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Language-Guided Visual Prompt Compensation for Multi-Modal
Remote Sensing Image Classification with Modality Absence

Anonymous Authors

ABSTRACT
Joint classification ofmulti-modal remote sensing images has achieved
great success thanks to complementary advantages of multi-modal
images. However, modality absence is a common dilemma in real
world caused by imaging conditions, which leads to a breakdown of
most classification methods that rely on complete modalities. Exist-
ing approaches either learn shared representations or train specific
models for each absence case so that they commonly confront the
difficulty of balancing the complementary advantages of the modal-
ities and scalability of the absence case. In this paper, we propose a
language-guided visual prompt compensation network (LVPCnet)
to achieve joint classification in case of arbitrary modality absence
using a unified model that simultaneously considers modality com-
plementarity. It embeds missing modality-specific knowledge into
visual prompts to guide the model in capturing complete modal
information from available ones for classification. Specifically, a
language-guided visual feature decoupling stage (LVFD-stage) is
designed to extract shared and specific modal feature from multi-
modal images, establishing a complementary representation model
of complete modalities. Subsequently, an absence-aware visual
prompt compensation stage (VPC-stage) is proposed to learn visual
prompts containing missing modality-specific knowledge through
cross-modal representation alignment, further guiding the com-
plementary representation model to reconstruct modality-specific
features for missing modalities from available ones based on the
learned prompts. The proposed VPC-stage entails solely training
visual prompts to perceive missing information without retraining
the model, facilitating effective scalability to arbitrary modal miss-
ing scenarios. Systematic experiments conducted on three public
datasets have validated the effectiveness of the proposed approach.

KEYWORDS
Joint classification,Multi-modal, Modality absence, Language-visual
model, Prompt learning

1 INTRODUCTION
Joint classification of multi-modal remote sensing images is an effi-
cient technique that integrates information from various modalities
to achieve precise classification of land unit elements[9]. It plays
a crucial role in the earth observation tasks such as land analysis
and utilization[12], urban planning and management[3], as well
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Figure 1: Illustrations of different methods for addressing
missing modalities. (a) Generation-based methods. (b) Trans-
fer learning-based methods. (c) modality-shared latent space
learning methods. (d)The proposed method.

as environmental conservation and monitoring[28]. Recently, the
researches of joint classification have shown great success, with
their outstanding performance relying on the exploration of com-
plementary advantage from complete modalities[7, 31, 42]. How-
ever, modality absence is a common dilemma[21, 38] in real-world
scenarios due to sensor malfunctions or inconsistent satellite re-
visit period. This makes it challenging for traditional classification
models to extract effective discriminative features from the limited
modal data, resulting in a significant degradation in classification
performance. Therefore, it becomes essential to develop joint clas-
sification method that can cope with modality absence.

The existing methods to address the issue of modality absence
in multi-modal classification can be categorized into three types:
generation-based[36, 46], transfer learning-based[33, 34] andmodality-
shared latent space learning methods[6, 10]. The generation-based
methods restore missing modality images by synthesizing informa-
tion from available modalities through generative network[2, 46].
Nevertheless, due to the instability of image generation, this may
introduce considerable noise, which is harmful for classification[8].
Transfer learning-based methods typically transfer knowledge from
a full-modal network to a network with modality absence through
knowledge distillation[14], thereby optimizing the classification
boundary with modality absence. Whereas it is challenging to guide
the network with modality absence to inherit complete modal in-
formation owing to significant heterogeneity among remote sens-
ing images of different modalities, which may lead to sub-optimal
performance[35]. Although promising results can be obtained, these
methods require training a specificmodel for eachmissing scenario[37],
which undoubtedly introduces a significantly additional training
parameters, severely limiting their scalability to application sce-
narios with arbitrary modality absence. To alleviate this limitation,
modality-shared latent space learning methods aim to learn a uni-
fied model for various modal combinations[45]. It utilizes the latent
commonality between modalities for classification, typically estab-
lishing shared subspace for all modalities and learning modality-
invariant features to mitigate the influence of modality gap[6].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, the discriminative ability in feature representation of
such methods is limited since they solely focus on modality-shared
features[19], neglecting modality-specific information, thus for-
feiting the complementary advantages of multi-modality. These
discussions motivated us to pose a research question: Can a unified
model be constructed that simultaneously considers both modality-
shared and modality-specific information, while remaining robust
to arbitrary modality absence without incurring significantly addi-
tional training parameters?

To address the above issue, we draw inspiration from prompt
learning. The essence of prompt learning is to design prompts for
downstream tasks, guiding pre-trained models to perform the an-
ticipant tasks without modifying itself, where knowledge about
the task is embedded as prompts in input tokens to help network
understand the meaning of task. Inspired by this, we propose a
language-guided visual prompt compensation network (LVPCnet)
to achieve joint classification of multi-modal remote sensing im-
ages in case of modality absence. In this designed framework, the
classification model can be guided to capture modality-specific in-
formation of missing modalities from available ones by learning a
visual prompt that can perceive the missing modality knowledge,
enabling the acquisition of complete modal information for classifi-
cation. Concretely, it is achieved by a two-stage training process:
language-driven visual feature decoupling stage (LVFD-stage) and
absence-aware visual prompt compensation stage (VPC-Stage). The
LVFD-stage decomposes multi-modal images into modal-shared
and modality-specific representations through a shared encoder
and multiple specific encoders, establishing a complementary fea-
ture representation framework. Unlike common decomposition
methods, we employ modality attribute-associated language priors
to guide the decoupling of multi-modal visual features under multi-
dimensional visual-language alignment constraints. This approach
leverages the rich semantic information provided by language to
help the visual system better understand and interpret modal con-
tent. The proposed VPC-stage takes available modalities as input
to the pre-trained feature representation framework of the LVFD-
stage, and integrates visual prompts with specific encoders for miss-
ing modalities and employ cross-modal representation alignment.
This allows visual prompts to learn specific knowledge about miss-
ing modalities, thereby guiding these specific encoders to extract
specific features of missing modalities from available ones.

