Published in Transactions on Machine Learning Research (10/2025)

Offline Learning and Forgetting for Reasoning with Large
Language Models

Tianwei Ni'} Allen Nie?, Sapana Chaudhary?, Yao Liu?, Huzefa Rangwala?, Rasool Fakoor?
Y Mila - Quebec AT Institute & Université de Montréal, 2 Amazon Web Services

Reviewed on OpenReview: htips: //openreview. net/ forum? id=RF6raEUATc

Abstract

Leveraging inference-time search in large language models has proven effective in further en-
hancing a trained model’s capability to solve complex mathematical and reasoning problems.
However, this approach significantly increases computational costs and inference time, as the
model must generate and evaluate multiple candidate solutions to identify a viable reasoning
path. To address this, we propose an effective approach that integrates search capabilities
directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning
paths (forgetting) derived from diverse search methods. A key challenge we identify is that
naive fine-tuning can degrade the model’s search capability; we show this can be mitigated
with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Count-
down arithmetic puzzles show that, replacing CoT-generated data with search-generated data
for offline fine-tuning improves success rates by around 23% over inference-time search base-
lines, while reducing inference time by 180x. On top of this, our learning and forgetting ob-
jective consistently outperforms both supervised fine-tuning and preference-based methods.!

ntroduction ountdown Test Set
1 Introduct Countd Test S
® . Base LLM

The last few years has seen the rapid development of large <50 [SFT...
language models (LLMs) (Vaswani et al., 2017; Achiam < m N CPO-SimPO

. . . . v 40 B UFT (ours)
et al., 2023) and their applications to a diverse set of = O CoT (greedy)
tasks. In particular, these LLMs have been tested on (4 30 O CoT (pass@1)
challenging benchmarks requiring high-level reasoning across a & ToT »
domains such as mathematics (Glazer et al., 2024), abstract g 20 il s
reasoning (Chollet et al., 2024), code generation (Zhuo et al., 3 \
2024), and science (Mitchener et al., 2025). 10
Chain-of-Thought (CoT) and inference-time search (search) 21 24 27
have been proposed to enhance LLM generalization to Inference Time (GPU minutes)

reasoning problems at test time. Specifically, given a task Figure 1: Trade-off between inference time
description and input x, CoT (Wei et al., 2022) outputs and success rate in challenging arithmetic
a single reasoning path ¥ via greedy decoding, or samples puzzles, Countdown. We find that fine-tuning
multiple paths to compute average performance. In contrast, on CoT-style data from diverse reasoners
search-based methods (Lightman et al., 2023; Yao et al., substantially enhances CoT inference over the
2023a; Snell et al., 2024) explicitly generate intermediate]?ase LLM _(Qwen2'5'Math 7B) while preserving
reasoning (possibly with multiple passes) before extracting ¥ inference-time search (T(?T (Yao et al, 202{32}),
via a reward model or self-evaluation. Despite inference-time RAP (Hao et al., 2023)) using a smaller learning

,)) . . rate. Among fine-tuning methods including SF'T
search’s effectiveness, it comes with greater computational R
o and preference optimization, our method (UFT)
costs (e.g., Fig. 1 and Chen et al. (2024¢;b)). achieves the best CoT and search performance.

*Work primarily done while Tianwei Ni was an intern at Amazon. Correspondence: Tianwei Ni (twni2016@gmail.com), Allen
Nie (anie@cs.stanford.edu), Rasool Fakoor (rasool.fakoor@gmail.com).
1Code is open-source at https://github.com/twni2016/11m-reasoning-uft.

https://openreview.net/forum?id=RF6raEUATc
https://github.com/twni2016/llm-reasoning-uft

Published in Transactions on Machine Learning Research (10/2025)

A beneficial outcome of utilizing inference-time sampling strategies, such as CoT and search-based methods,
is the generation of rich datasets. These datasets can subsequently be fed back into the model for further
fine-tuning, potentially enhancing the base model’s overall performance. Prior work has primarily focused
on distilling the knowledge from successful reasoning paths, drawing from CoT-generated data (Zelikman
et al., 2022; Yuan et al., 2023b; Singh et al., 2023), paths from search trees (Feng et al., 2023; Tian et al.,
2024; Zhang et al., 2024a), or full search traces (Gandhi et al., 2024; Lehnert et al., 2024). However, in many
complex problems, failed (reasoning) paths far outnumber successful ones, representing an underutilized
resource. While potentially valuable, these failed paths are often unpaired, making them difficult to use
in preference optimization (Rafailov et al., 2023). Diverse search algorithms further enrich data coverage
and reasoning quality but produce heterogeneous structures (e.g., trees) unlike linear CoT traces. This raises
a natural question: can we make full use of both successful and failed reasoning paths, from both CoT and
search-based methods, to improve LLM reasoning?

In this paper, we propose a straightforward method consisting of three phases designed to enhance the
reasoning capabilities of large language models: data generation, fine-tuning, and evaluation. First, we
collect heterogeneous reasoning data from both CoT and the search-based methods, and convert the data
into a unified CoT-style path format. Next, we fine-tune the base LLM by learning successful paths with
the supervised fine-tuning (SFT) and forgetting unpaired failed paths with the unlikelihood loss. We refer
to this objective as unlikelihood fine-tuning (UFT). Finally, we evaluate the fine-tuned model on test sets
using both CoT and inference-time search, with a primary focus on efficient CoT inference. We demonstrate
the effectiveness of our three-phase pipeline on two arithmetic puzzle domains: Game-of-24 and Countdown,
which are widely used as testbeds for explicit search (Yao et al., 2023a; Gandhi et al., 2024). We summarize
our key findings below, using Qwen2.5-Math 1.5B and 7B (Yang et al., 2024) as base LLMs:

1. Data quality drives performance: On Countdown, replacing CoT data with high-quality classic search
data boosts CoT performance from 33.5% to 57.1%, significantly outperforming the inference-time search
baseline (25%) with a 180x reduction in inference cost.

2. Unpaired forgetting reliably improves performance: Incorporating failed paths using UFT improves
CoT performance by 1-2% on average, with up to 7% gains in the best case. In contrast, preference-based
methods like CPO-SimPO (Xu, 2024) often underperform SFT due to the paired format.

3. Controlled learning rate helps maintain search capability: Naive fine-tuning can quickly degrade
a model’s search ability. A substantially reduced learning rate helps prevent this, making it a simple
but crucial step when fine-tuning with CoT-style data.

2 Related Work

LLM inference-time search. Inference-time search has shown remarkable success across reasoning (Wang
et al., 2022; Stechly et al., 2024; Hao et al., 2024; Snell et al., 2024) and planning tasks (Valmeekam et al., 2023;
Zheng et al., 2024; Bohnet et al., 2024). Approaches include best-of-n sampling (Nakano et al., 2021; Wang
et al., 2022), multi-agent debates (Du et al., 2023), and iterative correction via predefined rules (Bai et al.,
2022) or self-refinement (Shinn et al., 2023; Madaan et al., 2024). A key direction, which this paper focuses on,
integrates classic search algorithms with LLMs, employing BFS (Yao et al., 2023a; Xie et al., 2023), DFS (Qin
et al., 2023), A* (Zhuang et al., 2023; Meng et al., 2024a; Koh et al., 2024) and MCTS (Hao et al., 2023; Zhou
et al., 2023; Zhao et al., 2024; Xie et al., 2024; Gao et al., 2024). While effective, inference-time search methods
remain computationally expensive: self-refinement requires multiple expensive passes, multi-agent approaches
demand substantial GPU memory, and search trees grow exponentially with depth (Chen et al., 2024c).

LLM policy distillation from synthetic data. Synthetic data, generated by classic algorithms or LLMs,
is widely used for SFT in reasoning tasks to mitigate the scarcity of human-annotated datasets (Liu et al.,
2024). However, despite its abundance, synthetic responses may fail to solve the task. To address this, most
prior work distills reasoning knowledge to policy (Hinton et al., 2015) by selecting only correct responses. Policy
distillation strategies can be categorized based on whether the source and target data originate from CoT or
search algorithms. CoT-to-CoT distillation learns CoT reasoning from correct CoT paths filtered by rewards,
widely used in practice (Zelikman et al., 2022; 2024; Uesato et al., 2022; Yuan et al., 2023b; Gulcehre et al., 2023;
Singh et al., 2023). Search-to-search distillation either refines the proposal policy in tree search by learning

Published in Transactions on Machine Learning Research (10/2025)

from expert behavior (Feng et al., 2023; Tian et al., 2024; Zhang et al., 2024a) and preference pairs (Chen
et al., 2024a), or learns a meta-policy by imitating entire search traces (Yang et al., 2022; Gandhi et al., 2024;
Lehnert et al., 2024). Notably, Zhang et al. (2024¢) performs search-to-CoT distillation using preference pairs
from Tree-of-Thought without a verifier. In comparison, we focus on {CoT, search}-to-CoT distillation from
diverse reasoners and distill unpaired positive and negative data to the policy, labeled by a rule-based verifier.

