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ABSTRACT

Foundation models are an emerging research direction in tabular deep learning.
Notably, TabPFNv2 recently claimed superior performance over traditional GBDT-
based methods on small-scale datasets using an in-context learning paradigm,
which does not adapt model parameters to target datasets. However, the optimal
finetuning approach for adapting tabular foundational models, and how this adap-
tation reshapes their internal mechanisms, remains underexplored. While prior
works studied finetuning for earlier foundational models, inconsistent findings and
TabPFNv2’s unique architecture necessitate fresh investigation. To address these
questions, we first systematically evaluate various finetuning strategies on diverse
datasets. Our findings establish full finetuning as the most practical solution for
TabPFNv2 in terms of time-efficiency and effectiveness. We then investigate how
finetuning alters TabPFNv2’s inner mechanisms, drawing an analogy to retrieval-
augmented models. We reveal that the success of finetuning stems from the fact
that after gradient-based adaptation, the dot products of the query-representations
of test objects and the key-representations of in-context training objects more
accurately reflect their target similarity. This improved similarity allows finetuned
TabPFNv2 to better approximate target dependency by appropriately weighting
relevant in-context samples, improving the retrieval-based prediction logic. From
the practical perspective, we managed to finetune TabPFNv2 on datasets with up
to 50K objects, observing performance improvements on almost all tasks. More
precisely, on academic datasets with I.I.D. splits, finetuning allows TabPFNv2 to
achieve state-of-the-art results, while on datasets with gradual temporal shifts and
rich feature sets, TabPFNv2 is less stable and prior methods remain better.

1 INTRODUCTION

Recently, deep learning for tabular data has rapidly advanced (Gorishniy et al., 2021; Somepalli
et al., 2021; Gorishniy et al., 2024; Hollmann et al., 2023; Ye et al., 2024; Holzmüller et al., 2024),
frequently drawing inspiration from natural language processing (NLP) and computer vision (CV),
where foundational models — large-scale architectures pretrained on vast datasets and adaptable to
diverse tasks (Radford et al., 2021; Ramesh et al., 2021; Alayrac et al., 2022) — have become pivotal
for sample-efficient learning. The application of such models to the tabular domain was initially
uncertain due to its inherent heterogeneity and the scarcity of large, public pretraining datasets.
However, TabPFN (Hollmann et al., 2023) demonstrated their potential by pioneering pretraining on
diverse synthetic datasets designed to mimic real-world distributions. Its recent successor, TabPFNv2
(Hollmann et al., 2025), further validated this approach, showing its synthetically learned priors
enable it to outperform leading GBDT implementations (Prokhorenkova et al., 2018; Ke et al., 2017;
Chen & Guestrin, 2016) on small tabular datasets.

While TabPFNv2’s superiority over GBDTs was demonstrated using in-context learning — where
the entire training set serves as its input prompt — it is not entirely clear how more computationally
intensive gradient-based adaptations, such as full/partial finetuning or parameter-efficient methods
like LoRA (Hu et al., 2021), might affect its performance. This uncertainty is particularly noteworthy
because, while common sense intuition implies that finetuning is universally beneficial, the recent
NLP findings report that pure in-context learning can sometimes outperform finetuning (Yin et al.,
2024). Although several recent works (Feuer et al., 2024; Thomas et al., 2024; Ma et al., 2024; Xu
et al., 2024; den Breejen et al., 2023) have finetuned tabular foundational models, these efforts were
often not systematic, formed part of larger pipelines, largely focused on the outdated TabPFN model,
and crucially, did not analyze how finetuning alters the internal mechanisms of foundational models.
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The main focus of our work is to understand how finetuning impacts the inner logic of TabPFNv2. To
identify the optimal finetuning regime for this in-depth analysis, we first systematically compared
various strategies on a diverse set of datasets with up to ≈1M total cells (columns × rows) 1.
Contrary to previous works (Xu et al., 2024; Feuer et al., 2024) that advocate for partial model
adaptation to prevent overfitting, our findings indicate that full finetuning, when properly configured
(including hyperparameter ablation for efficient and stable adaptation), appears to be the superior
option compared to partial and parameter-efficient alternatives. This result led us to select full
finetuning as our chosen method for detailed investigation.

Our subsequent analysis draws parallels between retrieval-based tabular models and TabPFNv2.
Within TabPFNv2’s last layer, the dot products between query-representations of test objects and key-
representations of in-context samples provide signals used by attention to weight training examples.
We find that after task-specific finetuning, these query-key dot products exhibit a significantly stronger
alignment with actual target similarity. This more precise correspondence, a direct result of finetuning,
greatly simplifies the problem for attention, which can more effectively approximate the test label by
precisely weighting the most relevant in-context samples. In particular, we observe that the majority
of finetuning performance gains come from samples where inter-sample attention becomes more
sharply concentrated after finetuning.

Finally, we put the TabPFNv2 model and its finetunes in the modern tabular DL context and compare
it to the recent SoTA models (Ye et al., 2024; Gorishniy et al., 2025) and additionally evaluate it on a
new challenging benchmark (Rubachev et al., 2025).

To sum up, our contributions are the following:

1. We extensively compare different finetuning regimes for the TabPFNv2 model and establish
simple full finetuning as a strong and stable baseline for TabPFNv2 adaptation, contrary
to prior work (Feuer et al., 2024; Xu et al., 2024) where the necessity of partial finetuning
methods was emphasized for preventing overfitting.

2. We analyse the finetuning’s impact drawing a parallel between TabPFNv2 and retrieval-based
models. We demonstrate that finetuning refines TabPFNv2 by ensuring the dot products of
query-representations (test object tokens in inter-sample attention) and key-representations
(in-context samples) more accurately reflect target similarity. This improved alignment
simplifies the prediction problem for the model, enabling it to more effectively approximate
the target based on in-context examples.

3. We provide a thorough comparison of original and finetuned TabPFNv2 against the state-
of-the-art tabular deep learning methods. Our analysis includes datasets with up to 1M
cells (rows× columns) – reflecting the current computational limit for the straightforward
finetuning – and spans both traditional academic benchmarks and more challenging real-
world datasets with temporal shifts and rich feature sets. On academic benchmarks, we
find that non-finetuned TabPFNv2 performs on par with strong MLP-PLR baseline and
the finetuned version achieves state-of-the-art results. Conversely, on more challenging
real-world datasets, both TabPFNv2 and its finetunes often perform less stable compared to
non-foundational DL methods.

2 RELATED WORK

Here we briefly outline research lines relevant to our study.

Tabular Deep Learning. In recent years, deep learning models for tabular data have emerged as
strong contenders to traditional “shallow” methods like Gradient Boosting Decision Trees (GBDTs).
Indeed, recent DL models (Gorishniy et al., 2024; Holzmüller et al., 2024; Ye et al., 2024; Gorishniy
et al., 2025; Hollmann et al., 2025) have often matched or surpassed leading GBDT implementations
(Prokhorenkova et al., 2018; Ke et al., 2017; Chen & Guestrin, 2016). This progress stems from
innovations in architectures (Gorishniy et al., 2021; Somepalli et al., 2021), regularizations (Jeffares
et al., 2023), and learning protocols (Holzmüller et al., 2024; Bahri et al., 2021; Rubachev et al., 2022),

1We use datasets generally larger than those in the TabPFNv2 paper (Hollmann et al., 2025), but only those
where finetuning on a single 80GB GPU is possible.
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leveraging the models capabilities not readily available to GBDTs. Our work explores foundational
models, a paradigm that is also inherently applicable only for deep learning models.

Foundational Models currently dominate among deep learning solutions for CV and NLP problems
and have become a key component in the most state-of-the-art systems Radford et al. (2021); Alayrac
et al. (2022). To put simply, foundational models are the models pretrained on vast amounts of
available data from some domain that can then be adapted to a wide number of downstream tasks
from this domain. The knowledge captured during pretraining often acts as a valuable prior, which is
particularly beneficial in few-shot learning scenarios.

Adapting foundational models to specific tasks typically follows one of two main pathways. The first,
finetuning, involves further training the model on the downstream dataset to optimize its parameters
for the new task. For enhanced sample and runtime efficiency, this often includes updating only a
subset of parameters, such as specific layers, low-rank adapters (LoRA) (Hu et al., 2021), or learnable
prompts (Lester et al., 2021). In contrast, in-context learning adapts the model without altering its
parameters, instead providing downstream training samples as part of the input prompt or context
(Brown et al., 2020). The choice between finetuning and in-context learning often depends on factors
like downstream dataset size, computational resources, and the need for multi-task adaptation. While
finetuning is often considered more effective (Liu et al., 2022), recent studies suggest in-context
learning can be competitive or even preferable in certain setups (Yin et al., 2024).

