arXiv:2312.09507v3 [cs.CV] 10 Jan 2024

WAVER: WRITING-STYLE AGNOSTIC TEXT-VIDEO RETRIEVAL VIA DISTILLING
VISION-LANGUAGE MODELS THROUGH OPEN-VOCABULARY KNOWLEDGE

Huy Le'?, Tung Kieu’, Anh Nguyen?, Ngan Le’

' FPT Software Al Center, > International University, VNU-HCM, > RMIT University, Vietnam
4 University of Liverpool, UK ° University of Arkansas, USA

ABSTRACT

Text-video retrieval, a prominent sub-field within the domain
of multimodal information retrieval, has witnessed remark-
able growth in recent years. However, existing methods
assume video scenes are consistent with unbiased descrip-
tions. These limitations fail to align with real-world scenarios
since descriptions can be influenced by annotator biases,
diverse writing styles, and varying textual perspectives. To
overcome the aforementioned problems, we introduce WAVER,
a cross-domain knowledge distillation framework via vision-
language models through open-vocabulary knowledge de-
signed to tackle the challenge of handling different writing
styles in video descriptions. WAVER capitalizes on the open-
vocabulary properties that lie in pre-trained vision-language
models and employs an implicit knowledge distillation ap-
proach to transfer text-based knowledge from a teacher model
to a vision-based student. Empirical studies conducted across
four standard benchmark datasets, encompassing various set-
tings, provide compelling evidence that WAVER can achieve
state-of-the-art performance in text-video retrieval task while
handling writing-style variations. The code is available at:
https://github.com/Fsoft-AIC/WAVER

Index Terms— Text-Video Retrieval, Open-Vocabulary,
Writing-style Agnostic, Knowledge Distillation

1. INTRODUCTION

Text-video retrieval (TVR), the task of retrieving videos based
on textual queries, has grown significantly in multimedia in-
formation retrieval. Current works focus on cross-modal
feature matching, assuming consistent video scenes and unbi-
ased descriptions. However, existing TVR datasets [1} 12} 13 4]]
are manually annotated by numerous annotators, introduc-
ing complexities due to variations in imperfect annotations,
writing styles, and diverse perspectives. Consequently, this
results in distinct semantic interpretations among descrip-
tions associated with the same video. Moreover, the advent
of large-scale pre-trained Vision-Language Models (VLMs)
like CLIP [5] has marked significant progress in TVR over
recent years. However, existing methods fully fine-tune CLIP
for feature extraction and fusion in a brute-force manner,
missing out on fully harnessing its pre-trained knowledge.

To address the aforementioned challenges, we propose
WAVER with a cross-domain knowledge distillation (KD)
mechanism to address a novel task referred to as “writing-
style agnostic”’. WAVER’s primary objective is to alleviate
the influence of diverse writing styles on TVR by explor-
ing the open-vocabulary (open-vocab) properties present in
VLMs through our cross-domain KD mechanism. Within
this method, we first compile a Video Content Dictionary
(VCD) that comprises phrases. Each phrase represents a
specific activity and is among the top-%k relevant activities
for a given video. This knowledge source, derived from
the VCD and extracted from large-scale datasets (usually
training sets, but not limited to) encompasses a multitude
of writing styles contributed by numerous annotators. The
knowledge from VCD is treated as a teacher, embodying
comprehensive information enriched by a wide spectrum of
writing styles. Our proposed cross-domain KD aims to distill
text-based knowledge from the large-capacity teacher (i.e.,
comprising various writing styles) into a vision-based student
model when presented with a specific video and its associated
content. This approach equips WAVER with the flexibility to
effectively handle a wide variety of writing styles. To evalu-
ate the effectiveness of our approach, we conducted a series
of comprehensive experiments and ablation studies across
four prominent benchmarks: MSR-VTT [1l], MSVD |2, VA-
TEX (3], and DiDeMo [4]).

