

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ON FINETUNING TABULAR FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Foundation models are an emerging research direction in tabular deep learning. Notably, TabPFNv2 recently claimed superior performance over traditional GBDT-based methods on small-scale datasets using an in-context learning paradigm, which does not adapt model parameters to target datasets. However, the optimal finetuning approach for adapting tabular foundational models, and how this adaptation reshapes their internal mechanisms, remains underexplored. While prior works studied finetuning for earlier foundational models, inconsistent findings and TabPFNv2’s unique architecture necessitate fresh investigation. To address these questions, we first systematically evaluate various finetuning strategies on diverse datasets. Our findings establish full finetuning as the most practical solution for TabPFNv2 in terms of time-efficiency and effectiveness. We then investigate how finetuning alters TabPFNv2’s inner mechanisms, drawing an analogy to retrieval-augmented models. We reveal that the success of finetuning stems from the fact that after gradient-based adaptation, the dot products of the query-representations of test objects and the key-representations of in-context training objects more accurately reflect their target similarity. This improved similarity allows finetuned TabPFNv2 to better approximate target dependency by appropriately weighting relevant in-context samples, improving the retrieval-based prediction logic. From the practical perspective, we managed to finetune TabPFNv2 on datasets with up to 50K objects, observing performance improvements on almost all tasks. More precisely, on academic datasets with I.I.D. splits, finetuning allows TabPFNv2 to achieve state-of-the-art results, while on datasets with gradual temporal shifts and rich feature sets, TabPFNv2 is less stable and prior methods remain better.

1 INTRODUCTION

Recently, deep learning for tabular data has rapidly advanced (Gorishniy et al., 2021; Somepalli et al., 2021; Gorishniy et al., 2024; Hollmann et al., 2023; Ye et al., 2024; Holzmüller et al., 2024), frequently drawing inspiration from natural language processing (NLP) and computer vision (CV), where foundational models — large-scale architectures pretrained on vast datasets and adaptable to diverse tasks (Radford et al., 2021; Ramesh et al., 2021; Alayrac et al., 2022) — have become pivotal for sample-efficient learning. The application of such models to the tabular domain was initially uncertain due to its inherent heterogeneity and the scarcity of large, public pretraining datasets. However, TabPFN (Hollmann et al., 2023) demonstrated their potential by pioneering pretraining on diverse synthetic datasets designed to mimic real-world distributions. Its recent successor, TabPFNv2 (Hollmann et al., 2025), further validated this approach, showing its synthetically learned priors enable it to outperform leading GBDT implementations (Prokhorenkova et al., 2018; Ke et al., 2017; Chen & Guestrin, 2016) on small tabular datasets.

While TabPFNv2’s superiority over GBDTs was demonstrated using in-context learning — where the entire training set serves as its input prompt — it is not entirely clear how more computationally intensive gradient-based adaptations, such as full/partial finetuning or parameter-efficient methods like LoRA (Hu et al., 2021), might affect its performance. This uncertainty is particularly noteworthy because, while common sense intuition implies that finetuning is universally beneficial, the recent NLP findings report that pure in-context learning can sometimes outperform finetuning (Yin et al., 2024). Although several recent works (Feuer et al., 2024; Thomas et al., 2024; Ma et al., 2024; Xu et al., 2024; den Breejen et al., 2023) have finetuned tabular foundational models, these efforts were often not systematic, formed part of larger pipelines, largely focused on the outdated TabPFN model, and crucially, did not analyze how finetuning alters the internal mechanisms of foundational models.

054 The main focus of our work is to understand how finetuning impacts the inner logic of TabPFNv2. To
 055 identify the optimal finetuning regime for this in-depth analysis, we first systematically compared
 056 various strategies on a diverse set of datasets with up to $\approx 1M$ total cells (columns \times rows)¹.
 057 Contrary to previous works (Xu et al., 2024; Feuer et al., 2024) that advocate for partial model
 058 adaptation to prevent overfitting, our findings indicate that full finetuning, when properly configured
 059 (including hyperparameter ablation for efficient and stable adaptation), appears to be the superior
 060 option compared to partial and parameter-efficient alternatives. This result led us to select full
 061 finetuning as our chosen method for detailed investigation.

062 Our subsequent analysis draws parallels between retrieval-based tabular models and TabPFNv2.
 063 Within TabPFNv2’s last layer, the dot products between query-representations of test objects and key-
 064 representations of in-context samples provide signals used by attention to weight training examples.
 065 We find that after task-specific finetuning, these query-key dot products exhibit a significantly stronger
 066 alignment with actual target similarity. This more precise correspondence, a direct result of finetuning,
 067 greatly simplifies the problem for attention, which can more effectively approximate the test label by
 068 precisely weighting the most relevant in-context samples. In particular, we observe that the majority
 069 of finetuning performance gains come from samples where inter-sample attention becomes more
 070 sharply concentrated after finetuning.

071 Finally, we put the TabPFNv2 model and its finetunes in the modern tabular DL context and compare
 072 it to the recent SoTA models (Ye et al., 2024; Gorishniy et al., 2025) and additionally evaluate it on a
 073 new challenging benchmark (Rubachev et al., 2025).

074 To sum up, our contributions are the following:
 075

- 076 1. We extensively compare different finetuning regimes for the TabPFNv2 model and establish
 077 simple full finetuning as a strong and stable baseline for TabPFNv2 adaptation, contrary
 078 to prior work (Feuer et al., 2024; Xu et al., 2024) where the necessity of partial finetuning
 079 methods was emphasized for preventing overfitting.
- 080 2. We analyse the finetuning’s impact drawing a parallel between TabPFNv2 and retrieval-based
 081 models. We demonstrate that finetuning refines TabPFNv2 by ensuring the dot products of
 082 query-representations (test object tokens in inter-sample attention) and key-representations
 083 (in-context samples) more accurately reflect target similarity. This improved alignment
 084 simplifies the prediction problem for the model, enabling it to more effectively approximate
 085 the target based on in-context examples.
- 086 3. We provide a thorough comparison of original and finetuned TabPFNv2 against the state-
 087 of-the-art tabular deep learning methods. Our analysis includes datasets with up to 1M
 088 cells (rows \times columns) – reflecting the current computational limit for the straightforward
 089 finetuning – and spans both traditional academic benchmarks and more challenging real-
 090 world datasets with temporal shifts and rich feature sets. On academic benchmarks, we
 091 find that non-finetuned TabPFNv2 performs on par with strong MLP-PLR baseline and
 092 the finetuned version achieves state-of-the-art results. Conversely, on more challenging
 093 real-world datasets, both TabPFNv2 and its finetunes often perform less stable compared to
 094 non-foundational DL methods.

095 2 RELATED WORK

096 Here we briefly outline research lines relevant to our study.

097 **Tabular Deep Learning.** In recent years, deep learning models for tabular data have emerged as
 098 strong contenders to traditional “shallow” methods like Gradient Boosting Decision Trees (GBDTs).
 099 Indeed, recent DL models (Gorishniy et al., 2024; Holzmüller et al., 2024; Ye et al., 2024; Gorishniy
 100 et al., 2025; Hollmann et al., 2025) have often matched or surpassed leading GBDT implementations
 101 (Prokhorenkova et al., 2018; Ke et al., 2017; Chen & Guestrin, 2016). This progress stems from
 102 innovations in architectures (Gorishniy et al., 2021; Somepalli et al., 2021), regularizations (Jeffares
 103 et al., 2023), and learning protocols (Holzmüller et al., 2024; Bahri et al., 2021; Rubachev et al., 2022),
 104

105 ¹We use datasets generally larger than those in the TabPFNv2 paper (Hollmann et al., 2025), but only those
 106 where finetuning on a single 80GB GPU is possible.

108 leveraging the models capabilities not readily available to GBDTs. Our work explores foundational
 109 models, a paradigm that is also inherently applicable only for deep learning models.
 110

111 **Foundational Models** currently dominate among deep learning solutions for CV and NLP problems
 112 and have become a key component in the most state-of-the-art systems Radford et al. (2021); Alayrac
 113 et al. (2022). To put simply, foundational models are the models pretrained on vast amounts of
 114 available data from some domain that can then be adapted to a wide number of downstream tasks
 115 from this domain. The knowledge captured during pretraining often acts as a valuable prior, which is
 116 particularly beneficial in few-shot learning scenarios.

117 Adapting foundational models to specific tasks typically follows one of two main pathways. The first,
 118 finetuning, involves further training the model on the downstream dataset to optimize its parameters
 119 for the new task. For enhanced sample and runtime efficiency, this often includes updating only a
 120 subset of parameters, such as specific layers, low-rank adapters (LoRA) (Hu et al., 2021), or learnable
 121 prompts (Lester et al., 2021). In contrast, in-context learning adapts the model without altering its
 122 parameters, instead providing downstream training samples as part of the input prompt or context
 123 (Brown et al., 2020). The choice between finetuning and in-context learning often depends on factors
 124 like downstream dataset size, computational resources, and the need for multi-task adaptation. While
 125 finetuning is often considered more effective (Liu et al., 2022), recent studies suggest in-context
 126 learning can be competitive or even preferable in certain setups (Yin et al., 2024).

127 **TabPFN** (Hollmann et al., 2023), the pioneering foundational model for tabular data, was designed
 128 to address a wide array of tabular tasks off-the-shelf. It employs a transformer-like architecture
 129 and utilizes in-context learning, with the entire downstream training set serving as its prompt. Its
 130 pretraining relies on numerous synthetic datasets engineered to mirror common application-specific
 131 tabular tasks. The successor, TabPFNv2 (Hollmann et al., 2025), enhances this with a more powerful
 132 architecture, pretraining on a broader spectrum of synthetic data, and sophisticated feature and target
 133 preprocessing, demonstrating superior performance over GBDTs, especially on small-scale datasets.
 134 Our work builds upon this by systematically investigating gradient-based finetuning specifically for
 135 TabPFNv2. While some recent studies (Feuer et al., 2024; Thomas et al., 2024; Ma et al., 2024;
 136 Xu et al., 2024; den Breejen et al., 2023) have explored aspects of finetuning tabular foundational
 137 models, these explorations were often secondary to their main objectives. Furthermore, these
 138 studies predominantly used the original TabPFN model, which differs significantly from TabPFNv2
 139 in capability and architecture, meaning their conclusions might not directly apply. For example,
 140 Feuer et al. (2024) noted potential overfitting with full finetuning of TabPFN on validation sets, a
 141 phenomenon we did not encounter in our TabPFNv2 experiments. Importantly, the original paper
 142 (Hollmann et al., 2025) benchmarks TabPFNv2 primarily against GBDT-based baselines. To obtain
 143 a broader understanding of TabPFNv2 relative performance, we thoroughly compare it to existing
 144 non-foundational tabular DL models and show that it is specifically finetuning that enables TabPFNv2
 145 to achieve the state-of-the-art performance.

146 3 REVISITING FINETUNING STRATEGIES FOR TABPFNv2

147
 148
 149 In this section, we systematically evaluate different finetuning techniques for TabPFNv2. Through
 150 this evaluation we aim to establish a strong finetuning baseline for the TabPFNv2 model to address
 151 the lack of consensus or information (in case of the second version) on best TabPFN finetuning
 152 methodology in literature.

