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ABSTRACT

Human annotations are the backbone of modern computer vision, but it is becom-
ing clear that human data is an inefficient resource. Human annotations typically
capture a single fixed-view of the otherwise rich visual information present in data.
How can we move towards computer vision datasets that are adaptively labeled?
We propose Instance-Level Retrieval, a method that adaptively builds datasets for
object detection from large collections of unlabeled images. Given a handful of
examples, our method finds and labels the most relevant training data by compar-
ing self-supervised representations for objects. Starting from unlabeled images
derived from the Pascal VOC training set, we rebuild Pascal VOC without human
annotations. In experiments that control data scale, models trained on our data
not only match training on the original Pascal VOC human annotations but exhibit
an average improvement of 0.009 mAP. Code for the method and examples are
available at: instance-rag.github.io

1 INTRODUCTION

The current paradigm in modern computer vision is to gather a fixed set of human annotations
based a particular downstream task like object detection. Human annotators are typically provided
a set of instructions for labeling—often with a predetermined set of visual classes—and asked to
locate regions of interest in provided images (Deng et al., 2009; Gupta et al., 2019; Lin et al., 2014;
Everingham et al., 2010). These human annotations generally represent a single fixed view of the
underlying rich visual information present in images. However, as computer vision applications are
becoming increasingly adaptive in nature, needs can grow beyond a fixed set of labels. How do
we build computer vision datasets that are adaptively labeled based on the ever-changing needs of
downstream applications? We propose Instance-Level Retrieval, a method inspired by the success
of Retrieval-Augmented Generation (Lewis et al., 2020) in language models, that adaptively builds
a training set from a large collection of unlabeled images, given a handful of key examples.

Our method operates in three stages. First, we employ pretrained region proposal networks to gen-
erate candidate instances for retrieval. Second, we build representations for instances using features
from a state-of-the-art self-supervised encoder. Finally, we search through the candidates to find in-
stances most similar to a provided set of retrieval keys, and return the top k most relevant instances
for training from the unlabeled source. We evaluate this approach by re-building the training set
for Pascal VOC (Everingham et al., 2010) from a handful of key instances. Models trained on our
adaptively labeled dataset demonstrate an average 0.009 mAP improvement over those trained on
the original Pascal VOC human annotations; limited to the same number of instances. Code for the
method and examples are available at: instance-rag.github.io

2 RELATED WORKS

Adaptive Computer Vision. Computer vision researchers have worked on adaptivity in prio
works, focusing primarily on building adaptive models, rather than adaptive datasets. For exam-
ple, Large Vision Models (Bai et al., 2023) are a class of autoregressive model that can perform new
tasks via few-shot in-context learning. Similarly detection models like Owlv2 (Minderer et al., 2022;
2024) can have vision encoders attatched, which allow for detection of novel objects from a single
example image. Perhaps the most relevant works to consider adaptive datasets are those in domain
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Figure 1: Overview of Instance-Level Retrieval. Starting from a large unlabeled set of images, we
employ pretrained vision models to discover objects for training based on a handful of examples.
Our method finds the most suitable instances by comparing self-supervised representations for ob-
jects using a proposed Semantic IoU metric sensitive to visual appearance and structural similarity.

adaptation (Csurka, 2017), which consider target domain with a potentially significant domain shift
from a static source domain. The main difference between this work, and domain adaptation works
lies in the formulation of the dataset. Our retrieval step dynamically rebuilds the data-distribution in
its entirely based on images from the target domain, whereas previous works in domain adaptation
often focus on loss function and model augmentations to mitigate domain shift (Csurka, 2017).

Retrieval Augmented Generation. Retrieval-Augmented Generation has recently emerges for
language models as a way to mitigate hallucinations (Lewis et al., 2020). By allowing the model to
augment its context with a relevant document retrieved from a larger source of relevant knowledge,
language models can be extended to knowledge from beyond their initial training data. RAG has
recently been extended to Diffusion models (Luo et al., 2024) to extend their capabilities to novel
artistic concepts and styles created by users that such models were not initially trained to generate.
Retrieval is especially promising in data-centric adaptivity, and to the best of our knowledge, ours is
the first work to consider Instance-Level Retrieval for building adaptive object detection datasets.