2. RELATED WORK

Vision-Language Models. VLMs [3, |6, [7] have been ap-
plied to various vision tasks with the use of open-vocab
knowledge. For example, for image classification, ALIGN [8]]
and UniCL [9]] improve accuracy by matching images with
text descriptions; for object detection, X-DETR [10] and
OWL-ViT [11] utilize VLMs for localization and recognition;
for image segmentation, DenseCLIP [12]] and OpenSeg [13]]
utilizes VLMs for pixel-level classification. TVR meth-
ods [[14} [15} [16} 17, 18] in the second group have also ben-
efited from VLMs by extending CLIP to train text-video
matching models using a contrastive loss. However, most
of these approaches fully fine-tune VLMs, under-utilizing
pre-trained multi-modal information in videos. In our work,
we leverage both fine-tuning and pre-trained VLMs feature
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Fig. 1: Overview framework of WAVER. We propose a
cross-domain KD, in which open-vocab knowledge from pre-
trained VLM implicitly acts as the teacher. By distilling
text-based knowledge from the large-capacity teacher into a
vision-based student model (described in Section 3] to handle
writing-style variations.

to enhance TVR performance further.
Knowledge Distillation. The concept of KD [19] is to trans-
fer knowledge from a teacher model with robust knowledge
to a student model while maintaining high accuracy. Existing
KD methods [20} 21]] explicitly maintain teacher and student
models to focus mainly on the technique to transfer knowl-
edge between them. In contrast, to the best of our knowledge,
our framework is the first study that uses open-vocab knowl-
edge as the teacher to implicitly transfer the large knowledge
from the teacher to the student to address the TVR task.

3. METHODOLOGY
In WAVER, we extract features from both the video and the
query using the Video Encoder and Query Encoder, respec-
tively, as described in Section [3.1] To tackle the challenge
of writing-style variations, our WAVER creates a VCD, which
compiles diverse video descriptions produced by different an-
notators, capturing a range of writing styles (cf. Section[3.2).
The knowledge extracted from the VCD serves as the teacher,
while the Video Encoder functions as the student. Subse-
quently, we introduce Cross-domain KD (cf. Section [3.3) to
transfer the teacher’s text-based knowledge to the student’s
vision. The overall workflow of WAVER is illustrated in Fig.
Problem Setup. We have L trimmed videos V = {V(W}[
accompanied by a set of corresponding textual descriptions
T = {TW}L |, The primary goal of this problem is to re-
trieve video V() based on T,
3.1. Feature Encoders
We use Vision Transformer (ViT) [22] from CLIP [5] as
our Video Encoder. Given a video V() composed of N
frames, we extract visual features v(¥) = f,(V(¥|0,). Here,
v = (vi? . v{)) is an embedding sequence of N
frames and f,(-|0,) is the Video Encoder, which is parame-
terized by ViT’s weights 6,,. As for the Query Encoder for
textual feature extraction, we employ CLIP’s text encoder.
Given a textual description T, which consists of S to-
kens, we obtain textual features t() = f,(T("|6;). Here,
t() = (tgi), e ,tg)> is an embedding sequence of .S tokens
and f;(+|6;) is the Query Encoder, which is parameterized by
Transformer’s weights 6;.
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Fig. 2: The details of Video Content Dictionary Generator.
As described in Section[3.2] we first form a list of all activities
extracted from each caption. Then we propose a matching
scheme to form a set of video-related vocabularies and select
the top-~ most relevant vocabularies to create a VCD.

