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Abstract

Extreme multi-label classification (XMC) is a popular framework for solving many
real-world problems that require accurate prediction from a very large number
of potential output choices. A popular approach for dealing with the large label
space is to arrange the labels into a shallow tree-based index and then learn an
ML model to efficiently search this index via beam search. Existing methods
initialize the tree index by clustering the label space into a few mutually exclusive
clusters based on pre-defined features and keep it fixed throughout the training
procedure. This approach results in a sub-optimal indexing structure over the label
space and limits the search performance to the quality of choices made during the
initialization of the index. In this paper, we propose a novel method ELIAS which
relaxes the tree-based index to a specialized weighted graph-based index which is
learned end-to-end with the final task objective. More specifically, ELIAS models
the discrete cluster-to-label assignments in the existing tree-based index as soft
learnable parameters that are learned jointly with the rest of the ML model. ELIAS
achieves state-of-the-art performance on several large-scale extreme classification
benchmarks with millions of labels. In particular, ELIAS can be up to 2.5% better
at precision@1 and up to 4% better at recall@100 than existing XMC methods.
A PyTorch implementation of ELIAS along with other resources is available at
https://github.com/nilesh2797/ELIAS.

1 Introduction

Many real-world problems require making accurate predictions from a large number of potential
output choices. For example, search advertising aims to find the most relevant ads to a given search
query from a large corpus of ads [26, 14], open-domain question answering requires finding the
right answers to a given question from a large collection of text documents [8, 29], and product
recommendation requires recommending similar or related products from a large product catalog,
based on past searches and interactions by users. eXtreme Multi-label Classification (XMC) is a
popular framework for solving such problems [4], which formulates these problems as a multi-label
classification task with very large number of labels; here each output choice is treated as a separate
label. A label ℓ is often parameterized by its one-versus-all classifier vector wℓ and the relevance
between label ℓ and input x is formulated as wT

ℓ ϕ(x), where ϕ is an encoding function which maps
an input x to its vector representation.

∗This work does not relate to Hsiang-Fu’s position at Amazon
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Figure 1: Traditional partition-based index vs ELIAS index; here an arrow from a cluster to a label denotes the
assignment of the label to the cluster, arrow width indicates the weight of the assignment. (left) Existing partition
based XMC methods use a shallow balanced tree as the index structure with a label uniquely assigned to exactly
one cluster; moreover, they initialize the clusters over pre-defined features and keep them fixed throughout the
training procedure. (right) ELIAS generalizes the tree based index to a sparsely connected graph-based index
and learns the cluster-to-label assignments end-to-end with the task objective during training.

Evaluating wT
ℓ ϕ(x) for every label ℓ in an XMC task can get computationally expensive since the

number of labels could easily be upwards of millions. To reduce the complexity, most existing
methods employ a search index that efficiently shortlists a small number of labels for an input query
and the relevance scores are only evaluated on these shortlisted labels. The quality of the search
index plays a pivotal role in the accuracy of these methods since a label ℓ outside the shortlist will
be directly discarded, even if it can be correctly captured by its classifier vector wℓ. Moreover, the
label classifier wℓ is a function of the quality of the index as during training, the label classifiers are
learned with negative sampling based on the search index. Therefore, how to improve the quality of
the search index becomes a key challenge in the XMC problem.

There are two main formulations of the search index: 1) partition-based approach [25, 31, 7, 18, 32]
and 2) approximate nearest neighbor search (ANNS) based approach [16, 9, 13, 10]. In partition-
based approach, labels are first arranged into a tree-based index by partitioning the label space into
mutually exclusive clusters and then a ML model is learned to route a given instance to a few relevant
clusters. In an ANNS-based approach, a fixed, black-box ANNS index is learned on pre-defined label
embeddings. Given an input embedding, this index is then used to efficiently query a small set of
nearest labels based on some distance/similarity between the input and label embeddings. Both of
these approaches suffer from a critical limitation that the index structure is fixed after it’s initialized.

This decoupling of the search index from the rest of the ML model training prevents the search index
from adapting with the rest of the model during training, which leads to sub-optimal performance.

To overcome this challenge, we propose a novel method called ELIAS: End-to-end Learning to Index
and Search, which jointly learns the search index along with the rest of the ML model for multi-label
classification in large output spaces. In particular, as illustrated in Fig. 1, ELIAS generalizes
the widely used partition tree-based index to a sparsely connected weighted graph-based index.
ELIAS models the discrete cluster-to-label assignments in the existing partition based approaches
as soft learnable parameters that are learned end-to-end with the encoder and classification module
to optimize the final task objective. Moreover, because ELIAS uses a graph-based arrangement of
labels instead of a tree-based arrangement, a label can potentially be assigned to multiple relevant
clusters. This helps to better serve labels with a multi-modal input distribution [22].