To summarize, the contributions of this work are as follows:
• We propose a unified model LVPCnet for joint classifica-
tion with arbitrary modal absence, which incorporates the
modality complementarity through reconstructing the spe-
cific feature of missing modalities by learning visual prompts
capable of perceiving missing modality-specific knowledge.

• We design an language-driven visual feature decoupling
stage (LVFD-stage) for multimodal image decoupling, where
language priors are utilized to explicitly guide the model to
capture modality-specific knowledge, facilitating subsequent
visual prompts to adeptly acquire the specific knowledge
associated with the absent modality.

• We design absence-aware visual prompts for guiding the
compensation of missing modality-specific features from
the available ones, a process that only requires training the

prompts without modifying original model, facilitating ex-
tension to arbitrary missing scenarios.

2 RELATEDWORK
2.1 Modality Absence in Multi-modal Learning
The issue of modality absence is common in multi-modal learn-
ing due to the limitations of imaging conditions, and several stud-
ies have emerged to provide solutions for overcoming modality
absence[18, 29, 39]. Ma et al. [22] proposed the SMIL model, which
applied a Bayesian meta-learning framework to learn the weighted
sum of modal priors from complete modalities to reconstruct the
features of missing modalities. Pande et al.[23] introduce an ad-
versarial training-driven hallucination architecture that employs a
cross-modal hallucination module based on C-GAN to generate dis-
criminative features related to the missing modality from available
modalities. MMIN[41] leverages a cascaded residual autoencoder for
cross-modal imagination to learn joint multi-modal representations
for classification. Wang et al.[30] proposed a learnable cross-modal
knowledge distillation model for adaptive recognition of significant
modalities and knowledge from them to assist other modalities in
addressing modality deficiency from a cross-modal perspective.

2.2 Prompt Learning
The concept of prompt learning was initially introduced in the
field of natural language processing[43]. It adapts to various down-
stream tasks by modifying prompt instead of adjusting the pre-
trained language model. Presently, prompt learning have been in-
corporated into tasks related to computer vision[15, 25]. Coop[44]
utilized learnable vectors in a continuous space to represent the
prompt of context, while maintained fixed parameters for the entire
CLIP pre-trained model. MaPLe[16] employed interactive prompt
in both visual and language domains simultaneously to enhance
the consistency of representations between vision and language.
PromptFuse[20] utilized prompt vectors to align modalities, adapt-
ing to downstream multi-modal tasks in a modular and parameter-
efficient manner. These studies suggested that prompt learning
can effectively adapt to various tasks in different input scenarios.
This provides us with an idea of integrating prompt learning into
multi-modal learning, and prompt learning can be applied to adapt
to multi-modal learning in case of missing modalities.

3 METHOD
3.1 Overview
Given a multi-modal images dataset with𝑚 modalities, we assume
𝑚 = 2 for simplicity and without losing generality. It is denoted by
𝐷 = {X𝑚𝑖 ,X𝑚 𝑗 , 𝑦} where X𝑚𝑖 and X𝑚 𝑗 are the images of modality
𝑚𝑖 and𝑚 𝑗 , and 𝑦 is the category labels. Then, an incomplete modal-
ity case can be represented as 𝐷𝑚𝑖 = {X𝑚𝑖 , 𝑦} or 𝐷𝑚 𝑗 = {X𝑚 𝑗 , 𝑦}.
The proposed LVPCnet aims to accurately predict category labels 𝑦
from either complete or incomplete modal images during inference
by fully leveraging the information from complete modalities dur-
ing training. Considering that the missing modality of each input
data cannot be predicted in advance in real-world scenarios, train-
ing a separate model for each missing scenario would undoubtedly
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Figure 2: Overall architecture of the proposed LVPCnet. The method consists of two stage:1) language-driven visual feature
decoupling stage for extraction of shared and specific visual features. 2) absence-aware visual prompt compensation stage for
the reconstruction of missing modality-specific features.

introduce a large number of additional training parameters. To alle-
viate this issue, we propose a unified classification model to address
arbitrary modality absence, which is achieved by learning visual
prompts capable of perceiving missing modality knowledge. The
learned prompts can guide the classification model to capture spe-
cific modality information of the missing modality from available
ones, thus obtaining complete modal information for classification.

The overview of our framework is depicted in Figure 2, a two-
stage framework is employed to direct prompts for the compensa-
tion of missing modality. To make visual prompts focus on learning
modality-specific information, we propose a visual feature decou-
pling stage LVFD-stage to separate shared and specific information
in multi-modal images. Considering the complexity of image dis-
tribution which makes it difficult for the prompts to fully learn
the modality-specific representations, we utilize language priors
to drive the decoupling representation of multi-modal images. The
superiority of this strategy to explicitly guide the representation
of image content instead of complex distribution can be attributed
to the ability of language in capturing abstract concepts and de-
scriptions of relationships in the images. Subsequently, an absence-
aware visual prompts compensation stage VPC-stage is proposed
to utilize visual prompts to guide the reconstruction of missing
modality-specific features to complete the modal information.