Offline fine-tuning with negative data. Negative data has been extensively studied in LLM safety,
where the goal is to unlearn harmful content using objectives such as Gradient Ascent and unlikelihood train-
ing (Welleck et al., 2019; Keskar et al., 2019; Yao et al., 2023b; Zhang et al., 2024b). In preference optimization,
negative examples are used to increase the relative likelihood of preferred responses in paired data (x,y ™,y ™),
commonly used in alignment (Rafailov et al., 2023; Yuan et al., 2023a; Zhao et al., 2023; Hong et al., 2024; Xu
et al., 2024; Meng et al., 2024b) and reasoning (Pal et al., 2024; Pang et al., 2024; Zhang et al., 2024¢; Setlur
et al., 2024; Chen et al., 2024a). However, this paired format discards unpaired positives or negatives, reducing
data efficiency. KTO (Ethayarajh et al., 2024) addresses the limitation of relative likelihood (Tuan & Wang,
2024) by learning from unpaired data, although it requires a reference model. In LLM reasoning, negative data
is also used to train a reward model (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Feng et al.,
2023; Zhang et al., 2024a; Hosseini et al., 2024) for response re-ranking and search during inference. However,
this does not inherently improve the base model as a policy. Instead of requiring preference pairs or reference
models, we adopt unlikelihood training (Welleck et al., 2019) to directly forget failed paths as an auxiliary
loss. Finally, concurrent work (Wang et al., 2025) highlights the challenges of unlearning in reasoning tasks,
namely forgetting both incorrect reasoning traces and final answers while retaining overall reasoning ability.

3 Preliminaries

Reasoning task as an MDP. We formalize a reasoning task as a token-level Markov decision process
(MDP) (Sutton et al., 1998) (X,Y, R,T). The initial state so = x € X consists of a tokenized sequence
representing the task description and input. An action y; €) is chosen based on the current state s;, which
is the sequence of all previous tokens: s; = (So,yo:t—1). A terminal state sp is reached upon generating
a special end-of-sequence token. The ground-truth reward function R is a rule-based verifier that checks
the correctness of sp, yielding r = R(st) € {0,1}, where 0 means failure and 1 means success. The goal
is to find a policy 7 that generates an action sequence yo.7—1 (denoted as y) which maximizes the reward:
maxy,., , R(st) = maxy R(x,y). We refer to the terminal state (x,y) as a (reasoning) path.

LLM reasoners. We use an LLM policy 7y, parameterized by 6, along with a search algorithm f as the
reasoner. We denote this LLM reasoner as f(mg) and focus on three popular LLM reasoners (Hao et al., 2024):
(1) CoT (Wei et al., 2022) that uses greedy search, (2) Tree-of-Thought (ToT) (Yao et al., 2023a) that uses beam
search, (3) Reasoning-via-Planning (RAP) (Hao et al., 2023) that uses MCTS (Kocsis & Szepesvéri, 2006).

CoT directly outputs one (via greedy decoding) or multiple reasoning paths (under non-zero temperature)
without intermediate search process?. On the contrary, ToT and RAP are inference-time search methods,
first constructing a search tree of reasoning paths before selecting a final path (x,y) as the answer. Their
performance is evaluated based on the success rate of the selected reasoning path. Please see Appendix C for
more details.

4 Fine-tuning on Unpaired Correct and Failed Paths from Diverse Reasoners

In this section, we describe our approach to solving a reasoning task, as outlined in Fig. 2. Our approach
involves three stages: (1) generating reasoning data from diverse reasoners, (2) offline fine-tuning the base
LLM from unpaired correct and failed paths, and (3) evaluating it with reasoning algorithms.

2CoT’s performance is often measured by the average success rate over generated reasoning paths, also known as the pass@1
metric (Chen et al., 2021; Guo et al., 2025), as used in this work.

Published in Transactions on Machine Learning Research (10/2025)

CoT Reasoners

Data gen Failed CoT-style paths —
Base LLM ToT BES
-7 RAP DEFES Correct CoT-style paths
_ - “"Eval
Improved -
LLM Learning: NLL loss
?

Forgetting: Unlikelihood loss

Figure 2: Our method for reasoning tasks. We first generate synthetic reasoning data using multiple
LLM reasoners (e.g., CoT, ToT, RAP) and classic algorithms (e.g., BFS, DFS). This data is converted to
a unified CoT-style format and labeled as correct or failed by a ground-truth verifier to form an unpaired
dataset. We then fine-tune the base LLM with negative log-likelihood (NLL) loss on correct paths and
unlikelihood loss on failed paths, which we refer to as unlikelihood fine-tuning (UFT). Finally, we evaluate
the improved LLM with multiple LLM reasoners on a test set.

4.1 CoT-style Data Generation Using LLM and Classic Reasoners

For a given reasoning task, we generate synthetic reasoning data from multiple reasoners. LLM reasoners f(my)
share a common base policy 7y but differ in their search algorithms f, which include CoT and inference-time
search methods such as ToT and RAP. Optionally, reasoning paths can also be generated using classical search
algorithms (classic reasoners) such as DFS and BFS, which rely on an external verifier rather than LLMs.

For search-based methods, we extract all root-to-leaf paths from the search tree — rather than only the final
selected path — to follow the format of CoT-style paths. This enables (1) unifying heterogeneous search traces
into a common format as training data, and (2) efficient inference, as CoT inference is fastest. We aggregate
CoT-style paths from all reasoners to compose the training dataset D:

D= {(X,yﬂ“) | JeF,xeX,ye f(ﬂ'g)(X),?" = R(X7Y)}7 (1)

where F is the set of considered reasoners, and f(mg)(x) is the set of all reasoning paths produced by reasoner
f(mp). Note that classic reasoners f do not depend on 7y. Each path is labeled by a verifier as correct (r = 1)
or failed (r = 0), splitting D into two unpaired datasets: the correct dataset Dt = {(x,y) | (x,y,1) € D}
and the failed dataset D~ = {(x,y) | (x,y,0) € D}.

4.2 Unlikelihood Fine-Tuning on Unpaired Correct and Failed Paths

While prior work typically fine-tunes LLMs on correct CoT-generated paths (Yuan et al., 2023b; Singh et al.,
2023) or on preference pairs of correct and failed responses (Pang et al., 2024; Zhang et al., 2024c), we extend
these approaches in two directions: (1) incorporating diverse reasoners beyond CoT to augment the training
data, (2) fine-tuning the model to avoid and forget failed reasoning patterns using only failed examples.
Unlike most preference-based methods, our approach leverages unpaired positive or negative data, without
requiring success-failure pairs for the same question.

Learning to follow correct reasoning paths. First, we consider the negative log-likelihood (NLL) loss,
also known as supervised fine-tuning (SFT) (Ouyang et al., 2022; Cen et al., 2025), on correct reasoning
paths collected from multiple reasoners:

mein —E(xym~p[l(r=1)logmy(y | x)] = —Ex,y+)up+ [logmo(y™ | x)] := Jnr(6; DT). (2)

Examining the gradient of the NLL objective (Eq. 2), —E(xy »~p[1(r=1)Vlogma(y | x)], reveals its
connection to REINFORCE (Williams, 1992) with a binary (indicator) reward function, as noted in prior
work (Zelikman et al., 2022; Gulcehre et al., 2023; Singh et al., 2023)°.

3This resemblance holds when D is close to on-policy data (Fakoor et al., 2020), e.g., CoT-generated, but may break down
as model weights shift during fine-tuning or if D includes search-derived data.

Published in Transactions on Machine Learning Research (10/2025)

Learning to avoid and forget incorrect reasoning paths. While NLL encourages the model to learn
correct reasoning paths, it can only leverage the limited number of available successful trajectories and
discards a large number of failed ones — which often vastly outnumber the correct ones (e.g., |D~|/|D¥|
ranges from 5 to 400 in our experiments). To address the limitation of NLL, we propose leveraging failed
trajectories by incorporating the unlikelihood (UL) loss (Welleck et al., 2019) as an additional objective.
The UL loss enables the model to learn to avoid (i.e., forget) failed reasoning paths, effectively utilizing the
large set of failed trajectories.

mein JUL(H;D_) = _E(x,y*)ND* [IOg(l —mo(y” ‘ X))] (3)
This objective explicitly reduces the probability of incorrect paths under the model. Unlike Gradient Ascent
(GA) unlearning (Yao et al., 2023b)*, UL objective has a smooth optimization landscape, with gradient:

Tely | X _
VJUL(G):E(x,y*)ND* 1—9759(y|—|)x)V10g779(y |X) . (4)

The gradient implies convergence to the stationary point where my(y~ | x) = 0,V(x,y~) € D~. From a

REINFORCE view, Eq. 4 imposes an adaptive penalty of 7%, penalizing higher-probability failures

more strongly and thus efficiently suppressing wrong paths.

Combining learning and forgetting: unlikelihood fine-tuning (UFT). Our final objective UFT
combines NLL (Eq. 2) and UL losses (Eq. 3) with a coefficient o € (0, 1):

mein J(0;D,a) := (1 — a)JxeL(0; D) + aJuL(0;D7). (5)

Since correct paths provide explicit solutions while wrong paths only rule out alternatives, we treat UL as an
auxiliary loss by setting « close to 0. Moreover, as correct and failed paths may be drawn from the same
search trees, they often share prefixes, introducing conflicts when « is large, as also noted in preference-based
methods (Zhang et al., 2024c). For example, suppose a prefix sequence (x, yo.¢) (t < T —1) appears in both DT
which has a stationary point at mg(yo.: | x) = 1 — . Thus, 1 — « sets the desired probability of the shared
prefix, further motivating the need for a small « to avoid conflicting objectives. Unlike prior work (Zhang
et al., 2024c; Setlur et al., 2024; Chen et al., 2024a) that identify high-credit steps with more computation,

we sidestep this with an auxiliary loss without preference pairs.

and D~ with equal frequency. The gradient of Eq. 5 w.r.t. this prefix is — 1) V log mo(yo:t | X),

4.3 Practical Algorithm

We summarize our method in Algo. 1. For a given reasoning task, we partition the initial state set X into
training, validation and test sets, namely, Xirain, Xvalid, Xtest- Fach subset has distinct input cases with
follows the same instruction template. Our approach assumes access to a ground-truth verifier in Xy, (for
generating training data) and X4 (for checkpoint selection), but not in Xiest on which the final evaluation
is conducted.