153 **Evaluation Protocol.** We experiment with finetuning TabPFNv2 on two established tabular DL
 154 benchmarks from (Grinsztajn et al., 2022) and (Gorishniy et al., 2024). We use only the datasets for
 155 which it is possible to finetune TabPFNv2 using the entire dataset as an input prompt on a single GPU
 156 with 80GB of memory. We provide a list of datasets we have used with their characteristics in Table 6.
 157 Our benchmark covers larger datasets than those used for evaluation in Hollmann et al. (2025) – the
 158 average dataset size used in our paper is approximately 15K examples, while the average dataset
 159 size in Hollmann et al. (2025) is at approximately 3K. This potentially presents a more challenging
 160 setting for the TabPFNv2 model and it also allows us to compare the foundational model to strong
 161 non-foundational tabular DL baselines, while in Hollmann et al. (2025) comparison is limited to
 162 GBDTs and simple baselines like SVMs.

For all TabPFNv2 finetuning runs and ablations, we tune the learning rate on the validation set using the logspace grid with 10 learning rate values: `logspace(5e-6, 5e-4)`. For other baselines, we use hyperparameter grids from (Gorishniy et al., 2025) and tune for 100 iterations. We always use 1024 objects to calculate the loss per gradient step (except the batch size ablations below), while the rest objects are used as an input prompt. For early stopping, we compute the performance on the validation subset every ten gradient steps and stop the finetuning after 16 non-improving evaluations. We report the RMSE and classification accuracy for regression and classification problems, respectively. Additionally, we use the relative improvement to the MLP baseline metric introduced in Gorishniy et al. (2025) (the R^2 and accuracy are used to compute the relative improvement to the tuned MLP configuration). For additional details regarding the experimental protocol refer to the Appendix A. Below we provide a brief overview of the finetuning strategies we are re-evaluating for TabPFNv2.

Full finetuning is the most straightforward way to adapt pretrained models, used in other domains like NLP (Howard & Ruder, 2018; He et al., 2015) and computer vision (Kolesnikov et al., 2020; Beyer et al., 2024). But there is no consensus in prior work on finetuning tabular foundation models (Feuer et al., 2024; den Breejen et al., 2023) – albeit, based on TabPFNv1.

Parameter-efficient finetuning (PEFT) is popular for LLM adaptation. While with the current tabular foundation model scale (7M parameters) the memory efficiency gains from PEFT are not very important, the inductive biases and potential implicit regularization of partial finetuning might be beneficial to prevent overfitting, as previously hypothesized in Feuer et al. (2024). We consider the following options for parameter-efficient finetuning:

- **Low Rank Adapters (LoRA)** – Hu et al. (2021) is a widely used parameter-efficient finetuning method that uses two low-rank matrices to update a pretrained full-rank matrix.
- **Last layers** – finetuning only the upper layer is also a popular partial finetuning method, that is occasionally used for finetuning pretrained models in other modalities (Hu et al., 2021; Lee et al., 2019).
- **LayerNorm, Head and Embeddings** – finetuning only the feature and target linear embedding layers, MLP prediction head and the affine layer normalization parameters. These parameters represent a small fraction of the whole model parameters, but have been found important in the model adaptation literature (Zhao et al., 2024; Chen et al., 2024).
- **Numerical Feature Embeddings** are a popular and useful technique in the recent tabular DL architectures (Gorishniy et al., 2022; 2025; Holzmüller et al., 2024), which is not yet exploited in tabular foundation models (especially its interaction with TabPFNv2). We experiment with adding the embedding modules before the main TabPFNv2 backbone and finetuning them together with the model.

Practical observations about finetuning & Training Time. Before comparing all the performance results we highlight some practical observations. First, we measure the training times of different finetuning methods. We can see in Table 1 that *full finetuning is the most efficient finetuning method in terms of convergence speed*. Second, *we demonstrate that using larger batches during finetuning improves the finetuning performance*. In more details, we keep the training context size fixed and increase the prediction sequence length. From results in Table 2 we can see that larger batches result in the higher performance of finetuned models. Furthermore, we provide a discussion on computational complexity related to finetuning the TabPFNv2 model in Appendix D.

Table 1: Comparison of time in seconds spent on finetuning (FT.) and in-context prediction (No FT.).

	CA ↓	HO ↓	DI ↓	CH ↑	AD ↑
LORA	328	1330	3607	105	4155
EMB.,LN, HEAD	390	766	995	122	1978
FULL	155	468	1777	74	1480
No FT.	12	24	36	1	18

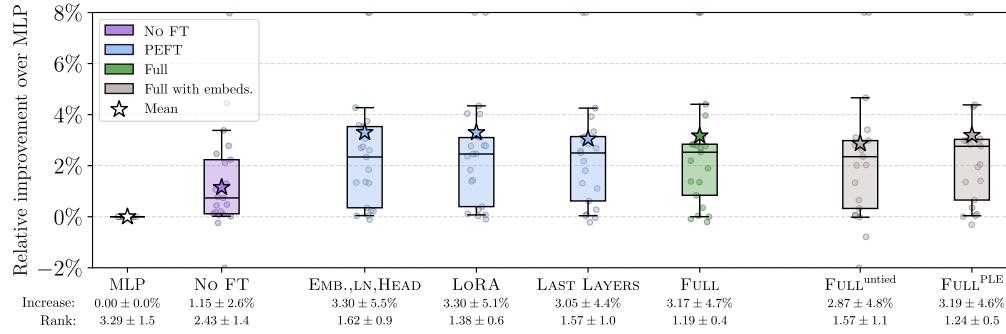
Table 2: The effect of the number of objects used in prediction during training. We can see that using more objects to make one gradient estimation is beneficial.

Pred. Length	CA ↓	HO ↓	DI ↓	CH ↑	AD ↑
2	0.3963	3.0755	0.1332	0.8535	0.8588
128	0.3839	2.9930	0.1303	0.8488	0.8680
1024	0.3822	2.9919	0.1275	0.8647	0.8710

Optimal finetuning strategy. We summarize the results in Figure 1, the full results are available in Table F. We can see that *fine-tuning in general makes a significant impact on model performance compared to pure in-context performance*. However, the difference between full finetuning and all

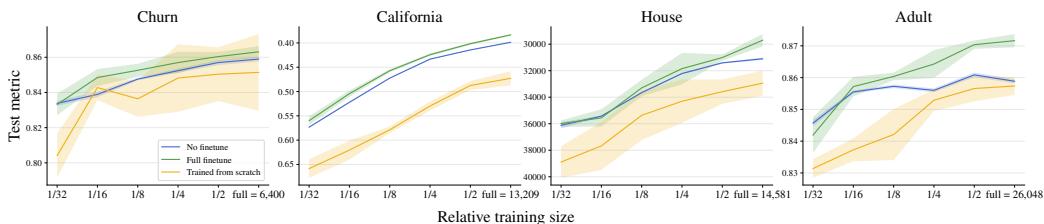
216 considered PEFT variations is minimal. This observation and training efficiency results in Table 1
 217 make *full finetuning a go-to simple baseline for TabPFNv2 adaptation.*

219 Furthermore, introducing untied (non-shared) linear or advanced piecewise-linear embeddings has
 220 marginal effect on finetuning performance and indicates that either the TabPFNv2 model has already
 221 learned the feature transforms and advanced embeddings are not needed or there needs to be a
 222 more sophisticated embedding scheme (e.g. during pretraining), which is an interesting exploration
 223 direction for future work.



235 Figure 1: Comparison of different TabPFNv2 finetuning methods. The plot summarizes the relative
 236 performance improvement over a tuned MLP baseline. We consider off-the-shelf **No FT** TabPFNv2
 237 with no finetuning compared to parameter efficient tuning methods **PEFT**, full model finetuning **Full**
 238 and finetuning with modified **Feature Embeddings**. Box plots summarize the results on all datasets
 239 from Table 6, bars represent the 25th, 50th and 75th percentiles, whiskers represent the 10th and
 240 90th percentiles (visualization from Gorishniy et al. (2025)). The numbers at the bottom of the plot
 241 present average improvement over MLP and average ranks.

HOW DOES FINETUNING COMPARE TO TRAINING FROM RANDOM INITIALIZATION?



253 Figure 2: Performance of different methods on subsamples of four datasets. Churn and Adult are
 254 binary classification datasets and the metric is accuracy (higher is better), California and House
 255 are regression datasets with the RMSE test metric (lower is better, axis flipped). The shaded area
 256 represents 2 standard deviations in both directions from the average accuracy.

258 When we can afford finetuning a TabPFNv2 model – we can also pretrain the model from scratch on
 259 a target dataset. In this section, we study how pretraining on around 130M synthetic datasets used for
 260 TabPFNv2 compares to training from scratch on a target dataset depending on its size. Furthermore
 261 we study how the benefits that come from finetuning change with varying dataset sizes.

263 To answer these questions, we perform the following experiments. First, for four datasets (Churn,
 264 California, House, Adult), we create their subsamplings, with a train set in each following subsampling
 265 being half of the previous one, while validation and test sets are the same. We then compare the
 266 performances of the finetuned TabPFNv2 model, original TabPFNv2 model, and the model with the
 267 TabPFNv2 architecture trained from scratch on each of the subsampled versions of each dataset.

268 Figure 2 shows that *finetuning TabPFNv2 provides more benefits for larger target datasets* (clearly
 269 seen on House and Adult), while for smaller datasets the performance improvements from finetuning
 are often statistically insignificant compared to pure in-context learning.

Furthermore, while on some datasets, such as Adult and Churn, training from scratch comes close to the performance of the pretrained TabPFNv2 (especially for large problem sizes), there are datasets (e.g. California), where for all problem sizes pretraining gives a significant boost to performance, which is not achieved with training from scratch, but is further amplified via finetuning. This variance in the performance of pre-trained model and efficacy of finetuning warrants a deeper investigation into the inner workings of TabPFNv2 and its finetunes, which we describe in the following section.

4 DISSECTING FINETUNING’S IMPACT ON TABPFNv2

As shown in the previous section, finetuning significantly enhances TabPFNv2 performance on our testbed of medium-scale datasets. In this section we aim to understand how and to what extent these improvements are achieved by examining finetuning influence on TabPFNv2 internal behavior, particularly its (inter-sample) attention mechanism.

Our analysis is based on the intuition that pretrained TabPFNv2 functions similarly to retrieval-augmented models like ModernNCA (Ye et al., 2024) or TabR (Gorishniy et al., 2024) when making predictions, this contrasts with alternative explanations of in-context learning in other modalities through e.g. performing implicit SGD (Von Oswald et al., 2023), or implementing complex algorithmic circuits (Olsson et al., 2022; Nanda et al., 2023).

Specifically, we conjecture that an important part of TabPFNv2 prediction mechanics is an implicit retrieval mechanism implemented via inter-sample attention over train dataset objects (in particular, the labels) – resembling retrieval-based models, which perform this explicitly. The first evidence supporting this analogy comes from comparing performance gains over an MLP baseline achieved by the in-context TabPFNv2, ModernNCA, and MLP-PLR across all datasets in our benchmark. Improvements from TabPFNv2 showed a high correlation (**0.89** Pearson correlation) with improvements from ModernNCA, while a similar correlation for the identically performant MLP-PLR model is more mild (**0.53** Pearson correlation). These results support characterizing TabPFNv2 as an advanced implicit retriever, guiding our subsequent investigation of finetuning.

