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ABSTRACT

With the rapid growth of urban transportation and the continuous progress in
autonomous driving, a demand for robust benchmarking autonomous driving
algorithms has emerged, calling for accurate modeling of large-scale urban traffic
scenarios with diverse vehicle driving styles. Traditional traffic simulators, such
as SUMO, often depend on hand-crafted scenarios and rule-based models, where
vehicle actions are limited to speed adjustment and lane changes, making it difficult
for them to create realistic traffic environments. In recent years, real-world traffic
scenario datasets have been developed alongside advancements in autonomous
driving, facilitating the rise of data-driven simulators and learning-based simulation
methods. However, current data-driven simulators are often restricted to replicating
the traffic scenarios and driving styles within the datasets they rely on, limiting
their ability to model multi-style driving behaviors observed in the real world.
We propose LCSim, a large-scale controllable traffic simulator. First, we define
a unified data format for traffic scenarios and provide tools to construct them
from multiple data sources, enabling large-scale traffic simulation. Furthermore,
we integrate a diffusion-based vehicle motion planner into LCSim to facilitate
realistic and diverse vehicle modeling. Under specific guidance, this allows for
the creation of traffic scenarios that reflect various driving styles. Leveraging
these features, LCSim can provide large-scale, realistic, and controllable virtual
traffic environments. Codes and demos are available at https://anonymous.
4open.science/r/LCSim-0C7A.

1 INTRODUCTION

As global urbanization progresses, the complexity and diversity of urban transportation systems
continue to increase. The driving styles of vehicles in various cities often have distinct characteristics
(Sagberg et al., 2015), leading to high costs of benchmarking autonomous driving algorithms, which
require high levels of safety and reliability and thorough testing and evaluation before actual deploy-
ment (Waymo, 2021). This necessitates accurately modeling urban microscopic traffic scenarios
through traffic simulation, enabling the robust assessment of relevant algorithms. Accurate modeling
of urban traffic scenarios poses two main challenges for simulation systems: the need for realistic
and controllable vehicle models to replicate the complex and diverse driving behaviors in reality, and
the requirement for large-scale traffic scenario data to support traffic simulation.

Existing simulation methods often have shortcomings in these two aspects. For one, vehicle behavior
modeling in simulation systems is typically categorized into three types: rule-based (e.g. IDM
(Brockfeld et al., 2003)) simulation (Behrisch et al., 2011; Li et al., 2022; Wenl et al., 2023; Zhang
et al., 2019; Gulino et al., 2024; H. Caesar, 2021; Li et al., 2024; Liang et al., 2023; Zhang et al.,
2024), log-replay of real-world dataset (Gulino et al., 2024; H. Caesar, 2021; Li et al., 2024), and
learning-based methods (Bansal et al., 2018; Isele et al., 2018; Chai et al., 2019; Bergamini et al.,
2021; Igl et al., 2022; Bronstein et al., 2022; Zhong et al., 2023). Rule-based simulations are often
too simplistic and fail to replicate real vehicle behaviors accurately. Log replay and learning-based
methods excel in replicating real vehicle behavior, but they usually lack controllability and struggle
to model different driving styles faithfully. CTG (Zhong et al., 2023) has proposed a controllable
traffic simulation method based on a diffusion model. But, its scenario is limited to the nuScenes
(Caesar et al., 2020) dataset, and this method has not been integrated into a simulation system for
algorithm benchmarking. On the other hand, most data-driven simulators rely on public datasets that

1

https://anonymous.4open.science/r/LCSim-0C7A
https://anonymous.4open.science/r/LCSim-0C7A


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

only contain fragmented scenarios (H. Caesar, 2021; Gulino et al., 2024; Li et al., 2024), limiting the
scale of the simulation. Metadrive (Li et al., 2022) offers manual map creation tools. ScenarioNet (Li
et al., 2024) does a great job of collecting large-scale real-world traffic scenarios from various driving
datasets. However, the driving styles in the simulation environments they provide are still constrained
by the given dataset. Therefore, extra efforts are needed to improve traffic scenario construction and
enhance vehicle modeling.

We propose LCSim, a Large-scale, Controllable traffic Simulator to address the abovementioned
challenges. Our contributions are listed below:

• We define a unified data format for traffic scenarios and provide tools to construct them from
multiple data sources including real-world driving datasets like the Waymo open motion dataset
(WOMD) (LLC, 2019) and Argoverse (Wilson et al., 2021) dataset, and hand-crafted scenarios
built from public data sources such as OpenStreetMap (OSM)1 (Behrisch et al., 2011; Zhang et al.,
2024).

• We design and implement a simulation system that integrates a diffusion-based vehicle motion
planner to achieve realistic, diverse, and controllable traffic simulation in the constructed traffic
scenarios. A Gym-like environment interface is provided to support reinforcement learning
algorithm training and benchmarking.

• A series of experiments are conducted to validate LCSim’s functionality. Firstly, we demonstrate
the ability of the diffusion-based motion planner on WOMD. Next, reinforcement learning agents
are trained in environments with different driving styles built by LCSim, showcasing the impact
of various driving styles on algorithm benchmarking. Lastly, through the accurate replication
of city-level traffic scenarios, we highlight LCSim’s capability to construct large-scale traffic
simulations.