Through extensive experiments we demonstrate that ELIAS achieves state-of-the-art results on
multiple large-scale XMC benchmarks. Notably, ELIAS can be up to 2.5% better at precision@1 and
up to 4% better at recall@100 than existing XMC methods. ELIAS’s search index can be efficiently
implemented on modern GPUs to offer fast inference times on million scale datasets. In particular,
ELIAS offers sub-millisecond prediction latency on a dataset with 3 million labels on a single GPU.

2 Related Work

One-vs-all (OVA) methods: OVA methods consider classification for each label as an independent
binary classification problem. In particular, an OVA method learns L (number of classes) independent
label classifiers [wℓ]

L
ℓ=1, where the job of each classifier wℓ is to distinguish training points of label ℓ

from the rest of the training points. At prediction time, each label classifier is evaluated and the labels
are ranked according to classifier scores. Traditional OVA methods like DiSMEC [2], ProXML [3],
and PPDSparse [30] represent each input instance by their sparse bag-of-word features and learn
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sparse linear classifiers by massively parallelizing over multiple machines. OVA methods achieve
promising results on XMC benchmarks but suffer from huge computational complexity because of
their linear scaling with number of labels. Subsequent XMC methods borrow the same building
blocks of an OVA approach but overcome the computational overhead by employing some form of
search index to efficiently shortlist only a few labels during training and prediction.

Partition based methods: Many XMC methods such as Parabel [25], Bonsai [19], XR-Linear [32],
AttentionXML [31], X-Transformer [28], XR-Transformer [33], LightXML [18] follow this approach
where the label space is partitioned into a small number of mutually exclusive clusters, and then an
ML model is learned to route a given instance to a few relevant clusters. A popular way to construct
clusters is to perform balanced k-means clustering recursively using some pre-defined input features.
Traditional methods like Parabel, Bonsai, and XR-Linear represent their input by sparse bag-of-word
features and learn sparse linear classifiers with negative sampling performed based on the search
index. With the advancement of deep learning in NLP, recent deep learning based XMC methods
replace sparse bag-of-word input features with dense embeddings obtained from a deep encoder.
In particular, AttentionXML uses a BiLSTM encoder while X-Transformer, XR-Transformer, and
LightXML use deep transformer models such as BERT [11] to encode the raw input text. In addition
to dense embeddings, the state-of-the-art XR-Transformer method uses a concatenation of dense
embedding and sparse bag-of-word features to get a more elaborate representation of the input, thus
mitigating the information loss in text truncation in transformers.

ANNS based methods: Methods like SLICE [16], DeepXML [9], and GLaS [13] utilize approximate
nearest neighbor search (ANNS) structure over pre-defined label representations to efficiently shortlist
labels. In particular, SLICE represents each input instance by its FastText [24] embedding and uses
the mean of a label’s training points as a surrogate embedding for that label. It further constructs an
HNSW [23] graph (a popular ANNS method) over these surrogate label embeddings. For a given
input, the HNSW graph is queried to efficiently retrieve nearest indexed labels based on the cosine
similarity between the input and label embedding. DeepXML extends SLICE by learning an MLP
text encoder on a surrogate classification task instead of using a fixed FastText model to obtain input
embeddings. GLaS takes a different approach and learns label classifiers with random negative
sampling. After the model is trained, it constructs an ANNS index to perform fast maximum inner
product search (MIPS) directly on the learned label classifiers.

Learning search index: There has been prior works [21, 1] that model different types of standard
data structures with neural networks. A recent paper [27] models the search index in information
retrieval systems as a sequence to sequence model where all the parameters of the search index is
encoded in the parameters of a big transformer model. In a more similar spirit to our work, another
recent paper [22] attempts to learn overlapping cluster partitions for XMC tasks by assigning each
label to multiple clusters. Even though it serves as a generic plug-in method to improve over any
existing partition based XMC method, it still suffers from the following shortcomings: 1) label
assignments are not learned end-to-end with the task objective; instead, it alternates between finding
the right model given the fixed label assignments and then finding the right label assignments given
the fixed model, 2) all labels are assigned to a pre-defined number of clusters with equal probability
and get duplicated in each assigned cluster, which results in increased computational complexity of
the method.