Based on this intuition, we hypothesize that a primary effect of finetuning is the refinement of the similarity signals that TabPFNv2 uses to weight in-context examples. Specifically, we propose that finetuning improves how accurately the dot products between the query-representations (derived from test objects) and key-representations (derived from in-context training examples) in the model’s final layer reflect the true target similarity between these objects. A more accurate underlying similarity measure would allow the attention softmax to more effectively identify and upweight the most informative training examples for predicting the test object’s label.

To verify this hypothesis, we designed an experiment to directly assess the quality of the attention scores as proxies for target relevance. For both the original and the finetuned TabPFNv2 models, we extracted the attention scores assigned by the final layer’s attention mechanism to each in-context training example for a given test instance. These attention weights were then used to compute a weighted average of the corresponding training example targets. The intuition behind this experiment is straightforward: if the attention scores accurately capture the relevance of training examples to a test example’s target, then a weighted average of training targets using these scores should yield a good approximation of the test target. Thus, higher quality attention weights, better reflecting target similarity, should result in a more accurate target prediction. The results of this analysis, presented in Table 3, demonstrate a marked improvement: the weighted average of targets computed using attention scores from the finetuned TabPFNv2 aligns significantly more closely with the groundtruth test targets compared to those from the original TabPFNv2. This finding strongly supports our

Table 3: Comparison of weighted kNN prediction (or MNCA-like prediction) with attention scores from last layer of TabPFNv2 as a proxy of similarity between instances. Attention weights after finetuning better reflect similarity that results in more accurate predictions. The test scores are calculated on a single seed.

	CA ↓	HO ↓	DI ↓	CH ↑	AD ↑	pol ↓
TabPFNv2 performance:						
No FT	0.398	3.105	0.137	0.859	0.859	4.830
Finetuned	0.382	2.960	0.127	0.867	0.872	2.801
TabPFNv2 attn. weighted kNN performance:						
kNN via No FT	0.473	3.404	0.183	0.856	0.856	6.845
kNN via Finetune	0.407	3.313	0.155	0.866	0.872	3.165

hypothesis that finetuning refines the query-key dot products to better reflect true target closeness, thereby simplifying the task for the attention mechanism and improving the hypothesized “implicit retrieval”.

Interestingly, the effect described above also affects the attention distribution itself. As shown by the histograms in Figure 3, for most datasets, finetuning leads to a notable decrease in the entropy of the attention distribution over the in-context training examples for a significantly large subset of test instances. This indicates that for these instances the finetuned model becomes “more focused”, concentrating its attention mass on a smaller subset of training examples. This behavior is consistent with our earlier finding: if the underlying query-key dot products provide a clearer signal of which examples are truly most similar in terms of their targets, the model can confidently allocate higher attention to these few, most relevant neighbors, rather than spreading its attention more diffusely.

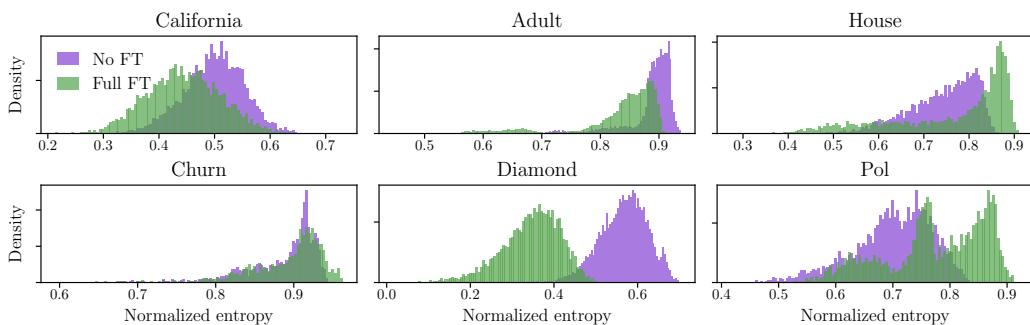


Figure 3: Normalized entropy of the attention weights from the last layer of TabPFNv2 (on test samples). On California, Adult and Diamond, attention weights consistently become more concentrated after finetuning. On Churn dataset, there is no notable shift, and high entropy indicates smooth distribution of weights. On House and Pol datasets, for almost 70-80% of the samples entropy increased but on Figure 4 we show that the most performance gains are obtained from those samples where entropy dropped. More detailed explanation is provided in Appendix C.

Finally, to connect these changes in the attention behaviour directly to predictive performance, we examined the relationship between the sample-wise change in the attention entropy (occurred due to finetuning) and the corresponding sample-wise change in a chosen performance metric. Figure 4 plots this dependency.²

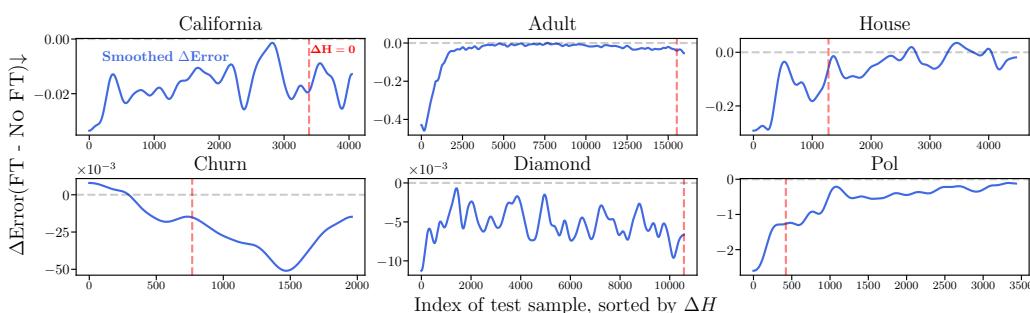


Figure 4: Dependency between the sample-wise change in prediction error (finetuned vs. original TabPFNv2) and the corresponding change in entropy of attention weights. In most cases, finetuned model considerably improves error on samples where entropy dropped significantly (indices closer to zero), i.e. where attention weights became more concentrated. The details are provided in Appendix C.

The results reveal an apparent regularity: the test datapoints contributing most substantially to the overall performance improvement (in other words, corresponding to the most negative $\Delta Error$ values) are those for which attention entropy decreased. Conversely, while some test datapoints do

²The details of plotting these graphs are presented in Appendix C

378 exhibit an increase in attention entropy after finetuning, their collective contribution to the overall
 379 performance change is substantially smaller. This nuanced observation reinforces the idea that the
 380 primary driver of finetuning’s benefit lies in its ability to sharpen the model’s focus on the most
 381 relevant in-context examples by improving the underlying similarity representations that guide the
 382 attention mechanism.

384 5 TABPFNV2 AND ITS FINETUNES IN A BROADER TABULAR DL CONTEXT

386 In this section, we compare the original TabPFNv2 model and its finetuned variant to the non-
 387 foundational state-of-the-art tabular DL models. Additionally, we evaluate TabPFNv2 on a subsam-
 388 pled versions of the TabReD benchmark (Rubachev et al., 2025) datasets.³

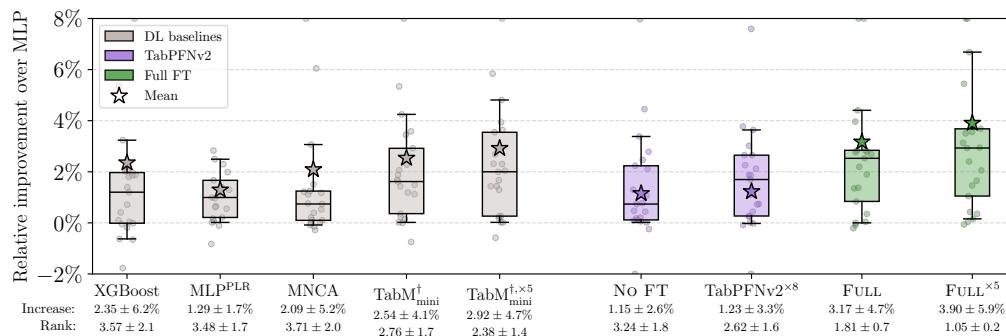
389 The original TabPFNv2 paper (Hollmann et al., 2025) reports the state-of-the-art results on small
 390 datasets and compares to classical “shallow” models and AutoML solutions. We aim to extend the
 391 scope of the experiments to bigger datasets and new dataset characteristics (like temporal shift and
 392 extensive feature engineering in TabReD) and compare to contemporary tabular DL methods that
 393 achieve the state-of-the-art performance in this setting (Ye et al., 2024; Gorishniy et al., 2025).

395 5.1 COMPARISON WITH SOTA TABULAR DL BASELINES

397 To evaluate TabPFNv2, we use the original in-context version and the in-context ensemble version
 398 (ensembled over different input and target preprocessing and transformations). Furthermore, we
 399 evaluate finetuned TabPFNv2, and its deep ensemble variant. We use five finetuning runs to construct
 400 the ensemble.

401 We compare TabPFNv2 and its finetuned versions to the following DL methods and classical ML
 402 baselines:

- 404 • **MLP^{PLR}** – MLP with periodic numerical feature embeddings (Gorishniy et al., 2022).
- 405 • **MNCA**: ModernNCA – a state-of-the-art non-parametric tabular DL model (Ye et al., 2024).
- 406 • **TabM[†]_{mini}** — A recent state-of-the-art parametric tabular DL model. We evaluate a variant
 407 that uses piece-wise linear numerical feature embeddings (denoted by [†]).
- 408 • **XGBoost**: In addition to deep models, we use a tuned GBDT model as a commonly accepted
 409 strong “shallow” baseline.



422 Figure 5: Comparison of TabPFNv2 (with and without finetuning) with other state-of-the-art tabular
 423 DL methods. The plot summarizes the relative performance improvement over a tuned MLP baseline.
 424 Box plots summarize the results on all datasets from Table 6. Notation follows Figure 1.

426 **Results summary.** Results of the comparison are provided in Figure 5. Below, we highlight our
 427 key observations. The original *TabPFNv2 used in the in-context learning regime and its ensemble*
 428 *variations are generally inferior to the up-to-date strong tabular DL models on academic datasets*
 429 *with up to 1M table cells (rows × columns)*. Nevertheless, its performance is close to MLP-PLR,
 430 which is a strong baseline.

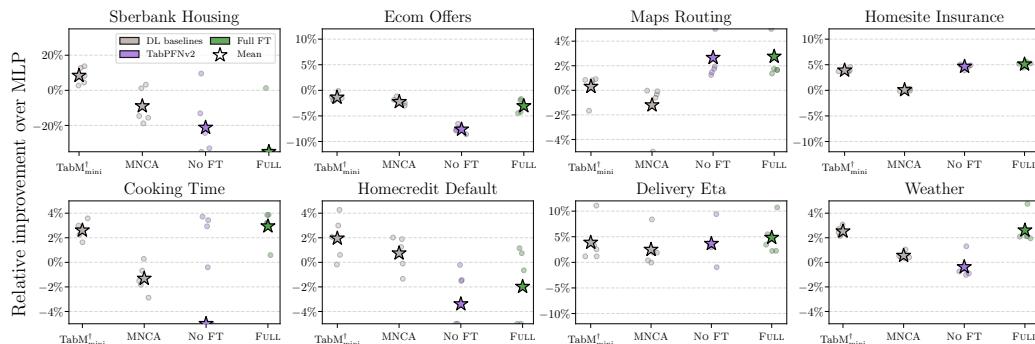
431 ³Subsampling is done due to computational and engineering constraints

432 *Finetuning TabPFNv2 results in consistent improvements.* Furthermore, ensembling the finetuned
 433 TabPFNv2 model produces substantial performance improvements on top of single finetuned model,
 434 elaborating on efficient ensembling may be an interesting future research direction.