2 RELATED WORK

Traffic Simulators. The development of traffic simulators has a history of over a decade. Initially,
researchers conducted simulations based on hand-crafted traffic scenarios and rule-based vehicle
models (Behrisch et al., 2011; Dosovitskiy et al., 2017; Zhang et al., 2019; Liang et al., 2023; Wenl
et al., 2023). However, these rule-based models are often simplistic and unable to accurately model
real and diverse vehicle behaviors. With the continuous advancement of autonomous driving, an
increasing number of open-source datasets containing real-world traffic scenarios have been released
in recent years(LLC, 2019; Wilson et al., 2021; Caesar et al., 2020; H. Caesar, 2021; Houston et al.,
2020). Consequently, many data-driven simulators based on these datasets have emerged (Kothari
et al., 2021; Vinitsky et al., 2023; Li et al., 2024; Gulino et al., 2024). They utilize log replay to
rebuild realistic traffic scenarios and incorporate rule-based models to enable close-looped simulations.
Building upon this foundation, DriverGym (Kothari et al., 2021) provides a learning-based vehicle
model based on SimNet (Bergamini et al., 2021), while ScenarioNet (Li et al., 2024) integrates
various open-source datasets and offers reinforcement learning-based vehicle agent. However, these
data-driven simulators often only simulate fragmented scenarios based on the provided data, and
their simulation scale is limited only to the scope of the dataset. Metadrive (Li et al., 2022) presents
a scenario-creation tool based on the combination of map elements. However, this approach faces
challenges when it comes to constructing large-scale urban road networks. Furthermore, to the best of
our knowledge, LCSim is the first open-source traffic simulator to provide controllable learning-based
vehicle models to simulate multi-style driving behaviors in the real world.

Learning-based Traffic Simulation. Various learning-based vehicle simulation methods have
emerged with the increasing availability of open-source traffic scenario datasets in recent years.
Among them, imitation learning is often employed to learn expert actions from the dataset, thereby
achieving realistic traffic simulation (Xu et al., 2023; Bergamini et al., 2021; Bhattacharyya et al.,
2018; Zheng et al., 2020; Bhattacharyya et al., 2022; Yan et al., 2023). However, this approach is
often plagued by causal confusion (De Haan et al., 2019) and distribution shift (Ross et al., 2011).
Reinforcement learning methods, on the other hand, address the distribution shift issue effectively by
interacting with the simulation environment to learn driving behaviors (Kendall et al., 2019; Isele
et al., 2018; Lu et al., 2023; Wang et al., 2018; Zheng et al., 2022). However, the design of reward

1https://www.openstreetmap.org/
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Table 1: Comparison of related traffic simulators. LCSim provides automated tools for traffic scenario
construction and diffusion-based controllable vehicle motion planning.

Scenario
Construction

RL
Environment

Rule-based
Agent

Data-driven
Agent Controllable Sensor Sim

SUMO ✔ ✔ ✔

nuPlan-devkit ✔ ✔

DriverGym ✔ ✔ ✔

MetaDrive ✔ ✔ ✔ ✔ ✔

Waymax ✔ ✔

TrafficSim ✔

SimNet ✔

CTG ✔ ✔

LCSim (ours) ✔ ✔ ✔ ✔ ✔

functions and the construction of the simulation environment are often complex. As generative
models have advanced, many researchers have started to utilize the generation of vehicle motion plans
for simulation purposes (Suo et al., 2021; Tan et al., 2021; Zhang et al., 2023; Rempe et al., 2022;
Tang et al., 2021; Krajewski et al., 2018; Zhong et al., 2023). Among these approaches, CTG (Zhong
et al., 2023) utilizes a diffusion model to achieve controllable vehicle simulation. However, this
method has not been used in traffic simulators for further algorithm training and testing. Following
their idea, we trained our diffusion-based vehicle motion planner based on WOMD. Controllable
traffic simulation can be achieved by generating vehicle motion plans with guide functions.

3 SYSTEM DESIGN

3.1 SCENARIO DATA CONSTRUCTION

{ "Map": {
  "lanes": [
   { "id": 0,
    "type": "surface_street",
    "center_line": [{x,y,z}],
    "connections": [{n,p,s}]
   }, ...
  ],
  "roads": [
   { "lane_ids": [0,1,2],
    "boundaries": [{x,y,z}]
   }, ...
  ],
  "junctions": [
   { "lane_ids": [3,4,5],
    "boundaries": [{x,y,z}],
    "traffic_light": {
     "control_ids": [3,4,5],
     "phases": [{r,b,y}]
    }

      }, ...
  ]
 },
 "Agents": [
  { "id": 0,
   "attributes": {
    "type": "vehicle",
    "shape": [l,w,h]
   },
   "routes": [{t,[{x,y,z}]}]
  }, ...
 ]}

Figure 1: The unified format of
traffic scenario data.

To achieve large-scale traffic simulation, we define a unified
data format based on Protobuf for traffic scenario data from
multiple data sources including real-world driving datasets and
hand-crafted scenarios provided by MOSS (Zhang et al., 2024)
toolchain.

Unified Scenario Data Format. Figure 1 shows an example of
our unified scenario data format. Each scenario data consists of
the following three parts:

• Map: The map data consists of three components: lanes, roads,
and junctions. The lanes contain the primary map information,
with each lane element storing the lane’s ID, type, polygon
information of the centerline, and the connections between
the current lane and others (such as predecessors, successors,
and neighbors). Roads and junctions serve as containers for
lane elements, both containing boundary information for the
drivable areas on the map. Each lane belongs to a unique road
or junction. Additionally, junctions store information related
to traffic lights, including the IDs of the lanes they control and
the traffic signal phases.

• Agents: The Agents data contains all the information about
agents that need simulating. Each agent element includes the
agent’s ID, attributes, and routes. The attributes consist of
basic properties such as the agent’s type and shape, while the
routes contain the full travel schedules for the agent. An agent’s
schedule data includes the departure time and reference route,
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with the reference route detailing the agent’s state (position, speed, heading, etc.) at each step after
the departure time. In log replay-based simulations, this information is provided by scenario data,
whereas in diffusion-based simulations, it is generated by the diffusion model and continuously
updated throughout the simulation.

Junction

MOSSWOMD Argoverse

JunctionJunction

Road

Figure 2: Traffic scenarios from different data sources.