Algorithm 1 Fine-tuning on unpaired correct and failed paths from diverse reasoners

Require: Reasoning task (X,Y, R,T), base LLM 7y, set of reasoners F, number of epochs E, batch size B, learning
rate 77, UL coefficient « (close to 0)
1: Generate CoT-style training data from various reasoners: D = {(x,y,7) | f € F,x € Xain,y € f(m0)(x),r =
R(x,y)}, and split D into correct data DT and failed data D~ .
2: Fine-tune the LLM with UFT (Eq. 5) for E|D"|/B steps. In each step, sample batches BT ~ D" and B~ ~ D~
of size B each, and update:

0+ 0 —n[(1 — a)VJspr(; BY) + aVJuL(6; B7)]. (6)

3: Evaluate the fine-tuned LLM 7y on test cases by collecting D' = {(x,y,7) | f € F,x € Xiest,y € f(mo)(X),7 =
R(x,y)}-

4The GA objective mingy E(x,y—)~D— [log oy~ | x)} is shown to be unstable to optimize (Zhang et al., 2024b;d), as it has an
unbounded optimum (—o0) and a divergent gradient near the optimum. We provide results for GA in Sec. B.3 for completeness.

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Performance on Countdown and Game-of-24 using Qwen2.5-Math 7B as the base model
fine-tuned on Countdown. Each cell shows (success rate / inference time) averaged with 3 seeds, where the time is
measured in minutes (m) on an A100 GPU. We compare the base LLM with three fine-tuning methods (SFT (Ouyang
et al., 2022), CPO-SimPO (Xu, 2024), UFT (ours)) under two learning regimes (varying learning rate and training
data). SimPO (Meng et al., 2024b) is omitted due to near-zero success rate. Bolded numbers indicate the best
success rate per row. Fig. 1 visualizes the stronger result per fine-tuning method across learning regimes.

&'II‘esft set ‘ Base LLM ‘ Ir=>5e-6, CoT+BFS+DFS training data ‘
nierence | SFT (a=0) CPO-SimPO UFT (a=1e-3)| SFT (a=0)

Ir=1e-6, CoT training data
CPO-SimPO UFT (a=le-4)

Countdown (1000 cases)

CoT (greedy) | 6.2% / 1.0m |55.4% / 0.6m 50.6% / 0.7Tm 57.4% / 0.5m | 24.7% / 0.5m 23.4% / 0.8m 24.7% / 0.5m
CoT (pass@1)| 5.6% / 3.4m |51.8% / 3.5m 45.7% / 4.7m 53.5% / 3.4m |24.1% / 2.9m 22.1% / 5.7m 24.7% / 3.3m
search: ToT | 25.0% / 90m |2.4% / 104m 4.1% / 61m 0.0% / 1.9m | 22.2% / 96m 23.3% / 179m 28.6% / 153m
search: RAP |10.2% / 278m|7.3% / 155m 7.0% / 137Tm 0.0% / 341m |17.5% / 141m 17.7% / 190m 28.9% / 439m

Game-of-24 (100 cases)

CoT (greedy) | 6.0% / 0.lm |35.0% / 0.lm 24.7% / 0.lm 42.0% / 0.lm| 8.0% / 0.lm 6.7% / 0.lm 8.3% / 0.lm
CoT (pass@1)| 6.0% / 0.6m |28.3% / 0.7m 23.0% / 1.3m 29.7% / 0.8m | 7.3% / 0.6m 7.0% / 1.5m 6.7% / 0.8m
search: ToT |28.0% / 6.5m|2.3% /82m 1.0%/43m 0.3% /0.4m | 30.7% /8m 22.7% /13m 24.0% / 13m
search: RAP |27.0% / 83m| 1.3% / 13m 3.0% / 19m 3.7% / 29m | 27.7% / 16m 25.7% / 42m 33.7% / 75m

5 Experiments

We evaluate our approach on two arithmetic puzzle tasks.

Game-of-24. In Game-of-24°, the goal is to use basic arithmetic operations (+-*/) and parentheses to
combine four input numbers to obtain the number 24. Each input number can only be used once, which
requires exactly three high-level reasoning steps. We follow the step-by-step response format from ToT (Yao
et al., 2023a). For example, given numbers 2 9 10 12, a correct reasoning path is 12 * 2 = 24 (left:
9 10 24), 10 - 9 = 1 (left: 1 24), 24 x 1 = 24 (left: 24), Answer: (12 * 2) * (10 - 9)

= 24. Each high-level step must include the remaining numbers after the operation. We implement a
process-based verifier (Uesato et al., 2022) that checks both the intermediate steps and the final answer.
For evaluation, we use the same test set from Yao et al. (2023a), consisting of 100 cases. For training and
validation, we use 900 distinct cases, considered easier than the test set based on the human performance.

Countdown. The Countdown game (Gandhi et al., 2024) extends Game-of-24 by requiring the use of
four integers to obtain a specified target number beyond 24. All other rules remain the same including the
step-by-step format. Following Gandhi et al. (2024), we randomly generate 500k training cases, excluding 24
as a target number. For evaluation, we randomly generate 1,000 test cases with distinct target numbers from
training set. This setup allows us to test generalization to Game-of-24 when trained on Countdown data.

5.1 Setup

Base LLMs. We use Qwen2.5-Math 1.5B (Q1.5B) and Qwen2.5-Math 7B (Q7B) (Yang et al., 2024) as
base LLMs. Qwen2.5-Math series were state-of-the-art open-weight mathematical LLMs as of December 2024.

Step 1: Data generation setup. We mainly build upon the LLM-reasoners repository® (Hao et al., 2024),
which provides a unified library for all the LLM reasoners studied here. We significantly accelerate inference
by batching inputs using vLLM (Kwon et al., 2023). All reported inference time in our results is based on our
optimized codebase. For each LLM reasoner algorithm, we vary its hyperparameters to gather data from X, ai,.
For CoT (Wei et al., 2022), we vary the temperature between (0.5,0.7,1.0) and top-p between (0.7,0.8,0.9) to
have 9 variants. For each variant, we use a fixed 5-shot prompt template and collect 100 paths for each case
in Game-of-24 and 3 paths for Countdown. For Game-of-24, we follow LLM-reasoners to implement ToT (Yao
et al., 2023a) (varying the beam size from 5 to 16) and RAP (Hao et al., 2023) (varying the exploration
parameter from 1.0 to 10.0). Since Countdown is implemented in Stream-of-Search (SoS) (Gandhi et al.,
2024), we use SoS code to implement classic BFS and DFS algorithms, which do not use LLMs but rely on
the oracle verifier. We merge the reasoning paths generated by all the variants of the same reasoner, and
then remove duplicates by exact matching, to serve as our training dataset. See Appendix C for all details.

Shttps://en.wikipedia.org/wiki/24_(puzzle)
6https://github.com/maitrix-org/llm-reasoners

https://en.wikipedia.org/wiki/24_(puzzle)
https://github.com/maitrix-org/llm-reasoners

Published in Transactions on Machine Learning Research (10/2025)

Step 2: Fine-tuning setup and baselines. We follow the alignment handbook (Tunstall et al., 2024) to
implement all fine-tuning methods on an instance with 8 A100 GPUs. All methods share the same datasets
and use common hyperparameters when applicable. We fix the batch size B to 128 and train £ = 10 epochs
on each dataset for Game-of-24 and E = 2 epochs for Countdown. We use a cosine schedule and sweep the
peak learning rate n over (le-5, 5e-6, 2e-6) for Q1.5B and over (5e-6, 2e-6, 1le-6) for Q7B. We set a@ = 0
to have the SFT baseline and sweep « over (le-3, le-4, le-5, 1e-6) for our UFT. We also implement two
preference-based baselines: SIimPO (Meng et al., 2024b), which optimizes over paired preference data
constructed from successful and failed reasoning paths, and CPO-SimPO (Xu, 2024), which augments
SimPO with NLL term to better support reasoning tasks. Both methods are reference-free and leverage
negative data as UFT. Notably, CPO-SimPO closely resembles the non-iterative variant of RPO (Pang et al.,
2024). See Appendix A for details and Table 4 for method comparison.

Step 3: Evaluation on CoT and search-based reasoning. Since our training dataset are all CoT-style
reasoning paths, fine-tuning on these data should directly improve CoT reasoning capability. This is
measured by performing zero-shot CoT (via greedy decoding or sampling) on Xiest with fine-tuned LLM. On
the other hand, we also aim to retain search-based reasoning capability after fine-tuning. This is measured
by performing ToT or RAP on Xjest.

Inference-time baselines on CoT and search-based reasoning. Inference-time baselines refer to
reasoners that use base LLMs without fine-tuning. For CoT reasoning, we use the few-shot CoT (via
greedy-decoding or sampling) on the base LLMs. For search-based reasoning, we report the best variants of
ToT and RAP with the base LLM. The results for these baselines are shown in Table 1 for Q7B and Table 6
for Q1.5B. We find that search-based reasoning (especially ToT) significantly improves success rates over
CoT reasoning for Q7B (6.2% — 25% in Countdown, 6% — 28% in Game-of-24), but not for Q1.5B (2.2%
— 2.2% in Countdown, 2% to 8% in Game-of-24). However, search-based reasoning substantially increases
inference time compared to CoT; for example, in Countdown, ToT and RAP are 90x and 278x slower than
CoT (greedy decoding).

