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Abstract

Physical reasoning is a crucial aspect in the development of general Al systems, given that
human learning starts with interacting with the physical world before progressing to more
complex concepts. Although researchers have studied and assessed the physical reasoning
of AI approaches through various specific benchmarks, there is no comprehensive approach
to evaluating and measuring progress. Therefore, we aim to offer an overview of existing
benchmarks and their solution approaches and propose a unified perspective for measuring
the physical reasoning capacity of Al systems. We select benchmarks that are designed
to test algorithmic performance in physical reasoning tasks. While each of the selected
benchmarks poses a unique challenge, their ensemble provides a comprehensive proving
ground for an Al generalist agent with a measurable skill level for various physical reasoning
concepts. This gives an advantage to such an ensemble of benchmarks over other holistic
benchmarks that aim to simulate the real world by intertwining its complexity and many
concepts. We group the presented set of physical reasoning benchmarks into subcategories
so that more narrow generalist Al agents can be tested first on these clusters.

1 Introduction

Physical reasoning refers to the ability of an Al system to understand and reason about the physical prop-
erties and interactions of objects. While traditional machine learning models excel at recognizing patterns
and making predictions based on large amounts of data, they often lack an inherent understanding of the
underlying physical mechanisms governing those patterns. Physical reasoning aims to bridge this gap by
incorporating physical laws, constraints, and intuitive understanding into the learning process.

In order to assess, contrast, and direct Al research efforts, benchmarks are indispensable. When starting a
new study, it is essential to know the landscape of available benchmarks. Here we propose such an overview
and analysis of benchmarks to support researchers interested in the problem of physical reasoning AI. We
provide a comparison of physical reasoning benchmarks for testing deep learning approaches, identify clusters
of benchmarks covering basic physical reasoning aspects, and discuss differences between benchmarks.

Reasoning about physical object interactions and physical causal effects may be one of the grounding prop-
erties of human-level intelligence that ensures generalization to other domains. The ability to adapt to an
unknown task across a wide range of related tasks, known as a broad generalization, is gaining increasing
attention within the Al research community (Milani et al.l [2023; Malato et al. 2023]). We propose to use a
set, of specialized benchmarks to test generalist physical reasoning Al architectures.

In this survey, we discuss 16 datasets and benchmarks (see Table to train and evaluate the physical
reasoning capabilities of Al agents. Most of the reviewed benchmarks focus on a certain aspect of physical
reasoning, such as space (path finding, traversability, accessibilty, reachability), properties of object arrange-
ments (stability, moveability, at/de-tachability, support, functional arrangements), object dynamics (how to
push/drag/arrange objects), how to manipulate objects, recognition of degrees of freedom (DOF) (that are
controllable), physical properties (deformability, breakability, decomposability), scene plausibility (occlusion,
continuity of object existence).

One part of presented benchmarks provide only passive datasets without a possibility of interaction, while
other benchmarks allow interaction with an environment.
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The benchmarks we examine here involve a range of physical properties and features which are central to
physical interactions amongst material objects, such as size, position, velocity, direction of movement, force
and contact, mass, acceleration and gravity, and, in some cases even electrical charge. The observability of
these properties and features is strongly affected by the perceptual modalities (e.g. vision, touch) that are
available to an agent, and some features (such as gravity, or charge) are usually not represented according to
their deeper physical concepts, but in intuitive ways via reactions of objects that can only be explained by
introducing hidden interaction causes (called fields, charges, mass etc. in physics). Such representations in
the form of empirical rules can be perfectly successful for providing an intuitive physical understanding whose
development in humans and animals has itself been a subject of research (Melnik et al., 2018). Below, we
provide a simple and pragmatic ordering into four groups arranged from most pervasive to least conspicuous
(from the perspective of a human-like observer or machine learning algorithm):

1. Global environment variables affecting all objects (e.g. gravity)
2. External object variables visible from single frames (e.g. size, position)
3. Temporal object variables exposed through time evolution (e.g. velocity, direction of movement)

4. Internal object variables exposed only through object interaction (e.g. charge, mass)

Benchmarks which require (scientific and/or intuitive) understanding of phenomena related to other branches
of physics, such as hydrodynamics, optics, or even quantum mechanics, are out of the scope of this survey.
Likewise, pure question answering benchmarks that don’t require any physical understanding are also out
of the scope of this survey. Many robot movements, such as walking, climbing, jumping, or throwing,
could benefit strongly from some intuitive physical understanding to be executable successfully and safely.
However, we refrain from a deeper discussion of physical understanding for robots in this survey as well,
since in robotics such understanding is frequently substituted by a suitable combination of embodiment and
control algorithms to ensure that the robot’s movements remain compatible with the situations for which
the robot is designed.

In Section [2] we introduce details of each benchmark. After that, we provide a more rigorous taxonomy
classification in Section [3] and finally a discussion in Section [

PHYRE (Bakhtin et al. [2019), Virtual Tools (Allen et al., 2020)), Phy-Q (Xue et al., 2023), and OPEn (Gan
et al., 2021)) require agents to reason about physical scenarios and intervene in the scene to achieve a desired
end goal (see Table [1]).

CLEVRER (Yi et al.; [2019), ComPhy (Chen et al., 2022), CRAFT (Ates et al.|2020), Interactive Language
(Lynch et al.,2022)), and CRIPP-VQA (Patel et al.,|2022b)) probe scene understanding using natural language
and require systems to answer natural-language questions about images or videos (see Table .

CoPhy (Chen et all [2022), SPACE (Duan et al.| [2021]) require future prediction (see Table .

Physical Bongard Problems (Weitnauer et al.l 2023), CATER (Girdhar & Ramanan| |2019), IntPhys (Riochet
et al) 2021), ComPhy (Chen et al., 2022), Physion (Bear et al.| [2021)), ShapeStacks (Groth et al.l [2018)
require classification prediction (see Table .

2 Physical Reasoning Benchmarks

In this section, we present individual benchmarks and assign tags capturing their defining properties in
Table [I] to provide a pragmatic characterization. The tags concern either the type of problem to solve,
the input data modality, or the evaluation metric of the benchmark, because we find those to be the most
relevant aspects both for practitioners and for categorising physical reasoning tasks (see also Section .

The interaction tags , indicate that agents can influence an environment rather than just observe
data, requiring agents with a capability to perform actions. Similarly, benchmarks involving natural language
have their own tags since these require language understanding capabilities in agents. There are no specific
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tags for visual data, however, since all benchmarks provide (at least) visual data as input to an agent.
Classification tags indicate that agents have to solve traditional classification tasks. The future prediction
tag, finally, indicates benchmarks that require explicit modeling of future states. These concepts are further
discussed in the clusters we present in Section [3]

Detailed benchmark properties beyond these easy-access tags are presented in Tables[d]and [5] which provide
information about physics concepts and reasoning tasks contained in each benchmark as well as links to
their respective homepages. Table |2| presents the technical input and output formats required by individual
benchmarks.
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Table 1: Physical Reasoning benchmarks, category short-hands are described in the text. The Task column
denotes what the intended purpose of the benchmark is. We found various benchmarks to be used for other
purposes such as image segmentation or sequence prediction and added this to the respective benchmark
description section in those cases.

Single Interaction benchmarks require from an agent a single environment interaction and are a
special case of . While they are still considerably different from the other benchmark problems,
they are usually less complex than instances from .

Continued Interaction benchmarks require from an agent ongoing interactions with an environ-
ment and represent a notably distinct group of problems regardless of what the actual benchmark
task is. Since the performed actions directly influence the training data distribution, the trade-off
between exploration and exploitation is one of the major sub-problems to solve here.

[ 5 ] Binary Classification benchmarks require merely true/false discrimination. Instances of binary
classification problems are stability prediction or collision detection.

Multi-label Classification benchmarks can come in the form of multiple-choice questionnaires or
even natural language tasks with a limited and small set of tokens. Although the latter could be
framed as natural language question answering, their solution can be effectively represented as an
integer.

Language Processing benchmarks require the agent to understand natural language input.
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Language Generation benchmarks require proper natural language answers that consist of multiple
tokens. Thus, they usually constitute considerably more complex problems than or €
benchmarks because the solution space is much larger. The agent has to be capable of synthesizing
natural language on top of understanding the physical reasoning task.

Future Prediction benchmarks require the agent to explicitly predict future frames or object prop-
erties, which requires more explicit physical reasoning than the other benchmark categories. While
an imperfect model of the problem might be sufficient to perform well in most benchmarks, €3
puts more emphasis on accurate prediction of the problem dynamics.
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Figure 1: Publication date versus citations (symmetric log scale) for benchmarks. The date of publication

is based on the first submission on arXiv or elsewhere. Citation count is a snapshot of Google Scholar
information from 15 August 2023.

Figure [I] details the publication history and number of citations as a proxy measure for relevance in the field.

In the following, we describe the individual physical reasoning benchmarks in detail.

2.1 PHYRE

PHYRE (Bakhtin et al., [2019) studies physical understanding based on visual analysis of a scene. It requires
an agent to generate a single action that can solve a presented puzzle. The benchmark is designed to
encourage the development of learning algorithms that are sample-efficient and generalize well across seen
and unseen puzzles.

Each of the puzzles in PHYRE is a deterministic 2D box-shaped environment following Newtonian physics.
It is comprised of a goal and a set of rigid objects that are either static or dynamic, whereas only the latter
can be influenced by gravity or collisions. To indicate their object category, dynamic objects can have various
colors, and static objects are always black. The goal condition of a puzzle refers to two objects that should
touch each other for at least 3 seconds and is not available to the agent. Observations are provided in the
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Figure 2: Ten templates of PHYRE-B (BALL) puzzles (Bakhtin et al., 2019). Task: Place the red action
balls so that a green object ends up touching a blue surface. Image adapted from (Harter et al., 2020b).

form of images and valid actions are the initial placement of one or two red balls and the choice of their radii.
Note that only a single action in the first frame is allowed; from there on the simulation unfolds without any
interference by the agent.

