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Abstract

Large language models are increasingly used in scientific domains, especially for
molecular understanding and analysis. However, existing models are affected
by hallucination issues, resulting in errors in drug design and utilization. In
this paper, we first analyze the sources of hallucination in LLMs for molecular
comprehension tasks, specifically the knowledge shortcut phenomenon observed
in the PubChem dataset. To evaluate hallucination in molecular comprehension
tasks with computational efficiency, we introduce Mol-Hallu, a novel free-form
evaluation metric that quantifies the degree of hallucination based on the scientific
entailment relationship between generated text and actual molecular properties.
Utilizing the Mol-Hallu metric, we reassess and analyze the extent of hallucination
in various LLMs performing molecular comprehension tasks. Furthermore, the
Hallucination Reduction Post-processing stage (HRPP) is proposed to alleviate
molecular hallucinations. Experiments show the effectiveness of HRPP on decoder-
only and encoder-decoder molecular LLMs. Our findings offer critical insights
into mitigating hallucinations and enhancing the reliability of LLMs in scientific
applications.
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1 Introduction

Large language models (LLMs) are regarded as foundation models in scientific fields due to their
outstanding cross-domain generalization capability [39} |65]. In chemistry, LLMs are used for
molecular property prediction [38,|50] and molecular design [[16,|19]. These models bridge the gap
between molecular structural and property features and the natural language descriptions, facilitating
multiple chemical applications, including virtual screening, drug design, retrosynthesis planning, etc.

Although LLMs have shown powerful generation capability in biochemistry domains, they suffer
from hallucinations [3]], which leads to the fabrication of non-existent facts or inappropriate molecular
properties [61]. Hallucinations often arise when new biochemical knowledge is introduced during
the supervised fine-tuning (SFT) stage conflicts with the model’s pretrained knowledge [[18]. The
risky SFT strategy is frequently employed in various molecular LLMs [14} 48| 164], demonstrating
the ubiquity of hallucinations.

Several studies on molecular LLMs analyze the hallucination phenomenon in molecule comprehen-
sion tasks. MoleculeQA [36]] and MoleculeTextQA [26] construct multi-choice QA datasets to assess
the hallucination issues in molecular LLMs. However, these approaches require additional datasets
for fine-tuning in the context of fixed-form evaluation [29]], and their multiple-choice question format
is ill-suited for assessing the open-ended generation capabilities of large language models [59]. To ad-
dress this limitation, we propose a free-form evaluation metric to quantify the degree of hallucination
in molecular LLMs. Moreover, existing research has not yet analyzed the sources of hallucination in
molecular LLMs or explored how to effectively mitigate these hallucinations.

To alleviate these issues, we first analyze the source of hallucinations in molecular LLMs and propose
Mol-Hallu, the first free-form evaluation metric specifically designed to assess hallucination. Our
investigation focuses on the PubChemQA dataset [28], a widely recognized benchmark source from
the PubChem database [58] that aligns molecular structures with textual descriptions. We identify
that knowledge shortcuts in this dataset hinder the alignment between molecular structures and
biochemical entities, resulting in increased hallucinations. To quantify the extent of hallucinations,
Mol-Hallu leverages the union of the answer and the molecular general description, rewarding
correct biomedical entities. The union and intersection are computed using an entailment model to
determine whether the molecular descriptions entail a given text n-gram. To enhance evaluation, we
curated a chemical entity database by automatically annotating PubChem and ChEMBL [42]] datasets
to accurately retrieve biomedical entities from predicted texts. Fig[I|demonstrates the rationality
of Mol-Hallu for hallucination evaluation compared to traditional metrics including BLEU [44],
ROUGE [30], and METEOR [2].

To mitigate the hallucination in current molecular LLMs, we propose the Hallucination Reduction
Post-processing (HRPP) stage, which constructs a hallucination-sensitive preference dataset by
leveraging our chemical entity database, thereby optimizing the accuracy of scientific entities in text
generated by molecular LLMs. The HRPP approach has validated its effectiveness and generalizability
under decoder-only and encoder-decoder language models, two fundamental paradigms of molecular
language models. Our contributions are summarized as follows:

* We dive into the molecular hallucination issue and identify that bio-knowledge shortcuts in the
dataset exacerbate LLM hallucination.