435 Overall, finetuned TabPFNv2 is a SoTA model on academic datasets where finetuning is computationally
 436 feasible on a single GPU. However it has inherent limitations in scalability due to finetuning and
 437 its similarity to retrieval-based models. We expand upon these limitations in the following subsection.

439 5.2 EVALUATION ON TABRED SUBSAMPLES

441 We provide the results of evaluating $\text{TabM}^{\dagger}_{\text{mini}}$, MNCA, TabPFNv2 and finetuned TabPFNv2 in
 442 Figure 6. We can see that on this version of the TabReD datasets the TabPFNv2 without finetuning
 443 is less stable compared to the current SoTA model “ TabM^{\dagger} ”. On almost all datasets finetuning does
 444 improve upon the in-context version (except Sberbank Housing where it often degrades performance).



451 Figure 6: Results on five different TabReD dataset subsamples. We report average improvement over
 452 the tuned MLP baseline across five different subsamples for each dataset. For each subsample we
 453 average the score over five random seeds.

454 Overall, TabPFNv2 results on TabReD subsamples are less stable compared to the results on the
 455 academic benchmarks from previous sections – this may be related to the presence of temporal shift
 456 in these datasets which may pose challenges for models implementing retrieval-based predictions.
 457 We further discuss this in Appendix E. Furthermore, scaling finetuning to the full-sized datasets
 458 requires significant engineering efforts.

466 6 LIMITATIONS

468 **Choice of datasets.** In our experiments we use only the datasets that can fully be handled by the
 469 TabPFNv2 model on a single 80 GB GPU. Therefore, our conclusions should be additionally verified
 470 for the large-scale downstream problems, where data has to be fed to TabPFNv2 by chunks and the
 471 finetuning procedure should be sufficiently altered.

472 **Different feature and target preprocessing.** In the comparison to the non-foundational tabular DL
 473 models, we did not standardize the data/target preprocessing across TabPFNv2 and other methods.
 474 We assumed that the preprocessing recommendations provided by the authors of each method were
 475 close to optimal and decided to use them as prescribed in the original papers.

477 7 CONCLUSION

479 In this paper, we systematically investigated gradient-based adaptation for TabPFNv2. Our findings
 480 establish full finetuning as the optimal strategy, crucially revealing its success stems from refining
 481 internal similarity assessments for improved retrieval-based prediction. While it elevates finetuned
 482 TabPFNv2 to state-of-the-art performance on academic datasets where finetuning is technically
 483 feasible (currently there is a limit in dataset size), significant challenges persist regarding scalability
 484 and robustness to real-world data complexity like shifts or complex real-world features. Future
 485 research should therefore prioritize developing scalable adaptation methods and enhancing resilience
 to the complexities of diverse tabular data.

486 REFERENCES
487

488 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
489 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
490 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
491 2022.

492 Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. SCARF: Self-supervised contrastive learning
493 using random feature corruption. In *ICLR*, 2021.
494

495 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
496 Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
497 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
501

502 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *SIGKDD*, 2016.
503

504 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
505 gloRA: Efficient fine-tuning of long-context large language models. In *The Twelfth International
506 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=6PmJ0Rfdak>.
507

508 Felix den Breejen, Sangmin Bae, Stephen Cha, Tae-Young Kim, Seoung Hyun Koh, and Se-Young
509 Yun. Fine-tuning the retrieval mechanism for tabular deep learning. In *NeurIPS 2023 Second Table
510 Representation Learning Workshop*, 2023.
511

512 Benjamin Feuer, Robin Tibor Schirrmeyer, Valeria Cherepanova, Chinmay Hegde, Frank Hutter,
513 Micah Goldblum, Niv Cohen, and Colin White. Tunetables: Context optimization for scalable
514 prior-data fitted networks. *arXiv preprint arXiv:2402.11137*, 2024.

515 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
516 models for tabular data. In *NeurIPS*, 2021.
517

518 Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
519 tabular deep learning. In *NeurIPS*, 2022.
520

521 Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
522 Babenko. TabR: Tabular deep learning meets nearest neighbors. In *ICLR*, 2024.

523 Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning with
524 parameter-efficient ensembling. In *ICLR*, 2025.
525

526 Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
527 deep learning on typical tabular data? In *NeurIPS, the "Datasets and Benchmarks" track*, 2022.
528

529 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
530 human-level performance on imagenet classification. In *ICCV*, 2015.

531 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
532 that solves small tabular classification problems in a second. In *ICLR*, 2023.
533

534 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
535 Robin Tibor Schirrmeyer, and Frank Hutter. Accurate predictions on small data with a tabular
536 foundation model. *Nature*, 637(8045):319–326, 2025.
537

538 David Holzmüller, Leo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps
539 and boosted trees on tabular data. In *The Thirty-eighth Annual Conference on Neural Information
Processing Systems*, 2024.

540 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
 541 *ACL 2018-56th Annual Meeting of the Association for Computational Linguistics, Proceedings of
 542 the Conference (Long Papers)*, volume 1, pp. 328–339. Association for Computational Linguistics,
 543 2018.

544 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 545 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 546 arXiv:2106.09685*, 2021.

547 Alan Jeffares, Tennison Liu, Jonathan Crabbé, Fergus Imrie, and Mihaela van der Schaar. TANGOS:
 548 Regularizing tabular neural networks through gradient orthogonalization and specialization. In
 549 *ICLR*, 2023.

550 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
 551 Liu. LightGBM: A highly efficient gradient boosting decision tree. *Advances in neural information
 552 processing systems*, 30:3146–3154, 2017.

553 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
 554 Neil Houlsby. Big transfer (bit): General visual representation learning. In *Computer Vision–ECCV
 555 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16*, pp.
 556 491–507. Springer, 2020.

557 Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
 558 fine-tuning. *arXiv preprint arXiv:1911.03090*, 2019.

559 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 560 tuning. *arXiv preprint arXiv:2104.08691*, 2021.

561 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 562 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 563 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

564 Junwei Ma, Valentin Thomas, Guangwei Yu, and Anthony Caterini. In-context data distillation with
 565 tabPFN. *arXiv preprint arXiv:2402.06971*, 2024.

566 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
 567 grokking via mechanistic interpretability. In *The Eleventh International Conference on Learning
 568 Representations*, 2023. URL <https://openreview.net/forum?id=9XFSbDPmdW>.

569 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 570 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 571 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 572 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 573 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 574 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

575 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 576 Gulin. CatBoost: unbiased boosting with categorical features. In *NeurIPS*, 2018.

577 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 578 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 579 models from natural language supervision. In *International conference on machine learning*, pp.
 580 8748–8763. PMLR, 2021.

581 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 582 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 583 learning*, pp. 8821–8831. Pmlr, 2021.

584 Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining
 585 objectives for tabular deep learning. *arXiv*, 2207.03208v1, 2022.

586 Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. TabReD: Analyzing Pitfalls
 587 and Filling the Gaps in Tabular Deep Learning Benchmarks. In *arXiv*, 2025.

594 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein.
 595 SAINT: improved neural networks for tabular data via row attention and contrastive pre-training.
 596 *arXiv*, 2106.01342v1, 2021.

597 Valentin Thomas, Junwei Ma, Rasa Hosseinzadeh, Keyvan Golestan, Guangwei Yu, Maksims
 598 Volkovs, and Anthony Caterini. Retrieval & fine-tuning for in-context tabular models. *arXiv*
 599 *preprint arXiv:2406.05207*, 2024.

600 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 601 Andrey Zhmoginov, and Max Vladimirov. Transformers learn in-context by gradient descent. In
 602 *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

603 Derek Xu, Olcay Cirit, Reza Asadi, Yizhou Sun, and Wei Wang. Mixture of in-context prompters for
 604 tabular pfns. *arXiv preprint arXiv:2405.16156*, 2024.

605 Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A
 606 deep tabular baseline two decades later. *arXiv*, 2407.03257v1, 2024.

607 Qingyu Yin, Xuzheng He, Luoao Deng, Chak Tou Leong, Fan Wang, Yanzhao Yan, Xiaoyu Shen, and
 608 Qiang Zhang. Deeper insights without updates: The power of in-context learning over fine-tuning.
 609 *arXiv preprint arXiv:2410.04691*, 2024.

610 Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in attention:
 611 Towards efficient multi-modal llm finetuning. In *The Twelfth International Conference on Learning
 612 Representations*, 2024.

613 A REPRODUCIBILITY STATEMENT

614 We provide the code for TabPFNv2 finetuning in the supplementary material as an archive with the
 615 source code. To run it one must also obtain the TabPFNv2 checkpoints from hf.co/Prior-Labs. We
 616 reuse the datasets from (Gorishniy et al., 2024). See the `bin/tabpfnv2_finetune.py` script
 617 and `exp/full-finetune/adult/evaluation/0.toml` config file for an entry point.

618 B THE USE OF LARGE LANGUAGE MODELS

619 Our use of LLMs is limited to writing aid and basic controlled coding assistance (e.g. text stylistic
 620 improvements, grammar checking, code for polishing figures and/or tables).

621 C DETAILS OF ANALYSIS OF THE TABPFNv2 FINETUNING

622 First, we briefly explain the methodology used to obtain Table 3. Then, we expand on the technical
 623 details of generating the results shown in Figure 3 and Figure 4. Finally, we provide an extended
 624 discussion and interpretation of these figures.

625 **kNN Score Calculation in Table 3.** To understand how finetuning affects the ability of TabPFNv2 to
 626 reflect target similarity, we employ a retrieval-like prediction mechanism based on attention scores.
 627 For each test sample, we extract attention scores from the last layer of TabPFNv2. Since attention
 628 is calculated between the test sample and each train sample, attention scores form a similarity
 629 distribution over train samples. These attention scores ($w \in \mathbb{R}^{N_{train}}$) are then used for each test
 630 sample to make a weighted average prediction over train set, i.e. for regression, $\hat{y} = \sum_i^{N_{train}} y_i w_i$
 631 and, for classification, we sum the logits of the corresponding class of train neighbors.

632 **Normalized Entropy Calculation.** The normalized entropy is computed using the same last-
 633 layer attention scores from TabPFNv2. For each test sample we calculate the entropy of the score
 634 distribution over train samples and normalize it dividing by $\ln(\text{train size})$. Figure 3 shows the
 635 distribution of this normalized entropy across the test set for six different datasets.

636 **Generation of Figure 4.** For each test sample, we calculate the error (MSE/LogLoss) and the
 637 normalized attention entropy for both the finetuned (FT) and the off-the-shelf TabPFNv2 (No FT).

648 Test samples are then sorted based on the change in normalized entropy in ascending order. The
 649 vertical axis of the plots the change in error for each sample. So, y-axis shows the change in error
 650 between ‘FT’ and ‘No FT’ (lower difference means FT is better), and x-axis shows an index of test
 651 sample, with lower indices corresponding to larger decreases in entropy. The red line shows the index
 652 where entropy change becomes positive ($\Delta H = 0$). The blue line shows the change in error after
 653 smoothing with a Gaussian filter to illustrate the overall trend.