PHYRE contains two benchmark tiers: Phyre-B, which requires choosing the position and radius of one
red ball, Fig 2] and Phyre-2B, which requires choosing the same attributes for two balls. To limit the
action search space, both tiers come with a predefined set of 10000 action candidates. Each tier contains 25
templates from which 100 concrete tasks per template are produced. While a template only defines the set
of objects and the scene goal, tasks fill in the detailed object properties such as position and size. Since tasks
from a single template are more similar than those from different templates, PHYRE differentiates between
the within and the cross-template benchmark scenarios. Specifically, the cross-template scenario is intended
to test the generalization capabilities of an agent beyond known object sets. At test time, PHYRE requires
the agent to solve a task with as few trials as possible, whereas each attempt results in a binary reward that
indicates whether the puzzle was solved or not. This provides the opportunity to adapt and improve the
action of choice in case of a failed attempt. Two measures are taken to characterize the performance of an
agent:

o The success percentage is the cumulative percentage of solved tasks as a function of the attempts
per task.

¢ To put more emphasis on solving tasks with few attempts, the AUCCESS is a weighted average
of the success percentages computed as ), wy - sx/ >, wr with wy = log(k + 1) — log(k) and
k € {1,...,100}. Note that this results in an AUCCESS of less than 50% for agents which require
more than 10 attempts on average to solve tasks.

The baseline solution to PHYRE is presented by (Bakhtin et al., [2019). The idea is to learn a critic-value
function for state-action pairs, where the state is an embedding of the initial frame of an episode and the
action is a specific choice of the red ball’s position and radius. Then a grid search over a predefined set of
3-dimensional actions for a given state is performed and actions are ranked w.r.t. the value estimated by
the critic network. The set of top ranked candidate actions by the critic network is provided for sampling
until a trial is successful.

More advanced solutions for the PHYRE benchmark are proposed in (Girdhar et al., |2021; Qi et al., 2020;
[Wu et all, 2022} Harter et all, [2020a} [Li et al) 2020} [Ahmed et all, [2021} |Li et al.l [2022a} Rajani et al.l [2020)).
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2.2 Virtual Tools
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Figure 3: Twelve of the levels used in the Virtual Tools game. Players choose one of three tools (shown
to the right of each level) to place in the scene to get a red object into the green goal area. Black objects
(except tools) are fixed, while blue objects also move; gray regions are prohibited for tool placement. Levels
denoted with A/B labels are matched pairs. Image adapted from Allen et al.| (2020).

Virtual Tools (Allen et al., 2020) is a 2D puzzle (see Figure [3) where one of three objects (called tools) has
to be selected and placed before rolling out the physics simulation. The goal is to select and place the tool
so that a red ball ends up touching a green surface or volume. The benchmark consists of 30 levels (20 for
training and 10 for testing) and embraces different physical concepts such as falling, launching, or bridging.
12 of the training levels are arranged in pairs, where one is a slight modification of the other. This allows
for studying how learning is affected by perturbations of the setup.

As a baseline solution, the authors propose to sample random actions (sampling step) and run their ground
truth simulation engine with some added noise (simulation step). The most promising simulated actions
are executed as a solution with their ground truth simulation engine without noise. If this does not solve
the puzzle, simulated and executed outcomes are accumulated using a Gaussian mixture model, and action
probabilities are updated (update step). Sampling, simulation, and updating are iterated until the puzzle is
solved.

While the Virtual Tools benchmark has been cited as much in cognitive science research as in machine
learning research, no machine learning solutions have been proposed yet. [Allen et al| (2022)), however,
propose a method and briefly mentions applying it on a modified version of Virtual Tools.

This benchmark is similar to the PHYRE puzzles, with the difference that Virtual Tools requires a selection
of one of the three provided tools first.

2.3 Phy-Q

The Phy-Q benchmark (Xue et al) [2023) requires the interaction of an agent with the environment to
solve 75 physical Angry Birds templates that cover 15 different physical concepts (see Figure . Similar to
PHYRE (Bakhtin et al. [2019), for each template, a set of 100 different tasks with slightly different object
configurations have been generated.

There are four types of objects in the game: birds, pigs, blocks and platforms. The agent can shoot birds from
a given set with a slingshot. All objects except platforms can accrue damage when they are hit. Eventually
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Figure 4: Four example tasks out of the 15 covered in Phy-Q. Single or multiple force means that one or
several hits are required. The slingshot with birds is situated on the left of the frame. The goal of the agent
is to hit all the green-colored pigs by shooting birds with the slingshot. The dark-brown objects are static
platforms. The objects with other colors are dynamic and subject to the physics in the environments. Image
adapted from |Xue et al.| (2023]).

they get destroyed. Additionally, birds have different powers that can be activated during flight. The task
in these Angry Birds scenarios is always to destroy all pigs in a scene with the provided set of birds. To
achieve this goal, the agent has to provide as an action the relative release coordinates of the slingshot and
the time point when to activate a bird’s powers. In some scenarios, the agent has to shoot multiple birds in
an order of its choosing. The observations available to the agent are screenshots of the environment and a
symbolic representation of objects that contains polygons of object vertices and colormaps.

The benchmark evaluates local generalization within the same template and broad generalization across
different templates of the same scenario. The authors define a Phy-Q score, inspired by human IQ scores, to
evaluate the physical reasoning capability of an agent. It evaluates broad generalization across the different
physical scenarios and relates it to human performance, so that a score of 0 represents random, and a score
of 100 average human performance. In order to calculate these scores, the authors collect data on how well
humans perform on their benchmarks.

The baseline solution uses a Deep Q-Network (DQN) (Mnih et al., [2015) agent. The reward is the 1 if the
task is passed and 0 otherwise. The agent can choose from 180 possible discrete actions, each corresponding
to the slingshot release degree at maximum stretch. The DQN agent learns a state representative with
a convolutional neural network (CNN). In a modification of this baseline, a pre-trained ResNet-18 model
was used for feature extraction from the first frame, followed by a multi-head attention module (MHDPA)
(Zambaldi et all 2018]), followed by a DQN. Beyond the baseline solution, there are no other available
solutions as of now.

Phy-Q is most similar to the Virtual Tools benchmark (see Chapter , although it supports continuous
interaction. However, agents have to choose from a range of birds, which is somewhat equivalent to choosing
from a set of tools in Virtual Tools.
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Figure 5: Example of a Physical Bongard Problem (number 13 in Weitnauer et al.| (2023)). Solution: A
circle is blocked vs. can be lifted. Image adapted from |Weitnauer et al.| (2023).

2.4 Physical Bongard Problems

The images in this benchmark contain snapshots of 2D physical scenes depicted from a side perspective.
The scenes in Physical Bongard Problems (PBPs) (Weitnauer et all, [2023) contain arbitrary-shaped non-
overlapping rigid objects which do not move at the time ¢t = ¢y of the snapshot. There are 34 PBPs, each
consisting of four scenes grouped on the left side of the image, and four on the right side. The task is to
predict the concept that distinguishes the scenes on the left side from those on the right side of the PBP
image. Here, a concept is an explicit description that explains the difference between the scenes on the left
and on the right (for instance, circle blocked vs. liftable, see Fig 5).

In general, the solution of PBPs can be based on descriptions of the whole scene or parts of the scene at
any point in time or on the reaction of objects to simple kinds of interaction, e.g., pushing. This focus on
indicating physical understanding by coming up with an explicit, human-readable description distinguishes
the approach from more implicit and black-box-like demonstrations of understanding in the form of successful
acting.

The descriptions are constructed from searching a hypothesis space that encodes hypotheses as tuples [side,
numbers, distances, sizes, shapes, stabilities] of a small number of hand-chosen features and object relations
(such as scene side, number of its objects, inter-object distances, shapes, or stabilities). For example, the
meaning of the hypothesis [left, 1-3, 7, small or large, ?, stable] is “all left scenes (and none of the right
scenes) contain one to three objects that are small or large-sized and stable”. The algorithm starts with
all possible hypotheses and removes the incompatible ones for each scene. Finally, among the remaining
hypotheses, the one with the shortest length is chosen as the solution. Thus the hypothesis space can be
represented as a categorization space with many possible classes.

It is essential for solving PBPs to be able to predict and visualize the outcome of dynamic situations and
interactions. The authors model this ability by giving the solver access to a physics engine (PE). It is used
in two ways: First, to predict the unfolding of actions in the scenes. Second, the engine is used to estimate
physical object features.

Beyond the original study, Lupyan & Zettersten| (2021)) and [Weitnauer et al.| (2014) test human performance
on Physical Bongard Problems, which can serve as a baseline for future solutions. Only one computational
approach has been proposed in [Weitnauer et al.| (2015).
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2.5 CRAFT

Q: “How many objects fall to the ground?” A: “2”
Q: “After entering the basket, does the small yellow square collide with other objects?” A: “True”
Descriptive Questions

Q: “How many objects fall to the ground if the small yellow box is removed?” A: “1”
Q: “Will the small gray box enter the basket if any of the other objects are removed?” A: “True”

Counterfactual Questions
\ e

\ Q: “Does the small brown ball cause the big gray triangle to fall to the ground?” A: “False”
2 Q: “Does the small brown sphere cause the tiny yellow box to enter the basket?” A: “True”
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Figure 6: Example of CRAFT questions generated for a sample scene. Image from [Ates et al.| (2020)).

The CRAFT dataset (Ates et al., |2020) is a question answering benchmark about physical interactions of
objects presented in short videos. This dataset includes 57K videos and question pairs generated from 10K
videos from 20 different two-dimensional scenes. An exemplary scene is shown in Figure [0l The figure also
shows a sample of questions that are created for the scene. The types of questions in this benchmark are
descriptive, counterfactual and explicitly causal.