3.2. Video Content Dictionary Generator

To explore the open-vocab capability in a pre-trained VLM,
we propose to construct a VCD using auxiliary information
from the VLM to identify the most relevant knowledge. As
depicted in Fig given a TVR dataset, we first use spaCyE] to
extract existing activities (i.e., verb phrases) in each caption.
As a result, we form a list of all activities {a1,az,...,au},
where U is the number of activities. We then propose a match-
ing strategy to form a set of video-related vocabularies. For
each activity a,, we add a manually-designed prompt to a
prefix to form a full query ie., ¢, = “This is a video
about a,”. These queries g; are processed through a frozen
pre-trained CLIP’s text encoder, resulting in embedding vo-
cabularies (hy,...,hy). Additionally, we use a frozen pre-
trained CLIP’s visual encoder to extract frame-level embed-
ding (qgl), . 7qg\z,)) for each video V(). The global video

embedding (e(") for each video is obtained by Eq.
N

, 1 .

o=y 2 a (M
Next, we use function s to measure the similarity between
each video and the entire vocabulary set by calculating the
cosine similarity between the video’s global embedding e(?)
and vocabularies embedding h,,.
@ B e . h,
) = ] ) @
where - denotes the dot product operation, and |||| denote the
{y-norm of the feature vectors.

We then select the top-x most relevant vocabularies
d® = (dgi), déi), ce dg?) = top-s({s(e®, h,)}V_,) for
each video V). Then, d(¥ serves as a vocabulary. As a
result, we finally form a VCD denoted as D = {d()}_,.
3.3. Cross-domain Knowledge Distillation
By utilizing VCD D, our WAVER framework efficiently high-
lights the open-vocab property in pre-trained VLM to transfer
the foundational knowledge from teacher D to the video en-
coder. As illustrated in Fig. |1} we leverage the knowledge
extracted from the VCD D as the teacher, while the Video En-
coder functions as the student. To facilitate the transfer of
knowledge from the teacher to the student, we employ cross-
attention mechanism [23]]. We initiate the process by creating
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prompts C() of the form “This is a video about d(*”
for each vocabulary d(¥). These prompts, C(*), are then in-
putted into the Vocab Encoder, f.(-|0.), which is a frozen
pre-trained CLIP’s text encoder. The output c(¥) is computed
as ¢ = f.(C®|4.), where 6, is network weights. As a re-
sult, we acquire a general knowledge corpus C independent of
any specific writing style, and it is defined as C = {c(V}£_,
Given a video V() containing visual features v(?) =
<V§L), . vg\%, we define the cross-attention between v(?)
and C as outlined in Eq. l where v(*) takes on the role of the
query, and C serves as the key/value. As a result, we obtain a

distilled video embedding ¥(¥ at the student side.
v®eT

7)0 ; 3)

() = softmax(

where z is the scaling factor.
3.4. Learning Objective Functions

Inspired by [24]], we align the distilled video embedding ¥(*)
and query embedding t(*) with two Multi-layer Perceptrons
(MLPs), respectively. The MLPs project ¥(*) and t(* into
a normalized, lower-dimensional representation in the shared
latent space. Then, we calculate the similarity s(t(®),%(%)),
where f4(-|04) and fy(-|0y) are MLPs parameterized by a
stack of three Fully-Connected (FC) layers 64 and 6, re-
spectively. Next, during the training phase, we aim to pull the
query embedding t(V) and the distilled video embedding ¥(*)
when they are related and push them apart when they are not
related. To achieve this, we employ the InfoNCE loss [25] to
maximize the similarity for matching pairs t(), ¥(*) and min-
imize it for other pairs. This loss function is used for both the
Video-to-Text and Text-to-Video problems.

o log exp (s (¢, V(l)/T) _—
- Z ST oxp (5 (60,907 @)
£, — L log exp ( )t(l)/T) 5
- Z ST exp (s (70, e00) 7))

where 7 is a learnable temperature parameter and B is the
batch size.The overall InfoNCE loss is computed as:

1
EInfoNCE = §(£t—>v + £v—)t)- (6)

4. EXPERIMENTS
4.1. Datasets, Metrics & Implementation Details

We benchmark our WAVER on Text-to-Video (T2V) task on
MSR-VTT [1l, MSVD [2], VATEX [3], and DiDeMo [4].
MSR-VTT contains 10,000 videos, 20 descriptions per video.
We train on 9,000 videos and test on 1,000 videos. MSVD
contains 1,970 videos with multiple descriptions in various
languages. We use 1,200 videos for training and 670 for test-
ing, considering only English descriptions. VATEX contains
over 40,000 videos and 825,000 captions in both English
and Chinese. We only consider English descriptions in our
experiment with 26,000/1,500/1,500 videos for training/val-
idation/testing. DiDeMo contains 10,000 videos with over

Table 1: T2V comparison between our WAVER with existing
SOTA methods on MSR-VTT.