Scenario Construction. Figure 2 illustrates traffic scenarios constructed from different data sources.
For the WOMD and Argoverse datasets, all map information is placed within a single junction. We
aligned the basic attributes of the map features based on the map element types provided in WOMD.
For the scenarios obtained from the MOSS toolchain, we completed the map elements, including
drivable boundaries and lane lines as the original data only contains centerlines. In the MOSS
scenario, agent routes are provided as origin-destination points, and we implemented an A-star-based
router to complete them into full reference routes. MOSS allows the construction of arbitrarily large
scenarios using latitude and longitude ranges. We further divide the map into roads and junctions,
and during the simulation, the map elements and agents in each road or junction are organized into a
data instance. These instances are processed in batches by the diffusion model for vehicle motion
planning, allowing users to select areas of interest by ID and enable diffusion-based simulation within
those areas. Details of this part can be found in Appendix B.1.

3.2 SIMULATION ARCHITECTURE

Embeddings

Scenario

Scene Encoder

D
iff D

e
c
o
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e
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Guide Function

Policy

Action
Update

Observe

Figure 3: The simulation architecture of LCSim.

With scenario data constructed from multiple sources, LCSim performs discrete-time simulation
based on a given time interval. Figure 3 illustrates the basic components of a simulation step. Each
simulation step can be divided into two stages:

Prepare Stage. During this stage, the simulator prepares the observation data for each vehicle,
as depicted in the blue box in Figure 3. The observation data comprises three components: scene
information observed by the vehicle, including road network topology and surrounding vehicles,
scene embeddings computed by the scene encoder, which encodes the scene information, and vehicles’
motion plans either generated by the diffusion decoder or given by the logs from the scenario data.
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Update Stage. In this stage, each vehicle’s action is calculated by its policy based on the observation
data, and these actions are used to update the vehicles’ states. We implement various control
policies in the simulator to handle different simulation scenarios. The ExpertPolicy controls vehicles
to strictly follow the given motion plans. At the same time, the BicycleExpertPolicy enhances
this by adding kinematic control based on the bicycle model to achieve more realistic simulation
effects. Furthermore, we implement the IDMPolicy to enable closed-loop traffic simulation, where
vehicles adjust their accelerations based on the objects ahead while following the given motion plans.
Additionally, any vehicle in the scenario can be controlled by external input actions, allowing the
simulator to serve as a training or testing environment for specific vehicle control algorithms. Details
about these policies can be found in Appendix B.2.

3.3 DIFFUSION-BASED MOTION PLANNER

We design and implement a vehicle motion planning module based on a diffusion model to achieve
controllable traffic simulation. During the simulation process, this module takes the scene information
of the current step and a guidie function as inputs to generate realistic and controllable motion plans
for vehicles in the scenario. Algorithm 1 summarizes the guided generation process of the model.
The entire model consists of the following three main components:

Algorithm 1 Generate Controllable Motion Plans
1: Require diffusion decoder Dθ , scene embeddings c, guide function
G, diffusion steps ti∈{0,...,N}, guide gradient descent steps K,
guide scale α, guide clip β, initial noise level Snoise

2: Initialize white noise τ0 ∼ N (0, S2
noiseI)

3: for i = 0, . . . , N do
4: Denoising Step
5: di = (τ i −Dθ(τ

i; c, ti))/ti
6: τ i+1 = τ i + (ti+1 − ti)di

7: if ti+1 ̸= 0 then
8: d′

i = (τ i+1 −Dθ(τ
i+1; c, ti+1))/ti+1

9: τ i+1 = τ i + (ti+1 − ti)(
1
2di +

1
2d

′
i)

10: Guide Step
11: τ i+1

0 = τ i+1

12: for j = 1, . . . , K do
13: τ i+1

j = τ i+1
j−1 + α∇G(τ i+1

j−1)

14: ∆τ = |τ i+1
j − τ i+1

0 |; ∆τ ← clip(∆τ ,−β, β)
15: τ i+1

j ← τ i+1
0 + ∆τ

16: Execute motion plans of each vehicle using output τN
K

Scene Encoder. For accurately modeling the
behavior of traffic participants, feature repre-
sentations of scene information including map
elements and historical states of traffic partici-
pants are required as conditions for the diffusion
model. Following (Zhou et al., 2023a; Shi et al.,
2023), we utilize a spatial-temporal attention
mechanism to model the scene features, taking
in map polygons and historical states of agents
to compute scene embeddings for each vehicle
in the scenario.

Denoising Process. The vehicle’s future veloc-
ities and heading angles are used as the genera-
tion target for the diffusion model. Like QCNet
(Zhou et al., 2023a), we employ an attention-
based architecture for the diffusion decoder. The
decoder takes the noised input data combined
with the noise level as query values. It performs cross-attention between input queries and the scene
embeddings, resulting in denoised data as the output. The training and sampling process of the
diffusion model follows Nvidia’s EDM architecture (Karras et al., 2022).

Guide Function. Similar to CTG (Zhong et al., 2023), we impose a loss function on the intermediate
results of the denoising process and backpropagate the gradients to guide the generation process of
the diffusion model. In our experiments, the control targets include realistic guidance, such as no
collision and staying on the road, as well as vehicle behavior style guidance, which encompasses
factors like max acceleration, target speed, and time headway. Furthermore, by guiding surrounding
vehicles to approach the target vehicle, a high-collision-rate adversarial driving environment can be
produced for the target vehicle.

Our diffusion model can generate vehicle motion plans for 8 seconds in the future, we employ a
recurrent generation approach based on a specified time interval during the simulation. More details
about the model design can be found in Appendix A.

4 EXPERIMENTS

We conduct a series of experiments to validate LCSim’s functionality. Firstly, we demonstrate how
the diffusion-based motion planner in LCSim is constructed and its ability to create realistic and
controllable traffic scenarios. Next, we train reinforcement learning agents in simulation environments
with different driving styles built by LCSim, showcasing the impact of various driving environments

5
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Table 2: Evaluation results of our diffusion-based motion planner.