The representation of simulation episodes involves different data structures: video frames and the causal
graph of the events in the episode that is used to generate questions. The initial and the final states of the
scene refer to object properties, including the object’s color, position, shape, and velocity at the start/end
of the simulation. This information is provided to enable a successful answering in the benchmark.

The first baseline solution uses R3D (Tran et al., |2018)) with a pre-trained ResNet-18 CNN base to extract
information from a down-sampled video version. The text information is extracted using an LSTM. After-
ward, the textual and visual information is passed to a multilayer perception network (MLP) which makes
the final decision. The second baseline solution also uses R3D (Tran et al., 2018) with a pre-trained ResNet-
18 CNN base to extract information from a down-sampled video version. However, instead of processing the
textual and visual information separately, it processes them simultaneously using a Memory, Attention, and
Composition (MAC) model (Hudson & Manning, [2018)). There are no available solutions, other than the
baseline solutions, that cite the current CRAFT dataset paper (Ates et al., [2020).

The baseline approaches are evaluated in their multiple-choice accuracy within each question category and
include heuristic models, LSTM, BERT, and LSTM-CNN. Video frames and text of the current question are
given to the models as input.

CRAFT is most similar to the CATER (see Chapter 2.10) and CLEVRER benchmarks (see Chapter [2.11)).

2.6 ShapeStacks

ShapeStacks (Groth et al., 2018]) is a simulation-based dataset that contains 20,000 object-stacking scenarios.
The diverse scenarios in this benchmark cover multiple object geometries, different complexity degrees for
each structure, and various violations in the structure’s stability (see Figure @ A scenario is represented
by 16 RGB images at the initial time step that shows the stacked objects from different camera angles.
Every scenario carries a binary stability label and all images come with depth and segmentation maps. The
segmentation maps annotate individual object instances, the object which violates the stability of the tower,
the first object to fall during the collapse, and the base and top of the tower. While the actual benchmark
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Figure 7: Different scenarios from the ShapeStacks data set. (A)-(D) initial stack setups:(A) stable, rectified
tower of cubes, (B) stable tower where multiple objects counterbalance each other; some recorded images
are cropped purposefully to include the difficulty of partial observability, (C) stable, but visually challenging
scenario due to colors and textures, (D) violation of planar-surface principle. (E)-(H) show the simulation
of an unstable, collapsing tower due to a center of mass violation. Image from Groth et al.| (2018).

includes per scenario only the 16 images with accompanying depth and segmentation maps, the MuJoCo
world definitions are also provided to enable the complete re-simulation of the stacking scenario.

The base task in ShapeStacks is to predict the stability of a scenario, although the data additionally contains
information on the type of instability, i.e. whether a tower collapses due to center of mass violations or due
to non-planar surfaces.

The two baseline solutions provided by |Groth et al.| (2018) use either AlexNet or Inception v4-based image
discriminators along with training data augmentation to predict if a shape stack is stable. The bench-
mark score is computed as the percentage of correctly classified scenes from a test set that was withheld
during training. The Inception v4-based discriminator performs best both on the artificial ShapeStacks
scenes (Cubes only: 77.7% | Cubes, cylinders, spheres: 84.9%) as well as on real-world photographs of
stacked cubes (Cubes: 74.7% | Cubes, cylinders, spheres: 66.3%).

The majority of publications that use ShapeStacks circumvent solving the stability classification problem by
instead solving a related, but simpler prediction problem, such as frame or object mask prediction (Ye et al.
2019; [ALTAS PARTH GOYAL et all 2021} [Q1 et al, [2020; [Ehrhardt et all [2020; [Singh et al] [2021}; [Engelcke]

et all 2020a} [Chang et all 2022} [Sauvalle & de La Fortelle| [2023a} [Schmeckpeper et al. [2021}
de La Fortelle} 2023b} |Jia et al.; 2022b} [Emami et al., 2022). Only a few works (Engelcke et al.| 2020b; [2021}

Fuchs et al) 2018) directly attack solving the stability classification problem. We argue that approaches
from the second group need a more refined physics understanding and can be interpreted as superior to the
first group in terms of physical reasoning capabilities.

CoPhy, Physion and SPACE (cf. Sec. below) contain stacked object scenarios as well. CoPhy focuses
on more counterfactual reasoning and requires stability prediction only as one of several abilities. Physion
and SPACE in addition to stacking also cover multiple physical concepts that go beyond stability prediction
alone.

10
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Figure 8: Example data from the SPACE benchmark. Top row: Visual data attributes for one example. The
frame comprises RGB, object segmentation, optical flow, depth, and surface normal vector. Bottom three
rows: Example frames from the three physical interactions. Image from Duan et al. (2021).

2.7 SPACE

SPACE, introduced by |Duan et al.| (2021), is based on a simulator for physical interactions and causal learning
in 3D environments. The simulator is used to generate the SPACE dataset, a collection of 3D-rendered
synthetic videos. The dataset comprises videos depicting three types of physical events: containment,
stability, and contact. It contains 15,000 (5,000 per event type) unique videos of 3-second length. Each
RGB frame is accompanied by maps for depth, segmentation, optical flow, and surface normals, as shown in

Figure

Objects are sampled from the set O = {cylinder, cone, inverted cone, cube, torus, sphere, flipped cylinder}.
There are three different types of videos, which come with classification labels. These imply classification
tasks, while the authors use their dataset only for future frame prediction. Containment videos show a
container object (colored in red and sampled from the set C' = {wine glass, glass, mug, pot, box}) below a
scene object from the set O. The task is to predict whether the scene object is contained in the container
object or not. Stability videos depict up to three objects from O which are stacked on top of each other, and
the task is to predict whether the object configuration is stable or not. Contact videos contain up to three
objects at varying locations in the scene and a sphere of constant size moving around the scene on a fixed
trajectory. The task is to predict whether the objects are touched by the sphere or not.

While in principle a broad range of scene classification and understanding tasks are possible due to the
procedurally generated nature of the SPACE dataset, the authors do not provide all of the necessary metadata
and focus on video prediction or the recognition tasks described above. They show that pretraining with
the synthetic SPACE dataset enables transfer learning to improve the classification of real-world actions
depicted in the UCF101 action recognition dataset. UCF101 is a large collection of short human action
videos covering 101 different action categories (Soomro et all 2012). For their demonstration, they show
that pretraining a model (PhyDNet, cf. below) on the SPACE dataset versus directly on the UCF101 dataset
leads to improved performance when subsequently both pre-trained models are fine-tuned on the UCF101
dataset.

11
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As of the time of writing, there are no further works that attempt to solve tasks on the SPACE datasets
in the literature. The authors have however proposed an updated version SPACE+ (Duan et al. [2022)) of
their benchmark which quadruples the amount of videos and introduces some new object classes to better
evaluate model generalization.

The SPACE dataset bears similarities to ShapeStacks, CoPhy and Physion in the sense that all of them con-
tain stacking scenarios and ShapeStacks in particular provides object segmentation masks as well. Although
in ShapeStacks the actual task is to predict stacking stability from a set of images, it is often used for frame
or object mask prediction similar to SPACE.

2.8 CoPhy

Figure 9: Exemplary CoPhy scenarios. Given an observed frame A = X, and a sequence of successor frames
B = Xi., the question is how the outcome B would have changed if we changed Xy to Xy by performing a
do-intervention (e.g., changing the initial positions of objects in the scene). Image adapted from

et al @020).

The Counterfactual Learning of Physical Dynamics (CoPhy) benchmark (Baradel et al. 2020) introduces
a physical forecasting challenge that necessitates the use of counterfactual reasoning. In physical reasoning
problems, a counterfactual setting refers to a hypothetical situation where a specific aspect of the real-world
scenario is changed. CoPhy tests physical understanding by evaluating what would happen if the altered
condition were true.

Specifically, given a video recording of objects moving in a first scenario (frames Xy in Figure E[), the
objective is to anticipate the potential outcome in a second scenario whose first frame (XO) differs from
the first frame in the first scenario by subtle changes in the objects’ positions. The key component of the
benchmark is that there are hidden variables associated with the objects and the environment, including
mass, friction, and gravity. These hidden variables or confounders are not discernible in the single altered
frame (Xo) of the second scenario, but they are observable in the video recording of the first scenario.
Successfully predicting future outcomes for objects in the second scenario thus entails the estimation of the
confounders from frames Xj.; in the first scenario. For both scenarios, video recordings are provided for
training of the prediction agent.

The observed sequence demonstrates the evolution of the dynamic system under the influence of laws of
physics (gravity, friction, etc.) from its initial state to its final state. The counterfactual frame corresponds
to the initial state after a so-called do-intervention, a visually observable change introduced to the initial
physical setup, such as object displacement or removal.
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All images for this benchmark have been rendered into the visual space (RGB, depth, and instance segmen-
tation) at a resolution of 448 x 448 px. The inputs are the initial frames (RGB, depth, segmentation) of
two slightly different scenes (such as object displacement or removal), a sequence of roll-out frames of the
first scene, and 3D coordinates of all objects in all available frames. The task is to predict the final 3D
coordinates of all objects in the second scene. The evaluation metric is an MSE final 3D coordinates of all
objects in the second scene measured between the prediction and the ground truth roll-out in a simulation.

The proposed baseline solution model is CoPhyNet (Baradel et al.l 2020), which predicts the position of each
object after interacting with other blocks in the scene EI The inputs are RGB images of resolution 224 x224.
They first train an object detector to give the 3d location of each object. Then they use these estimations
for training CoPhyNet. The CoPhyNet predicts the final 3D coordinates of all the objects after changing
the scene or if the object’s position will change. The experiments show that this model performs better than
MLP and humans in predicting the object’s position on unseen confounder combinations and on an unseen
number of blocks and balls.

Two different works have so far proposed solutions to CoPhy (Li et al., [2022b} 2020)). Additionally, Filtered-
CoPhy (Janny et al.l [2022) has been proposed as a new benchmark based on CoPhy. It is a modification of
the original CoPhy with a different task definition. Instead of prediction of object coordinates, it requires
future prediction directly in pixel space.