* To measure the hallucination in molecular comprehension with efficiency, we propose the first
free-form evaluation metric, Mol-Hallu, which calculates the F1-score of scientific entities using
entailment probability.

* We further propose the hallucination reduction post-processing stage to alleviate the molecular
hallucination using the hallucination-sensitive preference dataset.

2 Related Works

2.1 LLMs for Molecular Comprehension

Pretrained biochemical LLMs excel in molecular comprehension, capturing 1D sequential [13} |14}
21, 157], 2D topological [34} 147, 53| 160} 163]], and 3D structural features [25} 132, 35| |66]]. Two
strategies bridge molecular-textual heterogeneity: cross-modal contrastive learning (MoMu [54]],
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Figure 2: Experiments demonstrate that in both decoder-only LLMs and encoder-decoder LLMs,
molecule masking attacking has little impact, while drug masking and distracting attacks lead to a
substantial decrease. This indicates that the knowledge shortcut prompts LLMs to establish alignment
between molecular properties and drug names instead of molecular structures, thereby deviating from
the goal of molecular comprehension.

MoleculeSTM [31]], MoICA [33])) and supervised fine-tuning to map molecular representations into
textual space (InstructMol [4]], PRESTO [6], omni-mol [20]]). However, molecular encoder biases
and LLM knowledge limitations cause significant hallucination issues.

2.2 Hallucination in Biochemical LLMs

LLMs often generate unfaithful content (hallucination) due to source-reference divergence from
heuristic data collection [46], imperfect training [15]], or erroneous decoding [12]]. In molecular tasks,
counterfactual outputs mislead users and undermine scientific reliability [36].

Hallucination evaluation includes: (1) Fixed-form (multi-choice QA, requires fine-tuning, limited
open-ended relevance) and (2) Free-form (automated, computationally efficient). Detection methods
comprise: (1) Fact-checking (external [7, or internal knowledge [[10} 23]]) and (2) Uncertainty
estimation (model confidence quantification [40Q, [56]]).

No existing metrics address biochemical LLM hallucination assessment [52]]. We propose the first
free-form metric for molecular tasks, focusing on scientific entity entailment without external retrieval
or fine-tuning, providing efficient domain-specific hallucination detection.

3 Methodology

In this section, we propose the definition, the source, the Mol-Hallu evaluation metric, and the
alleviation strategy for the molecular hallucination phenomenon.

3.1 Definition of Molecular Hallucination

Before delving into the source and evaluation of molecular hallucination, we first define the Molecular
Hallucination as prediction texts that do not consist of the pharmacological or chemical properties
of the molecule. Formally, given the molecule SMILES M and the question @. The hallucination
is that LLM fy(-) outputs non-existent or counterfactual scientific entities E that do not satisfy the
reality T, where T is the ground-truth entity set without any non-existent facts.

3.2 Source of Molecular Hallucination

The phenomenon of hallucination in LLMs arises from multiple sources, including inherent divergence
and spurious noise within the data [27], as well as input knowledge bias [62] in training paradigms
during training and inference processes. LLMs exhibit significant hallucinations in molecular
comprehension tasks. Upon analyzing the PubChemQA dataset, we identified that bio-knowledge
shortcuts exacerbate LLM hallucinations.
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Molecule: Given a molecule [SMILES].
Question: What is the role of [Drug Name] in cellular processes?

To be more specific, bio-knowledge shortcuts refer to instances where drug names (e.g., beryllium) are
present in molecular-related questions, leading the model to establish mappings between drug names
and their physicochemical properties during supervised fine-tuning, rather than between molecular
structures from SMILES and physicochemical properties, which is the original intent of molecular
comprehension tasks. The existence of such shortcuts makes LLMs prone to hallucination due to
changes or the absence of drug names and hinders their ability to infer physicochemical properties
for novel molecules.