Synthetic Data. Synthetic data in computer vision has recently emerged as an effective strategy
for training data-efficient models with limited real data (Trabucco et al., 2023; He et al., 2023;
Wu et al., 2023; Azizi et al., 2023). For object detection, synthetic data methods have explored
generating synthetic images alongside their labels (Wu et al., 2023), and using pretrained object
detectors to weakly annotate unlabeled images for training larger models (Minderer et al., 2024).
However, these approaches ultimately do not solve the adaptivity problem. When the required visual
task changes—often the case in real-world settings—synthetic data must often be re-generated.

3 METHODOLOGY

3.1 BOUNDING BOX PROPOSAL

For a given unlabeled image, the initial step involves generating a set of bounding box proposals.
We achieve this using the Owlv2ForObjectDetection model (Minderer et al., 2024), which produces
candidate bounding boxes that are subsequently filtered based on their objectness score. Each re-
sulting bounding box, along with its corresponding image, is referred to as an instance.

To refine the set of proposed instances, we apply Non-Maximum Suppression (NMS) to eliminate
bounding boxes with excessive overlap. We compute the pairwise Intersection over Union (IoU) for
all bounding boxes within a given image. If the IoU between any two boxes exceeds a predefined
threshold, we discard the instance with the lower objectness score. This process ensures that only
distinct and high-confidence object proposals are retained.

2



Published as a workshop paper at SSI-FM @ ICLR 2025

3.2 BAG-OF-FEATURES ENCODING

Once the set of instances is obtained, we process each instance using the Segment Anything Model
2 (SAM2) (Kirillov et al., 2023) to generate a segmentation mask over the principal object. Simul-
taneously, we pass the image through the DINOv2 model (Oquab et al., 2024) to extract its feature
map. We then retrieve the features from this feature map that correspond to the computed mask
for each instance, ensuring that only the relevant regions are utilized for further processing. For
each candidate instance, this process results in a set of patch features that were contained within the
bounds of the segmentation mask. This set is defined below.

X = {x⃗1, x⃗2, · · · , x⃗N} st x⃗i ∈ RD (1)

Here, each x⃗i corresponds to a single patch feature selected from the final layer predictions of
Dinov2 (Oquab et al., 2024). While it is the most accurate to think of X as a set, in that elements
are not inherently ordered, we overload this notation and treat X as a matrix with N rows and D
columns, where N is the number of patch locations within the segmentation mask for the object,
and D is the dimensionality of the Dinov2 feature space.

3.3 SEMANTIC IOU CALCUALTION

Equipped with a self-supervised representation for objects based on a set of patch-level features,
we develop a similarity metric to compare two bag-of-features representations. Given two such
representations X and Y defined in the previous section, we compute their Semantic Intersection
Over Union (Semantic IoU) as follows. We first normalize all vectors within each set to unit length.
Then, we apply the hungarian matching algorithm (Kuhn, 1955) to pair vectors from the set X to
the set Y in order to maximize cosine similarity of paired vectors.

P̂ = arg max
P∈SN,M

Tr
(
X(PY )T

)
(2)

The matrix P ∗ found by the hungarian matching algorithm is a non-square permutation-like matrix
from the set of non-square permutation-like matrices from N elements to M elements, noted SN,M

in Equation 2. The matrix is optimized to maximize the sum of cosine similarities of paired vectors,
induced by P ∗, accomplished above using the matrix interpretations for X and Y . Here we assume
that X has N elements as defined previously, and Y is defined similarly to X , but with M elements.
With the optimal match between the sets, we compute Semantic IoU with the following.

Semantic IoU = Tr
(
X(P̂ Y )T

)
︸ ︷︷ ︸

intersection

/(
N +M − Tr

(
X(P̂ Y )T

))
︸ ︷︷ ︸

union

(3)

Intuitively, this metric favors objects that are visually similar (have many patch features with high
cosine similarity), and are of comparable size (the number of patches).