Collision (%) Off-Road (%) minADE (m) minFDE (m)

TrafficSim 4.901 (± 0.019) 2.034 (± 0.021) 1.205 (± 0.001) 3.267 (± 0.027)

SimNet 5.011 (± 0.013) 1.996 (± 0.017) 1.201 (± 0.001) 3.259 (± 0.025)

Ours w/o guide 9.693 (± 0.413) 2.901 (± 0.019) 1.383 (± 0.002) 2.869 (± 0.005)

Ours 4.118 (± 0.082) 1.521 (± 0.110) 1.526 (± 0.005) 3.077 (± 0.034)

on agent performance. Lastly, through the accurate replication of city-level traffic scenarios, we
highlight LCSim’s capability to construct large-scale traffic simulations.

4.1 PERFORMANCE OF DIFFUSION-BASED MOTION PLANNER

Datasets. We train our diffusion model on WOMD (LLC, 2019), which contains 500+ hours of
driving logs collected from seven different cities in the United States. The dataset is further divided
into scenario segments of 20s and 9s. In this experiment, we utilize the 9s segments for training, using
the initial 1s as the historical context, and let the model generate vehicle motions in the future 8s. The
diffusion model is trained on the training set and evaluated for its performance on the validation set.

Metrics. The evaluation metrics of the model consist of two aspects: first, the motion plans generated
for vehicles by the model should adhere to basic traffic rules. We calculate the probabilities of
vehicle collisions and off-road incidents in the simulated scenarios and compare these with statistical
values from real-world data. Second, we use distance-based metrics to assess the model’s ability to
reconstruct real-world traffic scenarios. For each scenario in the validation set, we sample K times
for a simulation duration of T and compute the average displacement error across time (ADE) and
the final displacement error (FDE) at the last time step. In the experiment, we set K = 6, and T = 8s,
and choose the best matching sample to calculate minADE and minFDE.

Baselines & Settings. To validate the effectiveness of our model, we compare it with two famous
learning-based traffic simulation methods, TrafficSim (Suo et al., 2021) and SimNet (Bergamini
et al., 2021). SimNet simulates traffic based on behavior cloning, while TrafficSim generates motion
plans for vehicles using C-VAE. Additionally, to verify the effectiveness of the realistic guidance, we
compare the model’s performance with and without the "no collision" and "no off-road" guidance 2.
To handle the impact of randomness in the generation process, we conducted repeated experiments
and reported the mean and error bars of the results.
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Figure 4: The comparison of vehicle behaviors between WOMD and our diffusion-based simulation.

Results. Table 2 presents the quantitative results of the experiments. While our method lags behind
the baseline in terms of accurately imitating vehicle trajectories in the dataset, it surpasses the baseline
in adherence to traffic rules, realistic vehicle interactions, and the accuracy of long-term simulations.
Additionally, the comparison between simulations with and without realistic guidance demonstrates
the effectiveness of the realistic guide functions. Furthermore, Figure 4 shows a comparison of
vehicle behavior distributions collected from the original dataset and our diffusion-based simulations,
indicating that our model can learn the driving styles present in the dataset. Visualization of the
generating process can be seen in Appendix A.

2See Appendix A.4 for details.
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4.2 ALIGNMENT OF VEHICLE BEHAVIOR CHARACTERISTICS

Private Driving Dataset. Our private driving dataset comprises about 400 hours of vehicle driving
logs collected from vehicles in the Beijing Yizhuang area. The data is presented in a format similar to
vehicle trajectories in WOMD. We conducted statistical analysis on the dataset, focusing on metrics
such as acceleration, relative distance, and time headway during the car following process. This
analysis allowed us to derive the driving behavior characteristics of vehicles in the Yizhuang area.
Details about the dataset can be found in Appendix C.

In Figure 5, we compare the behavioral characteristics of vehicles in our private dataset with those in
WOMD. The comparison includes metrics such as vehicle acceleration, relative distance, and time
headway during car following. Since a vehicle’s driving speed is often related to the specific driving
environment (e.g., road congestion, lane speed limits) rather than the behavioral characteristics, we
do not include speed in the comparison. It can be observed that there are significant differences
between the behaviors of vehicles in these two datasets. Vehicles in the Yizhuang area exhibit a more
"gentle" driving style, showing a preference for using smaller accelerations during start and brake.
Additionally, they maintain larger relative distances and headway times during the following process
compared to vehicles in the Waymo dataset.
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Figure 5: The differences in vehicle behavior between WOMD and private datasets.

As our model is trained on WOMD, without imposing any guidance on the generation process,
the vehicle behavior characteristics in the diffusion-based simulation remain consistent with the
Waymo dataset, as shown in Figure 4. By applying guide functions including max acceleration,
relative distance, and time headway during the generation process, we can align the vehicle behavior
characteristics produced by the diffusion-based simulation with those collected in our private driving
dataset. The comparison of the two distributions can be seen in Figure 6. This demonstrates that
our simulator can model vehicles with diverse driving styles, thereby providing traffic simulation
environments with different driving styles. Details about the guide function we use here can be found
in Appendix A.4.
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Figure 6: The comparison of vehicle behaviors between the private dataset and guided diffusion-based
simulation.

4.3 MULTI-STYLE RL TRAINING

We construct a single-agent reinforcement learning environment based on WOMD with our guided
diffusion-based simulation to further investigate the impact of traffic environments with different
driving styles on driving policy learning. Below are the training settings and results:
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Table 3: Evaluation results of RL agents.

Collision
Rate (%)

Off-Road
Rate (%)

Route
Progress (%)

Success
Rate (%) Reward

WOMD 15.71 (± 0.56) 4.24 (± 0.20) 84.98 (± 0.53) 51.31 (± 0.56) 7.41 (± 0.10)

Diff w/ gentle 32.28 (± 0.52) 3.52 (± 0.08) 59.06 (± 0.42) 21.52 (± 0.18) 0.50 (± 0.06)

Diff w/ adv 8.72 (± 0.23) 15.49 (± 0.42) 83.88 (± 0.43) 33.53 (± 0.27) 5.05 (± 0.05)

Diff w/o guide 12.06 (± 0.28) 3.01 (± 0.12) 84.76 (± 0.35) 52.75 (± 0.50) 8.59 (± 0.14)

Settings. To validate the model’s capability in unseen scenarios, we construct a reinforcement learning
environment based on the validation set of WOMD. We select 4,400 scenarios from the validation
set and further divide them into a training set containing 4,000 scenarios and a test set containing
400 scenarios. We train a PPO (Schulman et al., 2017) agent on the training set and evaluate its
performance on the test set. As shown in Figure 7, we let the PPO agent control the self-driving
car (SDC) marked in WOMD, the agent’s observation space consists of scene embedding computed
by the scene encoder and a reference route for the vehicle. In different training environments, the
route is either given by driving logs from the dataset or computed by motion plans generated by the
diffusion model. The background vehicles are controlled by policies within our simulator. On the
test set, we test four metrics of the agent: collision rate, off-road rate, average route progress rate,
and scenario success rate. We also provide the average reward value per episode. The background
vehicles of the test set act based on WOMD driving logs. Detailed RL training settings can be found
in Appendix D.1.