3 ELIAS: End-to-end Learning to Index and Search

The multi-label classification problem can be formulated as following: given an input x ∈ X , predict
y ∈ {0, 1}L where y is a sparse L dimensional vector with yℓ = 1 if and only if label ℓ is relevant
to input x. Here, L denotes the number of distinct labels - note that y can have multiple non-zero
entries resulting in multiple label assignments to input x. The training dataset is given in the form
of {(xi,yi) : i = 1, ..., N}. XMC methods address the case where the label space (L) is extremely
large (in the order of few hundred thousands to millions). All deep learning based XMC methods
have the following three key components:

Deep encoder ϕ : X → RD which maps the input x to a D-dimensional dense embedding through a
differentiable function. For text input, a popular choice of ϕ is the BERT [11] encoder where each
input x is represented as a sequence of tokens.
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Figure 2: Illustration of ELIAS’s search procedure: an input x is first embedded by the text encoder ϕ to
get its embedding ϕ(x). Only a few (beam-size) clusters are shortlisted based on cluster relevance scores
ŝc ∼ ŵT

c ϕ(x). All potential edges of shortlisted clusters are explored and assigned a score based on the
product ŝc ∗ ŝc,ℓ (ŝc,ℓ is normalized form of learnable edge weight parameter ac,ℓ between cluster c and label
l). Top-K paths are shortlisted based on their assigned scores and the final label relevance is computed as
σ(wT

ℓ ϕ(x)) ∗ ŝc,ℓ ∗ ŝc, here σ is the sigmoid function. If a label ℓ can be reached from multiple paths then the
path with maximal score is kept and rest are discarded.

Search Index I : X → RL shortlists K labels along with a score assigned to each shortlisted label
for a given input x. More specifically, ŷ = I(x) is a sparse real valued vector with only K (≪ L)
non-zero entries and ŷℓ ̸= 0 implies that label ℓ is shortlisted for input x with shortlist relevance
score ŷℓ. As illustrated in Figure 1, many partition based methods [18, 33] formulate their index
as a label tree derived by hierarchically partitioning the label space into C clusters and then learn
classifier vectors ŴC = [ŵc]

C
c=1 (ŵc ∈ RD) for each cluster which is used to select only a few

clusters for a given input. More specifically, given the input x, the relevance of cluster c to input
x is quantified by cluster relevance scores ŝc = ŵT

c ϕ(x). The top-b clusters based on these scores
are selected and all labels inside the shortlisted clusters are returned as the shortlisted labels, where
b(≪ C) is a hyperparameter denoting the beam-size.

Label classifiers WL = [wℓ]
L
ℓ=1 where wℓ ∈ RD represents the classifier vector for label ℓ and

wT
ℓ ϕ(x) represents the label relevance score of label ℓ for input x. As explained above, wT

ℓ ϕ(x) is
only computed for a few shortlisted labels obtained from the search index I.

3.1 ELIAS Index

ELIAS formulates its label index as a specialized weighted graph between a root node ∅, C cluster
nodes C = {c}Cc=1 and L label nodes Y = {ℓ}Lℓ=1. As illustrated in Figure 2, all cluster nodes are
connected to the root node and all label nodes are sparsely connected to few cluster nodes. ELIAS
parameterizes the cluster-to-label edge assignments by a learnable adjacency matrix A = [ac,ℓ]C×L,
where the scalar parameter ac,ℓ denotes the edge importance between cluster c and label ℓ.

Note that A can be very large for XMC datasets and using a dense A will incur O (CL) cost in
each forward pass which can be computationally prohibitive for large-scale datasets. To mitigate
this we restrict A to be a row-wise sparse matrix i.e. ∥ai∥0 ≤ κ where ∥.∥0 represents the ℓ0 norm,
ai represents the ith row of A and κ is a hyper-parameter which controls the sparsity of A. During
training, only the non-zero entries of A is learned and the zero entries do not participate in any
calculation. We defer the details of how we initialize the sparsity structure of A to Section 3.4.

Existing partition based XMC methods can be thought of as a special case of this formulation by
adding additional restrictions that 1) each label is connected to exactly one cluster node, and 2)
all cluster-to-label connections have equal importance. Moreover, existing methods initialize the
cluster-to-label adjacency matrix A beforehand based on clustering over pre-defined features and
keep it fixed throughout the training procedure. ELIAS overcomes these shortcomings by enabling
the model to learn the cluster-to-label edge importance.

3.2 Forward Pass

ELIAS trains the entire model, including the deep encoder ϕ, the search index parameters ŴC , A
and the label classifiers WL in an end-to-end manner. We now describe the details of the forward
pass of ELIAS.
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Text representation: An input x is embedded by the encoder ϕ into a dense vector representation
ϕ(x). In particular, we use BERT-base [11] as the encoder and represent ϕ(x) by the final layer’s
CLS token vector.