Type Method R@1T R@5T R@I10T MdR] M Rff
w/o. CLIP CE [26] 209 488 62.4 6.0

wlo. CLIP  ClipBERT [I8] 220 468 599 6.0

w/o. CLIP MMT [17] 26.6  57.1 69.6 4.0

w/o. CLIP  SupportSet [27] 30.1 58.5 69.3 3.0

w/o. CLIP Frozen [28] 325 61.5 71.2 3.0

w/o. CLIP BridgeFormer [16] | 37.6 64.8 75.1 -

w/o. CLIP TMVM [29] 36.2 64.2 75.7 3.0

w/o. CLIP Clover [30] 405 698 794 2.0 -
ViT-B/32 CenterCLIP [3] 447716 82.1 2.0 1501
ViT-B/32 CLIPAClip (4] | 445 714 816 20 153
ViT-B/32 VoP [32] 446 699 80.3 2.0 16.3
ViT-B/32 CAMOE [33] 44.6 72.6 81.8 2.0 13.3
ViT-B/32 CLIP2Video [15] 45.6 72.6 81.7 2.0 14.6
ViT-B/32 X-Pool [34 469 728 82.2 2.0 14.3
ViT-B/32 TS2-Net [35] 470 745 83.8 2.0 13.0
ViT-B/32 WAVER (ours) 478 74.6 83.9 2.0 12.8
ViT-B/16 CLIP2TV [36] 483 746 82.8 2.0 14.9
ViT-B/16 CenterCLIP [35] 48.4 73.8 82.0 2.0 13.8
ViT-B/16 TS2-Net [35 494 756 85.3 2.0 13.5
ViT-B/16 WAVER (ours) 504 772 86.4 1.0 10.8

Table 2: T2V comparison between our WAVER with existing
SOTA methods on MSVD.

Type Method Rmm
w/o. CLIP CE [26] 198 490 63.8 6.0

w/o. CLIP SupportSet [27] | 284  60.0 72.9 4.0 -
w/o. CLIP Frozen [28] 33.7 64.7 76.3 3.0 -
w/o. CLIP TMVM [29] 36.7 674 81.3 2.5 -
ViT-B/16 CLIPAClip[I4] | 452 755 8473 2.0 10.3
ViT-B/16  X-Pool [34] 472 714 86.0 2.0 9.3
ViT-B/16  WAVER (ours) 50.2 83.5 88.1 2.0 8.9

40,000 text descriptions. Training on 9,000 videos, we report
results on the remaining 1,000 videos.

Following previous works [[14], we report the result of the
testing set with evaluation on multiple captions per video, ex-
cept for MSR-VTT, where each video has only one caption.
We evaluate the performance on the T2V task with various
metrics including R@1, R@5, R@10, MdR, and MnR.

We set the token length to 32, the video sample frame
to 12 for MSR-VTT and MSVD and the token length to 64,
the video sample frame to 64 for DiDeMo and VATEX. The
scaling factor is set z to 64 and the batch size is 126. and the
initial learning rate is set to 10~* and 10~7 for non-/ CLIP-
based methods, respectively. The number of epochs is 5 for
both versions. The model is implemented in PyTorch [40] and
trained by 2 x A100 GPUs.