Scene Embedding

Reference Route

PPO Agent

Acc & Steering

O
b

s
e

rv
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D
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Figure 7: Workflow of the RL agent.

Styles of the Training Environments. We create four dis-
tinct driving environments on the training set: In the first one,
vehicles base their actions on real trajectories from WOMD
driving logs. The second one utilizes the diffusion model
without guide functions, which maintains consistency with
WOMD in terms of vehicle behavior styles. With the diffusion
model’s nature, it generates diverse vehicle motions under
the same initial conditions, exposing the agent to a broader
range of traffic scenarios during training. The third one fol-
lows the driving style observed in our private driving dataset,
emphasizing a more "gentle" driving behavior compared to the
WOMD-based environment. Furthermore, an adversarial driv-
ing environment is implemented by guiding nearby vehicles
closer to the agent, creating a training scenario with a higher
potential for collisions. Details about the configuration are
available in Appendix D.2.

Results. Table 3 presents the performance of agents trained in environments with different driving
styles on the test set. Compared to agents trained on the original WOMD driving logs, those trained
in diffusion-based simulation environments without guidance perform better across almost all metrics.
This improvement is attributed to the diffusion-based simulations increasing the diversity of traffic
scenarios in the training environment, enabling agents to learn more general and effective driving
strategies. Conversely, agents trained in "gentler" environments perform poorly on the test set, as
differences in background vehicle behavior between the training and test sets result in the agent’s
driving strategies being ineffective in avoiding collisions. Additionally, the more passive driving
style in the training environment’s reference routes leads to a lower route progress rate in the test set.
Agents trained in adversarial environments excel at avoiding collisions, but their maneuvers to evade
surrounding vehicles also result in a higher probability of driving off the road.

4.4 CITY-SCALE TRAFFIC SCENARIO CONSTRUCTION

We showcase the scalability of LCSim with city-scale simulations of real-world traffic scenarios in
two metropolises.

Datasets. We use two vehicle trajectory datasets (Yu et al., 2023; 2022; Lin et al., 2021) each with
one-day-long city-scale trajectories of the entire fleet recovered from daily urban traffic camera

8
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Jinan City Shenzhen City

Figure 8: City-scale traffic scenario simulations in Jinan and Shenzhen.

videos in Jinan and Shenzhen city. Both of the datasets involve over one million trajectories and one
thousand square kilometers of urban area.

Settings. Compared with open-source driving datasets like WOMD, the trajectories recovered from
traffic cameras are temporally sparser, where only the arrival time at road intersection is specified
(Yu et al., 2023), which is thus taken as the travel schedule of each agent in LCSim with a series
of trips between intersections with corresponding departure time and arrival time. We show that by
simulating the vehicles given their schedules, using the arrival time at a specific position as goal point
guidance 3, LCSim can effectively replicate real-world city-scale traffic scenarios.

Results. Figure 8 shows, in Jinan and Shenzhen, the spatial distribution of simulated road flow and
speed, as well as the probability distribution of the arrival time error which is the deviation of the
simulated arrival time of each trip compared with that of the ground truth trajectory data. As can be
seen, the arrival time error is mainly distributed around zero with over 90% of trips having arrival
time errors less than 20 seconds. LCSim also produces reasonable traffic conditions with coherence
between the road network structure, flow, and speed.

5 CONCLUSION

We proposed LCSim, a large-scale, controllable diffusion-based traffic simulator. With an automated
tool to construct traffic scenarios from multiple data sources, LCSim is capable of conducting large-
scale traffic simulations. By integrating the diffusion-based motion planner and guide functions,
LCSim can build traffic environments with diverse vehicle driving styles.

Limitations. LCSim has two main limitations. Firstly, the simulator is implemented in Python using
a single-threaded CPU, which limits its performance potential, discussion can be found in Appendix

3See Appendix A.4 for details.
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E. Although parallel simulation using multiple processes is currently employed as a solution, it does
not fundamentally address the issue. One potential approach to overcome this limitation is to develop
a multi-threaded version of the simulator using C++ and deploy the Diffusion model in C++, which
is a potential direction for future work. Secondly, the simulator currently provides visualization
only from a top-down perspective and lacks the rendering of realistic perceptual data. Integrating
the sensor data generation method into the simulation is one of the planned future developments to
address this limitation.
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APPENDIX

In the appendix, we provide more details about the experiments discussed in the main text. Section A
introduces the implementation details of the diffusion model and the specific content and form of the
guide function. Section B details the implementation of the system and showcases the visualization
of scenarios in the simulator. Section C covers the relevant content of our private driving dataset,
while Section D delves into the detailed experimental configurations for multi-style reinforcement
learning experiments. Section E discusses the efficiency issue of our simulator. Code and demos are
available at https://anonymous.4open.science/r/LCSim-0C7A.

A DIFFUSION MODEL

Figure 9 shows the diffusion denoising process. With the road network topology and vehicle historical
states as input, the model generates future vehicle motion plans through a denoising diffusion process.

Due to the relevant regulations of the Waymo Open Motion Dataset (WOMD) (LLC, 2019), we cannot
provide the parameters of the model trained on it. In this section, we introduce the implementation
details of the diffusion model and the hyperparameters used for training and inference in detail to
ensure that the relevant experimental results can be easily reproduced.

t = 0t = T ...