3.4 INSTANCE-LEVEL RETRIEVAL

The final step in generating adaptively labeled data involves a matching algorithm inspired by
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020). We begin by selecting a retrieval
key, which is a human-labeled instance—referred to as the anchor instance—for which we aim to
generate similar instances from unlabeled data.

After generating bounding box proposals for the unlabeled data, we extract bag-of-features encod-
ings for both the generated instances and the anchor instance. We then compute the Semantic IoU
between the anchor instance and all proposed instances.

Instead of directly selecting the top K instances, we initially retain the top 10 ∗K instances based
on their similarity scores. We filter this superset by applying NMS as described in sub-section 3.1,
but with a more stringent IoU threshold to ensure greater distinctiveness among selected instances.
Finally, from this filtered subset, we select the top K instances and assign them the same label as
the anchor instance.
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4 RESULTS

4.1 LABEL ASSIGNMENT ACCURACY

We first evaluate the accuracy of the RAG-inspired label assignment methodology in sub-section
3.4. Instead of processing the entire dataset through the complete pipeline to generate bounding
boxes, we utilize the pre-existing bounding boxes provided in the Pascal VOC dataset.

We iterate through the validation set, treating each instance as an anchor. For each anchor, we
compute the Semantic IoU against all instances in the training set and identify the top K most
similar instances. The anchor is then assigned the label corresponding to the mode of these K
nearest instances.

To assess the label assignment performance we define two metrics. Accuracy is defined as the
proportion of validation instances assigned a label that matches their ground truth. Consistency
measures how many of the K selected instances share the same ground-truth label as the anchor
instance.

K Accuracy Consistency

1 0.941 −
5 0.951 0.927

10 0.953 0.915
15 0.953 0.906
20 0.951 0.898

Table 1: Accuracy and Consistency for Different Values of K

4.2 OBJECT DETECTION PERFORMANCE

To demonstrate the training efficiency gained through the proposed adaptive labeling algorithm, we
compare the performance of an object detection model trained on the original Pascal VOC human
annotations with a model trained on an adaptively labeled dataset derived from the same source.

To construct the datasets, we follow the standard preprocessing pipeline. We generate synthetic
instances for all the images in the training set. For each class, we randomly sample N anchor
instances from the ground-truth annotations in the training set. We then carry out pre-selection,
filtering and final selection of K instances for each anchor based on the algorithm described in
sub-section 3.4.

To ensure a fair comparison, we subsample N ∗K instances per class from the original training set,
matching the dataset size of the adaptively labeled version.

We then train a YOLO11m model from scratch for 300 epochs on both datasets with image size
set to 640 pixels. In table 2, we present the highest Mean Average Precision (mAP) achieved by
the model on the Pascal VOC validation set. It is computed as the mean of the Average Precision
(AP) across all object categories. The reported mAP@50 and mAP@50-95 is averaged over 5 seeds
and correspond to the AP averaged over IoU thresholds of 0.50 and the range from 0.50 to 0.95,
respectively.

Instances N K mAP@50 mAP@50-95

1000 5 10 0.169± 0.011 0.098± 0.006
Ground 0.166± 0.008 0.091± 0.004

4000 20 10 0.371± 0.011 0.245± 0.008
Ground 0.361± 0.010 0.229± 0.009

Table 2: Object Detection Performance on Pascal VOC Validation Set
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
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A CONCLUSION

The improved performance of the object detection model trained on fully synthetic labels demon-
strates significant potential for scaling the training of Large Visual Models. This approach enables
the creation of substantially larger labeled datasets while ensuring stable model training. With only
a small set of human-labeled instances, we can generate a significantly larger collection of similar
image-label pairs.

Future work will explore not only replicating performance within the same dataset but also leverag-
ing large-scale unlabeled datasets to generate task-specific instances, further expanding the adapt-
ability and generalization of Large Visual Models.
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