654 **Interpretation and Discussion.** Overall, these three artifacts collectively support the hypothesis that
 655 a primary effect of finetuning is the refinement of the similarity signals that TabPFNv2 uses to weight
 656 in-context examples:

- 658 • Table 3 shows that for all datasets attention scores after finetuning more accurately reflect
 659 similarity of targets *on average* across test samples. However, Table 3 does not specify
 660 which individual samples benefit most from finetuning.
- 661 • Figure 3 shows the change in distribution of attention scores. For California, Adult and
 662 Diamond the distribution of the attention scores becomes consistently more concentrated –
 663 for 80-100% of the test samples entropy decreased. We believe that this concentration is a
 664 primary driver of finetuning benefits. Lower entropy suggests that higher attention weights
 665 are assigned to the “closest” neighbors, indicating improved latent space for calculating
 666 similarity between objects – since the metrics in Table 3 improved. However, the patterns
 667 on House and Pol are more nuanced, necessitating a deeper analysis via Figure 4.
- 668 • Figure 4 reveals that for all datasets, except Churn, the error improved the most on those test
 669 samples where entropy decreased the most. In other words, the test datapoints contributing
 670 most substantially to the overall performance improvement (lowest $\Delta Error$) are those
 671 for which attention entropy decreased the most ($\Delta H < 0$). Even for House and Pol the
 672 error clearly improves on samples where entropy decreased but this improvement decays on
 673 samples where entropy increased (indices to the right of the red line).
- 674 • The results on Churn dataset are not fully aligned with all our findings, we keep them
 675 for transparency. Although entropy distribution remains unchanged and the trend line in
 676 Figure 4 does not reflect the effects described above, the attention weights still improve
 677 after finetuning as can be seen by results in Table 3. This observation motivates deeper
 678 investigation into the inner workings of the model, and the particular mechanisms which
 679 improve the latent space for calculating similarity between objects. A more thorough
 680 analysis of such cases is reserved for future work.

681 D EFFICIENCY DISCUSSION

682 Here we discuss the efficiency aspects that are relevant for tabular foundation models sharing the
 683 TabPFNv2 architecture and especially noticeable on bigger datasets. We provide per-epoch timings
 684 and relevant dataset dimensions in Table 4.

685 As described in the main paper, we limit all experiments to 1 M cells ($N \cdot M \leq 10^6$, where N is the
 686 number of rows and M is the number of features). TabPFNv2 uses attention over rows and attention
 687 over features, so the total number of attention operations scales as $O(NMd(N + M + 2d))$, with d
 688 denoting the query/key/value dimension. So, the DI dataset — which incurs the most operations—is
 689 the slowest. We also include the Cooking and Homesite datasets, which have many features but
 690 few samples. While these datasets involve fewer operations than DI, their per-epoch time is high
 691 because gradient checkpointing is enabled only for these two datasets (due to high memory demands
 692 due to large intermediate activations required for backprop in finetuning). Overall, the hard limit
 693 for finetuning on one GPU without resorting to parallelism is at 1M cells (because of activation
 694 memory) and time-wise performance is summarized by the number of attention operations which is
 695 $O(NMd(N + M + 2d))$.

696 E ANALYSIS OF THE FINETUNING FAILURES

697 In this section we look into the few failure cases of the TabPFNv2 finetuning. There are two
 698 datasets (sberbank-housing subsample and KDDCup09_upselling) where finetuning actually degrades
 699 performance of the base TabPFNv2. We link this to overfitting as explained below.

702 Table 4: Dataset Properties, Computational Requirements and the actual time per epoch
703

704 Property/Dataset	705 CH	706 CA	707 HO	708 AD	709 DI	710 Cooking Subsample	711 Homesite Subsample
# Rows (N)	6400	13 209	14 581	26 048	34 521	5208	3344
# Features (M)	11	8	16	14	9	190	299
# Attention ops.	9.2e10	2.8e11	6.7e11	1.9e12	2.1e12	1.1e12	7.7e11
Time per epoch	3s	8s	16s	39s	46s	41s	34s

712 Both datasets have extreme feature-to-sample ratios, with KDD Upselling having the highest ratio
713 among our 21 academic datasets. The sberbank-housing dataset additionally possesses a temporal
714 shift (Rubachev et al., 2025) which may make it even more prone to overfitting during finetuning.

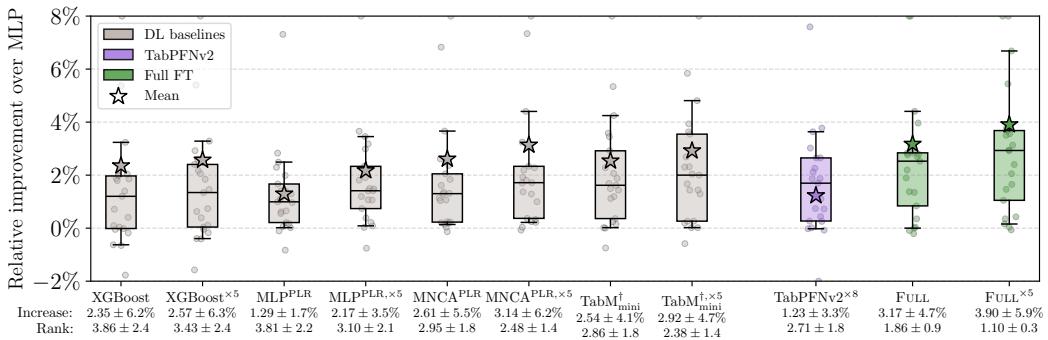
715 To investigate temporal shift specifically, we evaluated sberbank-housing on temporal vs. random
716 splits (5 splits, 5 seeds each). The results in Table 5 demonstrate that temporal shifts causes
717 performance degradation. Fine-tuned TabPFNv2 achieves best performance on random splits but
718 suffers under temporal distribution shift, while TabM excels on temporal splits.

720 Table 5: Model Performance Comparison Across Different Splits
721

722 Split/Model	723 MLP	724 MNCA	725 TabM_mini	726 No FT	727 Full FT
Temporal	0.262 \pm 0.012	0.273 \pm 0.028	0.249 \pm 0.009	0.291 \pm 0.026	0.317 \pm 0.041
Random	0.270 \pm 0.007	0.270 \pm 0.006	0.266 \pm 0.007	0.258 \pm 0.007	0.255 \pm 0.007

728 Overall, these results **support overfitting as an explanation to performance degradation**. The
729 reasons for overfitting can be both – temporal shift and complex features, as we can see in our
730 benchmark (Sberbank suffers more from temporal shift, KDD does not have shift, but still has
731 performance degradation – which may stem from large feature-to-sample ratio leading to overfitting).

732 F DATASETS AND EXTENDED RESULTS

745 Figure 7: Extended version of Figure 5 with ensembles for all the methods included.
746

756 Table 6: The datasets used in our experiments. # num. refers to the number of numerical features, #
 757 bin. refers to the number of binary features, # cat. refers to the number of categorical features.
 758

Name	Train size	Val. size	Test size	# num.	# bin.	# cat.	Task type
Datasets from Grinsztajn et al. (2022)							
wine	1,787	230	537	11	0	0	binary classification
phoneme	2,220	285	667	5	0	0	binary classification
KDDCup09_upselling	3,589	461	1,078	34	1	14	binary classification
kdd_ipums_la_97-small	3,631	467	1,090	20	0	0	binary classification
bank-marketing	7,404	952	2,222	7	0	0	binary classification
MagicTelescope	9,363	1,203	2,810	10	0	0	binary classification
credit	10,000	2,014	4,700	10	0	0	binary classification
pol	10,000	1,500	3,500	26	0	0	regression
wine_quality	4,547	585	1,365	11	0	0	regression
Brazilian_houses	7,484	962	2,246	8	0	0	regression
Ailerons	9,625	1,237	2,888	33	0	0	regression
MiamiHousing2016	9,752	1,254	2,926	13	0	0	regression
elevators	10,000	1,979	4,620	16	0	0	regression
fifa	10,000	2,418	5,645	5	0	0	regression
house_sales	10,000	3,483	8,130	15	0	0	regression
medical_charges	10,000	45,919	50,000	3	0	0	regression
Datasets from Gorishniy et al. (2021)							
churn	6,400	1,600	2,000	7	3	1	binary classification
adult	26,048	6,513	16,281	6	1	7	binary classification
california	13,209	3,303	4,128	8	0	0	regression
house	14,581	3,646	4,557	16	0	0	regression
diamond	34,521	8,631	10,788	6	0	3	regression
Subsamples from TabReD Rubachev et al. (2025)							
Ecom Offers	8403	10000	10000	113	6	0	binary classification
Homesite Insurance	3344	10000	10000	253	23	23	binary classification
Homecredit Default	1436	10000	10000	612	2	82	binary classification
Maps Routing	1014	10000	10000	984	0	2	regression
Cooking Time	5208	10000	10000	186	3	3	regression
Delivery ETA	4484	10000	10000	221	1	1	regression
Weather	9708	10000	10000	100	3	0	regression
Sberbank Housing	2551	4827	4647	365	17	10	regression

783
784 Table 7: Extended results for the benchmark. Results are grouped by datasets.
785

Ailerons ↓			Brazilian_houses ↓		
Method	Single model	Ensemble	Method	Single model	Ensemble
MLP	0.0002 ± 0.0000	0.0002 ± 0.0000	MLP	0.0469 ± 0.0178	0.0440 ± 0.0207
XGBoost	0.0002 ± 0.0000	0.0002 ± 0.0000	XGBoost	0.0541 ± 0.0279	0.0535 ± 0.0287
MLP ^{PLR}	0.0002 ± 0.0000	0.0002 ± 0.0000	MLP ^{PLR}	0.0422 ± 0.0182	0.0397 ± 0.0206
MNCA	0.0002 ± 0.0000	0.0002 ± 0.0000	MNCA	0.0525 ± 0.0160	0.0509 ± 0.0180
TabM [†] _{mini}	0.0002 ± 0.0000	0.0002 ± 0.0000	TabM [†] _{mini}	0.0459 ± 0.0204	0.0439 ± 0.0228
NO FT	0.0002 ± 0.0000	—	NO FT	0.0457 ± 0.0032	—
TabPFNv2 ^{×8}	0.0002 ± 0.0000	—	TabPFNv2 ^{×8}	0.0199 ± 0.0210	—
LAST LAYERS	0.0001 ± 0.0000	—	LAST LAYERS	0.0438 ± 0.0039	—
LORA	0.0002 ± 0.0000	—	LORA	0.0447 ± 0.0038	—
FULL ^{untied}	0.0001 ± 0.0000	—	FULL ^{untied}	0.0495 ± 0.0127	—
FULL ^{PLE}	0.0001 ± 0.0000	—	FULL ^{PLE}	0.0624 ± 0.0244	—
EMB.,LN,HEAD	0.0001 ± 0.0000	0.0001 ± 0.0000	EMB.,LN,HEAD	0.0465 ± 0.0026	0.0465 ± 0.0030
FULL	0.0001 ± 0.0000	0.0001 ± 0.0000	FULL	0.0569 ± 0.0241	0.0506 ± 0.0228