Specifically, LVFD-stage takes multi-modal remote sensing im-
ages𝐷 as input. Under the constraint ofmulti-dimensional language-
visual contrastive alignment, each modality image is separately
input into shared and respective modality-specific visual encoders
to obtain modality-shared and modality-specific features, which are
represented as {𝑐𝑚𝑖

, 𝑐𝑚 𝑗
} and {𝑠𝑚𝑖

, 𝑠𝑚 𝑗
}, respectively. To ensure

the completeness of complementary feature representation in the
absence of certain modalities, particular attention should be given
to compensating for specific features 𝑠𝑚𝑖

or 𝑠𝑚 𝑗
. To this end, the

VPC-stage takes available modalities 𝑚𝑖 (or 𝑚 𝑗 ) as input, while
integrating visual prompts into the visual encoders specifically to
missing modalities, aiming to learn the mapping from modality𝑚𝑖

to𝑚 𝑗 in the modality-specific latent feature space by optimizing the
prompts. This enables the derivation of the specific representation
𝑠′𝑚 𝑗

(or 𝑠′𝑚𝑖
) for modality𝑚 𝑗 (or𝑚𝑖 ) based on𝑚𝑖 (or𝑚 𝑗 ) when𝑚 𝑗

(or𝑚𝑖 ) is missing. In this case, complete complementary features
can be obtainable for classification, as follows:

𝑠′𝑚 𝑗
= 𝐸

𝑚 𝑗

𝑠𝑝 ({X𝑚𝑖 ; P})
𝑦 = 𝐶𝐿𝑆 (𝑐𝑚𝑖

, 𝑠𝑚𝑖
, 𝑠′𝑚 𝑗

)
(1)

where 𝐸𝑚 𝑗

𝑠𝑝 denotes the specific encoder of𝑚 𝑗 modality, P represents
the absence-aware visual prompt specific to 𝑚 𝑗 modality and 𝑦

denotes the predicted category labels.
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Figure 3: Examples of language descriptions for HSI and
LiDAR

3.2 Language-Driven Visual Feature Decoupling
Due to the presence of feature information overlap in multi-modal
features, directly recovering the features of missing modalities may
lead to a greater emphasis on recovering over-lapping parts, poten-
tially weakening the reconstruction effect of specific information.
Therefore, it is necessary to decompose the complementary features
of the multi-model data into modality-shared and modality-specific
features, which facilitates targeted compensation for the missing
specific features in subsequent steps. The traditional decoupling
methods often merely separate features without providing guid-
ance for expressing the content of modalities. Meanwhile, language
can provide rich semantic information to assist the visual system
to better understand and interpret images contents. To this end,
language prior knowledge is introduced to guide the decoupling
of multi-modal visual features. It is extracted from the pre-trained
large language model, which is based on the land cover diversity
of the multi-modal images, and can be decomposed into shared
and specific language priors. Shared and specific language features
are extracted from the priors through a language encoder, and the
visual features of different modalities are aligned with their corre-
sponding language features through contrastive learning to achieve
feature decoupling. In order to extract effective language priors
and guide visual representations, both language feature establish-
ment and multi-dimensional visual-language alignment aspects are
comprehensively considered.

3.2.1 Language Feature Establishment. It is well known that lan-
guage, as a comprehensive descriptor of land cover information,
can reflect the representation forms of land cover characteristics
in different visual modalities. Based on this, we establish language
priors for each category of land cover, encompassing both shared
and modality-specific information, which is achieved by providing
modal attribute-related guidelines to a large language generation
model. We consider the fact that different modal images share the
same information in the semantic space as a basis for describing
modality-shared attributes, utilizing the template “⟨𝑐𝑙𝑎𝑠𝑠 ;𝑁𝑎𝑚𝑒⟩"
to expand complete shared language descriptions. For specific as-
pects, it depends on the information of land cover reflected by each
modality. For example, for two data modalities, hyperspectral image
(HSI) can better reflect spectral information, so language descrip-
tions for land cover features regarding color and material can be
derived from HSI. On the other hand, LiDAR can efficiently and
accurately obtain elevation information of the ground compared

to HSI. Therefore, height information serves as specific language
descriptions for LiDAR. An example is shown in Figure 3.

After acquiring the language descriptions, a text encoder is em-
ployed to extract shared and specific language features from the
corresponding language descriptions, which is constructed through
the pre-trained transformer architecture of CLIP[24] that is widely
used in language models. It utilizes lower-cased byte pair encoding
(BPE) to obtain tokenized representations of the text, which are
then passed through the the fixed-parameter transformer for en-
coding to extract modality-specific features denoted as F𝑠𝑚𝑖

𝑙
, F𝑠𝑚 𝑗

𝑙
and modality-shared semantic features represented as F𝑐

𝑙
.