TabPFN (Hollmann et al., 2023), the pioneering foundational model for tabular data, was designed
to address a wide array of tabular tasks off-the-shelf. It employs a transformer-like architecture
and utilizes in-context learning, with the entire downstream training set serving as its prompt. Its
pretraining relies on numerous synthetic datasets engineered to mirror common application-specific
tabular tasks. The successor, TabPFNv2 (Hollmann et al., 2025), enhances this with a more powerful
architecture, pretraining on a broader spectrum of synthetic data, and sophisticated feature and target
preprocessing, demonstrating superior performance over GBDTs, especially on small-scale datasets.
Our work builds upon this by systematically investigating gradient-based finetuning specifically for
TabPFNv2. While some recent studies (Feuer et al., 2024; Thomas et al., 2024; Ma et al., 2024;
Xu et al., 2024; den Breejen et al., 2023) have explored aspects of finetuning tabular foundational
models, these explorations were often secondary to their main objectives. Furthermore, these
studies predominantly used the original TabPFN model, which differs significantly from TabPFNv2
in capability and architecture, meaning their conclusions might not directly apply. For example,
Feuer et al. (2024) noted potential overfitting with full finetuning of TabPFN on validation sets, a
phenomenon we did not encounter in our TabPFNv2 experiments. Importantly, the original paper
(Hollmann et al., 2025) benchmarks TabPFNv2 primarily against GBDT-based baselines. To obtain
a broader understanding of TabPFNv2 relative performance, we thoroughly compare it to existing
non-foundational tabular DL models and show that it is specifically finetuning that enables TabPFNv2
to achieve the state-of-the-art performance.

3 REVISITING FINETUNING STRATEGIES FOR TABPFNV2

In this section, we systematically evaluate different finetuning techniques for TabPFNv2. Through
this evaluation we aim to establish a strong finetuning baseline for the TabPFNv2 model to address
the lack of consensus or information (in case of the second version) on best TabPFN finetuning
methodology in literature.

Evaluation Protocol. We experiment with finetuning TabPFNv2 on two established tabular DL
benchmarks from (Grinsztajn et al., 2022) and (Gorishniy et al., 2024). We use only the datasets for
which it is possible to finetune TabPFNv2 using the entire dataset as an input prompt on a single GPU
with 80GB of memory. We provide a list of datasets we have used with their characteristics in Table 6.
Our benchmark covers larger datasets than those used for evaluation in Hollmann et al. (2025) – the
average dataset size used in our paper is approximately 15K examples, while the average dataset
size in Hollmann et al. (2025) is at approximately 3K. This potentially presents a more challenging
setting for the TabPFNv2 model and it also allows us to compare the foundational model to strong
non-foundational tabular DL baselines, while in Hollmann et al. (2025) comparison is limited to
GBDTs and simple baselines like SVMs.
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For all TabPFNv2 finetuning runs and ablations, we tune the learning rate on the validation set
using the logspace grid with 10 learning rate values: logspace(5e-6, 5e-4). For other
baselines, we use hyperparameter grids from (Gorishniy et al., 2025) and tune for 100 iterations.
We always use 1024 objects to calculate the loss per gradient step (except the batch size ablations
below), while the rest objects are used as an input prompt. For early stopping, we compute the
performance on the validation subset every ten gradient steps and stop the finetuning after 16
non-improving evaluations. We report the RMSE and classification accuracy for regression and
classification problems, respectively. Additionally, we use the relative improvement to the MLP
baseline metric introduced in Gorishniy et al. (2025) (the R2 and accuracy are used to compute
the relative improvement to the tuned MLP configuration). For additionall details regarding the
experimental protocol refer to the Appendix A. Below we provide a brief overview of the finetuning
strategies we are re-evaluating for TabPFNv2.

Full finetuning is the most straightforward way to adapt pretrained models, used in other domains
like NLP (Howard & Ruder, 2018; He et al., 2015) and computer vision (Kolesnikov et al., 2020;
Beyer et al., 2024). But there is no consensus in prior work on finetuning tabular foundation models
(Feuer et al., 2024; den Breejen et al., 2023) – albeit, based on TabPFNv1.

Parameter-efficient finetuning (PEFT) is popular for LLM adaptation. While with the current
tabular foundation model scale (7M parameters) the memory efficiency gains from PEFT are not very
important, the inductive biases and potential implicit regularization of partial finetuning might be
beneficial to prevent overfitting, as previously hypothesized in Feuer et al. (2024). We consider the
following options for parameter-efficient finetuning:

• Low Rank Adapters (LoRA) – Hu et al. (2021) is a widely used parameter-efficient
finetuning method that uses two low-rank matrices to update a pretrained full-rank matrix.

• Last layers – finetuning only the upper layer is also a popular partial finetuning method, that
is occasionally used for finetuning pretrained models in other modalities (Hu et al., 2021;
Lee et al., 2019).

• LayerNorm, Head and Embeddings – finetuning only the feature and target linear em-
bedding layers, MLP prediction head and the affine layer normalization parameters. These
parameters represent a small fraction of the whole model parameters, but have been found
important in the model adaptation literature (Zhao et al., 2024; Chen et al., 2024).

• Numerical Feature Embeddings are a popular and useful technique in the recent tabular
DL architectures (Gorishniy et al., 2022; 2025; Holzmüller et al., 2024), which is not yet
exploited in tabular foundation models (especially its interaction with TabPFNv2). We
experiment with adding the embedding modules before the main TabPFNv2 backbone and
finetuning them together with the model.

Practical observations about finetuning & Training Time. Before comparing all the performance
results we highlight some practical observations. First, we measure the training times of different
finetuning methods. We can see in Table 1 that full finetuning is the most efficient finetuning method
in terms of convergence speed. Second, we demonstrate that using larger batches during finetuning
improves the finetuning performance. In more details, we keep the training context size fixed and
increase the prediction sequence length. From results in Table 2 we can see that larger batches
result in the higher performance of finetuned models. Furthermore, we provide a discussion on
computational complexity related to finetuning the TabPFNv2 model in Appendix D.

Table 1: Comparison of time in seconds spent on
finetuning (FT.) and in-context prediction (No
FT.).

CA ↓ HO ↓ DI ↓ CH ↑ AD ↑
LORA 328 1330 3607 105 4155
EMB.,LN, HEAD 390 766 995 122 1978
FULL 155 468 1777 74 1480

NO FT. 12 24 36 1 18

Table 2: The effect of the number of objects
used in prediction during training. We can see
that using more objects to make one gradient
estimation is beneficial.

Pred. Length CA ↓ HO ↓ DI ↓ CH ↑ AD ↑
2 0.3963 3.0755 0.1332 0.8535 0.8588
128 0.3839 2.9930 0.1303 0.8488 0.8680
1024 0.3822 2.9919 0.1275 0.8647 0.8710

Optimal finetuning strategy. We summarize the results in Figure 1, the full results are available in
Table F. We can see that fine-tuning in general makes a significant impact on model performance
compared to pure in-context performance. However, the difference between full finetuning and all
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considered PEFT variations is minimal. This observation and training efficiency results in Table 1
make full finetuning a go-to simple baseline for TabPFNv2 adaptation.

Furthermore, introducing untied (non-shared) linear or advanced piecewise-linear embeddings has
marginal effect on finetuning performance and indicates that either the TabPFNv2 model has already
learned the feature transforms and advanced embeddings are not needed or there needs to be a
more sophisticated embedding scheme (e.g. during pretraining), which is an interesting exploration
direction for future work.

Figure 1: Comparison of different TabPFNv2 finetuning methods. The plot summarizes the relative
performance improvement over a tuned MLP baseline. We consider off-the-shelf No FT TabPFNv2
with no finetuning compared to parameter efficient tuning methods PEFT, full model finetuning Full
and finetuning with modified Feature Embeddings. Box plots summarize the results on all datasets
from Table 6, bars represent the 25th, 50th and 75th percentiles, whiskers represent the 10th and
90th percentiles (visualization from Gorishniy et al. (2025)). The numbers at the bottom of the plot
present average improvement over MLP and average ranks.

HOW DOES FINETUNING COMPARE TO TRAINING FROM RANDOM INITIALIZATION?
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Figure 2: Performance of different methods on subsamples of four datasets. Churn and Adult are
binary classification datasets and the metric is accuracy (higher is better), California and House
are regression datasets with the RMSE test metric (lower is better, axis flipped). The shaded area
represents 2 standard deviations in both directions from the average accuracy.