CoPhy is similar to the CRAFT , CLEVRER , ComPhy and CRIPP-VQA bench-
marks, which also address counterfactual reasoning questions. These other benchmarks however do not focus
as explicitly on counterfactuals and do not contain explicit interventions in their scenes. They also involve
natural language tasks, which is an added complexity that is not present in CoPhy.

2.9 IntPhys

Figure 10: Exemplary screenshots from video clips used in IntPhys. Image from |Riochet et al.| QZOQID.

The IntPhys (Riochet et al. |2021[)E| benchmark evaluates physical reasoning for visual inputs based on the
intuitive physics capabilities of infants. The benchmark is designed to measure the ability to recognize
violations of three basic physical principles: Object permanence, shape consistency, and spatiotemporal
continuity. Events that violate these principles (violation of expectation events — VoE) can already be
detected by very young children. The benchmark consists of a set of short video clips of 7 seconds (see
Figure designed to present physical events that either obey the three principles (plausible scenarios) or
violate at least one of them (implausible scenarios). The model is trained with videos that only show plausible
scenarios and subsequently evaluated on a test set that also contains implausible ones. This evaluation is
somewhat more abstract than directly using prediction error in some lower-level metric, which can be high
due to limitations of such metrics to properly ignore all forms of irrelevant variance, even if the model
responses might be well in line with a correct intuitive understanding of the physics, if such variance were
absent.

The idea is that if the model has learned the laws of physics, it should attribute high probability to scenarios
that are plausible so that low probability values can be used to identify scenarios that are implausible.

Hhttps://github.com/fabienbaradel/cophy
2The author’s original link https://intphys.com to this benchmark’s website is outdated, please refer to Table [4] for an
updated link.
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Figure 11: Illustration of the minimal sets design with object permanence in IntPhys. Schematic description
of a static condition with one vs. two objects and one occluder. In the two possible movies (green arrows),
the number of objects remains constant despite the occlusion. In the two impossible movies (red arrows),
the number of objects changes (goes from 1 to 2 or from 2 to 1). Image from Riochet et al.| (2021).

Therefore, the authors claim that a model that has only been trained on plausible scenarios should be able
to generalize to other plausible scenarios but reject implausible ones. An illustration of this benchmark is
shown in Figure

The first baseline model is implemented through a ResNet that has been pre-trained on the Imagenet data
and that subsequently is fine-tuned to become a classifier for the distinction of plausible versus implausible
videos. One metric is the relative error rate which computes a score within each set that requires the
plausible movies to be assigned a higher plausibility score than the implausible ones. The second metric is
the absolute error rate which requires that globally the score of plausible videos is greater than the one of
implausible videos.

The second baseline model works with semantic masks of input frames and predicted future frames. This
work concludes that operating at a more abstract level is a worthwhile pursuing strategy when it comes to
modeling intuitive physics.

While the IntPhys benchmark has been widely cited and regularly discussed, there are only two proposed

solutions in the literature by |[Smith et al.| (2019) and Nguyen et al| (2020). Beyond these, (2020)
propose an object recognition model and suggest using it for physical plausibility downstream tasks.

Beyond IntPhys, there are two additional VoE benchmarks that involve physical reasoning which are however
very similar to IntPhys both in their covered concepts and their data format (Piloto et al., [2022} |Dasgupta

et al], 2021).

2.10 CATER

CATER |Girdhar & Ramanan| (2019) is a spatiotemporal reasoning benchmark that extends CLEVR
, which is based on static images, to the spatio-temporal domain. It provides blender-based
rendering scripts to generate videos and associated classification tasks such as action recognition and target
tracking. The videos contain simulated 3D objects that move on a 2D plane, as shown in Figure [I2] For
each video, objects have been sampled randomly from a small set of generic bodies (such as cubes, cones
or cylinders) and come with a set of permitted atomic actions such as sliding and placing. These actions
are assigned and applied randomly to each object throughout a video. The authors provide a pre-rendered
set of 16500 videos that were created in this manner as their CATER dataset on which they perform their
baseline experiments.
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Task 1: Atomic action recognition Task 2: Composite action recognition Ly
Actions present: Actions absent: Compositions present: ~ Compositions absent: Task 3:
- slide(cone) - rotate(snitch) - pick-place(sphere) - contain(cone, snitch) Snitch ~
- pick-place(cone) - pick-place(cube) DURING slide(cone) DURING slide(cone) L lizati
- contain(cone, snitch) - slide(cylinder) - contain(cone, snitch) - rotate(cube) AFTER ocalization
- pick-place(sphere) - rotate(cylinder) AFTER slide(cone) slide(cone)

Figure 12: CATER dataset and tasks. Sampled frames from a random video from CATER. Some of the
actions afforded by objects in the video are labeled on the top using arrows. Three tasks are considered: Task
1 requires a listing of all actions that are observable in the video. Task 2 requires identifying all observable
compositions (i.e. temporal orders) of actions. Task 3 requires quantified spatial localization of a specific
object (called snitch) that became covered by one or more cone(s) and, therefore, has disappeared from direct
view, while still being dragged with the movements of the cone(s) enclosing it. This task tests agents for the
high-level spatial-temporal understanding that is required in order to track an invisible object through the
movements of its occluding container. Image from |Girdhar & Ramanan| (2019).

The benchmark comes with three predefined classification tasks: The first task (atomic action recognition)
requires detecting all pairings between atomic actions and objects that have occurred within a video. The
second task (compositional action recognition) requires to detect temporal compositions (only temporal pairs
are considered) of object-action pairings, together with their temporal relation (before, during or after). The
last and final task (snitch localization), only applicable to a subset of videos, requires locating a certain
object, called snitch object, that has become covered and dragged around by one (or, through nesting,
possibly several) of the cones (the only object type with this container property). The answer needs to
specify the location only as a discrete grid cell to allow again a classifier approach to this last task.

The authors stress that they extend existing benchmarks beyond two frontiers: The tasks include detecting
temporal relationships between actions, and the videos avoid scene or context bias, i.e., there is very little
information about the task solution present in the background of video frames. Both aspects are meant to
encourage solution approaches really capable of temporal reasoning rather than analyzing individual frames.

As baseline solutions, a few existing methods are adapted and compared. The base method used for all three
tasks employs temporal CNNs (Wang et all, [2016; 2018), which process individual frames or short frame
sequences. Results are aggregated by averaging over all frames of a video. As an alternative aggregation
approach, the authors also employ an LSTM. In addition, they apply an object tracking method
to locate the occluded snitch object. While the models work reasonably well for the simplest task of
identifying atomic actions, performance breaks down to rather a mediocre accuracy for compositional action
recognition. Snitch localization, finally, does not work well with any of the methods. In general, LSTM
aggregation yields higher accuracy scores than aggregation by averages.

Various papers have addressed the tasks posed by CATER. Solutions for tasks one and two (atomic and
compositional action recognition) have been proposed in [Samel et al.| (2022)); [Kim et al| (2022)); [Singh et al.
2022al). Solutions to the third task requiring hidden object localization have been proposed in |Goyal et al.
2021); [Ding et al] (2021a)); [Traub et al.| (2022); Zhou et al/ (2021)); Zhang| (2022); Harley et al| (2021);
[Faulkner & Zoran| (2022); |Castrejon et al.| (2021); [Sun et al.| (2022)); Luo et al|(2022). Beyond approaches to
solve the proposed tasks, CATER has been used for object segmentation tasks in Kipf et al.| (2021); [Singh
et al.| (2022b); Bao et al| (2022); [Frey et al|(2023) and unsupervised physical variable extraction in [Kabra
et al| (2021). Furthermore, some authors have created new datasets based on CATER, for object tracking
tasks (see [Van Hoorick et al. (2022); [Shamsian et al|(2020)), for video generation from compositional action
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graphs (see Bar et al.| (2020))), for video generation based on images and text descriptions (see [Hu et al.
(2022); Xu et al.| (2023)), and for dialogue systems concerning physical events (see [Le et al.| (2021} 2022)).
All these additional datasets are approached by the respective authors specifically for particular tasks, but
they nonetheless touch on various aspects of physical reasoning as well.

2.11 CLEVRER

(a) First collision (b) Cyan cube enters (c) Second collision (d) Video ends
L Descriptive IIL Predictive
Q: What shape is the object that collides with the cyan cylinder? A: cylinder Q: Which event will happen next
Q: How many metal objects are moving when the video ends? A:3 a) The cube collides with the red object
b) The cyan cylinder collides with the red object A:a)
II. Explanatory IV. Counterfactual
Q: Which of the following is responsible for the gray cylinder’s colliding with the cube? ~ Q: Without the gray object, which event will not happen?
a) The presence of the sphere a) The cyan cylinder collides with the sphere
b) The collision between the gray cylinder and the cyan cylinder A:b) b) The red object and the sphere collide A:a) b)

Figure 13: Examples of videos and questions in CLEVRER. They are designed to evaluate whether computa-
tional models can answer descriptive questions (I) about a video, explain the cause of events (I, explanatory),
predict what will happen in the future (III, predictive), and imagine counterfactual scenarios (IV, counter-
factual). In the four images (a—d), the blurred motion traces are only provided to reveal object motion to

the human observer; they are absent in the input to the recognition system. Image from (2019)).