Figure 9: The process of generating vehicle action sequences by diffusion model.

A.1 PROBLEM FORMULATION

Similar to (Li et al., 2024), we denote a traffic scenario as ω = (M,A1:T ), where M contains the
information of a High-Definition (HD) map and A1:T = [A1, ..., AT ] is the state sequence of all
traffic participates. Each element mi of M = {m1, ...,mNm} represents the map factor like road
lines, road edges, centerline of lanes, etc. And each element ati of At = {a1t , ..., a

Na
t } represents the

state of the ith traffic participate at time step t including position, velocity, heading, etc.

Given the map elements M = {m1, ...,mNm} and the historical states of agents Atc−Th:tc , where
Th is the number historical steps and 0 < Th < tc, the model generates the future states of agents in
the scenario Atc:tc+Tf

, where Tf is the number of future steps.
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Table 4: The attention mechanisms of scene encoder.

Query Key Value

Agent Temporal va
i,tc

va
i,t va

i,t ⊕ Pos(t− tc)

Agent-Map va
i,tc

vm
j vm

j ⊕ ea→m
ij

Agent-Agent va
i,tc

va
j,tc

va
j,tc

⊕ ea→a
ij

A.2 MODEL ARCHITECTURE

Scene Encoder. We implemented our scene encoder based on MTR (Shi et al., 2023) and QCNet
(Zhou et al., 2023a). As mentioned before, at each time step tc, the input to the scene encoder
includes the map elements M = {m1, ...,mNm} and the historical states of agents Atc−Th:tc . First,
we construct a heterogeneous graph G = (V,E) based on the geometric relationships among input
features. The node set V contains two kinds of node va and vm and the edge set E consists of
three kinds of edge ea→a, ea→m and em→m. Connectivity is established between nodes within a
certain range of relative distances. For nodes like vai and vmj , their node features contain attributes
independent of geographical location like lane type, agent type, agent velocity, etc. The position
information of nodes is stored in the relative form within the edge features like ea→m

ij = [pm
j −

pa
i , θ

m
j − θai ], where p and θ are position vector and heading angle of each node at current time

step tc. For each category of elements in the graph, we use an MLP to map their features into the
latent space with dimension Nh to get the node embedding va

i,t(tc − Th ≤ t ≤ tc), vm
j and edge

embedding ea→a
ij , ea→m

ij , em→m
ij . Then we apply four attention mechanisms in Table 4 to them to get

the final scene embedding. The scene embedding consists of two components: the map embedding
with a shape of [M,Nh], and the agent embedding with a shape of [A, Th, Nh].

Embeddings

𝑵 𝟎, 𝝈𝟐 
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Figure 10: The architecture of diffusion decoder.

Diffusion Decoder. Figure 10 shows the whole architecture of the diffusion decoder. Similar to (Zhou
et al., 2023b), we implemented a DETR-like decoder to model the joint distribution of multi-agent
action sequences. Denote the generation target as x ∈ RA×Tf×Na , which represents future Tf

steps’ actions of agents in the scenario. Firstly, noise z ∼ N
(
0, σ2

)
is added to the input sequence.

Subsequently, the action sequence with noise for each agent is mapped to a latent space via an MLP,
serving as the query embedding for that agent. The query is then added to the Fourier Embedding
with noise level σ, similar to positional encoding, to inform the model about the current noise level.
Next, the query vector undergoes cross-attention with map embeddings, embeddings of other agents
in the scenario, and the historical state embedding of the current agent, resulting in a fused agent
feature vector incorporating environmental information. Following this, self-attention is applied to
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Table 5: Model parameters

Parameter Value

Input Size 2
Output Size 2
Embedding Size 128
Num Historical Steps 10
Num Future Steps 80
Num Polygon Types 20
Num Freq Bands 64

Map Encoder
Hidden Dim 64
Num Layers 5
Num Pre Layers 3

Agent Encoder
Time Span 10
a2a Radius 50
pl2a Radius 50
Num Layers 2
Num Heads 8
Head Dim 64
Dropout 0.1

Diff Decoder
Output Head False
Num t2m Steps 10
pl2m Radius 150
a2m Radius 150
Num Layers 2
Num Recurrent Steps 2
Num Heads 8
Head Dim 64
Dropout 0.1

Table 6: Training parameters

Parameter Value

Batch Size 16
Num Epochs 200
Weight Decay 0.03
Learning Rate 0.0005
Learning Rate Schedule OneCycleLR
σdata 0.1
cin(σ) 1/

√
σ2 + σ2

data

cskip(σ) σ2
data/(σ

2 + σ2
data)

cout(σ) σ · σdata/
√

σ2 + σ2
data

cnoise(σ)
1
4
lnσ

Noise Distribution ln(σ) ∼ N
(
Pmean , P

2
std

)
Pmean -1.2
Pstd 1.2

the feature vectors of each agent to ensure the authenticity of interaction among the action sequences
generated for each agent. Finally, the feature vectors from the latent space are mapped back to the
agent’s action space via an MLP to obtain the de-noised agent action sequence.

