness, showing 13.7% and 16.2% improvements over MolT5258

and MolLama respectively.259

5 Conclusion260

In conclusion, our work aims to evaluate and alleviate the LLM’s hallucination in molecular com-261

prehension. By attacking the scientific entities in molecule-related questions, we identify the bio-262

knowledge shortcuts in the PubChem dataset prompt LLMs to establish alignment between molecular263

properties and drug names instead of molecular structures, which serves as the hallucination source264

of the molecular comprehension task. We further propose Mol-Hallu, the first free-form hallucination265

metric for the molecular comprehension task. Mol-Hallu provides a computational efficient way to266

evaluation the hallucination through scientific entailment relationship. To further alleviate the halluci-267

nation, we propose the hallucination reduction post-processing (HRPP) strategy with a self-collected268

hallucination-sensitive preference dataset constructed based on scientific entity replacement. Experi-269

mental results demonstrate that various LLM architectures significantly suppressed hallucinations270

with our HRPP strategy.271
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A Appendix472

A.1 Full version of Related Works473

A.1.1 LLMs for Molecular Comprehension474

LLMs that were pretrained with biochemical scientific data have shown substantial success in475

molecular comprehension tasks [38]. The molecular encoders capture 1D sequential features [13, 14,476

21, 57], 2D topological features [34, 47, 53, 60, 63], and 3D structural patterns [25, 32, 35, 66] from477

the molecule.478

Related studies have adopted two primary strategies to bridge the heterogeneity gap between molec-479

ular and textual representations for enhanced comprehension. Firstly, the cross-modal contrastive480

learning strategy is applied to fine-tune molecular and textual encoders, including MoMu [54],481

MoleculeSTM [31], and MolCA [33]. As textual encoders grow in parameter size and inferential482

capability, InstructMol [4], PRESTO [6], and omni-mol [20] have turned to supervised fine-tuning483

using molecular-text datasets to establish a pooling layer that maps molecular representations into the484

textual space of LLMs. However, constrained by the feature bias of molecular encoders and the prior485

knowledge of LLMs, current molecular LLMs are plagued by significant hallucination issues.486

A.1.2 Hallucination in Biochemical LLMs487

Alongside the advancement in reasoning, LLMs often generate nonsensical or unfaithful content to the488

provided source, referred as hallucination [3, 41]. The source-reference divergence phenomenon [22]489

is the main cause of hallucination. The divergence comes from heuristic data collection [46] and490

imperfect representation learning during the training procedure [15] or erroneous decoding when491

conducting inference [12]. In molecular comprehension tasks, molecular LLMs often generate492

counterfactual content, which can lead to adverse consequences such as misleading users and493

ultimately undermining the reliability of LLMs in scientific applications [36].494

The evaluation of hallucinations in LLMs can be categorized into (1) Fixed-form evaluation and (2)495

Free-form evaluation. Fixed-form evaluation uses multi-choice QA datasets, such as MoleculeQA496

and MoleculeTextQA, to assess hallucinations. However, this method requires fine-tuning LLMs497

on hallucination datasets and uses a multi-choice format that differs from the open-ended nature of498

LLM tasks, making it less reflective of the true hallucination extent. In contrast, free-form evaluation499

leverages automated functions for faster, more computationally efficient assessments. Hallucination500

detection methods also fall into two categories: (1) Fact-checking-based methods, which verify501

accuracy through external [7, 43] or internal knowledge [10, 23], and (2) Uncertainty estimation502

methods [40, 56], which detect hallucinations by quantifying model confidence without external503

references.504

Currently, there are no such metrics for hallucination assessment in biochemical LLMs [52], which505

limits the effectiveness of large scientific models in drug discovery. To address this, we propose the506

first free-form evaluation metric for molecular comprehension tasks, focused on the entailment of507

scientific entities. This method leverages ground truth while avoiding the need for external retrieval508

or fine-tuning, providing an efficient and domain-specific solution for hallucination detection.509

A.2 Case Studies510

We select samples with hallucinations and demonstrate a numerical comparison between our Mol-511

Hallu metric and traditional textual metrics. Table. 3 shows that Mol-Hallu are more sensitive to512

hallucinations. When the prediction and ground truth share similar sentence structures but differ in513

1



scientific entities, Mol-Hallu assigns a lower score, whereas traditional evaluation methods consider514

them semantically similar.515

Molecule Query Ground-Truth Our answer Metric

Isolated
Area

This compound is isolated
from the plants Sorbus cusp-
idata and Calceolaria dentata.

Hexaen is isolated from the
plants pentahydroxy and ben-
zoate.

B: 78.9%
R: 86.4%
M: 87.9%
M-H: 43.3%

Potential
Reac-
tivity

This compound has poten-
tial reactivity towards nucle-
ophiles and bases due to the
presence of ketone and lactone
groups.

This compound has potential
reactivity towards aromaticity
and methoxy due to the pres-
ence of solubility and reactiv-
ity groups.

B: 92.2%
R: 93.3%
M: 93.9%
M-H: 66.1%

Table 3: Case Studies for Mol-Hallu and Other Textural Metrics. Our Mol-Hallu exhibits stronger
sensitivity to hallucinated outputs under different question types in molecule comprehension.
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