When we can afford finetuning a TabPFNv2 model – we can also pretrain the model from scratch on
a target dataset. In this section, we study how pretraining on around 130M synthetic datasets used for
TabPFNv2 compares to training from scratch on a target dataset depending on its size. Furthermore
we study how the benefits that come from finetuning change with varying dataset sizes.

To answer these questions, we perform the following experiments. First, for four datasets (Churn,
California, House, Adult), we create their subsamplings, with a train set in each following subsampling
being half of the previous one, while validation and test sets are the same. We then compare the
performances of the finetuned TabPFNv2 model, original TabPFNv2 model, and the model with the
TabPFNv2 architecture trained from scratch on each of the subsampled versions of each dataset.

Figure 2 shows that finetuning TabPFNv2 provides more benefits for larger target datasets (clearly
seen on House and Adult), while for smaller datasets the performance improvements from finetuning
are often statistically insignificant compared to pure in-context learning.
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Furthermore, while on some datasets, such as Adult and Churn, training from scratch comes close to
the performance of the pretrained TabPFNv2 (especially for large problem sizes), there are datasets
(e.g. California), where for all problem sizes pretraining gives a significant boost to performance,
which is not achieved with training from scratch, but is further amplified via finetuning. This variance
in the performance of pre-trained model and efficacy of finetuning warrants a deeper investigation
into the inner workings of TabPFNv2 and its finetunes, which we describe in the following section.

4 DISSECTING FINETUNING’S IMPACT ON TABPFNV2

As shown in the previous section, finetuning significantly enhances TabPFNv2 performance on our
testbed of medium-scale datasets. In this section we aim to understand how and to what extent
these improvements are achieved by examining finetuning influence on TabPFNv2 internal behavior,
particularly its (inter-sample) attention mechanism.

Our analysis is based on the intuition that pretrained TabPFNv2 functions similarly to retrieval-
augmented models like ModernNCA (Ye et al., 2024) or TabR (Gorishniy et al., 2024) when making
predictions, this contrasts with alternative explanations of in-context learning in other modalities
through e.g. performing implicit SGD (Von Oswald et al., 2023), or implementing complex algorith-
mic circuits (Olsson et al., 2022; Nanda et al., 2023).

Table 3: Comparison of weighted kNN prediction (or
MNCA-like prediction) with attention scores from last
layer of TabPFNv2 as a proxy of similarity between in-
stances. Attention weights after finetuning better reflect
similarity that results in more accurate predictions. The
test scores are calculated on a single seed.

CA ↓ HO ↓ DI ↓ CH ↑ AD ↑ pol ↓
TabPFNv2 performance:
No FT 0.398 3.105 0.137 0.859 0.859 4.830
Finetuned 0.382 2.960 0.127 0.867 0.872 2.801

TabPFNv2 attn. weighted kNN performance:
kNN via No FT 0.473 3.404 0.183 0.856 0.856 6.845
kNN via Finetune 0.407 3.313 0.155 0.866 0.872 3.165

Specifically, we conjecture that an impor-
tant part of TabPFNv2 prediction mechan-
ics is an implicit retrieval mechanism im-
plemented via inter-sample attention over
train dataset objects (in particular, the la-
bels) – resembling retreival-based models,
which perform this explicitly. The first
evidence supporting this analogy comes
from comparing performance gains over an
MLP baseline achieved by the in-context
TabPFNv2, ModernNCA, and MLP-PLR
across all datasets in our benchmark. Im-
provements from TabPFNv2 showed a high
correlation (0.89 Pearson correlation) with
improvements from ModernNCA, while a
similar correlation for the identically per-
formant MLP-PLR model is more mild (0.53 Pearson correlation). These results support char-
acterizing TabPFNv2 as an advanced implicit retriever, guiding our subsequent investigation of
finetuning.

Based on this intuition, we hypothesize that a primary effect of finetuning is the refinement of the
similarity signals that TabPFNv2 uses to weight in-context examples. Specifically, we propose that
finetuning improves how accurately the dot products between the query-representations (derived from
test objects) and key-representations (derived from in-context training examples) in the model’s final
layer reflect the true target similarity between these objects. A more accurate underlying similarity
measure would allow the attention softmax to more effectively identify and upweight the most
informative training examples for predicting the test object’s label.

To verify this hypothesis, we designed an experiment to directly assess the quality of the attention
scores as proxies for target relevance. For both the original and the finetuned TabPFNv2 models, we
extracted the attention scores assigned by the final layer’s attention mechanism to each in-context
training example for a given test instance. These attention weights were then used to compute a
weighted average of the corresponding training example targets. The intuition behind this experiment
is straightforward: if the attention scores accurately capture the relevance of training examples to a
test example’s target, then a weighted average of training targets using these scores should yield a
good approximation of the test target. Thus, higher quality attention weights, better reflecting target
similarity, should result in a more accurate target prediction. The results of this analysis, presented
in Table 3, demonstrate a marked improvement: the weighted average of targets computed using
attention scores from the finetuned TabPFNv2 aligns significantly more closely with the groundtruth
test targets compared to those from the original TabPFNv2. This finding strongly supports our
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hypothesis that finetuning refines the query-key dot products to better reflect true target closeness,
thereby simplifying the task for the attention mechanism and improving the hypothesized “implicit
retrieval”.

Interestingly, the effect described above also affects the attention distribution itself. As shown by
the histograms in Figure 3, for most datasets, finetuning leads to a notable decrease in the entropy
of the attention distribution over the in-context training examples for a significantly large subset of
test instances. This indicates that for these instances the finetuned model becomes “more focused”,
concentrating its attention mass on a smaller subset of training examples. This behavior is consistent
with our earlier finding: if the underlying query-key dot products provide a clearer signal of which
examples are truly most similar in terms of their targets, the model can confidently allocate higher
attention to these few, most relevant neighbors, rather than spreading its attention more diffusely.
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Figure 3: Normalized entropy of the attention weights from the last layer of TabPFNv2 (on test
samples). On California, Adult and Diamond, attention weights consistently become more con-
centrated after finetuning. On Churn dataset, there is no notable shift, and high entropy indicates
smooth distribution of weights. On House and Pol datasets, for almost 70-80% of the samples entropy
increased but on Figure 4 we show that the most performance gains are obtained from those samples
where entropy dropped. More detailed explaination is provided in Appendix C.

Finally, to connect these changes in the attention behaviour directly to predictive performance, we
examined the relationship between the sample-wise change in the attention entropy (occured due to
finetuning) and the corresponding sample-wise change in a chosen performance metric. Figure 4
plots this dependency.2
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Figure 4: Dependency between the sample-wise change in prediction error (finetuned vs. original
TabPFNv2) and the corresponding change in entropy of attention weights. In most cases, finetuned
model considerably improves error on samples where entropy dropped significantly (indices closer
to zero), i.e. where attention weights became more concentrated. The details are provided in
Appendix C.

The results reveal an apparent regularity: the test datapoints contributing most substantially to the
overall performance improvement (in other words, corresponding to the most negative ∆Error
values) are those for which attention entropy decreased. Conversely, while some test datapoints do

2The details of plotting these graphs are presented in Appendix C
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exhibit an increase in attention entropy after finetuning, their collective contribution to the overall
performance change is substantially smaller. This nuanced observation reinforces the idea that the
primary driver of finetuning’s benefit lies in its ability to sharpen the model’s focus on the most
relevant in-context examples by improving the underlying similarity representations that guide the
attention mechanism.

5 TABPFNV2 AND ITS FINETUNES IN A BROADER TABULAR DL CONTEXT

In this section, we compare the original TabPFNv2 model and its finetuned variant to the non-
foundational state-of-the-art tabular DL models. Additionally, we evaluate TabPFNv2 on a subsam-
pled versions of the TabReD benchmark (Rubachev et al., 2025) datasets.3

The original TabPFNv2 paper (Hollmann et al., 2025) reports the state-of-the-art results on small
datasets and compares to classical “shallow” models and AutoML solutions. We aim to extend the
scope of the experiments to bigger datasets and new dataset characteristics (like temporal shift and
extensive feature engineering in TabReD) and compare to contemporary tabular DL methods that
achieve the state-of-the-art performance in this setting (Ye et al., 2024; Gorishniy et al., 2025).

5.1 COMPARISON WITH SOTA TABULAR DL BASELINES

To evaluate TabPFNv2, we use the original in-context version and the in-context ensemble version
(ensembled over different input and target preprocessing and transformations). Furthermore, we
evaluate finetuned TabPFNv2, and its deep ensemble variant. We use five finetuning runs to construct
the ensemble.