A.3 TRAINING DETAILS

Training Target. Diffusion model estimates the distribution of generation target x ∼ p(x) by
sampling from pθ(x) with learnable model parameter θ. Normally we have pθ(x) = −fθ(x)

Zθ
,

and use max-likelihood maxθ
∑N

i=1 log pθ(xi) to get parameter θ. However, to make the max
likelihood training feasible, we need to know the normalization constant Zθ, and either computing
or approximating it would be a rather computationally expensive process, So we choose to model
the score function ∇x log pθ(x;σ) rather than directly model the probability density, with the score
function, one can get data sample x0 ∼ pθ(x) by the following equation (Jiang et al., 2023):

x0 = x(T ) +
∫ 0

T
−σ̇(t)σ(t)∇x log pθ(x(t);σ(t))dt where x(T ) ∼ N

(
0, σ2

maxI
)

(1)

On this basis, we add a condition c composed of scene embeddings and use our model to approximate
the score function ∇x log pθ(x; c, σ) ≈ (Dθ(x; c, σ)− x) /σ2, which leads to the training target
(Jiang et al., 2023):

Ex,c∼χcEσ∼q(σ)Eϵ∼N (0,σ2I) ∥Dθ(x+ ϵ; c, σ)− x∥22 (2)

χc is the training dataset combined with embeddings computed by the scene encoder, and q(σ)
represents the schedule of the noise level added to the original data sample. For better performance,
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we introduce the precondition as described in (Karras et al., 2022) to ensure that the input and output
of the model both follow a standard normal distribution with unit variance:

Dθ(x; c, σ) = cskip (σ)x+ cout (σ)Fθ (cin (σ)x; c, cnoise (σ)) (3)

Here, Fθ(·) represents the original output of the diffusion decoder. In the experiment, we used the
magnitude and direction of vehicle speed as the target for generation.

Experiment Setting. We trained our diffusion model on the Waymo Open Motion Dataset (WOMD)
(LLC, 2019). Each traffic scenario in the dataset has a duration of 9 seconds. We used the map
information and the historical state of the previous 1 second as input to the model and generated
future vehicle action sequences for the next 8 seconds. The training was conducted on a server with
4 × Nvidia 4090 GPUs. We set the batch size for training to 16 and trained with the OneCycleLR
learning rate schedule for 200 epochs. The entire training process lasted approximately 20 days. The
detailed parameters of the model and the training process are shown in Table 5 and Table 6.

A.4 GUIDE FUNCTIONS

Following (Zhong et al., 2023; Jiang et al., 2023), we calculate the cost function L : RA×Tf×Na 7→ R
based on the intermediate results of the generation process and propagate gradients backward to
guide the final generation outcome. In our experiments, the control objectives include the vehicle’s
maximum acceleration, target velocity, time headway, and relative distance to the preceding car
during car-following, and generating adversarial behavior by controlling nearby vehicles to approach
the current vehicle. Denote vehicle i at timestep t has states acci,t, vi,t, xi,t, yi,t, headingi,t, and
dist(i, j) computes the relative distance between vehicle i and vehicle j at timestep t when vehicle i
is followed by vehicle j on the same lane. Table 7 shows the details of the cost functions.

Table 7: The cost functions used in the guided generation process.

Guide Target Cost Function

max acceleration
∑A

i=1

∑Tf

t=1 max(0, |acci,t| − accmax)

target velocity
∑A

i=1

∑Tf

t=1 ∥ vi,t − vtarget ∥22
time headway

∑Tf

t=1

∑
i ̸=j |

dist(i,j)
∥vj,t∥22

− thwtarget | where i is followed by j at t

relative distance
∑Tf

t=1

∑
i ̸=j | dist(i, j)− distarget | where i is followed by j at t

goal point
∑A

i=1

∑Tf

t=1 ∥ (xi,t, yi,t)− (xgoali,t , ygoali,t) ∥22
no collision

∑Tf

t=1

∑
i ̸=j I[∥ (xi,t, yi,t)− (xj,t, yj,t) ∥22≤ ϵ]

no off-road
∑A

i=1

∑Tf

t=1 I[∥ (xi,t, yi,t)− (xoff-road, yoff-road) ∥22≤ ϵ]

During the guided generation process, we use an Adam optimizer for the inner iterative gradient
descent of Algorithm 1, we set learning rate α = 0.1, clip parameter β = 0.015 and guide steps
K = 20. For realistic guidance, the scale parameters for "no-collision" and "no off-road" are 12.0
and 2.5.

B SIMULATION SYSTEM

B.1 SCENARIO GENERATOR

We defined a unified traffic scenario format based on Protobuf4. Additionally, we have developed
format conversion tools designed for the Waymo and Argoverse datasets, the conversion results can
be seen in Figure 11. The detailed process of data construction can be found in our code base 5.

4https://anonymous.4open.science/r/LCSim-0C7A/lcsim/protos
5https://anonymous.4open.science/r/LCSim-0C7A/lcsim/scripts/scenario_

converters
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Figure 11: Traffic scenarios from WOMD (blue box) and Argoverse (yellow box).

B.2 POLICY DETAILS

We implemented five different policies to support traffic simulation in various scenarios:

• ExpertPolicy: The vehicles strictly follow the given action sequences to proceed.

• BicycleExpertPolicy: Based on the expert policy, we impose kinematic constraints on the vehicle’s
behavior using a bicycle model to prevent excessive acceleration and steering. By default, we set
max acceleration to 6.0 m/s2 and max steering angle to 0.3 rad.

• LaneIDMPolicy: Under this policy, vehicles ignore the action sequences and proceed along the
center line of their current lane. The vehicle’s acceleration is calculated using the IDM model and
lane-changing behavior is generated using the Mobil model.

• TrajIDMPolicy: Vehicles move along the trajectories computed based on the action sequence, but
their acceleration is controlled by the IDM Mode to prevent collisions.

• RL-based Policy: A PPO (Schulman et al., 2017) agent trained based on our simulator, its observa-
tion space contains the scene embedding and the action sequence. The action space consists of
acceleration and steering values. The training environment of this agent is the second one, enabling
diffusive simulation with Waymo-style vehicle behavior.
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For the IDM model in these policies, the default configuration is that accmax = 5m/s2, thw =
2.0s, vtarget = 20m/s.

C PRIVATE DRIVING DATASET

C.1 DATASET OVERVIEW

Our private driving dataset comprises about 426.26 hours of vehicle driving logs collected from
autonomous vehicles in the Beijing Yizhuang area and the whole dataset is split into 765 scenarios.
The data is presented in a format similar to vehicle trajectories in the Waymo dataset with a sampled
rate of 10 Hz. However, the road networks of the scenarios are not provided in this dataset, so we can
not train our model on it, but due to the sufficient duration of the data, we can analyze the behavioral
characteristics of vehicles within the data collection area. This analysis provides a reference for
constructing driving scenarios with different styles.