3.2.2 Multi-Dimensional Visual-Language Alignment. For the input
multi-modal images X𝑚𝑖 and X𝑚 𝑗 , encoders are designed for fea-
ture embedding. Specifically, two independently optimized specific
encoders 𝐸𝑚𝑖

𝑠𝑝 (·) and 𝐸
𝑚 𝑗

𝑠𝑝 (·) are designed for extracting specific
features, and the other parameter-shared shared encoder 𝐸𝑠ℎ (·)
for extracting shared features across different modalities. It can be
formulated as follows:

F𝑐𝑚𝑖
𝑣 = 𝐸𝑠ℎ (X𝑚𝑖 ), F𝑐𝑚 𝑗

𝑣 = 𝐸𝑠ℎ (X𝑚 𝑗 )

F𝑠𝑚𝑖
𝑣 = 𝐸

𝑚𝑖
𝑠𝑝 (X𝑚𝑖 ), F𝑠𝑚 𝑗

𝑣 = 𝐸
𝑚 𝑗

𝑠𝑝 (X𝑚 𝑗 )
(2)

where F𝑐𝑚𝑖
𝑣 and F𝑐𝑚 𝑗

𝑣 represent the extracted shared features from
the respective modalities, and F𝑠𝑚𝑖

𝑣 and F𝑠𝑚 𝑗

𝑣 denote the specific
features from each modality, respectively. Here, 𝐸𝑠ℎ (·), 𝐸𝑚𝑖

𝑠𝑝 (·) and
𝐸
𝑚 𝑗

𝑠𝑝 (·) follow the same structure as the ViT, with an additional
MLP for projecting the features into the common space.

In order to optimize shared and specific visual encoders for more
comprehensive extraction of decoupledmodality complementary in-
formation, a multi-dimensional visual-language alignment strategy
has been proposed, which is implemented by aligning language-
shared and language-specific features with modality-shared and
modality-specific visual features respectively through contrastive
learning between images and language pairs. Unlike traditional con-
trastive learning between individual language-image pairs, we as-
sign the same language to all images of the same category, whether
it’s a shared or specific description. Treating all visual features of
the same category with the same language as positive samples aims
to maximize the similarity between their feature vectors, effectively
reducing intra-class variance while widening the inter-class gap.
For the shared visual features of modalities𝑚𝑖 and𝑚 𝑗 , we align
both of them with the shared language features, the loss takes the
following form:

L𝑠ℎ𝑎𝑟𝑒𝑑 = L (F𝑐
𝑙
,F𝑐𝑚𝑖

𝑣 ) + L (F𝑐
𝑙
,F
𝑐𝑚𝑗
𝑣 ) (3)

Where L (F𝑐
𝑙
,F𝑐𝑚𝑖

𝑣 ) and L (F𝑐
𝑙
,F
𝑐𝑚𝑗
𝑣 ) denote the align loss between the

shared language and the images of modalities𝑚𝑖 and𝑚 𝑗 , respec-
tively. TakingL (F𝑐

𝑙
,F𝑐𝑚𝑖

𝑣 ) as an example, andL (F𝑐
𝑙
,F
𝑐𝑚𝑗
𝑣 ) is computed

in the same way. The image-to-text and text-to-image alignment
losses are computed as:

L (F𝑐
𝑙
,F𝑐𝑚𝑖
𝑣 ) = −

𝑁∑
𝑛=0

1
|𝑃 (𝑛) | (

∑
𝑝∈𝑃𝑙 (𝑛)

log
exp( [ (F𝑐𝑚𝑖

𝑣 )𝑛 ]𝑇 [ (F𝑐
𝑙
)
𝑝
]+/𝜏 )∑

𝑎∈𝐴𝑙 (𝑛) exp( [ (F
𝑐𝑚𝑖
𝑣 )𝑛 ]𝑇 [ (F𝑐

𝑙
)
𝑎
]−/𝜏 )

+ ∑
𝑝∈𝑃𝑣 (𝑛)

log
exp( [ (F𝑐

𝑙
)
𝑛
]𝑇 [ (F𝑐𝑚𝑖

𝑣 )𝑝 ]+/𝜏 )∑
𝑎∈𝐴𝑣 (𝑛) exp( [ (F

𝑐
𝑙
)
𝑛
]𝑇 [ (F𝑐𝑚𝑖

𝑣 )𝑎 ]
−/𝜏 )

)

(4)
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here, for each embedding feature F𝑐𝑚𝑖
𝑣 and F𝑐

𝑙
in minibatch, 𝑃𝑣 (𝑛)

and𝐴𝑣 (𝑛) are the sets of all positive and negative samples of visual
features respectively, and 𝑃𝑣 (𝑛) and 𝐴𝑣 (𝑛) are their cardinality.
Similarly, 𝑃𝑙 (𝑛) and 𝐴𝑙 (𝑛) represent the positive and negative sam-
ple sets for language features. The language and visual features
belonging to the same category are put into 𝑃𝑙 (𝑛) and 𝑃𝑣 (𝑛), and
the out-of-class features are put into 𝐴𝑙 (𝑛) and 𝐴𝑣 (𝑛). 𝜏 is a scalar
temperature parameter. L𝑠𝑝𝑒_𝑘 represents the alignment loss of
the 𝑘-th modality-specific features, computed similar to L (F𝑐

𝑙
,F𝑐𝑚𝑖

𝑣 ) .