We compare TabPFNv2 and its finetuned versions to the following DL methods and classical ML
baselines:

• MLPPLR – MLP with periodic numerical feature embeddings (Gorishniy et al., 2022).
• MNCA: ModernNCA – a state-of-the-art non-parametric tabular DL model (Ye et al., 2024).
• TabM†

mini — A recent state-of-the-art parametric tabular DL model. We evaluate a variant
that uses piece-wise linear numerical feature embeddings (denoted by †).

• XGBoost: In addition to deep models, we use a tuned GBDT model as a commonly accepted
strong “shallow” baseline.

XGBoost
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3.48± 1.7

MNCA
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TabM†mini

2.54± 4.1%

2.76± 1.7

TabM†,×5
mini

2.92± 4.7%

2.38± 1.4

No FT
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3.24± 1.8

TabPFNv2×8

1.23± 3.3%
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Figure 5: Comparison of TabPFNv2 (with and without finetuning) with other state-of-the-art tabular
DL methods. The plot summarizes the relative performance improvement over a tuned MLP baseline.
Box plots summarize the results on all datasets from Table 6. Notation follows Figure 1.

Results summary. Results of the comparison are provided in Figure 5. Below, we highlight our
key observations. The original TabPFNv2 used in the in-context learning regime and its ensemble
variations are generally inferior to the up-to-date strong tabular DL models on academic datasets
with up to 1M table cells (rows × columns). Nevertheless, its performance is close to MLP-PLR,
which is a strong baseline.

3Subsampling is done due to computational and engineering constraints
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Finetuning TabPFNv2 results in consistent improvements. Furthermore, ensembling the finetuned
TabPFNv2 model produces substantial performance improvements on top of single finetuned model,
elaborating on efficient ensembling may be an interesting future research direction.

Overall, finetuned TabPFNv2 is a SoTA model on academic datasets where finetuning is computation-
ally feasible on a single GPU. However it has inherent limitations in scalability due to finetuning and
its similarity to retrieval-based models. We expand upon these limitations in the following subsection.

5.2 EVALUATION ON TABRED SUBSAMPLES

We provide the results of evaluating TabM†
mini, MNCA, TabPFNv2 and finetuned TabPFNv2 in

Figure 6. We can see that on this version of the TabReD datasets the TabPFNv2 without finetuning
is less stable compared to the current SoTA model “TabM”. On almost all datasets finetuning does
improve upon the in-context version (except Sberbank Housing where it often degrades performance).
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Figure 6: Results on five different TabReD dataset subsamples. We report average improvement over
the tuned MLP baseline across five different subsamples for each dataset. For each subsample we
average the score over five random seeds.

Overall, TabPFNv2 results on TabReD subsamples are less stable compared to the results on the
academic benchmarks from previous sections – this may be related to the presence of temporal shift
in these datasets which may pose challenges for models implementing retrieval-based predictions.
We further discuss this in Appendix E. Furthermore, scaling finetuning to the full-sized datasets
requires significant engineering efforts.

6 LIMITATIONS

Choice of datasets. In our experiments we use only the datasets that can fully be handled by the
TabPFNv2 model on a single 80 GB GPU. Therefore, our conclusions should be additionally verified
for the large-scale downstream problems, where data has to be fed to TabPFNv2 by chunks and the
finetuning procedure should be sufficiently altered.

Different feature and target preprocessing. In the comparison to the non-foundational tabular DL
models, we did not standardize the data/target preprocessing across TabPFNv2 and other methods.
We assumed that the preprocessing recommendations provided by the authors of each method were
close to optimal and decided to use them as prescribed in the original papers.

7 CONCLUSION

In this paper, we systematically investigated gradient-based adaptation for TabPFNv2. Our findings
establish full finetuning as the optimal strategy, crucially revealing its success stems from refining
internal similarity assessments for improved retrieval-based prediction. While it elevates finetuned
TabPFNv2 to state-of-the-art performance on academic datasets where finetuning is technically
feasible (currently there is a limit in dataset size), significant challenges persist regarding scalability
and robustness to real-world data complexity like shifts or complex real-world features. Future
research should therefore prioritize developing scalable adaptation methods and enhancing resilience
to the complexities of diverse tabular data.
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A REPRODUCIBILITY STATEMENT

We provide the code for TabPFNv2 finetuning in the supplementary material as an archive with the
source code. To run it one must also obtain the TabPFNv2 checkpoints from hf.co/Prior-Labs. We
reuse the datasets from (Gorishniy et al., 2024). See the bin/tabpfnv2_finetune.py script
and exp/full-finetune/adult/evaluation/0.toml config file for an entry point.

B THE USE OF LARGE LANGUAGE MODELS

Our use of LLMs is limited to writing aid and basic controlled coding assistance (e.g. text stylistic
improvements, grammar checking, code for polishing figures and/or tables).

C DETAILS OF ANALYSIS OF THE TABPFNV2 FINETUNING

First, we briefly explain the methodology used to obtain Table 3. Then, we expand on the technical
details of generating the results shown in Figure 3 and Figure 4. Finally, we provide an extended
discussion and interpretation of these figures.

kNN Score Calculation in Table 3. To understand how finetuning affects the ability of TabPFNv2 to
reflect target similarity, we employ a retrieval-like prediction mechanism based on attention scores.
For each test sample, we extract attention scores from the last layer of TabPFNv2. Since attention
is calculated between the test sample and each train sample, attention scores form a similarity
distribution over train samples. These attention scores

(
w ∈ RNtrain

)
are then used for each test

sample to make a weighted average prediction over train set, i.e. for regression, ŷ =
∑Ntrain

i yiwi

and, for classification, we sum the logits of the corresponding class of train neighbors.

Normalized Entropy Calculation. The normalized entropy is computed using the same last-
layer attention scores from TabPFNv2. For each test sample we calculate the entropy of the score
distribution over train samples and normalize it dividing by ln(train size). Figure 3 shows the
distribution of this normalized entropy across the test set for six different datasets.

Generation of Figure 4. For each test sample, we calculate the error (MSE/LogLoss) and the
normalized attention entropy for both the finetuned (FT) and the off-the-shelf TabPFNv2 (No FT).
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Test samples are then sorted based on the change in normalized entropy in ascending order. The
vertical axis of the plots the change in error for each sample. So, y-axis shows the change in error
between ‘FT‘ and ‘No FT‘ (lower difference means FT is better), and x-axis shows an index of test
sample, with lower indices corresponding to larger decreases in entropy. The red line shows the index
where entropy change becomes positive (∆H = 0). The blue line shows the change in error after
smoothing with a Gaussian filter to illustrate the overall trend.

Interpretation and Discussion. Overall, these three artifacts collectively support the hypothesis that
a primary effect of finetuning is the refinement of the similarity signals that TabPFNv2 uses to weight
in-context examples:

• Table 3 shows that for all datasets attention scores after finetuning more accurately reflect
similarity of targets on average across test samples. However, Table 3 does not specify
which individual samples benefit most from finetuning.

• Figure 3 shows the change in distribution of attention scores. For California, Adult and
Diamond the distribution of the attention scores becomes consistently more concetrated –
for 80-100% of the test samples entropy decreased. We believe that this concentration is a
primary driver of finetuning benefits. Lower entropy suggests that higher attention weights
are assigned to the “closest” neighbors, indicating improved latent space for calculating
similarity between objects – since the metrics in Table 3 improved. However, the patterns
on House and Pol are more nuanced, necessitating a deeper analysis via Figure 4.

• Figure 4 reveals that for all datasets, except Churn, the error improved the most on those test
samples where entopy decreased the most. In other words, the test datapoints contributing
most substantially to the overall performance improvement (lowest ∆Error) are those
for which attention entropy decreased the most (∆H < 0). Even for House and Pol the
error clearly improves on samples where entropy decreased but this improvement decays on
samples where entropy increased (indices to the right of the red line).

• The results on Churn dataset are not fully aligned with all our findings, we keep them
for transparency. Although entropy distribution remains unchanged and the trend line in
Figure 4 does not reflect the effects described above, the attention weights still improve
after finetuning as can be seen by results in Table 3. This observation motivates deeper
investigation into the inner workings of the model, and the particular mechanisms which
improve the latent space for calculating similarity between objects. A more thorough
analysis of such cases is reserved for future work.

D EFFICIENCY DISCUSSION

Here we discuss the efficiency aspects that are relevant for tabular foundation models sharing the
TabPFNv2 architecture and especially noticable on bigger datasets. We provide per-epoch timings
and relevant dataset dimensions in Table 4.