Understandably, due to confidentiality regulations, the complete dataset cannot be released. However,
we will share the statistical distribution data of vehicle behaviors obtained from the dataset.

C.2 VEHICLE BEHAVIOR ANALYSIS

We conducted statistical analysis on the dataset, focusing on metrics such as max acceleration, usual
brake acceleration, velocity, relative distance, relative velocity, and time headway during the car
following process, Figure 12 shows the results. This analysis allowed us to derive the driving behavior
characteristics of vehicles in the Yizhuang area.

Figure 12: The analysis of our private driving dataset.

D MULTI-STYLE REINFORCEMENT LEARNING

We constructed single-agent reinforcement learning experiments based on the Waymo traffic scenarios
with our guided diffusive simulation to see the influence of styles of scenarios on policy learning.

D.1 REINFORCEMENT LEARNING SETUP

We constructed a reinforcement learning environment based on the validation set of the Waymo
dataset. 4,400 scenarios are selected from the validation set and further divided into a training set
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containing 4,000 scenarios and a test set containing 400 scenarios. We trained a PPO (Schulman
et al., 2017) agent on the training set and evaluated its performance on the test set.

Observation Spec. Observation of the agent consists of two parts:

• Scene Embedding: Embedding computed by scene encoder of the diffusion model with size of [Nh],
by applying cross attention to map polygons and agent states, this feature contains information about
surrounding vehicles, road elements, and the vehicle’s own historical states. In this experiment, we
use Nh = 128 following the setup of the diffusion model.

• Route: We sampled the vehicle’s trajectory points within the next 1 second at a frequency of 10Hz
and projected them into a relative coordinate system based on the vehicle’s current position and
orientation. The shape of the route data is [10, 2], representing the reference path of the vehicle’s
forward movement. If the vehicle behavior in the driving environment is generated by a diffusion
model, then this path will be accumulated from the behavior sequences generated by the model for
the vehicle.

Action Spec. We let the agent directly control the throttle and steering angle of the vehicle. The
agent’s output is a two-dimensional vector with a range [−1, 1]. This vector is multiplied by the
maximum range of acceleration and steering angle, resulting in the final vehicle action. In this
experiment, the maximum acceleration and steering angle of the vehicle are set to 6.0 and 0.3,
respectively.

Rollout Setting. To let the agent explore every scenario in the training set, we randomly divided the
4000 scenes in the training set into 20 parts, each containing 200 different scenarios. We used 20
parallel threads to rollout episodes, with each thread pre-loading and pre-calculating map embeddings
for 200 different training scenarios. During the rollout process, after the current episode ends, the
environment automatically switches to the next scenario, and this cycle continues iteratively.

Reward Function. Our goal is to make the vehicle progress along the given route while avoiding
collisions and staying within the road. Therefore, we provide the following formula for the reward:

R = Rforward + Pcollision + Proad + Psmooth +Rdestination. (4)

The meanings of elements in the formula are as follows:

• Rforward: A dense reward to encourage the vehicle to drive forward along the given route. We
project the current position and last position of the vehicle onto the Frenet coordinate of the route
and calculate dt, dt−1, st, st−1, the value of the reward would be 0.1× ((st−st−1)− (dt−dt−1)).

• Pcollision: Penalty for collision, When the vehicle collides, the value will be −10, and the current
episode terminates; otherwise, the value is 0.

• Proad: Penalty for driving off the road, when this happens, the value will be −5, and the current
episode terminates; otherwise, the value is 0.

• Psmooth: Following (Li et al., 2024), we implemented Psmooth = min(0, 1/vt − |a[0]|) to avoid a
large steering value change between two timesteps.

• Rdestination: When an episode ends, we check if the vehicle has reached the destination of the
given route, which means the distance to the endpoint of the route is within 2.5 meters. If yes, the
reward value is 10; otherwise, it’s −5.

D.2 MULTI-STYLE ENVIRONMENTS BUILDING

We build four kinds of environments with different driving styles using cost functions in Table 7:

• The original Waymo driving environment, in this environment, vehicles base their actions on real
trajectories from the Waymo driving logs.

• The Waymo-style environment with diffusive simulation. This environment utilizes the diffusion
model without guide functions, the vehicle behaviors are consistent with the Waymo dataset.
With the diffusion model’s nature, it generates diverse vehicle trajectories under the same initial
conditions, exposing the agent to a broader range of traffic scenarios during training.
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• The gentle-style environment with guided diffusive simulation. This environment follows the
driving style observed in our private driving dataset, emphasizing a more "gentle" driving behavior
compared to the Waymo-based environment. In this environment, we use cost functions on max
acceleration with accmax = 3m/s2, and on time headway with thwtarget = 2.5s.

• The adversarial environment. This environment is implemented by guiding nearby vehicles closer
to the vehicle controlled by the RL agent. For vehicles in front of or alongside the main vehicle, we
guide their action generation with distarget = 0 to the main vehicle, thereby encouraging more
sudden braking and cutting-in behaviors, increasing the aggressiveness of the environment.

E DISCUSSION ON SIMULATION EFFICIENCY

As we mentioned before, efficiency is one of the main limitations of our simulator, here we compare
LCSim and two baseline traffic simulators, MetaDrive and Waymax, we run scenarios in the validation
set of WOMD with a length of 9s at 10Hz and compute the average simulation time per scenario.
Table 8 shows the result. We use an Intel(R) Xeon(R) Platinum 8462Y CPU and an NVIDIA GeForce
RTX 4090 GPU for the simulation. And LCSim can achieve comparable results with other cpu-based
simulators implemented in Python. Our next plan is to develop a C++ version of our simulator.

Table 8: The attention mechanisms of scene encoder.

Simulator Metadrive Waymax CPU Waymax GPU LCSim w/o
Diff

LCSim w/
Diff

Time (s) 1.923 0.554 0.083 0.239 1.043
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