3.3 Absence-Aware Visual Prompt
Compensation

VPC-stage is designed to recover specific information of missing
modalities. To minimize the introduction of additional parameters,
we are inspired by the idea of prompt learning and design a visual
prompt to learn specific knowledge of the missing modality. This
prompt is then used to guide the model in the LVFD-stage stage to
extract specific features of the missing modality from available ones.
We achieve this by integrating visual prompts into specific encoders
of the missing modality, taking available modalities as input to
these encoders, and aligning the output features with the specific
language features of the missing modality. During training, the only
trainable parameters are the absence-aware visual prompts used to
learn the missing modality features. We illustrate the compensation
of specific features for modality𝑚𝑖 with missing modality𝑚𝑖 as an
example.

A dimension matching operation is employed to unify the di-
mensions of the available modal input X𝑚 𝑗 ∈ R𝐻×𝑊 ×𝐶2 with
the missing modal X𝑚𝑖 ∈ R𝐻×𝑊 ×𝐶1 , ensuring that it meets the
input requirements of the specific encoder for modality𝑚𝑖 . The
dimension matching is accomplished through a convolutional layer,
which can be represented as:

X̂𝑚 𝑗 = 𝑐𝑜𝑛𝑣 (X𝑚 𝑗 ) (5)

where X̂𝑚 𝑗 ∈ R𝐻×𝑊 ×𝐶1 represents the output after dimension
matching. Then the X̂𝑚 𝑗 is divided into𝑛 patches {I𝑞 ∈ R𝑝×𝑝×𝐶1 |1 ≤
𝑞 ≤ 𝑛}, 𝑝 × 𝑝 denotes the size of patches. Each patch is projected
into 𝑑-dimensional latent space, as follows

𝑒
𝑞

0 = 𝑃𝑟𝑜 𝑗 (I𝑞), 𝑒𝑞0 ∈ R𝑑 , 1 ≤ 𝑞 ≤ 𝑛 (6)

where 𝑃𝑟𝑜 𝑗 (·) represents the projection operation. To combine the
available modality𝑚 𝑗 with visual prompts to compensate for the
specific features of modality𝑚𝑖 we effectively adapt the specific
visual encoder of modality 𝑚𝑖 with modality 𝑚 𝑗 through visual
prompts. As mentioned before, the visual encoder is based on the
ViT structure, which generally consists of a cascade of 𝑁 encoder
layers (here 𝑁 = 4). We denote the patch embedding features of
layer 𝑙 as E𝑙 = {𝑒𝑞

𝑙
∈ R𝑑 |1 ≤ 𝑙 ≤ 𝑁, 1 ≤ 𝑞 ≤ 𝑛} ,where E𝑙 ∈ R𝑛×𝑑 .

Then absence-aware prompts are introduced into the input space
of each Transformer layer, which is attached to the embedding
feature together with an extra learnable classification token to form
an extension feature. For 𝑙-th layer 𝐿𝑙 , the prompts are denoted as
P𝑖 ∈ R𝑙𝑝×𝑑 and randomly initialized, where 𝑙𝑝 is the prompt length.
Finally, its output feature is denoted as:

F̂𝑚𝑖
𝑣 = 𝐿𝑁 (· · · 𝐿𝑙 (· · · 𝐿0 (𝑥𝑐𝑙𝑠0 ; P0;E0) · · · ; P𝑙 ) · · · ; P𝑁 ) (7)

where 𝑥𝑐𝑙𝑠0 ∈ R𝑑 denotes classification token, (·; ·) represents the
concatenation operations along the dimension of sequence length.
In order to enable the visual prompts to thoroughly learn the miss-
ing modality-specific information, we align the output features
F̂𝑚𝑖
𝑣 with the specific language features of the missing modality𝑚𝑖 ,

which is formulated as:

L𝑐𝑟𝑜𝑠𝑠 = −
𝑁∑
𝑛=0

1
|𝑃 (𝑛) | (

∑
𝑝∈𝑃𝑙 (𝑛)

log
exp( [ (F̂𝑚𝑖

𝑣 )𝑛 ]𝑇 [ (F𝑠𝑚𝑖
𝑙

)
𝑝
]+/𝜏 )∑

𝑎∈𝐴𝑙 (𝑛) exp( [ (F̂
𝑚𝑖
𝑣 )𝑛 ]𝑇 [ (F𝑠𝑚𝑖

𝑙
)
𝑎
]−/𝜏 )

+ ∑
𝑝∈𝑃𝑣 (𝑛)

log
exp( [ (F𝑠𝑚𝑖

𝑙
)
𝑛
]𝑇 [ (F̂𝑚𝑖

𝑣 )𝑝 ]+/𝜏 )∑
𝑎∈𝐴𝑣 (𝑛) exp( [ (F

𝑠𝑚𝑖
𝑙

)
𝑛
]𝑇 [ (F̂𝑚𝑖

𝑣 )𝑎 ]
−/𝜏 )

)

(8)
where F𝑠𝑚𝑖

𝑙
represents the specific language features, F̂𝑚𝑖

𝑣 is the
compensated visual features.

3.4 Training Objective
Stage1: Modality Feature Decoupling During the modality
feature decoupling, a joint optimization objective is defined to
extract complementary decomposed features from multi-modal
data, which contains a combination of multiple contrastive loss and
joint classification loss:

L𝑠𝑡𝑎𝑔𝑒1 = 𝜆1L𝑐𝑜𝑛 + 𝜆2L𝑐𝑙𝑠 (9)

where the hyperparameter 𝜆1, 𝜆2 control the balance of multiple
losses. The multiple contrastive loss is composed of both shared
feature alignment loss and all modality-specific feature alignment
losses:

L𝑐𝑜𝑛 = L𝑠ℎ𝑎𝑟𝑒𝑑 +
𝑚∑︁
𝑘

L𝑠𝑝𝑒_𝑘 (10)

here L𝑠ℎ𝑎𝑟𝑒𝑑 and L𝑠𝑝𝑒_𝑘 denotes the alignment loss for shared
features and specific features of modality𝑚𝑘 , respectively.