As described in the main paper, we limit all experiments to 1 M cells (N ·M ≤ 106, where N is the
number of rows and M is the number of features). TabPFNv2 uses attention over rows and attention
over features, so the total number of attention operations scales as O

(
NMd (N +M + 2d)

)
, with d

denoting the query/key/value dimension. So, the DI dataset — which incurs the most operations—is
the slowest. We also include the Cooking and Homesite datasets, which have many features but
few samples. While these datasets involve fewer operations than DI, their per-epoch time is high
because gradient checkpointing is enabled only for these two datasets (due to high memory demands
due to large intermidiate activations required for backprop in finetuning). Overall, the hard limit
for finetuning on one GPU without resorting to parallelism is at 1M cells (because of activation
memory) and time-wise performance is summarized by the number of attention operations which is
O
(
NMd (N +M + 2d)

)
.

E ANALYSIS OF THE FINETUNING FAILURES

In this section we look into the few failure cases of the TabPFNv2 finetuning. There are two
datasets (sberbank-housing subsample and KDDCup09_upselling) where finetuning actually degrades
performance of the base TabPFNv2. We link this to overfitting as explained below.
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Table 4: Dataset Properties, Computational Requirements and the actual time per epoch

Property/Dataset CH CA HO AD DI Cooking Homesite
Subsample Subsample

# Rows (N ) 6400 13 209 14 581 26 048 34 521 5208 3344
# Features (M ) 11 8 16 14 9 190 299
# Attention ops. 9.2e10 2.8e11 6.7e11 1.9e12 2.1e12 1.1e12 7.7e11
Time per epoch 3s 8s 16s 39s 46s 41s 34s

Both datasets have extreme feature-to-sample ratios, with KDD Upselling having the highest ratio
among our 21 academic datasets. The sberbank-housing dataset additionally possesses a temporal
shift (Rubachev et al., 2025) which may make it even more prone to overfitting during finetuning.

To investigate temporal shift specifically, we evaluated sberbank-housing on temporal vs. random
splits (5 splits, 5 seeds each). The results in Table 5 demonstrate that temporal shifts causes
performance degradation. Fine-tuned TabPFNv2 achieves best performance on random splits but
suffers under temporal distribution shift, while TabM excels on temporal splits.

Table 5: Model Performance Comparison Across Different Splits

Split/Model MLP MNCA TabM_mini No FT Full FT

Temporal 0.262± 0.012 0.273± 0.028 0.249± 0.009 0.291± 0.026 0.317± 0.041
Random 0.270± 0.007 0.270± 0.006 0.266± 0.007 0.258± 0.007 0.255± 0.007

Overall, these results support overfitting as an explanation to perfomance degradation. The
reasons for overfitting can be both – temporal shift and complex features, as we can see in our
benchmark (Sberbank suffers more from temporal shift, KDD does not have shift, but still has
performance degradation – which may stem from large feature-to-sample ratio leading to overfitting).

F DATASETS AND EXTENDED RESULTS
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Figure 7: Extended version of Figure 5 with ensembles for all the methods included.
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Table 6: The datasets used in our experiments. # num. refers to the number of numerical features, #
bin. refers to the number of binary features, # cat. refers to the number of categorical features.

Name Train size Val. size Test size # num. # bin. # cat. Task type

Datasets from Grinsztajn et al. (2022)
wine 1,787 230 537 11 0 0 binary classification
phoneme 2,220 285 667 5 0 0 binary classification
KDDCup09_upselling 3,589 461 1,078 34 1 14 binary classification
kdd_ipums_la_97-small 3,631 467 1,090 20 0 0 binary classification
bank-marketing 7,404 952 2,222 7 0 0 binary classification
MagicTelescope 9,363 1,203 2,810 10 0 0 binary classification
credit 10,000 2,014 4,700 10 0 0 binary classification
pol 10,000 1,500 3,500 26 0 0 regression
wine_quality 4,547 585 1,365 11 0 0 regression
Brazilian_houses 7,484 962 2,246 8 0 0 regression
Ailerons 9,625 1,237 2,888 33 0 0 regression
MiamiHousing2016 9,752 1,254 2,926 13 0 0 regression
elevators 10,000 1,979 4,620 16 0 0 regression
fifa 10,000 2,418 5,645 5 0 0 regression
house_sales 10,000 3,483 8,130 15 0 0 regression
medical_charges 10,000 45,919 50,000 3 0 0 regression

Datasets from Gorishniy et al. (2021)
churn 6,400 1,600 2,000 7 3 1 binary classification
adult 26,048 6,513 16,281 6 1 7 binary classification
california 13,209 3,303 4,128 8 0 0 regression
house 14,581 3,646 4,557 16 0 0 regression
diamond 34,521 8,631 10,788 6 0 3 regression

Subsamples from TabReD Rubachev et al. (2025)
Ecom Offers 8403 10000 10000 113 6 0 binary classification
Homesite Insurance 3344 10000 10000 253 23 23 binary classifiation
Homecredit Default 1436 10000 10000 612 2 82 binary classification
Maps Routing 1014 10000 10000 984 0 2 regression
Cooking Time 5208 10000 10000 186 3 3 regression
Delivery ETA 4484 10000 10000 221 1 1 regression
Weather 9708 10000 10000 100 3 0 regression
Sberbank Housing 2551 4827 4647 365 17 10 regression

Table 7: Extended results for the benchmark. Results are grouped by datasets.

Ailerons ↓
Method Single model Ensemble

MLP 0.0002± 0.0000 0.0002± 0.0000
XGBoost 0.0002± 0.0000 0.0002± 0.0000
MLPPLR 0.0002± 0.0000 0.0002± 0.0000
MNCA 0.0002± 0.0000 0.0002± 0.0000

TabM†
mini 0.0002± 0.0000 0.0002± 0.0000

NO FT 0.0002± 0.0000 –
TabPFNv2×8 0.0002± 0.0000 –
LAST LAYERS 0.0001± 0.0000 –
LORA 0.0002± 0.0000 –
FULLuntied 0.0001± 0.0000 –
FULLPLE 0.0001± 0.0000 –
EMB.,LN,HEAD 0.0001± 0.0000 0.0001± 0.0000
FULL 0.0001± 0.0000 0.0001± 0.0000

Brazilian_houses ↓
Method Single model Ensemble

MLP 0.0469± 0.0178 0.0440± 0.0207
XGBoost 0.0541± 0.0279 0.0535± 0.0287
MLPPLR 0.0422± 0.0182 0.0397± 0.0206
MNCA 0.0525± 0.0160 0.0509± 0.0180

TabM†
mini 0.0459± 0.0204 0.0439± 0.0228

NO FT 0.0457± 0.0032 –
TabPFNv2×8 0.0199± 0.0210 –
LAST LAYERS 0.0438± 0.0039 –
LORA 0.0447± 0.0038 –
FULLuntied 0.0495± 0.0127 –
FULLPLE 0.0624± 0.0244 –
EMB.,LN,HEAD 0.0465± 0.0026 0.0465± 0.0030
FULL 0.0569± 0.0241 0.0506± 0.0228
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KDDCup09_upselling ↑
Method Single model Ensemble

MLP 0.7763± 0.0150 0.7806± 0.0125
XGBoost 0.7922± 0.0114 0.7950± 0.0102
MLPPLR 0.7983± 0.0088 0.7995± 0.0105
MNCA 0.7929± 0.0087 0.7989± 0.0115

TabM†
mini 0.8042± 0.0144 0.8039± 0.0114

NO FT 0.8109± 0.0096 –
TabPFNv2×8 0.8046± 0.0129 –
LAST LAYERS 0.8022± 0.0106 –
LORA 0.8077± 0.0053 –
FULLuntied 0.7995± 0.0124 –
FULLPLE 0.7999± 0.0138 –
EMB.,LN,HEAD 0.8054± 0.0062 0.8066± 0.0091
FULL 0.7983± 0.0087 0.8056± 0.0116

MagicTelescope ↑
Method Single model Ensemble

MLP 0.8536± 0.0063 0.8566± 0.0061
XGBoost 0.8539± 0.0100 0.8589± 0.0110
MLPPLR 0.8583± 0.0058 0.8626± 0.0044
MNCA 0.8580± 0.0059 0.8628± 0.0041

TabM†
mini 0.8637± 0.0094 0.8646± 0.0075

NO FT 0.8647± 0.0059 –
TabPFNv2×8 0.8695± 0.0073 –
LAST LAYERS 0.8765± 0.0051 –
LORA 0.8738± 0.0059 –
FULLuntied 0.8780± 0.0052 –
FULLPLE 0.8778± 0.0073 –
EMB.,LN,HEAD 0.8765± 0.0051 0.8772± 0.0062
FULL 0.8765± 0.0056 0.8803± 0.0061

MiamiHousing2016 ↓
Method Single model Ensemble

MLP 0.1613± 0.0029 0.1574± 0.0043
XGBoost 0.1439± 0.0030 0.1434± 0.0029
MLPPLR 0.1519± 0.0028 0.1479± 0.0017
MNCA 0.1501± 0.0037 0.1477± 0.0032