Query search index: Recall that the goal of the search index I is to efficiently compute a shortlist of
labels ŷ ∈ RL, where ŷ is a sparse real valued vector with K (≪ L) non-zero entries and ŷℓ ̸= 0
implies that label ℓ is shortlisted for input x with shortlist score ŷℓ. Similar to existing methods,
ELIAS achieves this by first shortlisting a small subset of clusters Ĉ ⊂ C based on cluster relevance
scores defined by ŵT

c ϕ(x). But unlike existing methods which simply return the union of the fixed
label set assigned to each shortlisted cluster, ELIAS shortlists the top-K labels based on the soft
cluster-to-label assignments and backpropagates the loss feedback to each of the shortlisted paths.
More specifically, ELIAS defines the cluster relevance scores ŝC ∈ RC as:

ŝC = [ŝc]
C
c=1 = min(1, α ∗ softmax(ŴT

Cϕ(x))). (1)

Here hyperparameter α is multiplied by the softmax scores to allow multiple clusters to get high
relevance scores. Intuitively, α controls how many effective clusters can simultaneously activate for a
given input (in practice, we keep α ≈ 10).

Given cluster relevance scores ŝC , we define set Ctopb as the top b clusters with the highest cluster
relevance scores, where b (≪ C) is the beam size hyperparameter. In the training phase, we further
define a parent set Cparent to guarantee that the correct labels of x are present in the shortlist. More
specifically, for each positive label of x, we include the cluster with the strongest edge connection to
l in Cparent. The shortlisted set Ĉ is defined as the union of these two sets and the selection process
can be summarized as follows:

Ctopb = arg top-b(ŝC),where b(≪ C) is the beam size, (2)

Cparent =

{
{} during prediction,⋃

ℓ:yℓ=1{argmaxc(ac,ℓ)} during training
(3)

Ĉ = Ctopb ∪ Cparent. (4)

After shortlisting a small subset of clusters Ĉ, all potential edges of shortlisted clusters are explored
and a set P̂ of explored paths is constructed, where P̂ = {∅ → c → ℓ : c ∈ Ĉ and ac,ℓ > 0}.
Furthermore, each path ∅ → c → ℓ ∈ P̂ is assigned a path score ŝ∅,c,ℓ, where the path score ŝ∅,c,ℓ
is expressed as the product of cluster relevance score ŝc (defined by Eqn. 1) and edge score ŝc,ℓ
which quantifies the probability of label ℓ getting assigned to cluster c and is defined in terms of the
learnable edge weight parameter ac,ℓ as follows:

ŝc,ℓ = min(1, β ∗ anormc,ℓ ),where anormc,ℓ =
exp(ac,ℓ)∑L

ℓ′=1 exp(ac,ℓ′)
, and ŝ∅,c,ℓ = ŝc ∗ ŝc,ℓ. (5)
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Figure 3: anormc,ℓ (edge weight) distribu-
tion averaged over all clusters of trained
ELIAS model on Amazon-670K dataset

Defining edge scores ŝc,ℓ in such a manner allows mod-
elling the desired probability distribution of label assign-
ment to a cluster, where a few relevant labels are assigned
to a particular cluster with probability 1, and all other la-
bels have probability 0. Hyperparameter β controls how
many effective labels can get assigned to a cluster, we
choose β ≈ L/C. Figure 3 empirically confirms that
the trained model indeed learns the desired edge score
distribution with most of the probability concentrated on
a few labels and the rest of the labels getting assigned
low probability. Moreover, this formulation also prevents
labels with high softmax scores from overpowering edge
assignments because as per 5, a relevant label ℓ for cluster
c gets positive feedback for ac,ℓ only if anormc,ℓ < 1/β,
otherwise ac,ℓ does not participate in the calculation of ŝc,ℓ. This allows clusters to learn balanced
label assignments. Note that, because of the assumption that A is a row-wise sparse matrix, Eqn. 5
can be computed efficiently in O (κ) instead of O (L) time.
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Since there can be multiple paths in P̂ which reach a particular label ℓ, ELIAS defines shortlist score
ŷℓ for label ℓ by the maximum scoring path in P̂ that reaches ℓ, i.e.

ŷℓ = max
c′

{ŝ∅,c′,ℓ : ∅ → c′ → ℓ ∈ P̂}. (6)

Finally, only the top-K entries in ŷ are retained and the resulting vector is returned as the shortlist
for input x.

Evaluating label classifiers: label classifiers [wℓ]
L
ℓ=1 are evaluated for the K non-zero labels in ŷ

and the final relevance score between label ℓ and input x is returned as pℓ = σ(wT
ℓ ϕ(x)) ∗ ŷℓ, here σ

is the sigmoid function.