810	KDDCup09_upselling \uparrow			MagicTelescope \uparrow		
811	Method	Single model	Ensemble	Method	Single model	Ensemble
812	MLP	0.7763 \pm 0.0150	0.7806 \pm 0.0125	MLP	0.8536 \pm 0.0063	0.8566 \pm 0.0061
813	XGBoost	0.7922 \pm 0.0114	0.7950 \pm 0.0102	XGBoost	0.8539 \pm 0.0100	0.8589 \pm 0.0110
814	MLP ^{PLR}	0.7983 \pm 0.0088	0.7995 \pm 0.0105	MLP ^{PLR}	0.8583 \pm 0.0058	0.8626 \pm 0.0044
815	MNCA	0.7929 \pm 0.0087	0.7989 \pm 0.0115	MNCA	0.8580 \pm 0.0059	0.8628 \pm 0.0041
816	TabM [†] _{mini}	0.8042 \pm 0.0144	0.8039 \pm 0.0114	TabM [†] _{mini}	0.8637 \pm 0.0094	0.8646 \pm 0.0075
817	No FT	0.8109 \pm 0.0096	—	No FT	0.8647 \pm 0.0059	—
818	TabPFNv2 ^{×8}	0.8046 \pm 0.0129	—	TabPFNv2 ^{×8}	0.8695 \pm 0.0073	—
819	LAST LAYERS	0.8022 \pm 0.0106	—	LAST LAYERS	0.8765 \pm 0.0051	—
820	LORA	0.8077 \pm 0.0053	—	LORA	0.8738 \pm 0.0059	—
821	FULL ^{untied}	0.7995 \pm 0.0124	—	FULL ^{untied}	0.8780 \pm 0.0052	—
822	FULL ^{PLE}	0.7999 \pm 0.0138	—	FULL ^{PLE}	0.8778 \pm 0.0073	—
823	EMB.,LN,HEAD	0.8054 \pm 0.0062	0.8066 \pm 0.0091	EMB.,LN,HEAD	0.8765 \pm 0.0051	0.8772 \pm 0.0062
824	FULL	0.7983 \pm 0.0087	0.8056 \pm 0.0116	FULL	0.8765 \pm 0.0056	0.8803 \pm 0.0061
825						
826	MiamiHousing2016 \downarrow			adult \uparrow		
827	Method	Single model	Ensemble	Method	Single model	Ensemble
828	MLP	0.1613 \pm 0.0029	0.1574 \pm 0.0043	MLP	0.8548 \pm 0.0006	0.8559 \pm 0.0011
829	XGBoost	0.1439 \pm 0.0030	0.1434 \pm 0.0029	XGBoost	0.8719 \pm 0.0008	0.8723 \pm 0.0002
830	MLP ^{PLR}	0.1519 \pm 0.0028	0.1479 \pm 0.0017	MLP ^{PLR}	0.8690 \pm 0.0006	0.8702 \pm 0.0006
831	MNCA	0.1501 \pm 0.0037	0.1477 \pm 0.0032	MNCA	0.8676 \pm 0.0021	0.8696 \pm 0.0003
832	TabM [†] _{mini}	0.1412 \pm 0.0017	0.1387 \pm 0.0008	TabM [†] _{mini}	0.8675 \pm 0.0018	0.8690 \pm 0.0005
833	No FT	0.1369 \pm 0.0023	—	No FT	0.8588 \pm 0.0004	—
834	TabPFNv2 ^{×8}	0.1349 \pm 0.0026	—	TabPFNv2 ^{×8}	0.8611 \pm 0.0007	—
835	LAST LAYERS	0.1329 \pm 0.0019	—	LAST LAYERS	0.8702 \pm 0.0006	—
836	LORA	0.1333 \pm 0.0031	—	LORA	0.8704 \pm 0.0011	—
837	FULL ^{untied}	0.1341 \pm 0.0021	—	FULL ^{untied}	0.8719 \pm 0.0010	—
838	FULL ^{PLE}	0.1337 \pm 0.0026	—	FULL ^{PLE}	0.8723 \pm 0.0004	—
839	EMB.,LN,HEAD	0.1339 \pm 0.0023	0.1334 \pm 0.0028	EMB.,LN,HEAD	0.8705 \pm 0.0009	0.8713 \pm nan
840	FULL	0.1334 \pm 0.0035	0.1316 \pm 0.0031	FULL	0.8710 \pm 0.0014	0.8723 \pm nan
841						
842	bank-marketing \uparrow			california \downarrow		
843	Method	Single model	Ensemble	Method	Single model	Ensemble
844	MLP	0.7860 \pm 0.0055	0.7887 \pm 0.0052	MLP	0.4935 \pm 0.0042	0.4880 \pm 0.0022
845	XGBoost	0.8014 \pm 0.0088	0.8030 \pm 0.0076	XGBoost	0.4319 \pm 0.0018	0.4316 \pm 0.0007
846	MLP ^{PLR}	0.7946 \pm 0.0100	0.7977 \pm 0.0117	MLP ^{PLR}	0.4659 \pm 0.0035	0.4549 \pm 0.0006
847	MNCA	0.7955 \pm 0.0075	0.8003 \pm 0.0077	MNCA	0.4236 \pm 0.0008	0.4231 \pm 0.0005
848	TabM [†] _{mini}	0.7992 \pm 0.0093	0.8017 \pm 0.0087	TabM [†] _{mini}	0.4323 \pm 0.0046	0.4261 \pm 0.0019
849	No FT	0.8025 \pm 0.0078	—	No FT	0.3987 \pm 0.0003	—
850	TabPFNv2 ^{×8}	0.8026 \pm 0.0075	—	TabPFNv2 ^{×8}	0.4038 \pm 0.0016	—
851	LAST LAYERS	0.8031 \pm 0.0099	—	LAST LAYERS	0.3897 \pm 0.0027	—
852	LORA	0.8053 \pm 0.0069	—	LORA	0.3836 \pm 0.0010	—
853	FULL ^{untied}	0.8044 \pm 0.0087	—	FULL ^{untied}	0.3827 \pm 0.0038	—
854	FULL ^{PLE}	0.8013 \pm 0.0077	—	FULL ^{PLE}	0.3843 \pm 0.0024	—
855	EMB.,LN,HEAD	0.8044 \pm 0.0076	0.8051 \pm 0.0077	EMB.,LN,HEAD	0.3880 \pm 0.0014	0.3862 \pm nan
856	FULL	0.8032 \pm 0.0074	0.8048 \pm 0.0075	FULL	0.3822 \pm 0.0011	0.3789 \pm nan

857
858
859
860
861
862
863

864	churn \uparrow			credit \uparrow		
865	Method	Single model	Ensemble	Method	Single model	Ensemble
866	MLP	0.8575 \pm 0.0028	0.8582 \pm 0.0008	MLP	0.7737 \pm 0.0052	0.7729 \pm 0.0047
867	XGBoost	0.8610 \pm 0.0018	0.8608 \pm 0.0013	XGBoost	0.7688 \pm 0.0025	0.7706 \pm 0.0029
868	MLP ^{PLR}	0.8628 \pm 0.0009	0.8638 \pm 0.0012	MLP ^{PLR}	0.7753 \pm 0.0053	0.7767 \pm 0.0075
869	MNCA	0.8584 \pm 0.0023	0.8615 \pm 0.0013	MNCA	0.7737 \pm 0.0033	0.7757 \pm 0.0026
870	TabM [†] _{mini}	0.8606 \pm 0.0023	0.8592 \pm 0.0003	TabM [†] _{mini}	0.7749 \pm 0.0031	0.7757 \pm 0.0036
871	No FT	0.8590 \pm 0.0008	–	No FT	0.7746 \pm 0.0019	–
872	TabPFNv2 ^{×8}	0.8637 \pm 0.0012	–	TabPFNv2 ^{×8}	0.7735 \pm 0.0030	–
873	LAST LAYERS	0.8628 \pm 0.0021	–	LAST LAYERS	0.7720 \pm 0.0044	–
874	LORA	0.8609 \pm 0.0018	–	LORA	0.7746 \pm 0.0032	–
875	FULL ^{untied}	0.8631 \pm 0.0026	–	FULL ^{untied}	0.7743 \pm 0.0039	–
876	FULL ^{PLE}	0.8631 \pm 0.0015	–	FULL ^{PLE}	0.7737 \pm 0.0041	–
877	EMB.,LN,HEAD	0.8605 \pm 0.0023	0.8605 \pm nan	EMB.,LN,HEAD	0.7756 \pm 0.0036	0.7754 \pm 0.0041
878	FULL	0.8647 \pm 0.0028	0.8665 \pm nan	FULL	0.7730 \pm 0.0035	0.7749 \pm 0.0030
879						
880	diamond \downarrow			elevators \downarrow		
881	Method	Single model	Ensemble	Method	Single model	Ensemble
882	MLP	0.1402 \pm 0.0016	0.1362 \pm 0.0003	MLP	0.0020 \pm 0.0000	0.0019 \pm 0.0000
883	XGBoost	0.1368 \pm 0.0002	0.1363 \pm 0.0001	XGBoost	0.0020 \pm 0.0000	0.0020 \pm 0.0000
884	MLP ^{PLR}	0.1341 \pm 0.0009	0.1325 \pm 0.0004	MLP ^{PLR}	0.0018 \pm 0.0000	0.0018 \pm 0.0000
885	MNCA	0.1368 \pm 0.0010	0.1348 \pm 0.0005	MNCA	0.0019 \pm 0.0000	0.0019 \pm 0.0000
886	TabM [†] _{mini}	0.1314 \pm 0.0011	0.1307 \pm 0.0005	TabM [†] _{mini}	0.0018 \pm 0.0000	0.0018 \pm 0.0000
887	No FT	0.1370 \pm 0.0002	–	No FT	0.0019 \pm 0.0000	–
888	TabPFNv2 ^{×8}	0.1311 \pm 0.0005	–	TabPFNv2 ^{×8}	0.0019 \pm 0.0000	–
889	LAST LAYERS	0.1302 \pm 0.0006	–	LAST LAYERS	0.0018 \pm 0.0000	–
890	LORA	0.1300 \pm 0.0017	–	LORA	0.0018 \pm 0.0000	–
891	FULL ^{untied}	0.1285 \pm 0.0009	–	FULL ^{untied}	0.0018 \pm 0.0000	–
892	FULL ^{PLE}	0.1275 \pm 0.0011	–	FULL ^{PLE}	0.0018 \pm 0.0000	–
893	EMB.,LN,HEAD	0.1323 \pm 0.0006	0.1320 \pm nan	EMB.,LN,HEAD	0.0018 \pm 0.0000	0.0018 \pm 0.0000
894	FULL	0.1275 \pm 0.0007	0.1245 \pm nan	FULL	0.0018 \pm 0.0000	0.0018 \pm 0.0000
895	fifa \downarrow			house \downarrow		
896	Method	Single model	Ensemble	Method	Single model	Ensemble
897	MLP	0.8038 \pm 0.0125	0.8011 \pm 0.0143	MLP	3.1163 \pm 0.0248	3.0706 \pm 0.0140
898	XGBoost	0.7799 \pm 0.0110	0.7795 \pm 0.0114	XGBoost	3.1703 \pm 0.0098	3.1644 \pm 0.0068
899	MLP ^{PLR}	0.7935 \pm 0.0127	0.7898 \pm 0.0141	MLP ^{PLR}	3.0546 \pm 0.0288	3.0170 \pm 0.0070
900	MNCA	0.7956 \pm 0.0140	0.7933 \pm 0.0145	MNCA	3.0928 \pm 0.0340	3.0538 \pm 0.0072
901	TabM [†] _{mini}	0.7783 \pm 0.0128	0.7768 \pm 0.0123	TabM [†] _{mini}	2.9829 \pm 0.0225	2.9648 \pm 0.0035
902	No FT	0.7833 \pm 0.0085	–	No FT	3.1100 \pm 0.0053	–
903	TabPFNv2 ^{×8}	0.7815 \pm 0.0106	–	TabPFNv2 ^{×8}	3.0637 \pm 0.0045	–
904	LAST LAYERS	0.7820 \pm 0.0150	–	LAST LAYERS	2.9826 \pm 0.0335	–
905	LORA	0.7834 \pm 0.0085	–	LORA	2.9901 \pm 0.0235	–
906	FULL ^{untied}	0.7845 \pm 0.0126	–	FULL ^{untied}	2.9696 \pm 0.0275	–
907	FULL ^{PLE}	0.7818 \pm 0.0111	–	FULL ^{PLE}	2.9783 \pm 0.0491	–
908	EMB.,LN,HEAD	0.7773 \pm 0.0126	0.7764 \pm 0.0168	EMB.,LN,HEAD	3.0748 \pm 0.0135	3.0660 \pm nan
909	FULL	0.7834 \pm 0.0106	0.7779 \pm 0.0127	FULL	2.9919 \pm 0.0268	2.9036 \pm nan