TabM†
mini 0.1412± 0.0017 0.1387± 0.0008

NO FT 0.1369± 0.0023 –
TabPFNv2×8 0.1349± 0.0026 –
LAST LAYERS 0.1329± 0.0019 –
LORA 0.1333± 0.0031 –
FULLuntied 0.1341± 0.0021 –
FULLPLE 0.1337± 0.0026 –
EMB.,LN,HEAD 0.1339± 0.0023 0.1334± 0.0028
FULL 0.1334± 0.0035 0.1316± 0.0031

adult ↑
Method Single model Ensemble

MLP 0.8548± 0.0006 0.8559± 0.0011
XGBoost 0.8719± 0.0008 0.8723± 0.0002
MLPPLR 0.8690± 0.0006 0.8702± 0.0006
MNCA 0.8676± 0.0021 0.8696± 0.0003

TabM†
mini 0.8675± 0.0018 0.8690± 0.0005

NO FT 0.8588± 0.0004 –
TabPFNv2×8 0.8611± 0.0007 –
LAST LAYERS 0.8702± 0.0006 –
LORA 0.8704± 0.0011 –
FULLuntied 0.8719± 0.0010 –
FULLPLE 0.8723± 0.0004 –
EMB.,LN,HEAD 0.8705± 0.0009 0.8713± nan
FULL 0.8710± 0.0014 0.8723± nan

bank-marketing ↑
Method Single model Ensemble

MLP 0.7860± 0.0055 0.7887± 0.0052
XGBoost 0.8014± 0.0088 0.8030± 0.0076
MLPPLR 0.7946± 0.0100 0.7977± 0.0117
MNCA 0.7955± 0.0075 0.8003± 0.0077

TabM†
mini 0.7992± 0.0093 0.8017± 0.0087

NO FT 0.8025± 0.0078 –
TabPFNv2×8 0.8026± 0.0075 –
LAST LAYERS 0.8031± 0.0099 –
LORA 0.8053± 0.0069 –
FULLuntied 0.8044± 0.0087 –
FULLPLE 0.8013± 0.0077 –
EMB.,LN,HEAD 0.8044± 0.0076 0.8051± 0.0077
FULL 0.8032± 0.0074 0.8048± 0.0075

california ↓
Method Single model Ensemble

MLP 0.4935± 0.0042 0.4880± 0.0022
XGBoost 0.4319± 0.0018 0.4316± 0.0007
MLPPLR 0.4659± 0.0035 0.4549± 0.0006
MNCA 0.4236± 0.0008 0.4231± 0.0005

TabM†
mini 0.4323± 0.0046 0.4261± 0.0019

NO FT 0.3987± 0.0003 –
TabPFNv2×8 0.4038± 0.0016 –
LAST LAYERS 0.3897± 0.0027 –
LORA 0.3836± 0.0010 –
FULLuntied 0.3827± 0.0038 –
FULLPLE 0.3843± 0.0024 –
EMB.,LN,HEAD 0.3880± 0.0014 0.3862± nan
FULL 0.3822± 0.0011 0.3789± nan
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churn ↑
Method Single model Ensemble

MLP 0.8575± 0.0028 0.8582± 0.0008
XGBoost 0.8610± 0.0018 0.8608± 0.0013
MLPPLR 0.8628± 0.0009 0.8638± 0.0012
MNCA 0.8584± 0.0023 0.8615± 0.0013

TabM†
mini 0.8606± 0.0023 0.8592± 0.0003

NO FT 0.8590± 0.0008 –
TabPFNv2×8 0.8637± 0.0012 –
LAST LAYERS 0.8628± 0.0021 –
LORA 0.8609± 0.0018 –
FULLuntied 0.8631± 0.0026 –
FULLPLE 0.8631± 0.0015 –
EMB.,LN,HEAD 0.8605± 0.0023 0.8605± nan
FULL 0.8647± 0.0028 0.8665± nan

credit ↑
Method Single model Ensemble

MLP 0.7737± 0.0052 0.7729± 0.0047
XGBoost 0.7688± 0.0025 0.7706± 0.0029
MLPPLR 0.7753± 0.0053 0.7767± 0.0075
MNCA 0.7737± 0.0033 0.7757± 0.0026

TabM†
mini 0.7749± 0.0031 0.7757± 0.0036

NO FT 0.7746± 0.0019 –
TabPFNv2×8 0.7735± 0.0030 –
LAST LAYERS 0.7720± 0.0044 –
LORA 0.7746± 0.0032 –
FULLuntied 0.7743± 0.0039 –
FULLPLE 0.7737± 0.0041 –
EMB.,LN,HEAD 0.7756± 0.0036 0.7754± 0.0041
FULL 0.7730± 0.0035 0.7749± 0.0030

diamond ↓
Method Single model Ensemble

MLP 0.1402± 0.0016 0.1362± 0.0003
XGBoost 0.1368± 0.0002 0.1363± 0.0001
MLPPLR 0.1341± 0.0009 0.1325± 0.0004
MNCA 0.1368± 0.0010 0.1348± 0.0005

TabM†
mini 0.1314± 0.0011 0.1307± 0.0005

NO FT 0.1370± 0.0002 –
TabPFNv2×8 0.1311± 0.0005 –
LAST LAYERS 0.1302± 0.0006 –
LORA 0.1300± 0.0017 –
FULLuntied 0.1285± 0.0009 –
FULLPLE 0.1275± 0.0011 –
EMB.,LN,HEAD 0.1323± 0.0006 0.1320± nan
FULL 0.1275± 0.0007 0.1245± nan

elevators ↓
Method Single model Ensemble

MLP 0.0020± 0.0000 0.0019± 0.0000
XGBoost 0.0020± 0.0000 0.0020± 0.0000
MLPPLR 0.0018± 0.0000 0.0018± 0.0000
MNCA 0.0019± 0.0000 0.0019± 0.0000

TabM†
mini 0.0018± 0.0000 0.0018± 0.0000

NO FT 0.0019± 0.0000 –
TabPFNv2×8 0.0019± 0.0000 –
LAST LAYERS 0.0018± 0.0000 –
LORA 0.0018± 0.0000 –
FULLuntied 0.0018± 0.0000 –
FULLPLE 0.0018± 0.0000 –
EMB.,LN,HEAD 0.0018± 0.0000 0.0018± 0.0000
FULL 0.0018± 0.0000 0.0018± 0.0000

fifa ↓
Method Single model Ensemble

MLP 0.8038± 0.0125 0.8011± 0.0143
XGBoost 0.7799± 0.0110 0.7795± 0.0114
MLPPLR 0.7935± 0.0127 0.7898± 0.0141
MNCA 0.7956± 0.0140 0.7933± 0.0145

TabM†
mini 0.7783± 0.0128 0.7768± 0.0123

NO FT 0.7833± 0.0085 –
TabPFNv2×8 0.7815± 0.0106 –
LAST LAYERS 0.7820± 0.0150 –
LORA 0.7834± 0.0085 –
FULLuntied 0.7845± 0.0126 –
FULLPLE 0.7818± 0.0111 –
EMB.,LN,HEAD 0.7773± 0.0126 0.7764± 0.0168
FULL 0.7834± 0.0106 0.7779± 0.0127

house ↓
Method Single model Ensemble

MLP 3.1163± 0.0248 3.0706± 0.0140
XGBoost 3.1703± 0.0098 3.1644± 0.0068
MLPPLR 3.0546± 0.0288 3.0170± 0.0070
MNCA 3.0928± 0.0340 3.0538± 0.0072

TabM†
mini 2.9829± 0.0225 2.9648± 0.0035

NO FT 3.1100± 0.0053 –
TabPFNv2×8 3.0637± 0.0045 –
LAST LAYERS 2.9826± 0.0335 –
LORA 2.9901± 0.0235 –
FULLuntied 2.9696± 0.0275 –
FULLPLE 2.9783± 0.0491 –
EMB.,LN,HEAD 3.0748± 0.0135 3.0660± nan
FULL 2.9919± 0.0268 2.9036± nan
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house_sales ↓
Method Single model Ensemble

MLP 0.1791± 0.0009 0.1763± 0.0003
XGBoost 0.1693± 0.0002 0.1689± 0.0001
MLPPLR 0.1693± 0.0005 0.1687± 0.0007
MNCA 0.1740± 0.0018 0.1714± 0.0005