To prove this, we conduct attacks on the drug names contained in the questions within the molecular
question-answer samples from the PubchemQA dataset and analyze the sources of hallucinations by
observing the changes in hallucinations corresponding to different attack strategies [S)]. Specifically,
given a sample and its corresponding question (), we replace the drug name D; in @) with (1) a
masked pronoun [ this molecule | and (2) a distracting drug name [ unlike D; |. Fig. [2[shows that
two classes of commonly used scientific LLMs, the decoder-only models (e.g., Llama [[11}55]]) and
the encoder-decoder models (e.g., T5 [51]), both exhibit severe hallucination phenomena (-21% Acc.)
under two attack strategies. However, the absence of SMILES input has little influence on both
models (-5% Acc.). This indicates that the models rely more on textual cues (e.g., drug names) than
on SMILES structural information to infer molecular properties, highlighting their inability to align
SMILES with molecular properties. This limits their generalization and reasoning capabilities for
accurate molecular question-answering.

3.3 Mol-Hallu Metric

To better quantify hallucination in LLMs for molecular comprehension tasks, we introduce the
Mol-Hallu evaluation metric to assess the extent of hallucination. This metric calculates Recall
and Precision by comparing the entity entailment probability between the predicted answer A;, the
ground-truth answer G;, and the molecular description 7; corresponding to the molecule M;, thereby
evaluating the hallucination rate.

3.3.1 Entity Entailment Probability

We define molecular hallucination as the phenomenon of scientific entity mismatches between
predicted text and reference answers. To annotate scientific entities in the text, we employed Meta-
llama-3.2 [11] with a 10-shot prompting approach to automatically label scientific entities in captions
and QA texts from the PubChem dataset. After filtering based on inclusiveness, length, and semantics,
we go through the human evaluation and obtain 97,219 chemical entities as the entity database. To
enhance the generalization of our entity database, we employ the same extraction protocol to collect
904 and 12,199 chemical entities from CheF [24] and ChemBench [1]], covering diverse molecular
domains including pharmaceuticals, chemistry, and materials science. The statistic visualization
below shows that nearly half of the entities in our entity database are molecular structural entities,
while the entities related to drug application, property, and natural source are nearly balanced.

Dataset \ Appli. Property Source Struct. Others
Pubchem 14.3% 19.7% 12.0% 51.2% None
CheF 37.16% 18.47% 4.6% 25.0% 14.7%
ChemBench 15.3% 13.6% 22.8% 28.5% 19.8%
Total | 14.6% 19.0% 13.4% 48.5% 2.3%

Then, we introduce the entity entailment probability, defined as the probability that the presence of
entity list e is correct given the associated molecular descriptions and answers. Inspired by previous
entailment works [8]], we find that simple models are effective for entailment probability measurement.
Here we apply the probability function as w(-),

w(e) = Z:Zl 1(e; € T)/n, @)

where 1 is the indicator function, n is the entity number of e, and T represents the set of all the
entities present in description 7. Then we compute the precision and the recall of the predicted text.
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3.3.2 Entailed Precision

The entailed precision aims to represent the correct fraction of the n-gram entities in mathbbA;,
where mathbbA; is the set of all entities in predicted answer A;. An n-gram entity e is treated as
correct if it appears in the ground-truth answer or if it appears in the molecular description, which is
also a substantial correct answer. We apply w(e) as the reward weight of the second scenario.

preem _ Z [PI‘(@ c Gn-gram) + w(e)PI‘(e ¢ (G,n-gram)]7 2)

ech;

Specifically, P;#™™" represents the reward of the n-gram entity e. It receives a score of 1 if the
ground-truth answer entails it. Otherwise, it receives a score of w(e) if e appears in the molecular

description. We consider the numerator during the weight calculation of P;*"™". Finally, we apply
the geometric average to calculate the precision of the total sample group,
1
p — Z1 pr-gram
e=exp( ) log PIERT), 3)
n-gram=1

where we select the n-gram order from 1-4 as other metrics [9, 45, 149]. Meanwhile, we calculate the
n-gram matching score Py for non-entity words. To balance the precision P, from scientific entities
and Py from non-entities, we use the entity error count y as a weighting factor,

v =1~ (Nurong/Neow)*”, )
P:’}/pg‘f'(l_'y)Pev (5)

where Nyrong and Nyoar are wrong entity and total entity counts. P represents the final precision score.

3.3.3 Entailed Recall

The entailment recall R reflects the extent to which the model misses correct words. R is computed
between predicted A and ground truth G to ensure that entities and other n-gram words with high
frequency in the ground truth receive a higher score when predicted correctly. We also apply the
geometric average to get R from Ry .