910
911
912
913
914
915
916
917

house_sales ↓			kdd_ipums_la_97-small ↑		
Method	Single model	Ensemble	Method	Single model	Ensemble
MLP	0.1791 ± 0.0009	0.1763 ± 0.0003	MLP	0.8831 ± 0.0068	0.8845 ± 0.0055
XGBoost	0.1693 ± 0.0002	0.1689 ± 0.0001	XGBoost	0.8830 ± 0.0086	0.8835 ± 0.0085
MLP ^{PLR}	0.1693 ± 0.0005	0.1687 ± 0.0007	MLP ^{PLR}	0.8758 ± 0.0112	0.8765 ± 0.0108
MNCA	0.1740 ± 0.0018	0.1714 ± 0.0005	MNCA	0.8807 ± 0.0046	0.8832 ± 0.0048
TabM [†] _{mini}	0.1658 ± 0.0005	0.1647 ± 0.0002	TabM [†] _{mini}	0.8765 ± 0.0091	0.8780 ± 0.0099
No FT	0.1632 ± 0.0000	—	No FT	0.8810 ± 0.0028	—
TabPFNv2 ^{×8}	0.1601 ± 0.0001	—	TabPFNv2 ^{×8}	0.8824 ± 0.0059	—
LAST LAYERS	0.1612 ± 0.0003	—	LAST LAYERS	0.8828 ± 0.0054	—
LORA	0.1592 ± 0.0002	—	LORA	0.8823 ± 0.0045	—
FULL ^{untied}	0.1589 ± 0.0006	—	FULL ^{untied}	0.8761 ± 0.0153	—
FULL ^{PLE}	0.1588 ± 0.0004	—	FULL ^{PLE}	0.8840 ± 0.0061	—
EMB.,LN,HEAD	0.1605 ± 0.0001	0.1603 ± nan	EMB.,LN,HEAD	0.8821 ± 0.0041	0.8820 ± 0.0055
FULL	0.1586 ± 0.0005	0.1579 ± nan	FULL	0.8831 ± 0.0063	0.8862 ± 0.0078
medical_charges ↓			phoneme ↑		
Method	Single model	Ensemble	Method	Single model	Ensemble
MLP	0.0816 ± 0.0002	0.0814 ± 0.0000	MLP	0.8548 ± 0.0132	0.8635 ± 0.0099
XGBoost	0.0825 ± 0.0001	0.0825 ± 0.0000	XGBoost	0.8708 ± 0.0134	0.8771 ± 0.0156
MLP ^{PLR}	0.0812 ± 0.0002	0.0810 ± 0.0000	MLP ^{PLR}	0.8744 ± 0.0105	0.8861 ± 0.0071
MNCA	0.0811 ± 0.0000	0.0810 ± 0.0000	MNCA	0.8810 ± 0.0090	0.8861 ± 0.0057
TabM [†] _{mini}	0.0812 ± 0.0001	0.0812 ± 0.0000	TabM [†] _{mini}	0.8798 ± 0.0088	0.8885 ± 0.0056
No FT	0.0812 ± 0.0000	—	No FT	0.8837 ± 0.0074	—
TabPFNv2 ^{×8}	0.0813 ± 0.0000	—	TabPFNv2 ^{×8}	0.8871 ± 0.0064	—
LAST LAYERS	0.0808 ± 0.0000	—	LAST LAYERS	0.8883 ± 0.0098	—
LORA	0.0809 ± 0.0000	—	LORA	0.8919 ± 0.0073	—
FULL ^{untied}	0.0809 ± 0.0000	—	FULL ^{untied}	0.8721 ± 0.0566	—
FULL ^{PLE}	0.0808 ± 0.0000	—	FULL ^{PLE}	0.8916 ± 0.0085	—
EMB.,LN,HEAD	0.0809 ± 0.0000	0.0808 ± nan	EMB.,LN,HEAD	0.8913 ± 0.0082	0.8918 ± 0.0105
FULL	0.0808 ± 0.0000	0.0807 ± nan	FULL	0.8925 ± 0.0104	0.9013 ± 0.0071
pol ↓			wine ↑		
Method	Single model	Ensemble	Method	Single model	Ensemble
MLP	5.5216 ± 0.6947	4.9945 ± 0.5923	MLP	0.7782 ± 0.0145	0.7907 ± 0.0117
XGBoost	4.3030 ± 0.0677	4.2548 ± 0.0488	XGBoost	0.7927 ± 0.0209	0.8010 ± 0.0186
MLP ^{PLR}	2.8846 ± 0.3192	2.5266 ± 0.0605	MLP ^{PLR}	0.7774 ± 0.0154	0.7964 ± 0.0146
MNCA	5.7569 ± 0.5465	5.3773 ± 0.5463	MNCA	0.7879 ± 0.0150	0.8005 ± 0.0121
TabM [†] _{mini}	2.4521 ± 0.1371	2.4175 ± 0.1124	TabM [†] _{mini}	0.7908 ± 0.0167	0.7963 ± 0.0113
No FT	4.8233 ± 0.0533	—	No FT	0.7865 ± 0.0132	—
TabPFNv2 ^{×8}	3.4119 ± 0.1679	—	TabPFNv2 ^{×8}	0.7958 ± 0.0092	—
LAST LAYERS	2.8283 ± 0.2159	—	LAST LAYERS	0.7983 ± 0.0195	—
LORA	2.5989 ± 0.0357	—	LORA	0.8024 ± 0.0137	—
FULL ^{untied}	5.3104 ± 7.8499	—	FULL ^{untied}	0.8024 ± 0.0152	—
FULL ^{PLE}	2.7128 ± 0.1078	—	FULL ^{PLE}	0.8020 ± 0.0141	—
EMB.,LN,HEAD	2.8319 ± 0.2250	2.7829 ± 0.2584	EMB.,LN,HEAD	0.8021 ± 0.0131	0.8074 ± 0.0145
FULL	2.6424 ± 0.1172	2.3375 ± 0.1385	FULL	0.7979 ± 0.0139	0.8060 ± 0.0118

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

wine_quality ↓		
Method	Single model	Ensemble
MLP	0.6703 ± 0.0170	0.6530 ± 0.0152
XGBoost	0.6035 ± 0.0142	0.6025 ± 0.0139
MLP ^{PLR}	0.6537 ± 0.0235	0.6328 ± 0.0155
MNCA	0.6151 ± 0.0092	0.6058 ± 0.0149
TabM [†] _{mini}	0.6270 ± 0.0153	0.6194 ± 0.0150
NO FT	0.6841 ± 0.0209	—
TabPFNv2 ^{×8}	0.6932 ± 0.0244	—
LAST LAYERS	0.6245 ± 0.0073	—
LORA	0.6160 ± 0.0108	—
FULL ^{untied}	0.6224 ± 0.0117	—
FULL ^{PLE}	0.6216 ± 0.0109	—
EMB.,LN,HEAD	0.6115 ± 0.0174	0.6077 ± 0.0188
FULL	0.6206 ± 0.0099	0.6068 ± 0.0145

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027 Table 8: Extended results for the subsampled TabReD benchmark. Results are grouped by datasets.
1028
1029

sberbank-housing ↓			ecom-offers ↑		
Method	Single model	Ensemble	Method	Single model	Ensemble
split-0					
MLP	0.2530 ± 0.0075	–	MLP	0.5986 ± 0.0032	–
MLP ^{PLR}	0.2473 ± 0.0010	–	MLP ^{PLR}	0.5955 ± 0.0060	–
MNCA	0.2512 ± 0.0017	–	MNCA	0.5876 ± 0.0011	–
TabM [†] _{mini}	0.2393 ± 0.0032	–	TabM [†] _{mini}	0.5895 ± 0.0042	–
No FT	0.3020 ± 0.0026	–	No FT	0.5595 ± 0.0006	–
FULL	0.3552 ± 0.0213	–	FULL	0.5808 ± 0.0099	–
split-1					
MLP	0.2650 ± 0.0113	–	MLP	0.6031 ± 0.0012	–
MLP ^{PLR}	0.2593 ± 0.0068	–	MLP ^{PLR}	0.5913 ± 0.0070	–
MNCA	0.2907 ± 0.0128	–	MNCA	0.5961 ± 0.0074	–
TabM [†] _{mini}	0.2611 ± 0.0057	–	TabM [†] _{mini}	0.6024 ± 0.0030	–
No FT	0.2980 ± 0.0028	–	No FT	0.5514 ± 0.0006	–
FULL	0.3090 ± 0.0271	–	FULL	0.5930 ± 0.0054	–
split-2					
MLP	0.2621 ± 0.0060	–	MLP	0.6021 ± 0.0026	–
MLP ^{PLR}	0.2573 ± 0.0026	–	MLP ^{PLR}	0.5939 ± 0.0094	–
MNCA	0.2821 ± 0.0239	–	MNCA	0.5858 ± 0.0058	–
TabM [†] _{mini}	0.2553 ± 0.0064	–	TabM [†] _{mini}	0.5944 ± 0.0023	–
No FT	0.2808 ± 0.0020	–	No FT	0.5570 ± 0.0008	–
FULL	0.3113 ± 0.0309	–	FULL	0.5767 ± 0.0359	–
split-3					
MLP	0.2656 ± 0.0124	–	MLP	0.6076 ± 0.0012	–
MLP ^{PLR}	0.2461 ± 0.0007	–	MLP ^{PLR}	0.5921 ± 0.0127	–
MNCA	0.2838 ± 0.0495	–	MNCA	0.5924 ± 0.0145	–
TabM [†] _{mini}	0.2454 ± 0.0034	–	TabM [†] _{mini}	0.5952 ± 0.0022	–
No FT	0.3237 ± 0.0026	–	No FT	0.5608 ± 0.0010	–
FULL	0.3473 ± 0.0269	–	FULL	0.5958 ± 0.0062	–
split-4					
MLP	0.2624 ± 0.0177	–	MLP	0.6010 ± 0.0011	–
MLP ^{PLR}	0.2482 ± 0.0017	–	MLP ^{PLR}	0.5939 ± 0.0015	–
MNCA	0.2580 ± 0.0063	–	MNCA	0.5830 ± 0.0086	–
TabM [†] _{mini}	0.2433 ± 0.0018	–	TabM [†] _{mini}	0.5890 ± 0.0039	–
No FT	0.2484 ± 0.0005	–	No FT	0.5538 ± 0.0007	–
FULL	0.2608 ± 0.0083	–	FULL	0.5741 ± 0.0086	–