TabM†
mini 0.1658± 0.0005 0.1647± 0.0002

NO FT 0.1632± 0.0000 –
TabPFNv2×8 0.1601± 0.0001 –
LAST LAYERS 0.1612± 0.0003 –
LORA 0.1592± 0.0002 –
FULLuntied 0.1589± 0.0006 –
FULLPLE 0.1588± 0.0004 –
EMB.,LN,HEAD 0.1605± 0.0001 0.1603± nan
FULL 0.1586± 0.0005 0.1579± nan

kdd_ipums_la_97-small ↑
Method Single model Ensemble

MLP 0.8831± 0.0068 0.8845± 0.0055
XGBoost 0.8830± 0.0086 0.8835± 0.0085
MLPPLR 0.8758± 0.0112 0.8765± 0.0108
MNCA 0.8807± 0.0046 0.8832± 0.0048

TabM†
mini 0.8765± 0.0091 0.8780± 0.0099

NO FT 0.8810± 0.0028 –
TabPFNv2×8 0.8824± 0.0059 –
LAST LAYERS 0.8828± 0.0054 –
LORA 0.8823± 0.0045 –
FULLuntied 0.8761± 0.0153 –
FULLPLE 0.8840± 0.0061 –
EMB.,LN,HEAD 0.8821± 0.0041 0.8820± 0.0055
FULL 0.8831± 0.0063 0.8862± 0.0078

medical_charges ↓
Method Single model Ensemble

MLP 0.0816± 0.0002 0.0814± 0.0000
XGBoost 0.0825± 0.0001 0.0825± 0.0000
MLPPLR 0.0812± 0.0002 0.0810± 0.0000
MNCA 0.0811± 0.0000 0.0810± 0.0000

TabM†
mini 0.0812± 0.0001 0.0812± 0.0000

NO FT 0.0812± 0.0000 –
TabPFNv2×8 0.0813± 0.0000 –
LAST LAYERS 0.0808± 0.0000 –
LORA 0.0809± 0.0000 –
FULLuntied 0.0809± 0.0000 –
FULLPLE 0.0808± 0.0000 –
EMB.,LN,HEAD 0.0809± 0.0000 0.0808± nan
FULL 0.0808± 0.0000 0.0807± nan

phoneme ↑
Method Single model Ensemble

MLP 0.8548± 0.0132 0.8635± 0.0099
XGBoost 0.8708± 0.0134 0.8771± 0.0156
MLPPLR 0.8744± 0.0105 0.8861± 0.0071
MNCA 0.8810± 0.0090 0.8861± 0.0057

TabM†
mini 0.8798± 0.0088 0.8885± 0.0056

NO FT 0.8837± 0.0074 –
TabPFNv2×8 0.8871± 0.0064 –
LAST LAYERS 0.8883± 0.0098 –
LORA 0.8919± 0.0073 –
FULLuntied 0.8721± 0.0566 –
FULLPLE 0.8916± 0.0085 –
EMB.,LN,HEAD 0.8913± 0.0082 0.8918± 0.0105
FULL 0.8925± 0.0104 0.9013± 0.0071

pol ↓
Method Single model Ensemble

MLP 5.5216± 0.6947 4.9945± 0.5923
XGBoost 4.3030± 0.0677 4.2548± 0.0488
MLPPLR 2.8846± 0.3192 2.5266± 0.0605
MNCA 5.7569± 0.5465 5.3773± 0.5463

TabM†
mini 2.4521± 0.1371 2.4175± 0.1124

NO FT 4.8233± 0.0533 –
TabPFNv2×8 3.4119± 0.1679 –
LAST LAYERS 2.8283± 0.2159 –
LORA 2.5989± 0.0357 –
FULLuntied 5.3104± 7.8499 –
FULLPLE 2.7128± 0.1078 –
EMB.,LN,HEAD 2.8319± 0.2250 2.7829± 0.2584
FULL 2.6424± 0.1172 2.3375± 0.1385

wine ↑
Method Single model Ensemble

MLP 0.7782± 0.0145 0.7907± 0.0117
XGBoost 0.7927± 0.0209 0.8010± 0.0186
MLPPLR 0.7774± 0.0154 0.7964± 0.0146
MNCA 0.7879± 0.0150 0.8005± 0.0121

TabM†
mini 0.7908± 0.0167 0.7963± 0.0113

NO FT 0.7865± 0.0132 –
TabPFNv2×8 0.7958± 0.0092 –
LAST LAYERS 0.7983± 0.0195 –
LORA 0.8024± 0.0137 –
FULLuntied 0.8024± 0.0152 –
FULLPLE 0.8020± 0.0141 –
EMB.,LN,HEAD 0.8021± 0.0131 0.8074± 0.0145
FULL 0.7979± 0.0139 0.8060± 0.0118
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wine_quality ↓
Method Single model Ensemble

MLP 0.6703± 0.0170 0.6530± 0.0152
XGBoost 0.6035± 0.0142 0.6025± 0.0139
MLPPLR 0.6537± 0.0235 0.6328± 0.0155
MNCA 0.6151± 0.0092 0.6058± 0.0149

TabM†
mini 0.6270± 0.0153 0.6194± 0.0150

NO FT 0.6841± 0.0209 –
TabPFNv2×8 0.6932± 0.0244 –
LAST LAYERS 0.6245± 0.0073 –
LORA 0.6160± 0.0108 –
FULLuntied 0.6224± 0.0117 –
FULLPLE 0.6216± 0.0109 –
EMB.,LN,HEAD 0.6115± 0.0174 0.6077± 0.0188
FULL 0.6206± 0.0099 0.6068± 0.0145
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Table 8: Extended results for the subsampled TabReD benchmark. Results are grouped by datasets.

sberbank-housing ↓
Method Single model Ensemble

split-0
MLP 0.2530± 0.0075 –
MLPPLR 0.2473± 0.0010 –
MNCA 0.2512± 0.0017 –
TabM†

mini 0.2393± 0.0032 –
NO FT 0.3020± 0.0026 –
FULL 0.3552± 0.0213 –

split-1
MLP 0.2650± 0.0113 –
MLPPLR 0.2593± 0.0068 –
MNCA 0.2907± 0.0128 –
TabM†

mini 0.2611± 0.0057 –
NO FT 0.2980± 0.0028 –
FULL 0.3090± 0.0271 –

split-2
MLP 0.2621± 0.0060 –
MLPPLR 0.2573± 0.0026 –
MNCA 0.2821± 0.0239 –
TabM†

mini 0.2553± 0.0064 –
NO FT 0.2808± 0.0020 –
FULL 0.3113± 0.0309 –

split-3
MLP 0.2656± 0.0124 –
MLPPLR 0.2461± 0.0007 –
MNCA 0.2838± 0.0495 –
TabM†

mini 0.2454± 0.0034 –
NO FT 0.3237± 0.0026 –
FULL 0.3473± 0.0269 –

split-4
MLP 0.2624± 0.0177 –
MLPPLR 0.2482± 0.0017 –
MNCA 0.2580± 0.0063 –
TabM†

mini 0.2433± 0.0018 –
NO FT 0.2484± 0.0005 –
FULL 0.2608± 0.0083 –

ecom-offers ↑
Method Single model Ensemble

split-0
MLP 0.5986± 0.0032 –
MLPPLR 0.5955± 0.0060 –
MNCA 0.5876± 0.0011 –
TabM†

mini 0.5895± 0.0042 –
NO FT 0.5595± 0.0006 –
FULL 0.5808± 0.0099 –

split-1
MLP 0.6031± 0.0012 –
MLPPLR 0.5913± 0.0070 –
MNCA 0.5961± 0.0074 –
TabM†

mini 0.6024± 0.0030 –
NO FT 0.5514± 0.0006 –
FULL 0.5930± 0.0054 –

split-2
MLP 0.6021± 0.0026 –
MLPPLR 0.5939± 0.0094 –
MNCA 0.5858± 0.0058 –
TabM†

mini 0.5944± 0.0023 –
NO FT 0.5570± 0.0008 –
FULL 0.5767± 0.0359 –

split-3
MLP 0.6076± 0.0012 –
MLPPLR 0.5921± 0.0127 –
MNCA 0.5924± 0.0145 –
TabM†

mini 0.5952± 0.0022 –
NO FT 0.5608± 0.0010 –
FULL 0.5958± 0.0062 –

split-4
MLP 0.6010± 0.0011 –
MLPPLR 0.5939± 0.0015 –
MNCA 0.5830± 0.0086 –
TabM†

mini 0.5890± 0.0039 –
NO FT 0.5538± 0.0007 –
FULL 0.5741± 0.0086 –
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maps-routing ↓
Method Single model Ensemble