5.2 Boosting Chain-of-Thought Reasoning

We present CoT reasoning results at inference time for LLMs fine-tuned on the Countdown (Table 2) and
the Game-of-24 datasets (Table 3). Similar to Ye et al. (2024), we also evaluate the models trained on
Countdown on the Game-of-24 test set, because conceptually Game-of-24 is a subset of Countdown. For
both tables, we use the highest learning rate (1e-5 for Q1.5B and 5e-6 for Q7B) that yields best performance
in CoT reasoning, leaving further discussion on the learning rate for Sec. 5.3. For the UFT objective, we
fix the coefficient « for the same model across different datasets, selected by the average success rate on
validation set Xya119. Our key findings are summarized below.

NLL loss is essential for offline fine-tuning on reasoning tasks. The most salient observation is
that SimPO, while successful in alignment tasks using only a preference loss (Meng et al., 2024b), yields
near-zero success across model sizes and datasets. In contrast, CPO-SimPO (Xu, 2024), which simply adds
an NLL term to SimPO, achieves substantially better results. This highlights the critical role of NLL loss,
shared by SFT, CPO-SimPO, and UFT, which explicitly encourages models to follow correct reasoning paths.
These findings align with prior results in Pang et al. (2024); Pal et al. (2024).

Incorporating high-quality training data is decisive for CoT reasoning. Second, among methods
that use NLL loss, performance is primarily determined by the quality of the training data, outweighing
the effect of forgetting objective. We measure data quality by the best-of-n success rate: the fraction of
unique solved cases out of all the training cases.” The best performances in Table 2 and Table 3 correspond
to the datasets with the highest quality (BFS+DFS data in Countdown, CoT data in Game-of-24). In
addition, when the two datasets have similar quality (BFS+DFS vs CoT+BFS+DFS in Countdown, CoT
vs CoT+ToT+RAP in Game-of-24), their performances are also alike. Remarkably, fine-tuning on the
high-quality classic search (BFS+DFS) data from Countdown yields significantly better performance on

7Although ToT and RAP greatly outperform CoT as inference-time methods (Table 1, Table 6) in Game-of-24, they produce
lower-quality training data than CoT (Table 3), because CoT’s best-of-n (n=100) success rate far exceeds its average (93%
versus 6% in Q7B, 82% versus 5% in Q1.5B).

Published in Transactions on Machine Learning Research (10/2025)

Table 2: CoT reasoning performance of LLMs fine-tuned on Countdown. Each row shows the averaged
result (3 seeds) of an LLM fine-tuned on data from specified sources. Models are evaluated on Countdown (1000
cases) and Game-of-24 (100 cases) test sets using zero-shot CoT via greedy decoding (greedy) or sampling (pass@1).
BFS+DFS data are generated by oracle reasoners without LLMs. We highlight our two contributions (incorporating
search-derived data and the fine-tuning method UFT) and the best cell for each (test set, CoT inference) pair.
Bold indicates the highest mean for each row. A superscript * marks results that are statistically significant according
to a Welch’s t-test (p < 0.05).
(a) Base LLM: Qwen2.5-Math 7B (best succ rate with search: 25% on Countdown, 28% on Game-of-24)

SFT

SimPO

CPO-SimPO

UFT

CoT data (quality: 37.6%)
Countdown succ (greedy)
Countdown succ (pass@1)
Game-of-24 succ (greedy)
Game-of-24 succ (pass@1)

32.5%40.3%
32.2%+0.6%
16.0%+1.0%
12.3%+2.3%

0.0%+0.0%
0.0%4+0.0%
0.0%+0.0%
0.0%+0.0%

27.8%40.5%
25.9%+1.3%
11.7%+3.1%
10.3%+4.0%

33.5%+1.0%
32.5%+1.7%
16.7%+2.9%
14.7%+4.6%

BFS+DFS data (quality: 86.2%)
Countdown succ (greedy)
Countdown succ (pass@1)
Game-of-24 succ (greedy)
Game-of-24 succ (pass@1)

56.1%40.4%
53.1%+2.6%
37.0%+1.0%
28.3%+4.0%

0.0%=+0.0%
0.0%40.0%
0.0%+0.0%
0.0%40.0%

51.4%40.6%
48.6%+1.3%
31.7%+2.5%
28.3%+4.0%

57.1%*+0.3%
54.4%+1.1%
39.7%+2.5%
24.7%+5.7%

CoT+BFS+DFS data (quality: 86.9%)
Countdown succ (greedy)
Countdown succ (pass@1)
Game-of-24 succ (greedy)
Game-of-24 succ (pass@1)

A~~~

55.4%41.9%
51.8%+2.4%
35.0%+1.0%
28.3%+6.7%

0.0%+0.0%
0.0%+0.0%
0.0%40.0%
0.0%40.0%

50.6%40.6%
45.7%+0.4%
24.7%+3.1%
23.0%+3.0%

57.4%+0.4%
53.5%+0.5%
42.0%* +1.7%
29.7%+4.0%

(b) Base LLM: Qwen2.5-Math 1.5B (best succ rate with search: 2.2% on

Countdown, 8% on Game-of-24)

SFT

SimPO

CPO-SimPO

UFT

CoT data (quality: 20.0%)
Countdown succ (greedy)
Countdown succ (pass@1)
Game-of-24 succ (greedy)

24.2%+0.3%
24.4%40.4%
13.3%+0.6%

0.6%4+0.6%
0.6%+0.5%
0.0%+0.0%

21.6%+0.6%
21.3%40.4%
8.7%+1.5%

26.1%*+0.6%
26.1%*+0.4%
14.3%40.6%

Game-of-24 succ (pass@1) 9.3%+2.5% 0.0%=+0.0% 7.3%+2.1% 14.0%* £2.0%
BFS+DFS data (quality: 86.2%)
Countdown succ (greedy) 50.8%+0.7% 0.0%+0.0% 50.5%+1.4% 53.7%*+1.2%

Countdown succ (pass@1)
Game-of-24 succ (greedy)
(

47.5%+0.8%
29.7%+3.2%

0.0%+0.0%
0.0%+0.0%

47.4%+1.6%
27.3%+3.8%

51.2%*+1.1%
32.0%+4.6%

Game-of-24 succ (pass@1) 23.0%+7.0% 0.0%+0.0% 20.3%+2.5% 23.0%+5.2%
CoT+BFS+DFS data (quality: 86.3%)
Countdown succ (greedy) 51.1%+0.9% 0.0%+0.0% 48.9%+0.8% 51.5%+0.7%

Countdown succ
Game-of-24 succ
Game-of-24 succ

pass@1)

greedy)
pass@1)

Py

47.1%+1.1%
26.3%+1.5%
24.0%+2.0%

0.0%=+0.0%
0.0%+0.0%
0.0%+0.0%

45.3%+1.2%
24.7%+2.9%
20.7%+2.1%

46.5%+1.3%
26.0%+2.6%
25.0%+5.3%

Game-of-24 than models fine-tuned directly on Game-of-24 CoT data (37% vs 28.2% for Q7B and 29.7% vs
14.5% for Q1.5B). This highlights the importance of incorporating high-quality training data, rather than
relying solely on CoT data, as is common practice.

Unpaired learning and forgetting is more robust than paired one. Lastly, we analyze the effect
of forgetting loss to SFT. UFT achieves the highest mean (ignoring variance) in 26 out of 36 evaluation
settings, and is statistically significantly better than baselines in 7 cases. Given the limited number of seeds
(3-4), these results may underestimate the true significance, and we expect the evidence to strengthen with
additional runs. In terms of magnitude, UFT yields an average improvement of 1.3% (with a maximum of
4%) in Table 3, and an average of 1.5% (with a maximum of 7%) in Table 2.

In contrast, CPO-SimPO shows mixed results. While it improves over SFT with an average gain of 1.2%
and maximum of 5% in Table 3, it underperforms SFT in most scenarios in Table 2, with an average drop
of 3.5%. We believe several factors contribute to the contrasting behavior of CPO-SimPO relative to SFT
(and UFT) when fine-tuned on Countdown versus Game-of-24. First, as shown in Appendix Table 5, the
paired preference requirement in CPO-SimPO results in the exclusion of 0.1% to 5.8% of correct data on
Countdown, while no such filtering occurs for Game-of-24. Since correct data determines data quality, this
reduction likely contributes to CPO-SimPQO’s weaker performance on Countdown. Second, the exclusion

Published in Transactions on Machine Learning Research (10/2025)

Table 3: CoT reasoning performance of LLMs fine-tuned and evaluated on Game-of-24. Each row shows
the averaged result (4 seeds) of an LLM fine-tuned on data from specified sources. We highlight our two contributions
(incorporating search-derived data and the fine-tuning method UFT) and the best cell for each (test set, CoT
inference) pair. Bold indicates the highest mean for each row. A superscript * marks results that are statistically
significant according to a Welch’s t-test (p < 0.05).