Collision Events for Video Representation and Reasoning (CLEVRER) is a benchmark that
requires temporal and causal natural language question answering. Like CATER above, it extends CLEVR
(Johnson et all [2017) from images to short, artificially generated 5-second videos along with descriptive,
predictive, explanatory, and counterfactual questions about their contents. Each video contains multiple
instances of cubes, spheres, or cylinders that can have one of eight different colors and consist of either a
shiny or a dull material. The combination of object geometry, material, and color is unique within a video,
and all objects are placed on a white, planar surface. The objects are either sliding across the surface, resting,
or colliding with each other (see Figure , with the videos generated such that often multiple cascading
collisions occur. CLEVRER contains 10,000 training videos, 5,000 validation videos, and 5,000 test videos.
They are accompanied by a total of 219,918 descriptive, 33,811 explanatory, 14,298 predictive, and 37,253
counterfactual questions, which were generated procedurally together with the videos. The training input
consists of a video and a text question. Models treat each question as a multi-class classification problem
over all possible answers. For example, in the case of descriptive questions, answers can be given in natural
language, and in this case the correct answer is a single word, which can be specified with a model that
outputs a softmax distribution over its vocabulary. Descriptive questions are evaluated by comparing the
answered token to the ground truth, and the percentage of correct answers is reported. Multiple choice
questions are evaluated based on two metrics: The per-option accuracy, which measures the correctness of
the model regarding a single option across all questions, and the per-question accuracy, which measures the
percentage of questions where all choices were correct.

In the three remaining categories, tasks are essentially binary classification problems. Answering the ques-
tions correctly is taken as an indicator for properly identifying, understanding, and predicting the dynamics
of the video.

There are two baseline solutions. The first solution uses a convolutional LSTM to encode the video into
a feature vector and then combines this feature vector with the input question using a MAC network (Shi
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to obtain a final prediction. The second baseline solution encodes the video information using
a convolutional neural network (CNN) and encodes the input question using the average of the question’s
pre-trained word embeddings (Mikolov et all [2013)). These two embeddings are then passed to an MLP to
make the final prediction.

Many subsequent studies have since provided solutions for the physical reasoning task on the CLEVRER
benchmark. We categorize these works into two groups. The first group mainly uses graph convolutional
network schemes as part of their models. These models use a trajectory extractor, graph networks, and
a semantic parser and achieve state-of-the-art performances on CLEVRER without using ground-truth at-
tributes and collision labels from simulations for training (Ding et al., |2021b; |Chen et al., 2021} [Lin et al.l
[2020; Wu et al., 2021; |Chen et al., [2022; Le et all) 2021} |Jia et al. 2022a; Zhong et all 2022). The other
group of approaches has hierarchical and dynamic inference neural network models. The key aspects of
these models include self-attention and self-supervised learning (Ding et al., [2021a; [Zhao et al., |2022}
let all [2021}; McDuff et al.| 2022} Wu et al.| 2022} [Sautory et al.| 2021} [Patel et al., 2022a)). Recent works by
Zablotskaia et al. demonstrated good CLEVRER. performances using an unsupervised model
let al.l 2020} [2021).

CLEVRER is most similar to the CATER (see Chapter [2.10), but also similar the CRAFT (see Chapter
, IntPhys (see Chapter 7 and SPACE (see Chapt benchmarks. Given a video input, these
benchmarks require an agent to answer questions about object interactions. The primary difference is
in what the agent is required to learn. CLEVRER and CRAFT are the most alike since they both ask
the agent text-based descriptive (what happened in the video), explanatory/causal (why certain things
happened), and counterfactual (what could have happened in the video) multiple-choice questions. However,
CLEVRER asks predictive (what will happen in the video) questions. IntPhys requires the agent to predict
whether the scenario is feasible or infeasible. CATER and SPACE require the agent to answer questions
about actions that took place during the video. However, CATER requires the agent to recognize which
actions took place during the video, and SPACE requires agents to answer only whether a particular action
occurred in the video. CLEVRER is also similar to the ShapeStacks (see Chapter and TRANCE (see
Chapter below) benchmarks since they require the agent to answer multiple choice questions about
object interactions given visual input (video or images). However, CLEVRER receives video input, while
TRANCE and ShapeStacks receive only single images as input.

2.12 ComPhy

ComPhy (Chen et al., [2022)), shown in Figure is a visual question answering benchmark for reasoning
about hidden physical properties such as the charge and mass of objects. The authors speak of intrinsic as
opposed to extrinsic properties, although we chose to call them internal as opposed to external variables in
this survey (see also Section. In contrast to external, visible variables, internal variables are invisible and
only become apparent through interaction between objects. This means internal variables are only observable
over a time interval, rather than in any particular instant.

The benchmark consists of videos that show the temporal evolution of up to 5 simulated 3-dimensional
objects that interact while moving on a plane. The objects have external properties of color, shape, and
material and discrete internal properties of mass (light or heavy) and charge (negative, neutral, positive).
Interaction between objects can take the form of attraction/repulsion or collision.

The videos come in atomic sets of 5, divided into 4 reference videos and one target video for few-shot
learning. Reference videos are 2 seconds long and show object interaction but don’t contain labels for
physical properties, while the target video is 5 seconds long, comes with ground truth on physical properties
(both internal and external variables), and only contains objects seen in at least one reference video. The
actual train, validation, and test sets of the benchmark contain a few thousand atomic video sets, and while
the physical properties of objects are consistent within atomic sets, they are assigned randomly between
different atomic sets.

The task in ComPhy is to answer natural language questions either about facts in the target video, predictions
about the evolution of the target video, or counterfactual questions concerning alternate outcomes if the
internal properties of objects had been different. Factual questions are open-ended, while predictive and
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Figure 14: Sample target video, reference videos, and question-answer pairs from ComPhy. Image from

0.

counterfactual questions need to be answered in multiple-choice, where several options can be simultaneously
correct. This effectively amounts to multi-label classification.

As baseline solutions, the authors test adaptations of the models CNN-LSTM (Antol et al, 2015), HCRN
(Le et al) 2020), MAC (Hudson & Manning| [2018) and ALOE (Ding et al} [2021a). They also provide a
small study on human performance. Additionally, they provide their own solution approach called composi-
tional physics learner. It consists of several modules which perform perception, property inference, dynamic
prediction, and symbolic reasoning. This model achieves better performance than the baseline approaches
but worse than the human testers.

The only work that has proposed an approach to address the ComPhy benchmark, as of now, is by
(2023).

2.13 CRIPP-VQA

The Counterfactual Reasoning about Implicit Physical Properties Video Question Answering benchmark,
in short CRIPP-VQA (Patel et al [2022Db)), extends the field of classical video question answering into the
domain of physical reasoning. It focuses on internal physical variables, specifically mass and friction.

The benchmark consists of 5000 videos, split into train, validation and test set, plus an additional 2000
videos to evaluate out-of-distribution generalization, where objects might have previously unseen physical
properties. Each video is 5 seconds long and shows a 3d scene of computer-generated objects (cubes and
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Counterfactual Questions: Planning Questions:
1. What will happen if we remove the purple cardboard sphere? 1. Make the collision between the olive cardboard sphere and the
2. What will happen if we replace the olive cardboard sphere with teal aluminum cube.
an olive aluminum sphere? 2. Stop the collision between the olive cardboard sphere and the

3. What will happen if we add a purple cardboard cube to the right

of an olive aluminum cube? purple aluminum sphere.

Figure 15: Stills from a video in CRIPP-VQA with exemplary counterfactual and planning questions. Image
adapted from [Patel et al.| (2022b)).

spheres) moving on a plane. Stills are shown in Figure One object is initially in motion, or two in the
out-of-distribution videos. This sets off a series of collisions which are affected by the friction and mass of
each object.

Friction and mass of objects are assigned to unique combinations of external variables {Shape, Color, Tex-
ture}. This means mass and friction are important to extract but are not truly internal, as they can be
deduced from individual frames once this mapping is known. This makes them effectively external. In the
out-of-distribution videos, however, this assignment is removed and mass and friction become truly internal.

The videos are accompanied by about 100,000 natural language questions, each assigned to an individual
video. Of these questions 45% are counterfactual, 44% descriptive and 11% concern planning. Descriptive
questions ask facts about the scene, for instance about a count, material or color. Planning questions ask
which action would have been necessary to instead obtain a certain different final state. The possible actions
are to add, remove or replace objects. Both descriptive and planning questions require language answer
tokens. The counterfactual questions ask how the final scene would have differed if the initial condition had
been different and multiple natural language answers are provided together with the question. The task is to
predict for each of the provided answers whether it is true of false, which means the counterfactual questions
are essentially multilabel classification tasks.

For all categories and videos, however, success during evaluation is measured by accuracy in the answers
given to questions. Either accuracy per option, in the counterfactual case, or accuracy per question.

As baselines solutions, the authors test the MAC (Hudson & Manning] [2018) compositional VQA model,
the HRCN VQA model 2020), and the Aloe visual reasoning model (Ding et al., 2021a)), modified
to work on Mask-RCNN features and using BERT-generated word embeddings
. Results are varied, however the modified Aloe model generally performs best out of these
three baselines. In the out-of-distribution case, the authors state that performance drops to close to random.
In addition to these baseline models, the authors present results achieved by a small group of humans for
comparison.

As of the time of writing, there are no further approaches proposed for CRIPP-VQA in the literature.

CRIPP-VQA is similar to CLEVRER (2.11)) and ComPhy ([2.12]) since these depict similar 3d collision scenes
on a plane and also involve natural language questions. However, as opposed to ComPhy, the part of CRIPP-
VQA that is not out-of-distribution does not have truly internal variables and the questions types covered
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in CRIPP-VQA do only partly overlap with both ComPhy and CLEVRER. Additionally, CRIPP-VQA has
a focus on counterfactual questions, similar to CoPhy (2.8]).

2.14 Physion

Dominoes Support Collide Contain

(I = % =

(a) Stills from the eight different physical concepts in the Physion benchmark.

L,Will the agent object touch the patient object?”
AGENT PATIENT

(b) Simplified explanation of the Physion task.

Figure 16: Stills and task explanation of the Physion benchmark. The videos contain an agent (red) and
patient (yellow), and possibly a probe (green) that moves and hence initiates the unfolding of the scene.
Images are adapted from Bear et al.| (2021).