3.3 Loss

ELIAS is trained on a combination of classification and shortlist loss where the shortlist loss encour-
ages correct labels to have high shortlist scores (ŷℓ) and classification loss encourages positive labels
in the shortlist to have high final score (pℓ) and negative labels in the shortlist to have low final score.
More specifically, the final loss L is defined as L = Lc + λLs, where λ is a hyperparameter and
classification loss Lc is defined as binary cross entropy loss over shortlisted labels

Lc = −
∑

ℓ:ŷℓ ̸=0

(yℓ log(pℓ) + (1− yℓ)(1− log(pℓ))), (7)

shortlist loss Ls is defined as negative log likelihood loss over the positive labels

Ls = −
∑

ℓ:yℓ=1

log(ŷℓ). (8)

3.4 Staged Training

Previous sub-sections described the ELIAS framework for learning the index graph along with the
ML model in an end-to-end manner. Although, in principle one can optimize the network with the
given loss function from a random initialization but we highlight a few key challenges in doing so: 1)
Optimization challenge: because of the flexibility in the network to assign a label node to various
clusters, it becomes hard for a label to get confidently assigned to only a few relevant clusters. As
a result, the model is always chasing a moving target and for a given input it is not able to be sure
about any single path; 2) Computational challenge: the full cluster-label adjacency matrix A can be
very large for large datasets and will incur O (CL) cost in each forward pass if implemented in dense
form. To address these challenges we train the ELIAS model in two stages. In the first stage, we only
train the encoder ϕ, cluster classifiers ŴC , and label classifiers WL keeping A fixed and assigned
based on traditional balanced partitions. We then utilize the stage-1 trained model to initialize the
sparse adjacency matrix A. In the second stage, we take the initialized A and rest of the stage 1
model, and jointly train the full model ϕ,ŴC ,WL,A.

Stage 1: In stage 1 training, similar to existing partition-based XMC methods, we partition the label
space into C mutually exclusive clusters by performing balanced k-means clustering over pre-defined
label features. The adjacency matrix induced by these clusters is then used as fixed assignment
for A. Keeping A fixed, we train the rest of the model (i.e. ϕ,ŴC ,WL) on the loss described in
Section 3.3. More details on clustering are provided in Section C.1 in the Appendix.

Initializing A: As highlighted before, to overcome the O (CL) cost associated with a full adjacency
matrix A, we want to restrict A to be a row-wise sparse matrix. In other words, we want to restrict
each cluster to choose from a candidate subset of κ labels instead of the whole label set. Intuitively,
in order for the model to learn anything meaningful, the candidate subset for each cluster should
contain approximately similar labels. To achieve this, we utilize the stage 1 model to first generate an
approximate adjacency matrix A′ and then select the top-κ entries in each row of A′ as non-zero
entries for A. More specifically, we first identify top-b matched clusters for each training point xi by
computing the cluster matching matrix M = [mi,c]N×C as:

mi,c =

{
ŝic if c ∈ Ci

topb,
0 otherwise

(9)
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where ŝic represents the cluster relevance score and Ci
topb represents the set of top-b clusters for

ith training point xi. After computing M, we define the approximate adjacency matrix A′ =
[a′c,ℓ]C×L = MTY, where Y = [y1, ...,yi, ...,yN ]T . The element a′c,ℓ essentially denotes the
weighted count of how many times the cluster c got placed in top-b positions for positive training
points of label ℓ. Finally, the top κ elements in each row of A′ are selected as the non-zero parameters
of A, i.e.

ac,ℓ =

{
random(0, 1) if ℓ ∈ arg top-κ(a′c)

0 otherwise
(10)

We choose a large enough κ to provide the model enough degree of freedom to learn cluster-to-
label assignments. In particular, κ ∼ 10 × L/C works well across datasets without adding any
computational burden. For efficient implementation on GPUs, we store matrix A in the form of two
tensors, one storing the non-zero indices and the other storing the values corresponding to those
non-zero indices.

Stage 2: In stage 2 training, we initialize A as described above, and ϕ, ŴC from stage 1 model.
We then train the full ELIAS model (i.e. ϕ,ŴC ,WL,A) end-to-end to optimize the loss defined in
Section 3.3.

3.5 Sparse Ranker

State-of-the-art XMC methods like XR-Transformer [33] and X-Transformer [7] utilize high capacity
sparse classifiers learned on the concatenated sparse bag-of-word features and dense embedding
obtained from the deep encoder for ranking their top predictions. Because of the high capacity, sparse
classifiers are able to represent head labels more elaborately than dense classifiers. Moreover, bag-of-
words representation is able to capture the full input document instead of the truncated document that
the deep encoder receives.
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Figure 4: True label’s score distribu-
tion of sparse ranker and ELIAS (d)

over different label deciles on Amazon-
670K dataset. 1st decile represents la-
bels with most training points while
10th decile represents labels with least
training points

To compare fairly with such methods, we explore an enhanced
variant of ELIAS represented by ELIAS ++, which additionally
learns a sparse ranker that re-ranks the top 100 predictions of
ELIAS. In particular, the sparse ranker takes the concatenated
sparse bag-of-word and dense embedding input features and
learns sparse linear classifiers on the top 100 label predictions
made from the trained ELIAS model for each training point.
Because these sparse classifiers are only trained on 100 labels
per training point, they can be quickly trained by parallel lin-
ear solvers like LIBLINEAR [12]. We use the open-source
PECOS2 [32] library to train and make predictions with the
sparse ranker.