(a) Base LLM: Qwen2.5-Math 7B (best succ rate with search: 28%)

| SFT SimPO CPO-SimPO UFT

CoT data (quality: 92.9%)

succ (greedy) 28.2%+1.7% 2.2%+1.3% 28.5%+1.9% 28.2%+3.6%

succ (pass@1) 22.5%+3.4% 2.2%+1.5% 27.5%*+£2.4% 23.2%+3.4%
ToT+RAP data (quality: 69.3%)

succ (greedy) 13.2%=+3.6% 0.0%+0.0% 16.5%+2.9% 15.2%+2.2%

succ (pass@1) 13.2%+2.8% 0.0%=+0.0% 15.0%+4.1% 17.2%+1.0%
CoT+ToT+RAP data (quality: 95.83%)

succ (greedy) 27.5%+4.2% 0.2%+0.5% 26.8%+5.7% 30.2%+2.1%

succ (pass@1) 24.2%+5.2% 0.2%+0.5% 22.8%+1.7% 26.2%=+2.2%

(b) Base LLM: Qwen2.5-Math 1.5B (best succ rate with search: 8%)

SET

SimPO

CPO-SimPO

UFT

CoT data (quality: 82.1%)
succ (greedy)
succ (pass@1)

14.5%+3.8%
17.8%+3.4%

0.0%4+0.0%
0.0%+0.0%

18.5%+1.9%
17.3%+0.5%

18.2%+3.2%
18.5%+3.5%

ToT+RAP data (quality: 44.7%)

succ (greedy) 9.5%+0.6% 0.0%+0.0% 10.3%+1.9% 8.0%+1.4%

succ (pass@1) 10.0%+1.4% 0.0%+0.0% 9.5%+1.3% 9.5%+2.6%
CoT+ToT+RAP data (quality: 87.6%)

succ (greedy) 20.0%+2.7% 0.0%+0.0% 21.8%=+1.7% 20.5%+3.7%

succ (pass@1) 17.0%+2.2% 0.0%+0.0% 18.0%=+2.6% 18.8%+1.3%

of unpaired failed data, along with the challenge of balancing preference and NLL objectives, may have a
greater impact on the more difficult Countdown task.

5.3 Mitigating Forgetting in Search-based Reasoning

We investigate whether fine-tuned LLMs can retain search-based reasoning abilities (e.g., ToT, RAP), a
question that remains underexplored in the absence of continued pretraining. Evaluating this retention is
analogous to measuring backward transfer (Lopez-Paz & Ranzato, 2017) in continual learning, i.e., whether
performance on a prior task (search-based reasoning) degrades after fine-tuning on a new one (CoT-style
data). We focus on Q7B, which exhibits strong search-based reasoning performance and a clear gap over
CoT baselines (Table 1). For completeness, the results of Q1.5B is shown in Appendix B.

Although learning rate decay is employed following the alignment handbook, we find that using a peak
learning rate of 2e-5, as in the original Qwen2.5-Math setup (Yang et al., 2024), leads to catastrophic
forgetting (McCloskey & Cohen, 1989), with near-zero performance in inference-time search. We hypothesize
that this degradation stems from the lack of reward modeling in CoT-style supervision, which would be
essential for search-based reasoning (see Sec. C.4 for details).

A very low (peak) learning rate is crucial to retaining search capability. Inspired by continual
learning (Mirzadeh et al., 2020), we adopt a much smaller learning rate to keep parameters within the “basic
capability basin” (Chen et al., 2025), preserving pretrained knowledge. Fig. 3 and Fig. 5 shows the effects
of (peak) learning rate in standard SFT on Q7B. As we reduce the learning rate from 5e-6 to le-6 (an
exceptionally low value for SFT), we observe a clear trade-off: CoT reasoning performance declines rapidly
(although it remains above the baseline), while inference-time search improves significantly (although often
remains below the baseline). This behavior is similar to learning rate effects seen in reference-free preference
optimization (Meng et al., 2024b).

CoT training data is more effective for preserving search capability. An interesting observation
from Fig. 3 to Fig. 5 is that in both Countdown and Game-of-24 training settings, CoT data leads to better
inference-time search than search-derived data, although CoT data has much lower quality compared to

Published in Transactions on Machine Learning Research (10/2025)

—e— BFS+DFS data CoT data —e— CoOT+BFS+DFS data --- Qwen2.5-Math-7B

(a) Trained on Countdown and Tested on Countdown
CoT (greedy) CoT (pass@1) Search: ToT Search: RAP

- — 073/ 4

Success Rate
=) o
N 'S
o o
N 'S
[]
54
HY
//.c
/.
o
T
5

o.

~

\o 0.05
.

3 0.3 0.3 T T
2 0.3 e | TSN TTTTTTTTTTTT
g 0.3 - 4
T e—s '74.7 0.2 0.2
L}
802 0.2 4 &
S 0.1 .\ 0.1 N
3
"o.1 0.1 - A ., '§A
------------------ 0.0 0.0 .
2 4 2 4 2 4 2 4
Peak Irn 1le-6 PeakIrn 1le-6 PeakIrn 1le-6 PeakIrn 1le-6

Figure 3: Impact of (peak) learning rate and data sources on CoT vs. search-based reasoning for
standard SFT (a=0) using Qwen2.5-Math 7B as the base model. Learning rate mediates a trade-off between CoT and
search performance; CoT data better preserves search capability in most cases.

BFS+DFS data. Both CoT and search-derived data fall under CoT-style paths, but the latter is generated by
a search algorithm rather than directly by the LLM. This suggests that CoT data, being more aligned with
the LLM’s on-policy distribution, induces less distribution shift during SFT, thereby reducing forgetting.

—e— BFS+DFS data CoT data —e— CoT+BFS+DFS data --- Qwen2.5-Math-7B
(a) Trained on Countdown and Tested on Countdown
CoT (greedy) CoT (pass@1) Search: ToT Search: RAP
0.5 o — —: o=} ° O g O 0.3 0.30 °
Loa 0.4 et Ll o=
5 o.p == /-\ 0.25 /-
0.3 "< e 0,
03 “ 0.20 /: 1
8o.2 0.2 S =
. . L
H 01 015~
Voa 0.1
———————————————————————————————— 0.0 0.10 ~——————mmmmmm————
(b) Trained on Countdown and Tested on Game-of-24
0.3 0.4
9 —, 0.25 . 0.3 0= oo
g T~ ~ i 0.3
« 0.20 (S0 02— SEEEESE T S
0.2 o e « ’ o, 0.2 o.
o 0.15 .;) . ~—
g 0.1 /‘\‘ o1 .>‘
" 0.1 e . e
________________ 0.05 0.0 —— 0.0 B
0 1051051041073 70 1071075104103 0 1051075104103 0 1051051041073
Unlikelihood a Unlikelihood a Unlikelihood a Unlikelihood a

Figure 4: Effects of unlikelihood loss and data sources on CoT vs. search-based reasoning using Qwen2.5-
Math 7B as the base model, with the peak learning rate as le-6. Unlikelihood loss leads to greater improvements in
search performance than in CoT inference in most cases.

Unlikelihood auxiliary loss can significantly improve search capability. Building on the findings
in Fig. 3, we observe that the effect of a low learning rate extends to UFT and CPO-SimPO as well. Here,
we examine the impact of the unlikelihood loss specifically at the lowest learning rate of le-6. Consistent
with Sec. 5.2, UFT provides marginal improvements over SFT in CoT reasoning, regardless of the choice
of a. However, with a=1e-4, inference-time search improves considerably compared to SFT (a=0) in most
cases. For example, with the same CoT data, ToT achieves 28.6% vs. 22.2% under SFT, and RAP reaches
28.9% vs. 17.5% — far exceeding the RAP baseline of 10.2%. This indicates that learning to forget incorrect
CoT-style paths could generalize to forgetting incorrect intermediate search steps.

6 Conclusion and Future Work

We propose a simple and effective method for improving reasoning on arithmetic puzzle domains, addressing
three underexplored challenges: (1) augmenting training data by unifying mixed data formats from diverse

10

Published in Transactions on Machine Learning Research (10/2025)

reasoners into a CoT-style format, (2) leveraging unpaired correct and failed paths via unlikelihood fine-tuning,
and (3) mitigating loss of search capability using a small learning rate. Experiments on Countdown and
Game-of-24 show that data quality, unlikelihood loss, and learning rate are key to balancing CoT efficiency
and search capability. Future work can explore more advanced unlearning objectives (Tamirisa et al., 2024;
Huang et al., 2024), incorporate stabilization techniques (Meng et al., 2024b), and extend the framework to
other reasoning-oriented LLMs.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 1

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022. 2

Bernd Bohnet, Azade Nova, Aaron T Parisi, Kevin Swersky, Katayoon Goshvadi, Hanjun Dai, Dale Schuurmans, Noah
Fiedel, and Hanie Sedghi. Exploring and benchmarking the planning capabilities of large language models, 2024. 2

Zhepeng Cen, Yao Liu, Siliang Zeng, Pratik Chaudhari, Huzefa Rangwala, George Karypis, and Rasool Fakoor.
Bridging the training-inference gap in LLMs by leveraging self-generated tokens. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856. 4

Huanran Chen, Yinpeng Dong, Zeming Wei, Yao Huang, Yichi Zhang, Hang Su, and Jun Zhu. Understanding
pre-training and fine-tuning from loss landscape perspectives. arXiv preprint arXiv:2505.17646, 2025. 9

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiw:2107.03374, 2021. 3

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qingguo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun Zhang. Advancing
tool-augmented large language models: Integrating insights from errors in inference trees. Advances in Neural
Information Processing Systems, 37:106555-106581, 2024a. 3, 5

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou,
Zhuosheng Zhang, et al. Do not think that much for 2+ 3=7 on the overthinking of ol-like llms. arXiv preprint
arXiw:2412.21187, 2024b. 1