The classification loss L𝑐𝑙𝑠 further optimizes the visual encoder,
enhancing the extraction of more discriminative features. The com-
putation formula is as follows:

L𝑐𝑙𝑠 = −
𝑁∑︁
𝑛=1

𝑦𝑛 log(𝑦𝑛) (11)

where 𝑁 is the number of classes.
Stage2: Compensation of Specific Features This stage con-

structs cross-modal visual-language alignment loss L𝑐𝑟𝑜𝑠𝑠 and clas-
sification loss L𝑐𝑙𝑠 for feature compensation and classification,

L𝑠𝑡𝑎𝑔𝑒2 = 𝜆3L𝑐𝑟𝑜𝑠𝑠 + 𝜆4L𝑐𝑙𝑠 (12)

here, L𝑐𝑟𝑜𝑠𝑠 is the loss described in Section 3.3, 𝜆3 and 𝜆4 are hy-
perparameters.

4 EXPERIMENTS
4.1 Datasets Description
We conduct experiments on three publicly multi-modal datasets for
performance evaluation. A brief description of these three datasets
is as follows:

1) Houston2013[4] This dataset is part of the 2013 IEEE GRSS
Data Fusion Competition and contains hyperspectral (HS) and Li-
DAR images depicting 15029 labeled samples of 15 categories.

2) Trento[26] The dataset was taken in a rural area south of
Trento and consists of HS and LiDAR data, with a total of 30214
labeled samples in 6 land cover categories.
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Figure 4: Classification maps of the Houston2013 dataset. (a)Houston2013 dataset (HS). (b)Ground truth. (c)HS-net. (d)MDL-RS.
(e) Cospace. (f)MSH-Net. (g)LVPCnet(HS). (h)MFT-Net. (i)GLT-Net. (j)Sal2RN. (k) HCT-Net. (l)LVPCnet(HS and LiDAR)

Figure 5: Classification maps of the Trento dataset.

3) Augsburg[1] This dataset originates from Augsburg, Ger-
many, comprising three modalities of data: HS, SAR, and LiDAR. It
encompasses 7 categories with a total of 78294 labeled samples.

4.2 Experiments Setup
4.2.1 Evaluation Metrics and Implementation Details. Three evalu-
ation metrics[32] are employed for quantitative analysis, including
overall accuracy (OA), average accuracy (AA), and kappa coefficient.

The proposed method is implemented on the PyTorch platform
and trained on two NVIDIA GeForce 3090 GPUs using the Adam

optimizer. The model is trained for 500 epochs in the LVFD-stage,
followed by 300 epochs in the VPC-stage. The batch size is set as
1024. The learning rate is initially set to 1e-3, and updated by a
CosineAnnealingLR strategy. All the comparison methods selected
40 samples for training.

4.2.2 Competing Methods. To demonstrate the effectiveness of
the proposed method in the joint classification of multi-modal re-
mote sensing images in case of modality absence, we set up three
different experimental configurations: 1) Training and testing oc-
cur within single modality in the proposed method, with each
model named after the modality it utilizes. For instance, “HS-net”
refers to a model trained with HS images, while “LiDAR-net” in-
dicates a model trained with LiDAR images. 2) State-of-the-art
methods for joint classification in case of modality absence, includ-
ing Cospace[13], MDL-RS[11] and MSH-Net[35]. 3) State-of-the-art
methods for joint classification with complete modalities: MFT[27],
Sal2RN[17], HCT[40] and GLT-Net[5].

4.3 Comparison with State-of-the-Art Methods
4.3.1 Results and Analysis on HS-LiDAR. The left and middle parts
of Table 1 show the performance comparison of OA, AA, and kappa
on Houston2013 and Trento datasets under three types of compari-
son methods, respectively. Figures 4 and 5 show the classification
maps of the comparison algorithms considered in the Houston and
trento datasets, respectively. First, for scenarios without modality
absence, it is evident that the model HS-LiDAR-Net trained with
multi-modality outperform the HS-Net and LiDAR-Net trained with
only uni-modality, which clearly demonstrates the complementary
advantages of multi-modality. In the absence of HS or LiDARmodal-
ities, the OA of HS-LiDAR-Net drops by 10.37% and 1.54% on the
Trento dataset. On the Houston2013 dataset, the decrease is more
pronounced, with declines of 16.81% and 1.97%. This indicates the
ineffectiveness of applying traditional multi-modal models to the
case of modal incompleteness. In contrast, the proposed LVPCnet
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Table 1: Classification accuracy of different methods on Trento, Houston and Augsburg Datasets. “W/o” denotes the missing
modality in inference. “LiDAR/SAR-Net” indicates models trained and tested with only LiDAR or SAR images.