3.3.4 Smoothing & Combination

Mol-Hallu employs the geometric average to compute entailed precision due to its ability to reflect
compound changes accurately. However, when a component approaches 0, the geometric average
also tends to 0. To mitigate this issue, we apply smoothing #=10""° to components close to 0. After
the precision smoothing, we calculate the F1-score based on the entailed precision P and recall R.

Mol-Hallu(A, G, T) = 2P - R/(P + R), 6)
1 N
Mol-Hallu(fy) = N Zi:l Mol-Hallu(A;, Gs,T3), (7

where the F1-scores from all samples generated by the model fy are arithmetic averaged to represent
the hallucination rate of fj.

3.4 Hallucination Reduction Post-processing

To mitigate the hallucination in LLM-based molecular comprehension, we propose the Hallucination
Reduction Post-processing (HRPP) stage. As shown in Fig. 3] HRPP consists of two main steps:
(1) reducing the model’s reliance on entity name shortcuts through supervised fine-tuning, and (2)
improving response accuracy and reducing hallucination using Direct Preference Optimization (DPO)
with a hallucination-sensitive preference dataset.

To mitigate the model’s tendency to generate hallucinated responses due to over-reliance on entity
name shortcuts, we employ a supervised fine-tuning approach. Given a training dataset D =
{(qi, Gi)}},, where Q; is the input text and G is the corresponding ground truth response, we
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Figure 3: The pipeline of entity preference dataset and our hallucination-reduction post-processing
stage. The entity preference dataset is generated by removing bio-knowledge shortcuts and replacing
entities with hallucinations. Then we apply the entity preference dataset for scientific-entity halluci-
nation alleviation during the HRPP stage.

preprocess (); by masking entity names, replacing them with "this molecule" to prevent shortcut
learning. We then optimize the model parameters § by minimizing the cross-entropy loss:

N T
Lee(0) ==Y log Py(G! | Qi, G ®)

i=1 t=1

where T is the sequence length, N is the sample number, and Py represents the model’s probability
distribution over the vocabulary.

To further improve response accuracy and factual consistency of molecular LLMs, we first construct a
hallucination-sensitive preference dataset D, = {(g;, GI, G;)}1,, where G} represents the preferred
response, and G represents the less preferred response. As shown in Fig. |3| left, to construct this
dataset, we randomly extract 2000 QA pairs from the training set. The ground truth G; is designated
as G7. To generate the negative sample G;, we introduce entity perturbations by randomly replacing
certain entities in GG; with different ones using our chemical entity database. Additionally, we sample
four responses from the model at a high temperature for each ¢;, incorporating them into the set of

G responses.

We use DPO to optimize the model by maximizing the divergence between the likelihood of preferred
and rejected responses:

M
P9<Gz|qi>R<G;|qi>>
L(0) =— I 1 9

(0) = =2 oz (ﬁ %8 Py (Cila) B lay) ©)

where o(+) is the sigmoid function, P is the reference model, and /3 is a temperature hyperparameter
that controls the strength of preference learning. In the experiment section, we apply HRPP to
decoder-only LLMs and encoder-decoder LLMs for effectiveness analysis.

4 Experiments

4.1 Baseline Models and Training Procedures

To comprehensively evaluate the LLM performance in molecular conprehension, we introduce three
categories of LLMs as baselines, including scientifically fine-tuned LLMs, general-purpose LLMs,
and commercial LLMs. Specifically, LLMs fine-tuned with biochemical knowledge exhibit strong
capabilities in modeling molecular SMILES and protein sequences. We evaluate their hallucination
levels on the PubChemQA dataset in a zero-shot manner. General-purpose LLMs, trained extensively
in natural scenarios, although less adept at modeling molecular SMILES compared to scientifically
fine-tuned LLMs, possess stronger reasoning abilities. Commercial LLMs have stronger prior
knowledge and reasoning capabilities due to their large parameter sizes. We conduct paid evaluations
using the APIs of commercial LLMs, employing 10-shot instruction fine-tuning to generate responses
to molecular-related queries.
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Models | # Params | BLEU-2 BLEU-4 ROUGE-1 ROUGE-L METEOR | Mol-Hallut