During prediction, the top 100 predictions are first made by
ELIAS and then the learned sparse ranker is evaluated on these
top 100 predictions. We empirically observe that the scores
returned by ELIAS and sparse ranker are not well calibrated
across different label regimes. As shown in Figure 4, the sparse
ranker underestimates scores on tail labels while ELIAS scores are more balanced across all label
regimes. To correct this score mis-calibration, we learn a simple score calibration module which
consists of a standard decision tree classifier3 that takes both of these scores and the training frequency
of the label as input and predicts a single score denoting the label relevance. The score calibration
module is learned on a small validation set of 5,000 points. More details on the sparse ranker are in
Appendix Section C.2.

3.6 Time Complexity Analysis

The time complexity for processing a batch of n data-points is O(n(Tbert + Cd+ bκ+Kd)) where
Tbert represents the time complexity of the bert encoder, C represents the number of clusters in index,

2https://github.com/amzn/pecos
3https://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html
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Table 1: Performance comparison on extreme classification benchmark datasets. Bold numbers represent
overall best numbers for that dataset while underlined numbers represent best numbers for dense embedding
based methods. Methods which only use sparse bag-of-word features are distinguished by (s) superscript, dense
embedding based methods are distinguished by (d) superscript and methods that use both sparse + dense features
are distinguished by (s+d) superscript

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5
Amazon-670K LF-AmazonTitles-131K

DiSMEC(s) 44.70 39.70 36.10 27.80 30.60 34.20 35.14 23.88 17.24 25.86 32.11 36.97
Parabel(s) 44.89 39.80 36.00 25.43 29.43 32.85 32.60 21.80 15.61 23.27 28.21 32.14
XR-Linear(s) 45.36 40.35 36.71 - - - - - - - - -
Bonsai(s) 45.58 40.39 36.60 27.08 30.79 34.11 34.11 23.06 16.63 24.75 30.35 34.86
Slice(d) 33.15 29.76 26.93 20.20 22.69 24.70 30.43 20.50 14.84 23.08 27.74 31.89
Astec(d) 47.77 42.79 39.10 32.13 35.14 37.82 37.12 25.20 18.24 29.22 34.64 39.49
GLaS(d) 46.38 42.09 38.56 38.94 39.72 41.24 - - - - - -
AttentionXML(d) 47.58 42.61 38.92 30.29 33.85 37.13 32.55 21.70 15.64 23.97 28.60 32.57
LightXML(d) 49.10 43.83 39.85 - - - 38.49 26.02 18.77 28.09 34.65 39.82
XR-Transformer(s+d) 50.11 44.56 40.64 36.16 38.39 40.99 38.42 25.66 18.34 29.14 34.98 39.66
Overlap-XMC(s+d) 50.70 45.40 41.55 36.39 39.15 41.96 - - - - - -

ELIAS (d) 50.63 45.49 41.60 32.59 36.44 39.97 39.14 26.40 19.08 30.01 36.09 41.07
ELIAS ++(s+d) 53.02 47.18 42.97 34.32 38.12 41.93 40.13 27.11 19.54 31.05 37.57 42.88

Wikipedia-500K Amazon-3M

DiSMEC(s) 70.21 50.57 39.68 31.20 33.40 37.00 47.34 44.96 42.80 - - -
Parabel(s) 68.70 49.57 38.64 26.88 31.96 35.26 47.48 44.65 42.53 12.82 15.61 17.73
XR-Linear(s) 68.12 49.07 38.39 - - - 47.96 45.09 42.96 - - -
Bonsai(s) 69.20 49.80 38.80 - - - 48.45 45.65 43.49 13.79 16.71 18.87
Slice(d) 62.62 41.79 31.57 24.48 27.01 29.07 - - - - - -
Astec(d) 73.02 52.02 40.53 30.69 36.48 40.38 - - - - - -
GLaS(d) 69.91 49.08 38.35 - - - - - - - - -
AttentionXML(d) 76.95 58.42 46.14 30.85 39.23 44.34 50.86 48.04 45.83 15.52 18.45 20.60
LightXML(d) 77.78 58.85 45.57 - - - - - - - - -
XR-Transformer(s+d) 79.40 59.02 46.25 35.76 42.22 46.36 54.20 50.81 48.26 20.52 23.64 25.79
Overlap-XMC(s+d) - - - - - - 52.70 49.92 47.71 18.79 21.90 24.10

ELIAS (d) 79.00 60.37 46.87 33.86 42.99 47.29 51.72 48.99 46.89 16.05 19.39 21.81
ELIAS ++(s+d) 81.26 62.51 48.82 35.02 45.94 51.13 54.28 51.40 49.09 15.85 19.07 21.52

d is the embedding dimension, b is the beam size, κ is the row-wise sparsity of cluster-to-label
adjacency matrix A, and K is the number of labels shortlisted for classifier evaluation. Assuming
C = O(

√
L), κ = O(L/C) = O(

√
L) and K = O(

√
L), the final time complexity comes out to

be O(n(Tbert +
√
L(2d+ b))). Empirical prediction and training times on benchmark datasets are

reported in Table 6 of the Appendix.