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree search useful for llm
planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890, 2024c. 1, 2

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical report. arXiv
preprint arXiv:2412.04604, 2024. 1

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021. 3

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning
in language models through multiagent debate. arXiv preprint arXiv:2305.14325, 2023. 2

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as
prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024. 3, 17

Rasool Fakoor, Pratik Chaudhari, and Alexander J. Smola. P3o: Policy-on policy-off policy optimization. In
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine
Learning Research, pp. 1017-1027. PMLR, 22-25 Jul 2020. 4

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-

like tree-search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179, 2023. 2,
3

11

Published in Transactions on Machine Learning Research (10/2025)

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D Goodman.
Stream of search (sos): Learning to search in language. arXiv preprint arXiv:2404.03683, 2024. 2, 3, 6, 23, 26

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie Wen. Interpretable
contrastive monte carlo tree search reasoning. arXiv preprint arXiv:2410.01707, 2024. 2

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falkman Olsson,
Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiermath: A benchmark for evaluating
advanced mathematical reasoning in ai. arXiv preprint arXiv:2411.04872, 2024. 1

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina, Jean
Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning models. arXiv preprint
arXi:2506.04178, 2025. 27

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya
Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training (rest) for language modeling.
arXiv preprint arXiv:2308.08998, 2023. 2, 4

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025. 3, 27

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023. 1, 2, 3, 6, 25, 26

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma, Adithya
Samavedhi, Qiyue Gao, et al. Llm reasoners: New evaluation, library, and analysis of step-by-step reasoning with
large language models. arXiv preprint arXiv:2404.05221, 2024. 2, 3, 6, 25

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021. 27

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiw:1503.02531, 2015. 2

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference model. arXiv
preprint arXiv:2403.07691, 2024. 3

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh Agarwal. V-star:
Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024. 3

Tiansheng Huang, Sihao Hu, Fatih IlThan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling harmful fine-tuning
for large language models via attenuating harmful perturbation. arXiv preprint arXiv:2409.01586, 2024. 11

AQ Jiang, A Sablayrolles, A Mensch, C Bamford, DS Chaplot, D de las Casas, F Bressand, G Lengyel, G Lample,
L Saulnier, et al. Mistral 7b (2023). arXiv preprint arXiv:2810.06825, 2023. 26

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional
transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019. 3

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Furopean conference on machine
learning, pp. 282—293. Springer, 2006. 3, 26

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model agents.
arXiv preprint arXiw:2407.01476, 2024. 2

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang,
and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In Proceedings
of the 29th Symposium on Operating Systems Principles, pp. 611-626, 2023. 6, 25

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and Yuandong Tian.
Beyond a*: Better planning with transformers via search dynamics bootstrapping. arXiv preprint arXiv:2402.14083,
2024. 2, 3

12

Published in Transactions on Machine Learning Research (10/2025)

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, Longhui
Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in aidmaths with 860k pairs of
competition math problems and solutions. Hugging Face repository, 13(9):9, 2024. 27

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman,
Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023. 1, 3

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi Yang,
Denny Zhou, et al. Best practices and lessons learned on synthetic data. arXiv preprint arXiv:2404.07503, 2024. 2

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in neural
information processing systems, 30, 2017. 9

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems, 36, 2024. 2

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, volume 24, pp. 109-165. Elsevier, 1989. 9

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, and Kai-Wei Chang. Llm-a*: Large language model enhanced
incremental heuristic search on path planning. arXiv preprint arXiv:2407.02511, 2024a. 2

Yu Meng, Mengzhou Xia, and Danqgi Chen. Simpo: Simple preference optimization with a reference-free reward.
Advances in Neural Information Processing Systems, 37:124198-124235, 2024b. 3, 6, 7, 9, 11, 17, 18

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding the role of
training regimes in continual learning. Advances in Neural Information Processing Systems, 33:7308-7320, 2020. 9

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte, Andrew
White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark for llm-based agents
in computational biology. arXiv preprint arXiv:2503.00096, Feb 2025. doi: 10.48550/arXiv.2503.00096. URL
https://arxiv.org/abs/2503.00096. 1

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu
Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback.
arXiv preprint arXi:2112.09332, 2021. 2

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow
instructions with human feedback, 2022. 4, 6

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White. Smaug: Fixing
failure modes of preference optimisation with dpo-positive. arXiv preprint arXiv:2402.18228, 2024. 3, 7, 18

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason Weston. Iterative
reasoning preference optimization. Advances in Neural Information Processing Systems, 37:116617-116637, 2024. 3,
4,7,17,18

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian,
et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789,
2023. 2

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing
Systems, 36:53728-53741, 2023. 2, 3, 17

Domenic Rosati, Jan Wehner, Kai Williams, Lukasz Bartoszcze, Robie Gonzales, Subhabrata Majumdar, Hassan
Sajjad, Frank Rudzicz, et al. Representation noising: A defence mechanism against harmful finetuning. Advances
in Neural Information Processing Systems, 37:12636-12676, 2024. 20, 21

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on incorrect
synthetic data scales the efficiency of llm math reasoning by eight-fold. Advances in Neural Information Processing
Systems, 37:43000-43031, 2024. 3, 5

13

https://arxiv.org/abs/2503.00096

Published in Transactions on Machine Learning Research (10/2025)

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents
with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:8634-8652, 2023. 2

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for problem-solving with
language models. arXiv preprint arXiv:2312.06585, 2023. 2, 4

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint arXiv:2408.03814, 2024. 1, 2

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An analysis of cot in
planning. arXiv preprint arXiv:2405.04776, 2024. 2

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT press Cambridge,
1998. 3

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin, Justin Wang,
Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight 1lms. arXiv preprint arXiv:2408.00761,
2024. 11

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu. Toward self-improvement
of llms via imagination, searching, and criticizing. Advances in Neural Information Processing Systems, 37:
52723-52748, 2024. 2, 3

Yi-Lin Tuan and William Yang Wang. A gradient analysis framework for rewarding good and penalizing bad examples
in language models. arXiv preprint arXiv:2408.16751, 2024. 3

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul, Alvaro Bartolome,
Alexander M. Rush, and Thomas Wolf. The Alignment Handbook, 2024. URL https://github.com/huggingface/
alignment-handbook. 7, 17

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey
Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback. arXiv preprint
arXiv:2211.14275, 2022. 2, 3, 6

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning abilities of
large language models-a critical investigation. Advances in Neural Information Processing Systems, 36:75993-76005,
2023. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. 1

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert, Shengyi
Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https://github.com/
huggingface/trl, 2020. 17

Changsheng Wang, Chongyu Fan, Yihua Zhang, Jinghan Jia, Dennis Wei, Parikshit Ram, Nathalie Baracaldo, and
Sijia Liu. Reasoning model unlearning: Forgetting traces, not just answers, while preserving reasoning skills. arXiv
preprint arXiv:2506.12963, 2025. 3

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022. 2

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824-24837, 2022. 1, 3, 6, 23

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural text generation
with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019. 3, 5

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine
learning, 8:229-256, 1992. 4

14

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/trl
https://github.com/huggingface/trl

Published in Transactions on Machine Learning Research (10/2025)

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie. Self-evaluation
guided beam search for reasoning. Advances in Neural Information Processing Systems, 36:41618-41650, 2023. 2

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and Michael Shieh.
Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint arXiv:2405.00451, 2024. 2

Haoran Xu. The joint of contrastive preference optimization (cpo) & simple preference optimization (simpo), 2024.
URL https://github.com/felixxu/CPO_SIMPO. 2, 6, 7, 17, 18

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, and
Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm performance in machine
translation. arXiv preprint arXiv:2401.08417, 2024. 3, 17, 18

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren
Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement.
arXiv preprint arXiw:2409.12122, 2024. 2, 6, 9, 17

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang,
Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. 27

Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with procedure
cloning. Advances in Neural Information Processing Systems, 35:36366-36381, 2022. 3

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in Neural Information Processing
Systems, 36, 2023a. 1, 2, 3, 6, 23, 25

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint arXiv:2310.10683, 2023b.
3, 5, 20

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Beyond autoregression:
Discrete diffusion for complex reasoning and planning. arXiv preprint arXiv:2410.14157, 2024. 7

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank responses to align
language models with human feedback. Advances in Neural Information Processing Systems, 36:10935-10950, 2023a.
3

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. Scaling relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiw:2308.01825, 2023b. 2, 4

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning
really incentivize reasoning capacity in llms beyond the base model? arXiv preprint arXiv:2504.13837, 2025. 27

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. Advances
in Neural Information Processing Systems, 35:15476-15488, 2022. 2, 4

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman. Quiet-star: Language
models can teach themselves to think before speaking. arXiv preprint arXiv:2403.09629, 2024. 2

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-training via
process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a. 2, 3

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse to
effective unlearning. arXiv preprint arXiv:2404.05868, 2024b. 3, 5, 21

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference optimization: Improving
chain-of-thought reasoning in llms. Advances in Neural Information Processing Systems, 37:333-356, 2024c. 3, 4, 5

Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, and Minlie Huang. Safe unlearning: A
surprisingly effective and generalizable solution to defend against jailbreak attacks. arXiv preprint arXiv:2407.02855,
2024d. 5

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence likelihood
calibration with human feedback. arXiv preprint arXiw:2305.10425, 2023. 3

15

https://github.com/fe1ixxu/CPO_SIMPO

Published in Transactions on Machine Learning Research (10/2025)

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for large-scale task
planning. Advances in Neural Information Processing Systems, 36, 2024. 2

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou, Heng-Tze
Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking 1lms on natural language planning. arXiv preprint
arXiv:2406.04520, 2024. 2

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent tree search
unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406, 2023. 2

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb Sarkhel, and Chao
Zhang. Toolchain*: Efficient action space navigation in large language models with a* search. arXiv preprint
arXiw:2310.13227, 2023. 2

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf,
Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code generation with diverse function
calls and complex instructions. arXiv preprint arXiv:2406.15877, 2024. 1

16

Published in Transactions on Machine Learning Research (10/2025)

A Fine-tuning Details

We follow the alignment handbook® (Tunstall et al., 2024) to fine-tune two base LLMs with full parameters,
Qwen2.5-Math 1.5B (Q1.5B)? and Qwen2.5-Math 7B (Q7B)!" (Yang et al., 2024). Below are common setups
for all the methods (i.e., ST, UFT, and preference-based methods).