Houston2013 Trento Augsburg

Method
Training
Modalities

Testing
Modalities

OA(%) AA(%) Kappa
Training
Modalities

Testing
Modalities

OA(%) AA(%) Kappa
Training
Modalities

Testing
Modalities

OA(%) AA(%) Kappa

single modality single modality single modality
HS-Net HS HS 97.01 97.46 96.78 HS HS 98.31 96.99 97.76 HS HS 90.44 87.95 86.73

LiDAR/SAR-Net LiDAR LiDAR 82.26 83.08 80.84 LiDAR LiDAR 90.41 85.57 87.36 SAR SAR 84.95 74.61 79.34
W/o HS modality W/o HS modality W/o HS modality

HS-LiDAR/SAR-Net HS, LiDAR LiDAR 81.67 83.68 80.22 HS, LiDAR LiDAR 89.20 87.77 85.86 HS, SAR SAR 83.64 77.77 77.80
Cospace HS, LiDAR LiDAR 34.69 36.75 29.80 HS, LiDAR LiDAR 73.87 77.50 66.18 HS, SAR SAR 35.03 35.17 23.26
MDL-RS HS, LiDAR LiDAR 73.51 76.64 71.51 HS, LiDAR LiDAR 65.09 70.05 57.00 HS, SAR SAR 52.87 54.97 42.78
MSH-Net HS, LiDAR LiDAR 61.09 61.19 58.13 HS, LiDAR LiDAR 91.72 89.59 89.07 HS, SAR SAR 61.93 56.32 52.01

LVPCnet (Ours) HS, LiDAR LiDAR 85.1 86.75 83.92 HS, LiDAR LiDAR 94.99 93.87 93.38 HS, SAR SAR 86.37 79.26 81.27
W/o LiDAR modality W/o LiDAR modality W/o SAR modality

HS-LiDAR/SAR-Net HS, LiDAR HS 96.51 96.79 96.23 HS, LiDAR HS 98.03 96.66 97.37 HS, SAR HS 89.10 86.13 84.96
Cospace HS, LiDAR HS 87.24 87.44 86.20 HS, LiDAR HS 85.25 88.46 80.57 HS, SAR HS 58.01 59.82 47.88
MDL-RS HS, LiDAR HS 85.90 86.93 84.77 HS, LiDAR HS 91.47 92.81 88.76 HS, SAR HS 57.13 63.15 47.28
MSH-Net HS, LiDAR HS 96.33 96.91 96.04 HS, LiDAR HS 98.59 97.79 98.12 HS, SAR HS 87.31 79.06 82.45

LVPCnet (Ours) HS, LiDAR HS 98.05 98.22 97.90 HS, LiDAR HS 99.07 98.24 98.77 HS, SAR HS 91.01 87.08 87.43
complete modalties complete modalties complete modalities

MFT HS, LiDAR HS, LiDAR 96.14 96.73 95.83 HS, LiDAR HS, LiDAR 99.16 98.89 98.52 HS, SAR HS, SAR 86.36 75.90 81.07
Sal2RN HS, LiDAR HS, LiDAR 97.34 97.75 97.12 HS, LiDAR HS, LiDAR 99.19 98.66 98.91 HS, SAR HS, SAR 91.62 81.80 88.25
HCT HS, LiDAR HS, LiDAR 96.80 97.41 96.54 HS, LiDAR HS, LiDAR 99.22 98.90 98.96 HS, SAR HS, SAR 88.68 80.93 84.25

GLT-Net HS, LiDAR HS, LiDAR 98.24 98.42 98.10 HS, LiDAR HS, LiDAR 99.46 98.92 99.28 HS, SAR HS, SAR 90.75 77.24 86.95
LVPCnet (Ours) HS, LiDAR HS, LiDAR 98.48 98.72 98.37 HS, LiDAR HS, LiDAR 99.57 99.12 99.43 HS, SAR HS, SAR 92.94 86.8 89.11

Figure 6: Classification maps of the Augsburg dataset.

significantly addresses this issue and yields superior performance
to uni-modal models. Specifically, the OA of LVPCnet when LiDAR
is missing outperforms the model trained with single modality by
0.76% and 1.04% on the Trento and Houston2013 datasets, respec-
tively. Moreover, OA improved by 4.58% and 2.84% with the absence
of HS images. Additionally, The LVPCnet outperforms the Cospace,
MDL-RS and MSH-Net by 21.12%, 29.9% and 3.27% in terms of OA

respectively when HS is missing and by 13.82%, 7.6% and 0.48% re-
spectively when LiDAR is missing on the Trento dataset. Similarly,
it also performs better on the Houston dataset. This indicates that
the proposed method effectively utilizes language priors to extract
and compensate for more discriminative specific features of the
missing modality compared to other methods.

4.3.2 Results and Analysis on HS-SAR. We conduct experiments for
HS and SAR modalities on the Augsburg dataset to further evaluate
the generalization performance of LVPCnet. As shown in the right
part of Table1, the LVPCnet demonstrates superior performance
compared to joint classificationwith complete modalities. Moreover,
it even outperforms partially multi-modal fusion classification mod-
els when certain modalities are missing. The proposed method with
absence of SAR images achieves improvements of 4.65%, 2.33% and
0.26% compared to the multi-modal joint classification method MFT,
HCT and GLT-Net. This indicates that the proposed method not
only deal with missing modality but also demonstrates significant
potential in joint classification. Figure 6 shows the classification
maps.