4.2. Comparison with State-of-the-art Methods

In Table [I, our WAVER with both CLIP’s video encoder
backbones versions (i.e., ViT-B/32, ViT-B/16) achieves
SOTA results. With ViT-B/32, we achieve 47.8 R@1 sur-
passing the runner-up TS2-Net [35] by 0.8 point in T2V.
With ViT-B/16, WAVER achieves 50.4 R@1 outperforming
the runner-up TS2-Net [35] by 1.0 point in T2V. Table [2]
shows that we WAVER significantly outperforms the runner-up
X-Pool [34] by 3.0 points R@1 achieving SOTA perfor-
mance of 50.2 R@1. Table[3land Table @ further demonstrate
that WAVER achieves SOTA performance on both VATEX

Table 3: T2V comparison between our WAVER with existing
SOTA methods on VATEX.

Type Method R@IT R@57 R@I107 MdR] Mn Rff
w/o. CLIP HGR[37] 351 735 835 2.0

w/o. CLIP SupportSet [27] 449 82.1 89.7 1.0 -
ViT-B/16 CLIP4CIip [14] 559 892 95.0 1.0 39
ViT-B/16 CLIP2Video [15] 57.3  90.0 95.5 1.0 3.6
ViT-B/16 QB-Norm [38] 58.8 88.3 93.8 1.0 -
ViT-B/16 TS2-Net [35] 59.1 90.0 95.2 1.0 3.5
ViT-B/16 WAVER (ours) 66.5 933 97.0 1.0 2.8




Table 4: T2V comparison between our WAVER with existing
SOTA on DiDeMo.

Type Method R@IT R@57 R@I0T MdRL MnR¢
w/o. CLIP CE26] 156 409 -

w/o. CLIP ClipBERT [27] | 21.1 47.3 61.1 6 3

w/o. CLIP  Frozen [28] 31.0 59.8 72.4 3.0

w/o. CLIP TMVM [29 365 649 75.4 3.0
ViT-B/16 CLIP4ACIip [14]] R .5 E .
ViT-B/16 TS2-Net [35] 418 71.6 82.0 20 14.8
ViT-B/16 HunYuan [39] 450 75.6 834 2.0 12.0
ViT-B/16  WAVER (ours) 49.2 772 85.6 2.0 11.2

and DiDeMo datasets. For VATEX, our WAVER exhibits out-
standing performance with a 66.5% R@1 score, surpassing
the runner-up TS2-Net [35] and QB-Norm [38] 7.4 and 7.7
points on R@1. Additionally, for DiDeMo, our approach
outperforms the recent SOTA X-Pool [34] with 2.0 points
on R@1. In smaller-scale datasets like MSVD, we emphasize
the effectiveness of our proposed KD during transferring the
knowledge from the general teacher C to the student video
encoder function, enhancing distilled video feature v.

Table 5: Effectiveness of Cross-domain KD on MSR-VTT.

Method | R@IT _R@5T R@ 10T MdR]

Baseline | 45.6 72.8 82.2 2.0

+ Different values of top-~
47.6 73.3 82.4
47.7 73.1 82.8
47.8 74.6 83.9
474 73.3 83.8
46.9 73.5 84.8

Table 6: Performance of WAVER on MSR-VTT testing set us-
ing various VCD D ( MSR-VTT, MSVD, VATEX, DzDeMo ).

TIZIFAX
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Vocab No. Vocab | R@IT R@53f R®@107

MSR-VIT 50,482 47.8 74.6 83.9 2 ii
MSVD 21,168 47.1 74.0 83.8 2.0
VATEX 108,596 473 73.6 83.7 2.0
DiDeMo 9,132 47.6 72.7 82.1 2.0

4.3. Ablation Study

Effectiveness of Cross-domain KD. In 7able[5] we highlight
the impact of cross-domain KD in WAVER by comparing it
with the baseline model, Clip4clip [14]. Specifically, we
observe that when we disable the Cross-domain KD module,
the baseline framework essentially functions as a basic TVR
model, resulting in modest performance. This underscores
the effectiveness of our KD method in enhancing accuracy
and bolstering model robustness. Moreover, we experiment
with different values of x ranging from 1, 3, 5, 7, to 9, to
assess their impact on performance. We note that when « is
excessively large, the framework encounters difficulty distill-
ing discriminative features from the captions, likely due to
the captions being over-specific. Conversely, when & is too
small, the captions may fail to fully leverage the open-vocab
knowledge embedded in the pre-trained VLM, as they lack
sufficient semantic context, ultimately leading to sub-optimal
results. We attain the most favorable outcomes when x = 5.