We disable sequence packing to prevent cross-contamination'! and set a context length of 256 tokens. which
is sufficient for our tasks. Training is performed in bfloat16 precision, and model checkpoints are saved
every 5% epochs for later evaluation.

The learning rate follows cosine_with_min_lr schedule'?: it linearly warms up from 0 to n over the first
10% epochs, then decays to a minimum of 7e-8 via cosine function for the rest epochs. In Sec. 5.2, we use
a peak learning rate n of le-5 for Q1.5B and 5e-6 for Q7B, while in Sec. 5.3, we decrease 1 to much lower
values, as discussed in the main paper.

A.1 SFT Baseline and UFT

Following Sec. 4.2, in our implementation, Unlikelihood Fine-Tuning (UFT) and Supervised Fine-Tuning
(SFT) differ only by the unlikelihood loss coefficient . A batch size B = 128 is used for both successful and
failed data batches (after gradient accumulation) in UFT.

A.2 Preference-based (Reference-free) Baselines: SimPO and CPO-SimPO

Background. In addition to SFT, we compare UFT against offline preference-based methods:
SimPO (Meng et al., 2024b) and CPO-SimPO (Xu, 2024), both designed to align LLMs with human
preferences. While UFT is not a preference-based method per se, our reasoning task can be interpreted
through the lens of preference alignment, where successful reasoning paths are preferred over failed ones.
Like preference-based approaches, UFT learns from both successful and failed paths, making these methods
natural baselines for comparison. The implementations of these methods follow the TRL library'?® (von Werra
et al., 2020).

SimPO and CPO-SimPO build on DPO (Rafailov et al., 2023) and CPO (Xu et al., 2024), requiring preference
pairs but eliminating the need for a reference model used in KL regularization (i.e., reference-free). This
results in improved training efficiency and reduced GPU memory usage. By contrast, while KTO (Ethayarajh
et al., 2024) like UFT operates on unpaired data, it still requires a reference model during training. In our
preliminary experiments, running KTO using the same global batch size as UFT necessitated precomputing
reference model logits and offloading the optimizer to the CPU, resulting in a 3x increase in training time
on the Game-of-24 dataset and out-of-memory errors on the Countdown dataset. Consequently, we exclude
KTO from our baselines and instead focus on reference-free approaches such as SimPO.

Table 4 summarizes the comparison between UFT and several offline preference-based methods. Notably,
UFT is both reference-free and does not require preference pairs.

Table 4: Brief comparison of selected offline preference-based methods and UFT.

Offline fine-tuning method Preference data Reference-free?
DPO (Rafailov et al., 2023), (non-iterative) RPO (Pang et al., 2024) Paired No
CPO (Xu et al., 2024), SimPO (Meng et al., 2024b), CPO-SimPO (Xu, 2024) Paired Yes
KTO (Ethayarajh et al., 2024) Unpaired No
UFT (Ours) Unpaired Yes

8https://github.com/huggingface/alignment-handbook
9https://huggingface.co/Qwen/Qwen2.5-Math-1.5B
Ohttps://huggingface.co/Qwen/Qwen2.5-Math-7B
HUhttps://github.com/huggingface/transformers/issues/25452
2https://github.com/huggingface/transformers/blob/a22a43784d97d06b7ald9abad6e0086d30fdeal99/src/transformers/
optimization.py#L338C5-L338C48
I3nttps://huggingface.co/docs/trl/en/cpo_trainer

17

https://github.com/huggingface/alignment-handbook
https://huggingface.co/Qwen/Qwen2.5-Math-1.5B
https://huggingface.co/Qwen/Qwen2.5-Math-7B
https://github.com/huggingface/transformers/issues/25452
https://github.com/huggingface/transformers/blob/a22a4378d97d06b7a1d9abad6e0086d30fdea199/src/transformers/optimization.py#L338C5-L338C48
https://github.com/huggingface/transformers/blob/a22a4378d97d06b7a1d9abad6e0086d30fdea199/src/transformers/optimization.py#L338C5-L338C48
https://huggingface.co/docs/trl/en/cpo_trainer

Published in Transactions on Machine Learning Research (10/2025)

Simple Preference Optimization with a Reference-Free Reward (SimPO) (Meng et al., 2024b).
SimPO relies on paired preference data, denoted as Dpairea = {(x,y ",y)}, where (y*,y ™) are successful
and failed reasoning paths for the same input x, respectively. To construct Dpaireq from our original dataset
D, we first filter for inputs that have both successful and failed paths. For each successful path (x,y™), we
generate E preference pairs by randomly sampling E failed paths (x,y~) corresponding to the same input,
treating them as rejected responses. This sampling strategy ensures that the resulting dataset is similar in
size to that used for UFT and captures as much diversity as possible within the constraint of pairing.

The training objective is defined as:

. B B _
min J5imp0o (6; Dpaired) = —E(x,y+,y)~Dpairea [loga (|y+| logma(y™ | x) — W logmo(y™ | x)—~)|, (7)

where o is the sigmoid function, § = 0.1 is a scaling factor, and v = 0.5 is the target reward margin, following
default values in TRL. The length normalization terms (Jy ™|, |[y~|) help reduce bias toward longer responses.
This normalization could also be explored in UFT as future work. The margin v enforces a minimum
separation between the preferred and rejected log-probabilities.

CPO-SimPO (Xu, 2024). Although pure preference-based methods (e.g., DPO, SimPO) perform well in
alignment tasks, they have been found to underperform on reasoning tasks that require explicit maximization
of preferred responses (Meng et al., 2024b; Pal et al., 2024; Pang et al., 2024). While CPO-SimPO was not
originally motivated by reasoning tasks, we adopt it because CPO-SimPO addresses this issue by augmenting
SimPO with the NLL term from CPO (Xu et al., 2024):

mein JCPO-SimPO (6a Dpaired)

5 5 . 8)
Byt gD [mga (y+| logmoly* | %) = i logma(y” %) =7) + Mogmo(y* [x)],

where the NLL coefficient A = 1.0 following the TRL.

Connection with RPO (Pang et al., 2024). CPO-SimPO (Xu, 2024) resembles a non-iterative version
of Iterative Reasoning Preference Optimization (IRPO) (Pang et al., 2024), which we call RPO:

mgn JRPO (9, Dpaired)

mo(y™ | x) mo(y~ [%) ®
— —E(eyty Dy 1080 (Blog XX _ 51g
Gyty) merad[& (6 & Tret(y 1 | X) Tret(y~ | %

A
+ logmo(y™ | x)|,
>>] ol 1)

where mof is the reference model (i.e., the base LLM). CPO-SimPO becomes equivalent to RPO when a
reference model is introduced, the length normalization and reward margin in the preference term are removed,
and length normalization is applied in the NLL term instead. However, since RPO, like DPO and KTO,
depends on a reference model, we exclude it from our baseline comparisons.

B Additional Results on Countdown and Game-of-24

B.1 Training Dataset Statistics

For Countdown, we train for 2 epochs due to the large dataset size, shown as in Table 5. On an instance
with 8xA100 GPUs (40GB), total training time on CoT+BFS+DFS data is under 5 hours for Q1.5B and
under 30 hours for Q7B using UFT. For Game-of-24, we train for 10 epochs. Total training time is under 0.5
hours for Q1.5B and under 2.5 hours for Q7B using UFT. SimPO and CPO-SimPO only require a single
dataloader over paired data, resulting in roughly 2x shorter training time compared to UFT.

We emphasize that our goal is to reduce inference time in reasoning. While training may be relatively
expensive, it is performed offline and does not impact deployment efficiency or user-facing latency.

18

Published in Transactions on Machine Learning Research (10/2025)

Table 5: Statistics of training datasets: total correct paths are used by SFT and UFT, while paired correct
paths are used by SimPO and CPO-SimPO (shown as a percentage of total). Data quality refers to the
best-of-n success rate reported in Table 2 and Table 3.