4.3.3 Results and Analysis on HS, LiDAR and SAR. We conduct
experiments on modal combinations of HS, LiDAR, and SAR im-
ages to evaluate the scalability of our method in the presence of
multi-modal absence. As shown in Table 2, we can observe that the
proposed LVPCnet performs better than the conventional multi-
modal model under the setting of missing modalities, and also
exceeds the uni-modal model in Table 1 during single-modal test-
ing, which suggests that LVPCnet has superior robustness even in
the case of missing multiple modalities.
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Table 2: Performance on Augsburg dataset with HS, LiDAR
and SAR. The Baseline means classification results of the
conventional multi-modal model with missing modalities.

Method Training Modalities Testing Modalities OA(%) AA(%) Kappa

Baseline HS,LiDAR,SAR HS 89.58 84.54 85.49
LVPCnet HS,LiDAR,SAR HS 91.17 86.59 87.66

Baseline HS,LiDAR,SAR LiDAR 59.95 66.41 49.45
LVPCnet HS,LiDAR,SAR LiDAR 60.5 66.37 50.01

Baseline HS,LiDAR,SAR SAR 85.81 78.46 80.54
LVPCnet HS,LiDAR,SAR SAR 86.42 78.22 81.26

Baseline HS,LiDAR,SAR HS,LiDAR 89.82 85.37 85.8
LVPCnet HS,LiDAR,SAR HS,LiDAR 91.69 86.57 88.36

Baseline HS,LiDAR,SAR HS,SAR 91.61 85.44 88.27
LVPCnet HS,LiDAR,SAR HS,SAR 92.35 87.59 89.25

Baseline HS,LiDAR,SAR LiDAR,SAR 85.87 82.77 80.66
LVPCnet HS,LiDAR,SAR LiDAR,SAR 87.08 79.63 82.03

Figure 7: Classification results of different variants for study-
ing effectiveness of the LVPCnet on (a) Trento dataset, (b)
Augsburg dataset.

4.4 Ablation Study
4.4.1 Effectiveness of Language Priors. In order to investigate the
effectiveness of language prior-driven visual feature extraction, we
discuss a variant (named ‘vl’) of visual feature decoupling. This
variant learns shared features by minimizing the Jensen-Shannon
divergence between probability distributions of feature represen-
tations and employs domain classification objectives for specific
feature learning. The comparative results are shown in Figure 7.
After removing the text prior, OA of vl with the absence of HS
images decreased by 1.86% and 1.1% compared to LVPCnet on the
Trento and Augsburg datasets, respectively. This indicates that the
introduction of text prior enhances visual representation learning,
extracting more discriminative complementary information.

4.4.2 Effectiveness of Feature Decoupling. The proposed method
captures modality-specific information while suppresses redundant

Table 3: Results of ablation experiments on the effectiveness
of visual prompts.

dataset Method
Trainable

parameters(K)

W/o LiDAR W/o HS

OA(%) AA(%) Kappa OA(%) AA(%) Kappa

Trento
vp1 - 98.03 96.66 97.37 89.2 87.77 85.86

vp2 171584 99.32 98.24 99.10 95.12 93.59 93.6

Ours 1024 99.07 98.24 98.77 94.99 93.87 93.38

Augsburg
vp1 - 89.1 86.13 84.96 83.64 77.77 77.8

vp2 171584 91.5 86.63 88.07 86.46 74.76 81.28

Ours 1024 91.01 87.08 87.43 86.37 79.26 81.27

details through feature decoupling. To validate its effectiveness,
a variant named as ‘vf’, is designed to directly extract features
from multi-modal data without feature decoupling. As shown in
the results from Figure 7, LVPCnet achieves a more satisfactory
performance than vf, which proves the effectiveness of feature
decoupling.

4.4.3 Effectiveness of Visual Prompts. This paper enhances the
learning of specific features frommissing modalities by introducing
visual prompts, without the need to modify the model or introduce
additional networks. To validate the effectiveness and efficiency
of visual prompts, we design two variants (named ‘vp1’ and ‘vp2’)
to compare the performance of the proposed method. vp1 remove
visual prompts and vp2 replaces visual prompts with reconstruction
network. The comparison results are shown in Table 3, LVPCnet
outperforms vp1 by a wide margin. As for vp2, there is a slight im-
provement in OA, but the accuracy improvement remained within
0.5%. The reason for this phenomenon is that the reconstruction
network needs to retrain a network for each missing modality,
introducing abundant training parameters as shown in Table 3.
Comparatively, the proposed method only trains the prompts with-
out retraining the original network, and the parameter count of the
prompts was only 0.6% of the reconstruction network. Therefore,
visual prompts are trained for each missing modality significantly
reduces computational complexity compared to a reconstruction
network.

5 CONCLUSION
In this paper, LVPCnet is proposed to address the issue of modality
missing in joint classification of multi-modal remote sensing images
by compensating for specific features of the missing modality. The
network is designed with a two-stage process for extracting specific
complementary information from each modality and learning cross-
modal specific information. This facilitates the recovery of specific
features of the missing modality from known modalities when deal-
ing with modality absence. Specifically, LVPCnet utilizes language
priors to drive visual decomposition to explore complementary
representations of multi-modal data, reducing redundancy. Subse-
quently, by embedding visual prompts, the model is guided to learn
specific features of the missingmodality from the knownmodalities,
enabling the acquisition of complete multi-modal complementary
information for joint classification. Systematic experimental inves-
tigations have been conducted on three public datasets to validate
the effectiveness of our method.
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