Robustness of WAVER. We investigate the robustness of the
WAVER model by employing different vocabulary datasets to
construct VCD D. In Table [6] we present the performance
of MSR-VTT, where the VCD D is generated from various
datasets MSR-VTT, MSVD, VATEX, and DiDeMo. Even when
the VCD D is created using different datasets, the framework
consistently achieves high accuracy, with negligible differ-
ences in the results. This underscores the robustness of the
open-vocab knowledge embedded within WAVER framework.

Table 7: Evaluation on MSR-VTT testing set with different
writing styles randomly selected using various seed values.

Method  Seed | R@IT R®@57 R@I0T  MdR]
Baseline 16 45.0 72.4 81.2 2.0
Baseline 171 452 72.5 81.5 2.0
Baseline 1710 44.6 71.8 81.0 2.0
Baseline 2804 44.4 71.6 80.8 2.0
Mean - 44.8 72.1 8I.T 2.0
Std - 0.37 0.44 0.30 0.0
WAVER 16 473 743 835 2.0
WAVER 171 475 74.5 83.8 2.0
WAVER 1710 472 74.2 83.4 2.0
WAVER 2804 47.1 74.1 83.3 2.0
Mean - 47.3 74.3 83.5 2.0
Std - 0.27 0.17 0.22 0.0

Table 8: Performance of WAVER on 100 videos from MSR-
VTT testing set conducted by four different annotators.

Method  Annotators | R@1T R@57 R@ IOT MdR]
Baseline #] 67.3 91.4 1.0
Baseline #2 65.7 90.2 93 3 1.0
Baseline #3 66.5 90.7 93.8 1.0
Baseline #4 64.8 89.9 92.2 1.0
WAVER #1 75.0 95.2 97.4 1.0
WAVER #2 74.2 94.5 96.9 1.0
WAVER #3 74.4 94.9 97.2 1.0
WAVER #4 73.8 94.0 96.5 1.0

WAVER in Writing-style Agnostic Task. In Table[]] in addition
to the best-performing as in the default setting, we also in-
troduce writing-style diversity by selecting a random writing
style for each video evaluation. This randomness is achieved
using a random seed, and a random writing style is repre-
sented by a randomly selected caption. Table [/|demonstrates
WAVER’s capacity to retrieve the target videos consistently
and accurately, regardless of writing style. Compared to the
baseline, the standard deviation (Std) of WAVER highlights its
remarkable consistency in retrieving the target videos, even
when the writing style of each video’s description is altered.
To further illustrate WAVER’s effectiveness in handling diverse
writing styles, we engaged four annotators to evaluate 100
videos from the MSR-VTT testing set. It’s important to note
that each video contains 20 captions. Based on their writ-
ing style, each annotator selected one caption out of the 20
for each video. Table [§] underscores that despite the biases
introduced by different annotators in choosing correspond-
ing captions for each video, our WAVER’ results outperform
the baseline approach consistently. This study introduces a
promising avenue for future research within the TVR task.

5. CONCLUSION & DISCUSSION

In this work, we have presented WAVER, a writing-style ag-
nostic video retrieval via distilling vision-language models
through open-vocab knowledge framework. Our WAVER is
a novel framework for the TVR task, where we proposed
a cross-domain knowledge distillation mechanism through
open-vocabulary properties to effectively utilize the pow-
erful representation knowledge from the pre-trained VLM.
To further highlight the applicability of the open-vocabulary
properties in dealing with different semantic meanings, we
denote a new task namely writing-style agnostic task, which
evaluates the consistency of the retrieval results from different
query descriptions. We hope that our work will inspire future
research of writing-style agnostic problem and the potential
of TVR task in addressing this problem.
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