4 Experimental Results

Experimental Setup We conduct experiments on three standard full-text extreme classification
datasets: Wikipedia-500K, Amazon-670K, Amazon-3M and one short-text dataset: LF-AmazonTitles-
131K which only contains titles of Amazon products as input text. For Wikipedia-500K, Amazon-
670K, and Amazon-3M, we use the same experimental setup (i.e. raw input text, sparse features
and train-test split) as existing deep XMC methods [31, 33, 18, 7]. For LF-AmazonTitles-131K,
we use the experimental setup provided in the extreme classification repository [5]. Comparison to
existing XMC methods is done by standard evaluation metrics of precision@K (P@K = 1, 3, 5)
and its propensity weighted variant (PSP@K = 1, 3, 5) [15]. We also compare competing methods
and baselines with ELIAS at recall@K (R@K = 10, 20, 100) evaluation to illustrate the superior
shortlisting performance of ELIAS’s search index. More details on the experimental setup and dataset
statistics are presented in Appendix Section B.

Implementation details Similar to existing XMC methods, we take an ensemble of 3 models with
different initial clustering of label space to report final numbers. For efficient implementation on GPU,
the raw input sequence is concatenated to 128 tokens for full-text datasets and 32 tokens for short-text
dataset. Number of clusters C for each dataset is chosen to be the same as LightXML which selects
C ∼ L/100. We keep the shortlist size hyperparameter K fixed to 2000 which is approximately
same as the number of labels existing partition based methods shortlist assuming beam-size b = 20
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Table 2: Precision and recall comparison of single model dense embedding-based methods. ELIAS matches or
even outperforms the brute-force Bert-OvA baseline while existing partition based methods fail to compare well,
especially at recall values.

Method P@1 P@3 P@5 R@10 R@20 R@100 P@1 P@3 P@5 R@10 R@20 R@100
Amazon-670K LF-AmazonTitles-131K

BERT-OvA-1(d) 48.50 43.41 39.67 49.53 56.60 67.90 38.17 25.66 18.44 50.29 54.71 62.80
AttentionXML-1(d) 45.84 40.92 37.24 45.59 51.25 60.77 30.26 20.03 14.31 38.16 41.47 47.73
LightXML-1(d) 47.29 42.24 38.48 47.34 53.26 62.03 37.01 24.88 17.90 48.07 52.10 59.42
XR-Transformer-1(d) 45.25 40.3 36.45 45.19 51.61 61.11 34.58 23.31 16.79 45.72 49.65 56.00

ELIAS-1(d) 48.68 43.78 40.04 50.33 57.67 68.95 37.90 25.61 18.45 50.12 54.62 62.88

Table 3: Performance analysis of different components of ELIAS. Allowing the model to learn cluster-to-label
assignments significantly improves both precision and recall performance (see row 2 vs row 1). Sparse ranker
further improves performance on top predictions (see row 4 vs row 2).

Method P@1 P@3 P@5 R@10 R@20 R@100 P@1 P@3 P@5 R@10 R@20 R@100
Amazon-670K LF-AmazonTitles-131K

Stage 1 46.63 41.65 37.58 46.08 52.29 61.72 36.96 24.67 17.69 47.69 51.74 58.81
+ Stage 2 48.68 43.78 40.04 50.33 57.67 68.95 37.90 25.61 18.45 50.12 54.62 62.88
+ Sparse ranker w/o calibration 50.72 45.25 41.27 51.51 58.43 68.95 39.25 26.47 19.02 51.4 55.39 62.88
+ Score calibration 51.41 45.69 41.62 51.97 58.81 68.95 39.26 26.47 19.02 51.4 55.35 62.88
+ 3× ensemble 53.02 47.18 42.97 53.99 61.33 72.07 40.13 27.11 19.54 53.31 57.78 65.15

and the number of labels per cluster = 100. AdamW [20] optimizer is used to train the whole model
with weight decay applied only to non-gain and non-bias parameters. Optimization update for label
classifiers WL is performed with high accumulation steps (i.e. optimization update is performed at
every k training steps, where k = 10) since updating WL every step is a computational bottleneck
and only few parameters inside WL gets updated in each optimization step anyway. More details
and hyperparameters for each dataset are presented in Appendix Section B.