Molecular-LLMs
MolT5-small 8OM 49.46 41.94 55.04 51.56 55.40 59.01
MolT5-base 250M 50.21 42.53 55.70 52.07 56.00 44.74
MolT5-large 800M 49.58 41.97 55.52 51.85 55.80 60.13
MoMu-small 82M 50.81 42.54 52.78 51.18 55.94 55.73
MoMu-base 252M 51.07 43.29 53.71 50.98 55.59 56.29
BioT5-base 252M 43.36 35.10 51.05 47.16 51.55 55.21
MolCA 1.3B 51.93 44.28 55.00 51.41 56.79 55.82
3D-MoLM 7B 32.00 26.17 40.13 34.64 52.15 53.18
BioMedGPT 10B 37.31 31.29 39.62 36.87 48.31 43.88
General-LLMs
T5-small 60M 49.97 42.40 54.88 51.16 55.47 59.07
T5-base 220M 51.01 43.27 55.89 52.17 56.43 60.21
T5-large 770M 50.79 42.85 55.98 52.23 56.42 60.93
Llama-2 7B 28.15 23.24 35.14 30.41 46.87 53.78
Llama-3.1 8B 52.19 43.51 55.41 51.18 57.48 60.14
Universal-LLM-API (Few-shot)
Qwen-2.5-Instruct 32B 35.72 27.51 43.59 38.22 49.63 49.97
Qwen-Reason (QwQ) 32B 18.62 13.62 27.33 23.32 35.14 25.61
DeepSeek-V3 671B 49.31 39.86 53.96 48.37 57.69 62.16
DeepSeek-R1 671B 32.12 24.17 41.77 37.56 40.65 46.65
GPT-40-20241120 1.8T 47.78 41.74 51.97 46.99 51.24 55.71
ol-mini 300B 40.22 31.06 46.99 41.81 51.88 51.23

Table 1: Experimental results for hallucination evaluation across molecular LLMs (fine-tuned),
general LLMs (fine-tuned), and universal LLMs (API-based inference). We report accuracy (%)
using both standard textual metrics and our proposed hallucination-specific evaluation metric.

Molecule-LLMs BLEU-2 BLEU-4 ROUGE-1 ROUGE-L METEOR | Mol-HalluT Expert-Score{
MolTS5 [13] 34.48 26.54 45.13 41.34 37.08 46.15 50.2
MolT5+SFT 3545 25.93 42.72 38.99 39.68 47.04 48.6
MolT5+HRPP 40.65 30.73 47.47 43.54 44.31 49.03 63.9
Mollama-8B [38] 33.18 24.75 44.19 40.66 37.57 44.21 45.0
Mollama-8B+SFT 35.14 25.62 43.42 39.43 39.14 44.71 46.8
Mollama-8B+HRPP | 38.79 28.95 46.12 42.17 43.27 46.28 61.2

Table 2: Hallucination Reduction Post-processing (HRPP) has substantial improvements in textural
metrics and our Mol-Hallu metric, demonstrating its effectiveness on both decoder-only models (Mol-
lama) and encoder-decoder-based models (MolT5).

4.2 Main Results

We summarize and analyze the baseline performances in Table[I] Several phenomena have been
observed as follows.

Hallucinations in baseline models. (1) The hallucination metric remains within the range of 40-60%,
with an average of 3-4 counterfactual entities present, indicating significant room for improvement.
(2) The degree of hallucination is not necessarily positively correlated with model performance. While
MolT5-base shows comparable performance to MolT5-small and MolT5-large, its hallucination
is notably more severe. However, 3D-MoLM exhibits moderate performance but remains lower
hallucination rate.