Physion (Bear et all 2021)) contains a set of realistic 3d videos that are 5-10 seconds long and present 8
different physical interaction scenarios: dominoes, support, collide, contain, drop, link, roll and drape (see
Figure . The benchmark is evaluated on an object contact prediction (OCP) task, which asks whether
two selected objects, called agent and patient (see Figure [16b]) will touch throughout the video. A video
ends after all objects come to rest.

The videos, also called stimuli, are rendered at 30 frames per second. The following data is supplied. 1.)
visual data per frame: color image, depth map, surface normal vector map, object segmentation mask, and
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optical flow map; 2.) physical state data per frame: object centroids, poses, velocities, surface meshes (which
can be converted to particles), and the locations and normal vectors for object-object or object-environment
collisions; 3.) stimulus-level labels and metadata: the model names, scales, and colors of each object; the
intrinsic and extrinsic camera matrices; segmentation masks for the agent and patient object and object
contact indicators; the times and vectors of any externally applied forces; and scenario-specific parameters,
such as the number of blocks in a tower. All stimuli from all eight scenarios share a common OCP task
structure. There is always one object designated the agent, and one object designated the patient, and most
scenes have a probe object whose initial motion sets off a chain of physical events. Machine learning models
and human test subjects are asked to predict whether the agent and patient object will have come into
contact before or until the time all objects come to rest.

The Physion dataset consists of three different parts: dynamics, readout, and test sets. The dynamics
training set contains full videos without agent and patient annotations or labels that indicate the outcome
of the OCP task. It is meant to train representation or dynamics models from scratch. The readout training
set presents only the first 1.5 seconds of videos and the corresponding OCP task labels to separately train
the model for solving the OCP tasks with a frozen pre-trained dynamics model. Lastly, the test set contains
only the initial 1.5 seconds of videos and OCP task labels and is meant to evaluate trained models.

While Physion is meant to benchmark machine learning models, the authors evaluate it on human volunteers
to establish a baseline. Against this baseline, they compare a range of models which can be categorized into
CNN-based vision models and graph-based dynamics models. Some of the vision models learn object-centric
representations, while the graph-based dynamics models require a preexisting object-graph representation
instead of raw visual input. Their experiments show that vision models perform worse than humans, although
those with object-centric representations generally perform better than those without. The graph-based
dynamics models can sometimes compete with humans. This leads to the authors concluding that the main
bottleneck is learning object-centric representations from visual scenes.

Approaches to tackle the Physion benchmark have been proposed in [Wu et al.| (2022); Han et al.| (2022);
Nayebi et al| (2023). Physion videos are also used explicitly for the task of video prediction in [Nayebi et al.
(2023)); |[Lu et al.| (2023)).

Physion++ is proposed in Tung et al| (2023) as a second, newer version of Physion. Its videos
are based on the same physics engine as Physion, but the benchmark goes beyond Physion in that
it focuses on internal variables and shows more object interactions in its videos. Models trained on
Physion+4 videos are thus expected to explicitly infer internal variables in order to solve its tasks.
https://www.overleaf.com/project /63b6a3e02¢72d209c1defb0c

2.15 Language Table

The Language Table dataset (Lynch et al.;|2022)) contains nearly 600,000 natural language-labeled trajectories
of robotic arm moving blocks placed on a table according to language instruction (see Figure . An example
instruction is: "Slide the yellow pentagon to the left side of the green star." This benchmark is intended for
imitation learning for natural language-guided robotic manipulation. Each trajectory in the dataset records
the state of a UFACTORY xArm6 robot with 6 joints and a video of the state of the table. The table is made
of smooth wood and has 8 plastic blocks (4 colors and 6 shapes) placed on it. The dataset contains 413k
trajectories gathered from real-world data and 181k simulated trajectories. The average episode length for
real-world data is 9.9 minutes £ 5.6 seconds. The average episode length for simulated data is 36.8 seconds
4 15 seconds

Additionally, the authors release the Language-Table environment, which is a simulated environment closely
matching the real-world setup used in the dataset. This environment is useful for evaluating potential
solutions and hyper-parameter tuning. Using the Language Table environment they also create the Language
Table benchmark. This benchmark computes automated metrics for 5 task families with a total of 696
unique task variations. The task families are as follows: block2block, block2abs, block2rel, block2blockrel,
and separate. block2block tasks require the agent to push one block to another. block2abs tasks require
the agent to push a block to an absolute location on the board (e.g. top-left, bottom-right, center, etc.).
block2rel tasks require the agent to push a block in a relative offset direction (e.g. left, down, up and right,
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push the green star nudge the yellow heart
between the yellow blocks right a bit

push the blue triangle push the green circle and blue triangle
to the top left corner towards the group of blocks

Figure 17: Interactive Language rollouts on a sample of the more than 87,000 crowdsourced natural language
instructions with a wide variety of short-horizon open vocabulary behaviors. Image from Lynch et al.| (2022).

etc.), block2blockrel tasks require the agent to push a block such that it is offset from the target block in a
particular direction (left side, top right side, ... of block X). separate tasks require the agent to separate two
blocks. For all tasks, success is a binary variable that is true if the distance between the source block and
the target location/block is below a valid threshold.

To solve the Language Table benchmark the authors propose a multi-stage process. They begin by using
a pre-trained ResNet model (He et all) [2016)) to extract visual features from the current input video frame
and use the CLIP (Radford et all [2021)) to embed the natural language instruction into a visual latent
space. Next, they train a language-attends-to-vision transformer (Vaswani et al., 2017) whose keys and
values are based on the ResNet embeddings, and queries are based on the CLIP embeddings. The output
of this transformer is considered to contain the current frame’s state. Afterward, the last n results from
the language-attends-to-vision transformer, gathered from the last n frames, are then given to a temporal
transformer whose output is given to a ResNet MLP, which will predict the current frame’s action.

A method to solve the Language Table tasks has been proposed by Driess et al.| (2023)). Furthermore,
let al|(2022); Rana et al. (2023); [Yang et al. (2023) have used the Language Table dataset for training their
models, although they have solved different tasks such as robotic behaviour prediction.

2.16 OPEn

OPEn, introduced by (2021))°| is a 3D interactive, open-ended physics environment (see Figure.

It is comprised of a table framed by raised borders, with objects placed on top of it. Interactions happen
through a rolling agent that observes visual data and can move on the table. The agent can execute actions to
move in one of eight directions for a fixed distance and interact with the objects in the scene by colliding with
them. OPEn consists of two modes. The first, called sandbox, provides randomly generated non-episodic
environments which are used to learn state representations or even a physics model by interactive exploration
without a specific task. The second, the evaluation suite, expresses tasks through reward functions of a
reinforcement learning environment. The tasks are: to move towards a goal, move towards a preferred

3The author’s original link http://open.csail.mit.edu to this benchmark’s website is outdated, please refer to Table E for a
link to the GitHub repository instead.
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Figure 18: OPEn evaluation suite for 4 downstream physical reasoning tasks. Image from W m

(c) Avoidance

object, avoid a region on the table, use a ramp to escape a region of the table, and seek a goal. The tasks
are meant to assess models trained on the sandbox.

The authors test four baseline solutions on their task, i.e., they first run a sandbox and then the evaluation
suite phase. The tested approaches are a vanilla PPO agent (Schulman et all 2017), an intrinsic curiosity
module (Pathak et al., [2017)), random network distillation (Burda et al., 2018)), and CURL (Laskin et al.,
2020). Each of the latter three is also tested with RIDE rewards (Raileanu & Rocktéschel, [2020). The
best-performing solution is CURL with RIDE rewards. However, the authors note that none of the baselines
benefit meaningfully from the sandbox pretraining mode, which suggests that the used methods are unable
to build rich, general world models in the absence of downstream tasks. The proposed baselines thus do not
comprehensively solve the OPEn benchmark. Beyond these baselines, there are no proposed solutions to
this benchmark as of the time of publication.

OPEn is similar to the PHYRE and Virtual Tools benchmarks in that it is interactive, but it is different in
that it is 3-dimensional, requires a sequence of actions, and is more geared towards classical reinforcement
learning, while PHYRFE and Virtual Tools benchmarks only require a single action.

2.17 Other Benchmarks

Transformation Driven Visual Reasoning benchmark (TRANCE) (Hong et all [2021) is considering two
images, one for the initial state and the other for the final state. The aim is to infer the transformation of
the objects between the two images. Transformation refers to any kind of change in the object. This new
TRANCE benchmark evaluates how well different machines can understand the transformations. TRANCE
is created based on the CLEVR dataset (Johnson et al.l [2017), which depicts objects that are characterized
by five types of attributes, including shape, size, color, material, and position; TRANCE adopts the same
default values for the attributes of its objects as CLEVR. To start generating the benchmark starts with
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randomly sampling a scene graph, similar to the initial step of CLEVR. In the second step, the questions
and the answers are getting generated with a functional program based on the scene graph (the first step).

The Watch & Move benchmark (Netanyahu et al., [2022) is about one-shot imitation learning. An agent
watches an "expert" rearrange 2d shapes and is then confronted with the same shapes in a different configu-
ration. The agent needs to understand the goal of the expert demonstration and arrange its own shapes in
a similar way. The authors propose to use graph-based equivalence mapping and inverse RL to achieve this.

3 Clusters

The ultimate goal in physical reasoning Al is to develop generalist, powerful physical reasoning agents. In
this section, we propose four clusters of benchmarks, each representing a capability that we consider a critical
part of a future generalist agent. Currently, there are only agents aiming to solve individual benchmarks.
The next step in physical reasoning research will be to develop semi-generalist agents that perform well on
multiple benchmarks within individual clusters. Eventually, a fully capable physical reasoning agent should
be able to perform well across all clusters.