split-0
MLP 0.1901± 0.0015 –
MLPPLR 0.1915± 0.0058 –
MNCA 0.2032± 0.0023 –
TabM†

mini 0.1946± 0.0017 –
NO FT 0.1717± 0.0000 –
FULL 0.1703± 0.0002 –

split-1
MLP 0.1814± 0.0005 –
MLPPLR 0.1793± 0.0008 –
MNCA 0.1815± 0.0004 –
TabM†

mini 0.1787± 0.0003 –
NO FT 0.1776± 0.0000 –
FULL 0.1764± 0.0004 –

split-2
MLP 0.1778± 0.0009 –
MLPPLR 0.1761± 0.0013 –
MNCA 0.1787± 0.0008 –
TabM†

mini 0.1760± 0.0003 –
NO FT 0.1718± 0.0000 –
FULL 0.1736± 0.0011 –

split-3
MLP 0.1810± 0.0007 –
MLPPLR 0.1797± 0.0011 –
MNCA 0.1828± 0.0003 –
TabM†

mini 0.1786± 0.0010 –
NO FT 0.1766± 0.0001 –
FULL 0.1761± 0.0012 –

split-4
MLP 0.1781± 0.0004 –
MLPPLR 0.1761± 0.0005 –
MNCA 0.1783± 0.0004 –
TabM†

mini 0.1756± 0.0003 –
NO FT 0.1729± 0.0000 –
FULL 0.1729± 0.0006 –

homesite-insurance ↑
Method Single model Ensemble

split-0
MLP 0.9067± 0.0014 –
MLPPLR 0.9282± 0.0019 –
MNCA 0.9096± 0.0019 –
TabM†

mini 0.9399± 0.0016 –
NO FT 0.9510± 0.0001 –
FULL 0.9538± 0.0011 –

split-1
MLP 0.9007± 0.0014 –
MLPPLR 0.9120± 0.0035 –
MNCA 0.8999± 0.0027 –
TabM†

mini 0.9355± 0.0009 –
NO FT 0.9437± 0.0001 –
FULL 0.9480± 0.0027 –

split-2
MLP 0.9067± 0.0011 –
MLPPLR 0.8537± 0.1013 –
MNCA 0.9060± 0.0025 –
TabM†

mini 0.9406± 0.0012 –
NO FT 0.9488± 0.0001 –
FULL 0.9521± 0.0007 –

split-3
MLP 0.9019± 0.0011 –
MLPPLR 0.9187± 0.0021 –
MNCA 0.9048± 0.0028 –
TabM†

mini 0.9431± 0.0008 –
NO FT 0.9472± 0.0001 –
FULL 0.9519± 0.0014 –

split-4
MLP 0.9087± 0.0010 –
MLPPLR 0.9239± 0.0026 –
MNCA 0.9077± 0.0033 –
TabM†

mini 0.9423± 0.0012 –
NO FT 0.9441± 0.0001 –
FULL 0.9489± 0.0013 –
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cooking-time ↓
Method Single model Ensemble

split-0
MLP 0.4893± 0.0005 –
MLPPLR 0.4819± 0.0011 –
MNCA 0.4887± 0.0021 –
TabM†

mini 0.4816± 0.0010 –
NO FT 0.6283± 0.0244 –
FULL 0.4860± 0.0006 –

split-1
MLP 0.4950± 0.0012 –
MLPPLR 0.4926± 0.0011 –
MNCA 0.5010± 0.0005 –
TabM†

mini 0.4916± 0.0012 –
NO FT 0.4958± 0.0001 –
FULL 0.4938± 0.0027 –

split-2
MLP 0.4927± 0.0007 –
MLPPLR 0.4910± 0.0007 –
MNCA 0.4957± 0.0020 –
TabM†

mini 0.4881± 0.0005 –
NO FT 0.4867± 0.0000 –
FULL 0.4861± 0.0009 –

split-3
MLP 0.4967± 0.0007 –
MLPPLR 0.4917± 0.0009 –
MNCA 0.4981± 0.0009 –
TabM†

mini 0.4904± 0.0006 –
NO FT 0.4889± 0.0000 –
FULL 0.4886± 0.0013 –

split-4
MLP 0.4972± 0.0009 –
MLPPLR 0.4932± 0.0016 –
MNCA 0.5009± 0.0022 –
TabM†

mini 0.4920± 0.0014 –
NO FT 0.4903± 0.0000 –
FULL 0.4894± 0.0003 –

homecredit-default ↑
Method Single model Ensemble

split-0
MLP 0.7788± 0.0037 –
MLPPLR 0.7721± 0.0137 –
MNCA 0.7935± 0.0062 –
TabM†

mini 0.7774± 0.0081 –
NO FT 0.7304± 0.0011 –
FULL 0.7333± 0.0137 –

split-1
MLP 0.7407± 0.0021 –
MLPPLR 0.7543± 0.0063 –
MNCA 0.7557± 0.0032 –
TabM†

mini 0.7629± 0.0043 –
NO FT 0.7301± 0.0012 –
FULL 0.7493± 0.0073 –

split-2
MLP 0.7739± 0.0047 –
MLPPLR 0.7761± 0.0055 –
MNCA 0.7635± 0.0051 –
TabM†

mini 0.7785± 0.0020 –
NO FT 0.7722± 0.0005 –
FULL 0.7688± 0.0028 –

split-3
MLP 0.7569± 0.0035 –
MLPPLR 0.7694± 0.0057 –
MNCA 0.7663± 0.0048 –
TabM†

mini 0.7726± 0.0040 –
NO FT 0.6995± 0.0013 –
FULL 0.7169± 0.0169 –

split-4
MLP 0.7500± 0.0023 –
MLPPLR 0.7561± 0.0083 –
MNCA 0.7492± 0.0081 –
TabM†

mini 0.7820± 0.0071 –
NO FT 0.7386± 0.0003 –
FULL 0.7556± 0.0193 –
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delivery-eta ↓
Method Single model Ensemble

split-0
MLP 0.5742± 0.0053 –
MLPPLR 0.5692± 0.0017 –
MNCA 0.5708± 0.0025 –
TabM†

mini 0.5695± 0.0045 –
NO FT 0.5671± 0.0002 –
FULL 0.5630± 0.0014 –

split-1
MLP 0.5684± 0.0009 –
MLPPLR 0.5628± 0.0024 –
MNCA 0.5648± 0.0002 –
TabM†

mini 0.5662± 0.0020 –
NO FT 0.5629± 0.0001 –
FULL 0.5642± 0.0014 –

split-2
MLP 0.5803± 0.0076 –
MLPPLR 0.5636± 0.0020 –
MNCA 0.5651± 0.0026 –
TabM†

mini 0.5600± 0.0028 –
NO FT 0.5632± 0.0001 –
FULL 0.5607± 0.0018 –

split-3
MLP 0.5587± 0.0013 –
MLPPLR 0.5537± 0.0012 –
MNCA 0.5588± 0.0012 –
TabM†

mini 0.5564± 0.0022 –
NO FT 0.5516± 0.0000 –
FULL 0.5518± 0.0017 –

split-4
MLP 0.5630± 0.0011 –
MLPPLR 0.5611± 0.0015 –
MNCA 0.5623± 0.0015 –
TabM†

mini 0.5566± 0.0018 –
NO FT 0.5649± 0.0002 –
FULL 0.5588± 0.0011 –

weather ↓
Method Single model Ensemble

split-0
MLP 1.7852± 0.0068 –
MLPPLR 1.7235± 0.0192 –
MNCA 1.7741± 0.0111 –
TabM†

mini 1.6804± 0.0049 –
NO FT 1.7334± 0.0004 –
FULL 1.6129± 0.0095 –

split-1
MLP 1.6970± 0.0082 –
MLPPLR 1.6389± 0.0042 –
MNCA 1.6805± 0.0079 –
TabM†

mini 1.6167± 0.0028 –
NO FT 1.7161± 0.0003 –
FULL 1.6241± 0.0105 –

split-2
MLP 1.6961± 0.0098 –
MLPPLR 1.6355± 0.0049 –
MNCA 1.6787± 0.0032 –
TabM†

mini 1.6164± 0.0049 –
NO FT 1.7307± 0.0005 –
FULL 1.6216± 0.0110 –

split-3
MLP 1.6694± 0.0042 –
MLPPLR 1.6098± 0.0028 –
MNCA 1.6548± 0.0047 –
TabM†

mini 1.5806± 0.0061 –
NO FT 1.7011± 0.0010 –
FULL 1.5921± 0.0111 –

split-4
MLP 1.7196± 0.0064 –
MLPPLR 1.6567± 0.0042 –
MNCA 1.6825± 0.0038 –
TabM†

mini 1.6213± 0.0062 –
NO FT 1.7453± 0.0014 –
FULL 1.6443± 0.0029 –
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