Comparison on XMC benchmarks Table 1 compares our method with leading XMC methods
such as DiSMEC [2], Parabel [25], XR-Linear [32], Bonsai [19], Slice [16], Astec [9], GlaS [13],
AttentionXML [31], LightXML [18], XR-Transformer [33], and Overlap-XMC [22]. Most baseline
results are obtained from their respective papers when available and otherwise taken from results
reported in [31, 33] and extreme classification repository [5]. To allow fair comparison among
methods that use the same form of input representation, we distinguish methods that use only sparse
bag-of-word input features by (s) superscript, methods that use only dense embedding based input
features by (d) superscript, and methods that use both sparse + dense features by (s+d) superscript.
ELIAS ++ which uses sparse + dense features achieves state-of-the-art performance on all datasets at
precision values while being either the best or second best method at propensity scored precision
on most datasets. The dense embedding based ELIAS (d) consistently outperforms existing dense
embedding based XMC methods by significant margin and on many occasions achieves gains over
previous state-of-the-art methods which use both sparse + dense features.

Comparison with brute-force OvA baseline To establish the classification performance that could
have been achieved if there was no sampling performed by the shortlisting procedure, we implement
the brute-force one-versus-all baseline BERT-OvA which consists of BERT encoder followed by a
fully connected linear classification layer and is trained and inferred in one-versus-all fashion without
any sampling. We follow the same training procedures as ELIAS for this baseline. Table 2 compares
the OvA baseline with ELIAS and leading deep XMC methods such as AttentionXML, LightXML
and a dense version of XR-Transformer which uses only dense embeddings, under single model
(i.e. no ensemble) setup for direct comparison. Existing deep XMC methods do not compare well
against the OvA model especially at recall@100 but ELIAS matches and sometimes even marginally
outperforms, the brute-force OvA baseline while enjoying faster training and inference speed due to
the search index.

Component wise ablation of ELIAS Table 3 presents a build-up ablation of performance gains
made by different components of ELIAS. The stage 1 model which fixes its adjacency matrix by
clustering labels into mutually exclusive clusters performs similarly to existing single model XMC
methods. Allowing the model to learn the adjacency matrix A in stage 2 improves recall by up to 7%
and precision by up to 2.5% over the stage 1 model. Adding the sparse ranker and score-calibration
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module further improves model performance on top predictions but the gains diminish as we increase
prediction set size. Finally, the ensemble of 3 models improves performance at all evaluation metrics
which is a well observed behaviour with all XMC methods.
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Figure 5: (left) Comparison of recall at different prediction set size on Amazon-670K (right) Decile-wise
analysis of recall@100 on Amazon-670K, 1st decile represents labels with most training points i.e. head labels
while 10th decile represents labels with least training points i.e. tail labels

Recall comparison Next, we compare the recall capabilities of existing methods with ELIAS. The
left plot in Figure 5 plots the recall at different prediction set size for all competing methods and
ELIAS. ELIAS strictly outperforms existing methods at all prediction set sizes and in particular, can
be up to 4% better at recall@100 than the next best method. To further investigate which label regimes
benefit most from ELIAS’s search index we plot the decile wise contribution to recall@100 for each
method. As we can see, ELIAS improves recall performance over existing methods in each label
decile but the most improvement come from the top 2 deciles representing the most popular labels.
We hypothesize that because the popular labels are likely to have multi-modal input distribution,
existing partition based methods which assign a label to only one cluster fail to perform well on these
multi-modal labels. Section C.4 contains additional discussion and results to support this claim.

5 Conclusion and Discussions

In this paper, we propose ELIAS, which extends the widely used partition tree based search index to a
learnable graph based search index for extreme multi-label classification task. Instead of using a fixed
search index, ELIAS relaxes the discrete cluster-to-label assignments in the existing partition based
approaches as soft learnable parameters. This enables the model to learn a flexible index structure,
and it allows the search index to be learned end-to-end with the encoder and classification module
to optimize the final task objective. Empirically, ELIAS achieves state-of-the-art performance on
several large-scale extreme classification benchmarks with millions of labels. ELIAS can be up to
2.5% better at precision@1 and up to 4% better at recall@100 than existing XMC methods.

This work primarily explores many-shot and few-shot scenarios where some training supervision
is available for each label (output). It would be interesting to see how we can adapt the proposed
solution to zero-shot scenarios where there is no training supervision available for the labels. One
potential approach could be to parameterize the cluster-to-label adjacency matrix as a function of
cluster and label features instead of free learnable scalars. Furthermore, one limitation of the proposed
solution is that it learns a shallow graph structure over label space; this may not be ideal for scaling
the method to billion-scale datasets. It would be exciting to explore how one can extend ELIAS to
learn deep graph structures.
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