We propose to form these four clusters to probe the following four core capabilities: A general agent should
() be interactive, i.e. able to explore the world by acting in it instead of just passively observing. It should
also (i7) be able to recognise known physical concepts and categories. It should further (ii7) be able to build
models of world dynamics, to a point where it can extrapolate into the future and make predictions. Finally,
agents should (iv) be capable of language in order to reason and communicate on abstract, yet semantically
meaningful concepts rather than merely images, numbers or categories.

3.1 Interactive Benchmarks

From human and animal studies we know that active exploration of the world is an important prerequisite
for building a solid understanding of the laws governing it. In that sense, interactive benchmarks provide
the unique option of active hypothesis testing. The agent can — and has to — decide what to try next and
how to fill the gaps in its world knowledge.

Interactive physical reasoning tasks are often formulated as reinforcement learning (RL) problem, since it
caters to the sequential nature of physical processes and there is extensive prior work on balancing exploration
and exploitation as well as dealing with uncertainty. We found that RL approaches are used in solution
algorithms for all interactive benchmarks in our review.

Due to their interactive nature, interactive benchmarks usually have to rely on an internal simulator that dy-
namically reacts to inputs to generate data on the fly. It is up to the agent to collect useful and unbiased data,
while non-interactive benchmarks may come with carefully balanced datasets. Since it is infeasible to test
all possible input-output combinations of the simulator beforehand, it has to be as accurate and numerically
stable as possible to achieve good extrapolation beyond what could be tested during developmentﬂ

While all interactive benchmarks listed in this survey (those carrying the tags or in Table|l)) focus
on achieving a specific final state of the simulation, other tasks such as question answering or counterfactual
reasoning are conceivable and illustrate yet untapped potential of interactive physical reasoning tasks. To
sum up, we see interactivity as an important requirement on the way to generalist physical agents and deem
it to define one of the relevant clusters for semi-generalist agent development.

3.2 Concept Recognition Benchmarks

In physical reasoning, it is a difficult problem to learn explicit, basic physical concepts with a model that
has no prior knowledge about physics. Agents and especially future generalist agents, however, benefit
from explicit knowledge of physical concepts relevant to their reasoning task. Various current benchmarks

4An example for why inaccurate simulators are problematic are physics glitches that have been seen exploited by solution
algorithms to circumvent or greatly simplify the proposed task.
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Benchmark

Input Data

Target Data

PHYRE
Virtual Tools

Phy-Q
Physical

Problems
CRAFT

Bongard

ShapeStacks

SPACE

A [E] [E] [E]
(=2 I 11 .

CoPhy

IntPhys

2] [E]
o [09]

CATER
CLEVRER

2.12| ComPhy

2.13| CRIPP-VQA

2.14] Physion

2.15| Language Table

2.16) OPEn

Images: 256x256px 7-channel (each chan-
nel is distinct color)

Images: 600x600px RGB

Metadata: Used tool, tool position, num-
ber of solution attempts

Images: 480x640px RGB

Metadata: Symbolic task representation
in JSON format

Images: 102x102px RGB

Images: 256x256px RGB

Questions: Natural language text
Images: 224x224px RGB, depth, object
segmentation

Images: 224x224px RGB, depth, object
segmentation, surface normal, optical flow

Images: 448x448px RGB, depth, object
segmentation

Images: 228x228px RGB, depth, object
segmentation

Metadata: Object positions, camera po-
sition, object IDs

Images: 320x240px RGB

Images: 480x320px RGB

Questions: Natural language text

Images: 480x320px RGB
Questions: Natural language text
Images: 512x512px RGB
Metadata:  Object locations,
velocities, object orientations,
events

Questions: Natural language text
Images: 512x512px RGB, depth, object
segmentation, surface normal, optical flow
Metadata: Physical properties of objects,
collision events, force vectors, model names
of scene objects, additional segmentation
masks, scenario-specific parameters (e.g.
number of total objects in a stack)
Images: 180x320px RGB

object
collision

Images: 168x168px RGB (can be config-
ured to other resolutions)

3D or 6D action vectors for positions
and radii of red ball(s)

Integer representing the tool and 2D
position vector

Either integer n € {0, ...,179} repre-
senting slingshot angle or 3D vector
representing x/y coordinates of pulled
back slingshot and the activation time
of birds with special abilities

Class label

Class label
Stability flag

Video prediction: RGB image of
next frame

Scenarios: True/false flag

3D coordinates of objects

Plausibility score between 0 and 1

Class label

Descriptive questions: Answer to-
ken

Other: Class label

Factual questions: Answer tokens
Other: Class labels
Counterfactual
Boolean flags

Other: Answer tokens

questions:

Flag that indicates whether agent and
target object touch or not

Two 2D vectors representing gripper
position and target, 512D instruction
token vector
Integer n € {0, ..., 8} representing the
action label

Table 2: Input and target formats for all benchmarks. The Input Data column lists the kind and format
of data a solution approach can make use of, the Target Data column lists training targets. For interactive
benchmarks, the target data usually consists of actions which are input for a simulator and thus differs from
the final performance measure. For non-interactive benchmarks, the target data equals the final performance
measure or is easily mappable to it.
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pose classification tasks, which effectively teach such concepts. By training on a physically meaningful
classification target, an agent will learn to recognise the concept.

In the case of IntPhys (Section for instance, the physical concept and classification target is physical
plausibility, which requires object permanence, shape constancy and spatio-temporal continuity. The PBP
benchmark (Section , on the other hand, requires identification of a concept that defines the difference
between two physical scenes. In the case of CATER (Section , the classification target is temporal order
of actions.

Physical scenarios can be decomposed into concepts on various levels of abstraction and granularity, as shown
by these examples, which makes this cluster rather broad. Beyond IntPhys, PBPs and CATER it also contains
CRAFT, ShapeStacks, SPACE, ComPhy and Physion. What they have in common, however, is that they
require models to learn to recognise physical concepts. The remaining two benchmarks involving classification
tasks, PHYRE and Virtual Tools, however, they are interactive benchmarks where the classification target
concerns reaching a desirable state in the environment rather than recognising a physical concept.

In current benchmarks, classification or concept recognition happens for its own sake, and does not form
part of more complex reasoning chains. In the future, however, this cluster might well extend to benchmarks
that do not explicitly train models in a supervised manner on given concepts. Instead, benchmarks might
expect models to learn concepts in an unsupervised way and as a part of more complex reasoning tasks.
To evaluate concept understanding, they can then check whether concepts were explicitly learned during an
evaluation phase.

3.3 World Model Benchmarks

World model benchmarks can be seen as a class of tasks that test the capability of an agent to use a world
model to predict the consequences of different ways of acting in order to identify and compare feasible
solution paths and their relative pro’s and cons.

World models vary with respect to what they predict, e.g. forward models predict outcomes caused by
inputs, inverse models predict inputs required to cause desired outputs. They also vary w.r.t. their domain
and ranges (which can either be narrow or wide, discrete or continuous). Often, the modelled relationship is
probabilistic, e.g., represented as a joint probability density of inputs and outputs. Depending on the entropy
of this density, the model may provide very weak or very distinct predictions. This includes "model-free"
approaches, where an agent starts with a "tabula rasa" that is shaped into a more or less predictive world
model as a result of (supervised or unsupervised) learning, and on the other hand approaches that start
with a very detailed world model that predicts deterministic and unique outcomes that are highly accurate
within its domain of applicability. Models can also take other forms, such as, e.g. attention mechanisms, or
value functions in reinforcement learning. Finally, adaptive models can also include predictions about the
confidence (or confidence intervals) with (or within) which their predictions are valid.

Although a world model can be expected to boost performance in most physical reasoning tasks, it may be
hard to obtain and the cost of obtaining and using it always has to be weighed off against its usefulness. For
instance, tasks that contain high levels of branching (e.g. due to uncertainty or stochasticity) are usually no
good candidates for world models as the model predictions are likely to quickly become unreliable. On the
other hand, if the task dynamics exhibit only little or no branching at all, a world model is a promising tool
to increase performance. One concrete example for this is by [Ahmed et al.| (2021)), who demonstrate that
adding the predictions of a learned dynamics model to their PHYRE solution algorithm notably increases
performance compared to a variant without the dynamics model.

An ultimately generalist physical reasoning agent should be able to combine a set of world models, which
complement each other w.r.t. different forms of reasoning, along with further factors, such as range, precision,
reliability and computational effort in order to cope with the huge range of different physical contexts that
need to be covered in real world situations. Moreover, the models with a clear focus on physics need to be
aided by models that cover regularities "on top of" physics, such as mind states of other agents and how these
are affected by factors that are in turn physical. This suggests architectures that arrange models in suitable
hierarchies to avoid solving exhaustive and expensive searach problems, as can be seen e.g. in|Ahmed et al.
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(2021)); |Li et al. (2022al); |Qi et al.| (2020); Rajani et al.|(2020). To avoid irrelevant simulation candidates
in the first place, intuitive physics understanding could be leveraged as a guide for the precise world model
so that the latter is used more economically. Whether being guided carefully or used for exhaustive search,
we believe precise world models are an important and powerful tool in the arsenal of a physical reasoning
agent. From the benchmarks we list in this survey, we see Phyre , Virtual Tools , Phy-q , and
CRAFT as core members of this cluster since their dynamics and visuals are simple enough to allow for
learning a powerful world model and sequence data of the tasks is readily available. For benchmarks with
higher visual fidelity and/or more interacting objects, learning a world model can be harder in practice and
thus may be less likely to increase performance, although various solution approaches for ShapeStacks (2.6)
and SPACE use world models as well.

3.4 Language-related benchmarks

Benchmarks that comprise natural language processing or generation extend physical reasoning problems
to the domain of natural language processing. These benchmarks require agents to harness the descriptive
power of language to assess, describe and/or solve physical problems. In contrast to images, language can
represent different aspects of a physical process in varying levels of abstraction and detail, potentially putting
the focus on certain aspects while neglecting others. However, this comes at the cost of higher potential for
ambiguity, redundancy, synonymy and variation. Another advantage of using natural language is an easier
comparison of state-of-the-art agents to human physics understanding. On the other hand, adding language
understanding and maybe even generation to the stack of problems makes natural language-based physical
reasoning benchmarks a considerably harder problem class in general. Nonetheless, we see natural language
physical reasoning benchmarks as an important cluster to master on the way to a generalist agent.