LLM Structural Comparison: Encoder-Decoder v.s. Decoder-only. Encoder-decoder models
surpass other structures in molecular comprehension tasks due to their compact size and excellent
performance. We observe that T5-based models, represented by T5-finetune, MolT5, and MoMu, ex-
hibit strong performance on the MolecularQA task even in their small versions, surpassing molecular
LLMs based on Llama by 2.7% and GPT-4 by 13%. This is attributed to the TS5 model’s encoder-
decoder structure, which employs a span corruption pre-training strategy. Additionally, its smaller
parameter count supports full-parameter fine-tuning instead of the LoRA fine-tuning used in Llama,
resulting in better generalization in few-shot scenarios within the biochemistry domain.
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Reward strategies in LLMs amplify hallucination. Deepseek-R1 and o1-mini have widely adopted
reinforcement learning as an effective approach to enhance the LLM reasoning capabilities for
complex problems. However, this optimization strategy often leads to a hallucination increase [17].
We observe a similar phenomenon in Molecular Comprehension. In the LLM-API part of Table[I] we
compare Qwen, Deepseek, and GPT-4, with their reasoning-enhanced versions on scientific QA tasks.
The results indicate a significant decline in both prediction quality and factual accuracy, attributed
to: (1) the trade-off between improved reasoning in math/code tasks and the reduced reliance on
prior knowledge, making it harder to address scientific questions; and (2) the tendency of reasoning-
enhanced LLMs to generate chain-of-thought outputs, which often contain more hallucinated entities.
Therefore, balancing reasoning and hallucination in domain-specific scenarios remains a critical
challenge.

Extra protein knowledge: no benefit to hallucination. During pretraining, extending the dataset
to include both chemical molecules and protein macromolecules cannot alleviate hallucination.
Instead, it leads to a decrease in performance for molecular understanding tasks. In Table. [T}
BioMedGPT [37] and BioT?5 utilize various protein dataset size (1.8M, 27M) as additional knowledge.
However, their performance and hallucination assessment are inferior to the MolT5-based model
due to the structural differences between FASTA-based protein inputs and SMILES-based molecular
inputs, as well as the significant domain-specific entity differences between proteins and chemical
molecules. Consequently, the incorporation of such knowledge fails to enhance generalization or
reduce hallucination.

4.3 Analysis for Hallucination Reduction

In Table. 2] we dive into the hallucination reduction post-processing (HRPP) and analyze its effec-
tiveness on hallucination alleviation . A chemical-expert evaluation in Table. [2confirms the HRPP
module’s efficacy in practical molecular comprehension tasks.

Effectiveness of HRPP Stage. Our HRPP stage demonstrates effectiveness across both decoder-only
and encoder-decoder models. As shown in Table[2] HRPP substantially improves molecular LLMs,
achieving average gains of 4.0% on textual metrics and significant hallucination reduction (2.9%1 for
decoder-only; 2.0%1 for T5-based structures). To confirm HRPP’s gains are not from the preference
dataset alone, we conducted SFT on the same data. Results show SFT alone fails to consistently
improve performance and even degrades expert-score performance.

Meanwhile, We observe notable BLEU and METEOR improvements (5-7%) with HRPP, versus
modest ROUGE gains (1-2%), indicating HRPP-enhanced models generate more precise scientific
entities and accurate semantics. Some missing entities persist due to ROUGE’s recall sensitivity.

Chemical-Expert Evaluation. To validate the scientific plausibility of HRPP in molecular under-
standing tasks, we engage five chemistry experts to evaluate a subset of PubChemQA for scientific
soundness and chemical entity correctness. Specifically, PubChemQA samples are stratified into
easy, medium and hard categories based on the precision of the DeepSeek-V3 response, with 20
samples selected from each for evaluation. The Expert-Score in Table. 2] (averaging 1-5 ratings per
sample) demonstrates HRPP’s effectiveness, showing 13.7% and 16.2% improvements over MolT5
and MolLama respectively.

5 Conclusion

In conclusion, our work aims to evaluate and alleviate the LLM'’s hallucination in molecular com-
prehension. By attacking the scientific entities in molecule-related questions, we identify the bio-
knowledge shortcuts in the PubChem dataset prompt LLM:s to establish alignment between molecular
properties and drug names instead of molecular structures, which serves as the hallucination source
of the molecular comprehension task. We further propose Mol-Hallu, the first free-form hallucination
metric for the molecular comprehension task. Mol-Hallu provides a computational efficient way to
evaluation the hallucination through scientific entailment relationship. To further alleviate the halluci-
nation, we propose the hallucination reduction post-processing (HRPP) strategy with a self-collected
hallucination-sensitive preference dataset constructed based on scientific entity replacement. Experi-
mental results demonstrate that various LLM architectures significantly suppressed hallucinations
with our HRPP strategy.
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A Appendix

A.1 Full version of Related Works
A.1.1 LLMs for Molecular Comprehension

LLMs that were pretrained with biochemical scientific data have shown substantial success in
molecular comprehension tasks [38]]. The molecular encoders capture 1D sequential features [[13} 14,
21,1571, 2D topological features [34} 47, 53,160l 63]], and 3D structural patterns [25} 132} 35} 66| from
the molecule.