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

maps-routing ↓				homesite-insurance ↑			
	Method	Single model	Ensemble		Method	Single model	Ensemble
split-0							
1085	MLP	0.1901 ± 0.0015	–	1085	MLP	0.9067 ± 0.0014	–
1086	MLP ^{PLR}	0.1915 ± 0.0058	–	1086	MLP ^{PLR}	0.9282 ± 0.0019	–
1087	MNCA	0.2032 ± 0.0023	–	1087	MNCA	0.9096 ± 0.0019	–
1088	TabM [†] _{mini}	0.1946 ± 0.0017	–	1088	TabM [†] _{mini}	0.9399 ± 0.0016	–
1089	No FT	0.1717 ± 0.0000	–	1089	No FT	0.9510 ± 0.0001	–
1090	FULL	0.1703 ± 0.0002	–	1090	FULL	0.9538 ± 0.0011	–
split-1							
1092	MLP	0.1814 ± 0.0005	–	1092	MLP	0.9007 ± 0.0014	–
1093	MLP ^{PLR}	0.1793 ± 0.0008	–	1093	MLP ^{PLR}	0.9120 ± 0.0035	–
1094	MNCA	0.1815 ± 0.0004	–	1094	MNCA	0.8999 ± 0.0027	–
1095	TabM [†] _{mini}	0.1787 ± 0.0003	–	1095	TabM [†] _{mini}	0.9355 ± 0.0009	–
1096	No FT	0.1776 ± 0.0000	–	1096	No FT	0.9437 ± 0.0001	–
1097	FULL	0.1764 ± 0.0004	–	1097	FULL	0.9480 ± 0.0027	–
split-2							
1098	MLP	0.1778 ± 0.0009	–	1098	MLP	0.9067 ± 0.0011	–
1099	MLP ^{PLR}	0.1761 ± 0.0013	–	1099	MLP ^{PLR}	0.8537 ± 0.1013	–
1100	MNCA	0.1787 ± 0.0008	–	1100	MNCA	0.9060 ± 0.0025	–
1101	TabM [†] _{mini}	0.1760 ± 0.0003	–	1101	TabM [†] _{mini}	0.9406 ± 0.0012	–
1102	No FT	0.1718 ± 0.0000	–	1102	No FT	0.9488 ± 0.0001	–
1103	FULL	0.1736 ± 0.0011	–	1103	FULL	0.9521 ± 0.0007	–
split-3							
1104	MLP	0.1810 ± 0.0007	–	1104	MLP	0.9019 ± 0.0011	–
1105	MLP ^{PLR}	0.1797 ± 0.0011	–	1105	MLP ^{PLR}	0.9187 ± 0.0021	–
1106	MNCA	0.1828 ± 0.0003	–	1106	MNCA	0.9048 ± 0.0028	–
1107	TabM [†] _{mini}	0.1786 ± 0.0010	–	1107	TabM [†] _{mini}	0.9431 ± 0.0008	–
1108	No FT	0.1766 ± 0.0001	–	1108	No FT	0.9472 ± 0.0001	–
1109	FULL	0.1761 ± 0.0012	–	1109	FULL	0.9519 ± 0.0014	–
split-4							
1110	MLP	0.1781 ± 0.0004	–	1110	MLP	0.9087 ± 0.0010	–
1111	MLP ^{PLR}	0.1761 ± 0.0005	–	1111	MLP ^{PLR}	0.9239 ± 0.0026	–
1112	MNCA	0.1783 ± 0.0004	–	1112	MNCA	0.9077 ± 0.0033	–
1113	TabM [†] _{mini}	0.1756 ± 0.0003	–	1113	TabM [†] _{mini}	0.9423 ± 0.0012	–
1114	No FT	0.1729 ± 0.0000	–	1114	No FT	0.9441 ± 0.0001	–
1115	FULL	0.1729 ± 0.0006	–	1115	FULL	0.9489 ± 0.0013	–
1116				1116			
1117				1117			
1118				1118			
1119				1119			
1120				1120			
1121				1121			
1122				1122			
1123				1123			
1124				1124			
1125				1125			
1126				1126			
1127				1127			
1128				1128			
1129				1129			
1130				1130			
1131				1131			
1132				1132			
1133				1133			

cooking-time ↓		homecredit-default ↑			
Method	Single model	Ensemble	Method	Single model	Ensemble
split-0					
MLP	0.4893 ± 0.0005	–	MLP	0.7788 ± 0.0037	–
MLP ^{PLR}	0.4819 ± 0.0011	–	MLP ^{PLR}	0.7721 ± 0.0137	–
MNCA	0.4887 ± 0.0021	–	MNCA	0.7935 ± 0.0062	–
TabM [†] _{mini}	0.4816 ± 0.0010	–	TabM [†] _{mini}	0.7774 ± 0.0081	–
No FT	0.6283 ± 0.0244	–	No FT	0.7304 ± 0.0011	–
FULL	0.4860 ± 0.0006	–	FULL	0.7333 ± 0.0137	–
split-1					
MLP	0.4950 ± 0.0012	–	MLP	0.7407 ± 0.0021	–
MLP ^{PLR}	0.4926 ± 0.0011	–	MLP ^{PLR}	0.7543 ± 0.0063	–
MNCA	0.5010 ± 0.0005	–	MNCA	0.7557 ± 0.0032	–
TabM [†] _{mini}	0.4916 ± 0.0012	–	TabM [†] _{mini}	0.7629 ± 0.0043	–
No FT	0.4958 ± 0.0001	–	No FT	0.7301 ± 0.0012	–
FULL	0.4938 ± 0.0027	–	FULL	0.7493 ± 0.0073	–
split-2					
MLP	0.4927 ± 0.0007	–	MLP	0.7739 ± 0.0047	–
MLP ^{PLR}	0.4910 ± 0.0007	–	MLP ^{PLR}	0.7761 ± 0.0055	–
MNCA	0.4957 ± 0.0020	–	MNCA	0.7635 ± 0.0051	–
TabM [†] _{mini}	0.4881 ± 0.0005	–	TabM [†] _{mini}	0.7785 ± 0.0020	–
No FT	0.4867 ± 0.0000	–	No FT	0.7722 ± 0.0005	–
FULL	0.4861 ± 0.0009	–	FULL	0.7688 ± 0.0028	–
split-3					
MLP	0.4967 ± 0.0007	–	MLP	0.7569 ± 0.0035	–
MLP ^{PLR}	0.4917 ± 0.0009	–	MLP ^{PLR}	0.7694 ± 0.0057	–
MNCA	0.4981 ± 0.0009	–	MNCA	0.7663 ± 0.0048	–
TabM [†] _{mini}	0.4904 ± 0.0006	–	TabM [†] _{mini}	0.7726 ± 0.0040	–
No FT	0.4889 ± 0.0000	–	No FT	0.6995 ± 0.0013	–
FULL	0.4886 ± 0.0013	–	FULL	0.7169 ± 0.0169	–
split-4					
MLP	0.4972 ± 0.0009	–	MLP	0.7500 ± 0.0023	–
MLP ^{PLR}	0.4932 ± 0.0016	–	MLP ^{PLR}	0.7561 ± 0.0083	–
MNCA	0.5009 ± 0.0022	–	MNCA	0.7492 ± 0.0081	–
TabM [†] _{mini}	0.4920 ± 0.0014	–	TabM [†] _{mini}	0.7820 ± 0.0071	–
No FT	0.4903 ± 0.0000	–	No FT	0.7386 ± 0.0003	–
FULL	0.4894 ± 0.0003	–	FULL	0.7556 ± 0.0193	–

delivery-eta ↓		
Method	Single model	Ensemble
split-0		
MLP	0.5742 ± 0.0053	–
MLP ^{PLR}	0.5692 ± 0.0017	–
MNCA	0.5708 ± 0.0025	–
TabM [†] _{mini}	0.5695 ± 0.0045	–
No FT	0.5671 ± 0.0002	–
FULL	0.5630 ± 0.0014	–
split-1		
MLP	0.5684 ± 0.0009	–
MLP ^{PLR}	0.5628 ± 0.0024	–
MNCA	0.5648 ± 0.0002	–
TabM [†] _{mini}	0.5662 ± 0.0020	–
No FT	0.5629 ± 0.0001	–
FULL	0.5642 ± 0.0014	–
split-2		
MLP	0.5803 ± 0.0076	–
MLP ^{PLR}	0.5636 ± 0.0020	–
MNCA	0.5651 ± 0.0026	–
TabM [†] _{mini}	0.5600 ± 0.0028	–
No FT	0.5632 ± 0.0001	–
FULL	0.5607 ± 0.0018	–
split-3		
MLP	0.5587 ± 0.0013	–
MLP ^{PLR}	0.5537 ± 0.0012	–
MNCA	0.5588 ± 0.0012	–
TabM [†] _{mini}	0.5564 ± 0.0022	–
No FT	0.5516 ± 0.0000	–
FULL	0.5518 ± 0.0017	–
split-4		
MLP	0.5630 ± 0.0011	–
MLP ^{PLR}	0.5611 ± 0.0015	–
MNCA	0.5623 ± 0.0015	–
TabM [†] _{mini}	0.5566 ± 0.0018	–
No FT	0.5649 ± 0.0002	–
FULL	0.5588 ± 0.0011	–

weather ↓		
Method	Single model	Ensemble
split-0		
MLP	1.7852 ± 0.0068	–
MLP ^{PLR}	1.7235 ± 0.0192	–
MNCA	1.7741 ± 0.0111	–
TabM [†] _{mini}	1.6804 ± 0.0049	–
No FT	1.7334 ± 0.0004	–
FULL	1.6129 ± 0.0095	–
split-1		
MLP	1.6970 ± 0.0082	–
MLP ^{PLR}	1.6389 ± 0.0042	–
MNCA	1.6805 ± 0.0079	–
TabM [†] _{mini}	1.6167 ± 0.0028	–
No FT	1.7161 ± 0.0003	–
FULL	1.6241 ± 0.0105	–
split-2		
MLP	1.6961 ± 0.0098	–
MLP ^{PLR}	1.6355 ± 0.0049	–
MNCA	1.6787 ± 0.0032	–
TabM [†] _{mini}	1.6164 ± 0.0049	–
No FT	1.7307 ± 0.0005	–
FULL	1.6216 ± 0.0110	–
split-3		
MLP	1.6694 ± 0.0042	–
MLP ^{PLR}	1.6098 ± 0.0028	–
MNCA	1.6548 ± 0.0047	–
TabM [†] _{mini}	1.5806 ± 0.0061	–
No FT	1.7011 ± 0.0010	–
FULL	1.5921 ± 0.0111	–
split-4		
MLP	1.7196 ± 0.0064	–
MLP ^{PLR}	1.6567 ± 0.0042	–
MNCA	1.6825 ± 0.0038	–
TabM [†] _{mini}	1.6213 ± 0.0062	–
No FT	1.7453 ± 0.0014	–
FULL	1.6443 ± 0.0029	–

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241