Benchmark Visual Input Question Format Output Format Evaluation Criteria
CRAFT video raw text single-label single-CA
P(all_Token|Q)
ShapeStacks image-IS constant binary multi-CA
SPACE™* image-IS constant in sub-task multi-label multi-CA
2.10| CATER™ video constant in sub-task single-label, multi- single-CA, multi-CA
label
CLEVRER video raw text multi-label single-CA, multi-CA
P(all Token|Q)
CRIPP-VQA  video raw text multi-label P(all single-CA, multi-CA
Token|Q)
TRANCE image-IS, constant sequence of transfor- Seq Acc, Dist
image-FS mations

Table 3: Comparison of all benchmarks which require the agent to answer questions about a given visual
input (i.e., video or images). Section provides a legend for this table.

We create Table [3| as a way to compare the language-related benchmarks listed within this survey. Of these
benchmarks, we consider CRAFT CLEVRER [2.11] and CRIPP-VQA as the core members because
they are the only benchmarks which require agents to answer arbitrary questions provided via raw text.
This requires agents to possess language understanding ability to solve these benchmarks. Additionally, the
ShapeStacks SPACE CATER and TRANCE benchmarks also require agents to answer
questions based on visual input. However, we do not consider these benchmarks to be core members because
the questions to be answered are implicit within a sub-task, meaning that an understanding of natural
language is not strictly required to solve these benchmarks.

Below we provide a description of all terms contained in Table [3]

The benchmarks column contains the names of the benchmarks, with an asterisk * denoting that the bench-
mark’s tasks are independent and a double asterisk ** indicating that question answering is a potential
alternate focus of the benchmark.

27



Under review as submission to TMLR

The visual input format column specifies the type of visual input given to the model. image-IS denotes
that only an image of the initial state is given and image-F'S denotes that only an image of the final state
is given.

The question input format column specifies how the questions are presented to the models during evaluation.
The notation constant in sub-task implies that the question is implicit and given within the context of
the current task, treating each task as a separate dataset. On the other hand, constant indicates that the
question remains constant and implicit across all test examples.

The output format column outlines the expected format of the models’ predictions. multi-label
P(all__Tokens | Q) represents a multi-label probability distribution over all possible answers conditioned on
the current question and input, allowing for multiple correct answers. Similarly, single-label P (all_Tokens
| Q) represents a single-label probability distribution over all possible answers conditioned on the current
question and input, permitting only one correct answer. multi-label represents a multi-label probability
distribution over a small set of possible answers conditioned on the current question and input, allowing for
multiple correct answers. single-label represents a single-label probability distribution over a small set of
possible answers conditioned on the current question and input, permitting only one correct answer.

The evaluation criteria column outlines the metrics used to assess the performance of the models. multi-
CA represents multi-label classification accuracy. single-CA represents single-label classification accuracy.
binary-CA denotes binary classification accuracy. Given a sequence of transformations, the Seq Acc
evaluation criteria outputs a binary label describing whether the sequence describes a valid solution. Dist
quantifies the distance between the true final state and the final state described by the predicted transfor-
mations.

Benchmark Website Concepts Variables Scene
PHYRE Link Collision, Falling G, E T 2D simplistic
Virtual Tools Link Collision, Falling G, E T 2D simplistic
Phy-Q Link Collision, Falling G, E T 2D realistic
Physical Bongard Problems Link Containment, Falling, Colli- G, E 2D simplistic

sion
CRAFT Link Collision, Falling G, E T 2D simplistic
ShapeStacks Link Falling, Stacking G, E 3D realistic
SPACE Link Collision, Falling, Occlusion, G, E, T 3D simplistic
Containment
CoPhy Link Collision, Falling, Stacking G E T, 1 3D realistic
IntPhys Link Occlusion G, E, T 3D realistic
CATER Link Occlusion, Containment, G, E, T 3D simplistic
Lifting

2.11 CLEVRER Link Collision G, E, T 3D simplistic

2.12] ComPhy Link Collision, Attraction / Re- G, E, T, 1 3D simplistic

pulsion

2.13| CRIPP-VQA Link Collision G, E, T 3D simplistic

2.14| Physion Link Collision, Falling, Stacking, G, E, T 3D realistic

Containment, Draping

2.15| Language Table Link Collision G, E 3D simplistic

2.16| OPEn Link Collision G, ET 3D simplistic

Table 4: Benchmarks categorised according to their concepts, physical variable types, and scene composition.
G, E, T, and I stand for global, extrinsic, temporal, and intrinsic physical variables (see Section. If internal
variables are not explicitly stated this means that relevant internal variables are encoded through (and
therefore become) external variables. Physical concepts are to some extent a question of abstraction (e.g.
bouncing implies collision and deformation) so the concepts column here summarizes general and somewhat
orthogonal base concepts.
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Benchmark Agent Reasoning Task
PHYRE Interactive Make objects touch
Virtual Tools Interactive Make objects touch
Phy-Q Interactive Hit objects with slingshot
Physical Bongard Problems  Passive Recognize conceptual differences (D)
CRAFT Passive Answer questions (D, E, C)
ShapeStacks Passive Stability prediction (P)
SPACE Passive Recognize containment or interaction (D), or future
frame prediction (P)
2.8 CoPhy Passive Predict future state from changed initial state (P, C)
2.9 IntPhys Passive Judge physical feasibility (D)
2.10| CATER Passive Recognize compositions of object movements (D)
2.11] CLEVRER Passive Answer questions (D, P, E, C)
2.12| ComPhy Passive Answer questions (D, P, C)
2.13 CRIPP-VQA Passive Answer questions (D, C), Planning
2.14] Physion Passive Predict object contact (P)
2.15| Language Table Interactive Push objects to absolute or relative positions
2.16) OPEn Interactive Push objects to relative positions

Table 5: Benchmarks categorised according to their reasoning tasks. D, P, E, C stand for the common
categories of descriptive, predictive, explanatory and counterfactual tasks, defined for instance in [Yi et al.
(2019).

4 Discussion

In this work we have compiled a comprehensive collection of physical reasoning benchmarks that encompass
various input and output formats across different task domains. Each benchmark is accompanied by a
detailed description, including information about input-output formats, task nature, similarities to other
benchmarks, and solution approaches. None of the physical reasoning benchmarks we have encountered
so far encompasses all types of physical reasoning, and none of them pose challenges in all available task
dimensions (see Table[l]). We propose the utilization of clusters to address these challenges, employing semi-
generalist agents that can serve as a stepping stone towards the development of a truly generalist physical
reasoning agent.

Creating benchmarks that do not offer shortcuts for machine learning approaches can pose a challenge. To
address this, we propose a clear and formal description of the physical phenomena that should be tested.
Additionally, we provide a comprehensive and distinct breakdown of all the components comprising a physical
reasoning benchmark in Section [I| This approach aims to facilitate both the detection of possible shortcuts
and a better understanding of the benchmark’s underlying structure.

Regardless of whether language processing or interaction is involved, an orthogonal classification can be
made based on the visual complexity of the benchmarks. Based on available solutions for the presented
benchmarks, we conjecture that higher visual fidelity tends to correlate with higher benchmark difficulty if
all other variables are kept fixed. However, depending on the task even a simplistic 2D task environment
can already bring state-of-the-art agents to their limits. We argue that a generalist agent should solve both
visually simple as well as complex tasks and that visually challenging benchmarks are necessary to achieve
this goal. However, we perceive the visual complexity to be more or less orthogonal to the physical reasoning
difficulty. Thus, one way to obtain a capable generalist agent could be a greater focus on curriculum learning
w.r.t. not only the task difficulty but also the visuals. While we did not find any benchmark that provides
this feature, we believe that smoothly ramping up input along with task complexity would be helpful in the
creation of a generalist physical reasoning agent.

Drawing from our comprehensive benchmark comparison, we offer a taxonomy of physical reasoning bench-
marks by clustering existing works and explaining descriptive properties of each cluster. In addition, we aim
to shed light on existing gaps in the current benchmark landscape. One such gap is the often overlooked
concept of internal physical variables, which is only explicitly implemented in the ComPhy and Physion+-+
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benchmarks within our collection. While it is important to prioritize mastery of fundamental concepts,
we believe that the advanced notion of internal physical variables deserves greater attention and should be
incorporated into state-of-the-art physical reasoning benchmarks.

As the field continues to evolve, we anticipate the inclusion of new candidates to expand this collection of
benchmarks. By regularly incorporating emerging benchmarks, we can ensure that our evaluation framework
remains up-to-date and comprehensive.

The majority of datasets we present in this context are generated through simulation. While these datasets
may offer a certain level of detail in the generated samples, they still fall short in terms of the complexity
and noise found in real-world data. Notably, several benchmark papers have indicated or demonstrated
that state-of-the-art models often struggle when confronted with real-world data. Related to this idea is
the concept of domain randomization. In cases where an accurate mapping of the real world is challenging,
domain randomization involves creating multiple instances of simulated domains with the hope that their
combined characteristics encapsulate those of the real world. A well-known example of domain randomization
is the OpenAl Rubik’s Cube paper (Akkaya et all 2019), which demonstrates how this technique can be
applied effectively.

It is essential to acknowledge that there still exists a substantial amount of unexplored terrain. In light
of this, it is imperative for future benchmark authors to clearly define the physical concepts encompassed
within their benchmarks, identify the types of physical variables that are relevant, and address the possibility
of interactions with the environment. Future benchmarks can contribute to the continued advancement of
our understanding of physical reasoning and pave the way for more comprehensive assessments of cognitive
abilities across Al agents.
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