Related studies have adopted two primary strategies to bridge the heterogeneity gap between molec-
ular and textual representations for enhanced comprehension. Firstly, the cross-modal contrastive
learning strategy is applied to fine-tune molecular and textual encoders, including MoMu [54]],
MoleculeSTM [31], and MolCA [33]]. As textual encoders grow in parameter size and inferential
capability, InstructMol [4]], PRESTO [6], and omni-mol [20]] have turned to supervised fine-tuning
using molecular-text datasets to establish a pooling layer that maps molecular representations into the
textual space of LLMs. However, constrained by the feature bias of molecular encoders and the prior
knowledge of LLMs, current molecular LLMs are plagued by significant hallucination issues.

A.1.2 Hallucination in Biochemical LLMs

Alongside the advancement in reasoning, LLMs often generate nonsensical or unfaithful content to the
provided source, referred as hallucination (3l 141]. The source-reference divergence phenomenon [22]
is the main cause of hallucination. The divergence comes from heuristic data collection [46] and
imperfect representation learning during the training procedure [[15] or erroneous decoding when
conducting inference [[12]. In molecular comprehension tasks, molecular LLMs often generate
counterfactual content, which can lead to adverse consequences such as misleading users and
ultimately undermining the reliability of LLMs in scientific applications [36]].

The evaluation of hallucinations in LLMs can be categorized into (1) Fixed-form evaluation and (2)
Free-form evaluation. Fixed-form evaluation uses multi-choice QA datasets, such as MoleculeQA
and MoleculeTextQA, to assess hallucinations. However, this method requires fine-tuning LLMs
on hallucination datasets and uses a multi-choice format that differs from the open-ended nature of
LLM tasks, making it less reflective of the true hallucination extent. In contrast, free-form evaluation
leverages automated functions for faster, more computationally efficient assessments. Hallucination
detection methods also fall into two categories: (1) Fact-checking-based methods, which verify
accuracy through external [7, 43]] or internal knowledge [10} 23], and (2) Uncertainty estimation
methods [40, 56], which detect hallucinations by quantifying model confidence without external
references.

Currently, there are no such metrics for hallucination assessment in biochemical LLMs [52], which
limits the effectiveness of large scientific models in drug discovery. To address this, we propose the
first free-form evaluation metric for molecular comprehension tasks, focused on the entailment of
scientific entities. This method leverages ground truth while avoiding the need for external retrieval
or fine-tuning, providing an efficient and domain-specific solution for hallucination detection.

A.2 Case Studies

We select samples with hallucinations and demonstrate a numerical comparison between our Mol-
Hallu metric and traditional textual metrics. Table. [3| shows that Mol-Hallu are more sensitive to
hallucinations. When the prediction and ground truth share similar sentence structures but differ in



s14  scientific entities, Mol-Hallu assigns a lower score, whereas traditional evaluation methods consider
515 them semantically similar.

Molecule Query Ground-Truth Our answer Metric

= ‘ This compound is isolated Hexaen is isolated from the B:78.9%

£ o™ Isolated f R: 86.4%

o Area from the plants So.rbus cusp- plants pentahydroxy and ben- M: 87.9%
idata and Calceolaria dentata. zoate. MLH: 43.3%

This compound has poten- This compound has potential
L L . .. B:922%
+j - . Potential tial reactivity towards nucle- reactivity towards aromaticity

R . R:93.3%

) eac-  ophiles and bases due to the and methoxy due to the pres- M: 93.9%
- | tivity  presence of ketone and lactone ence of solubility and reactiv- M:H' '66 1%

groups. ity groups.

Table 3: Case Studies for Mol-Hallu and Other Textural Metrics. Our Mol-Hallu exhibits stronger
sensitivity to hallucinated outputs under different question types in molecule comprehension.
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