Training data (task, base, reasoner) # Total correct paths # Paired correct paths Quality
Countdown, Q7B, CoT 428.0k 97.50% 37.6%
Countdown, N/A, BFS+DFS 614.2k 97.55% 86.2%
Countdown, Q7B, CoT+BFS+DFS 985.3k 99.88% 86.9%
Countdown, Q1.5B, CoT 147.9k 94.22% 20.0%
Countdown, Q1.5B, CoT+BFS+DFS 734.3k 99.86% 86.3%
Game-of-24, Q7B, CoT 9.1k 100% 92.9%
Game-of-24, Q7B, ToT+RAP 5.1k 100% 69.3%
Game-of-24, Q7B, CoT+ToT+RAP 13.7k 100% 95.3%
Game-of-24, Q1.5B, CoT 4.4k 100% 82.1%
Game-of-24, Q1.5B, ToT+RAP 1.7k 100% 44.7%
Game-of-24, Q1.5B, CoT+ToT+RAP 6.0k 100% 87.6%
B.2 Additional Results with SFT and UFT
—e— ToT+RAP data CoT data —e— CoT+ToT+RAP data --- Qwen2.5-Math-7B
Trained on Game-of-24 and Tested on Game-of-24
CoT (greedy) CoT (pass@1) Search: ToT ____S_(-ia_rfb:_gf_l’____
0.3 0.25

Success Rate
o
N

e
A

°
° 9o
N N
o w

4 4
Peak Irn 1le-6 Peak Irn 1le-6 Peak Irn 1le-6 PeakIrn 1le-6

Figure 5: Results of standard SFT (a=0) using Qwen2.5-Math 7B as the base model for Game-of-24.
The same conclusion in Fig. 3 holds.

For completeness, we provide fine-tuning results based on Qwen2.5-Math 1.5B in Fig. 6 and Fig. 7. Given its
weak search-based reasoning performance as a base model (e.g., success rate ~2% in Countdown) shown in
Table 6, the effects of learning rate, CoT data, and unlikelihood loss are minimal, likely due to its poor initial
capability. This suggests that the observed benefits depend on the model capability.

Table 6: Performance on Countdown and Game-of-24 test sets, using Qwen2.5-Math 1.5B as the base
model. Due to its weak search capability, we omit fine-tuning results here (please see Table 2 and Table 3 for
fine-tuning results on CoT inference).

Test set

& Inference Base LLM
Countdown (1000 cases)
CoT (greedy) 2.2% / 0.6m
CoT (pass@l) | 2.1% / 3.2m
search: ToT 2.2% / 68m
search: RAP 1.4% / 143m
Game-of-24 (100 cases)
CoT (greedy) | 2.0% / <0.1m
CoT (pass@l) | 3.0% / 0.5m
search: ToT 8.0% / 5.4m
search: RAP 4.0% / 11.3m

19

Published in Transactions on Machine Learning Research (10/2025)

—e— BFS+DFS data —e— CoT data —e— CoOT+BFS+DFS data --- Qwen2.5-Math-1.5B

(a) Trained on Countdown and Tested on Countdown

CoT (greedy) CoT (pass@1) Search: ToT Search: RAP
/0 s ® =2 mEEEmssTmEssssssss
9 _— 0.020 0.100
- 0.4
m 0.4 o
5 0.015 0.075 /
n
0 S
8 0.2 ././o 0.2 ./0 0.010 ./ 0.050 f (3
S 0.005 ° -7“' 0 L
@ . _— o.025 =
0.0 Co==o=ooomsimoose) 0.0C0====c===cimoooay 0.000

(b) Trained on Countdown and Tested on Game-of-24

0.3 0.08 ~—-———c———————— L
0 0.3 E ‘ ooali .
1] /’ s 0.06 : .
ﬁ 0.2 p 0.2 :/ |
@ — 3/ 0.04 0.02 .X.
[v] 0 . L
o1 — 01 o 0.02 i — .
n . o<

__________________________________ 0.00 *T——f—=——} 0.00

0.25 0.50 0.75 1.00
Peak Irn le-5

0.25 0.50 0.75 1.00
Peak Irn le-5

0.25 0.50 0.75 1.00
Peak Ir n le-5

0.25 0.50 0.75 1.00
Peak Irn le-5

—e— CoT data CoT+ToT+RAP data --- Qwen2.5-Math-1.5B

—e— ToT+RAP data

Trained on Game-of-24 and Tested on Game-of-24

CoT (greedy) CoT (pass@1) Search: ToT Search: RAP
0.08 Ff=——=F———+-——=
©0.20 A 0.20
H / — 0.06 0.04 ———————_sEEE=== -
o o 0.15 e /
0.15 %./. —
w L ° o 0.04 o P
%010 L ————. o010 J 0.02 s o 9
g . 0.02 '><
" 0.05 0.05 e) G
________________________________ 0.00 * S — 0.00

0.25 0.50 0.75 1.00
Peak Ir n 1le-5

0.25 0.50 0.75 1.00
Peak Ir n 1le-5

0.25 0.50 0.75 1.00
Peak Ir n 1le-5

0.25 0.50 0.75 1.00
Peak Ir n 1le-5

Figure 6: Results of standard SFT (a=0) using Qwen2.5-Math 1.5B as the base model for Countdown
(top) and Game-of-24 (bottom). Due to the base model’s weak search ability, learning rate and data source
have little observable effect.

CoT data CoT+BFS+DFS data --- Qwen2.5-Math-1.5B

——

—e— BFS+DFS data —e—
(a) Trained on Countdown and Tested on Countdown
CoT (pass@1) Search: ToT

Search: RAP

CoT (greedy)

r——]

g |t ommpm===t=—s——" 0,02
o
© 0.4
Y] 0.4
wn e O
S S S — et 001} 3
vo0.2 0.2 <
v
3 © 0

0.00 ===

0.0 LoTIToTomooIoo 0,0 EoTIoIToomooaonT
(b) Trained on Countdown and Tested on Game-of-24

0.08 ——-—--——-——————!
S03e— s :><' 03 —e | 0.06 0.04 pm—————=—---—-—
g ~ —_—]
0.2 0.2 ! 0.04 ~~.
g 0.02 .
[S B /' 002, =0 .
50.1 0.1 o—g——o ——e. * °§ N
@ — —~ 0.00 5= e—==t—0. 0.00 o — e

0 107°1075107%1073 0 107°1075107%1073 0 10°107510741073 0 10°°107510741073

Unlikelihood a Unlikelihood a Unlikelihood a Unlikelihood a

Figure 7: Results of UFT using Qwen2.5-Math 1.5B as the base model for Countdown, with the peak

learning rate as le-5. Due to the base model’s weak search ability, unlikelihood loss has little observable
effect.

B.3 Additional Results with Alternative Unlearning Methods

Gradient Ascent and RepNoise. To further evaluate our framework, we conduct additional experiments
by replacing the unlikelihood (UL) loss Jyr, in Eq. 5 with other established unlearning objectives, while
keeping all other settings identical. In particular, we examine Gradient Ascent (GA) (Yao et al., 2023b) and
RepNoise (Rosati et al., 2024).

20

Published in Transactions on Machine Learning Research (10/2025)

GA is a simple baseline for unlearning that aims to minimize the probability of failed paths:

Jaa(0; D7) = Exy—)up- [logmo(y ™ | x)]. (10)

Although GA is shown to be unstable during optimization (Zhang et al., 2024b), we mitigate this issue by
using a small loss coefficient of & = le-5, which is on a similar magnitude as that used for UL. This choice
substantially improves numerical stability in our experiments.

Representation Noising (RepNoise) (Rosati et al., 2024), on the other hand, is a recent advanced unlearning
method designed for enhancing LLM safety. It combines Gradient Ascent with removing harmful representa-
tions, encouraging the model’s representations (per-layer hidden states) for negative inputs to align with
random noise. Within our framework, its objective is written as:

JRepNoise (97 D~)
L

1 —_ 0OS
= log (LE(X,y)ND [Z log 79,004 (y ‘ h? t(x))
=1

L 11
>+§EXND L;MMD(hf“(x),N(o,I)) . (1)

The first term acts as a generalized gradient-ascent objective (with an additional log-transformation), reducing
the likelihood of undesired outputs based on the per-layer post-residual hidden states thSt (x) passed into
the model’s output head g, ,, where L = 28 denotes the total number of layers. The second term enforces
that the pre-residual hidden states h}"(x) to be close to Gaussian noise according to the maximum mean
discrepancy (MMD). Following the original implementation, we set the RepNoise loss coefficient to o = 0.5

and its coefficient for the MMD term g = 1le-3.

CoT reasoning results for Gradient Ascent and RepNoise. Table 7 shows results for CoT reasoning
with the same learning rate for all unlearning methods on Game-of-24. GA achieves performance comparable
to SFT and UFT, with slightly lower averages than UFT. RepNoise, which places strong emphasis on the
unlearning objective (via equal weighting and representation-level forgetting), performs consistently worse
than the other methods. These observations suggest that directly applying unlearning methods originally
designed for LLM safety may require additional design considerations.

Across all unlearning methods, our results consistently support the claim that higher training data quality,
regardless of whether the data originate from CoT or search-based algorithms, leads to better fine-tuning
performance.

Search-based reasoning results for Gradient Ascent and RepNoise. Table 8 further examines the
impact of learning rate and dataset source on CoT and search-based reasoning. Following the previous setup,
we sweep learning rates over {le-6, 2e-6, 5e-6} for the 7B base model.

For GA, our key findings for SFT and UFT (Sec. 5.3) remain valid. A smaller learning rate slightly reduces
CoT reasoning performance but can substantially preserve, or even improve, the base model’s search capability
(e.g., 31% in ToT and 28% in RAP). Moreover, CoT training is more effective for maintaining search ability
compared to mixed data (CoT+ToT+RAP), suggesting that using more on-policy data reduces distribution
shift and mitigates forgetting, as discussed in Sec. 5.3.

In contrast, RepNoise exhibits a drastic drop in search-based performance (ToT and RAP), reaching 0.0%
regardless of the learning rate, even though its CoT reasoning improves over the base LLM. We hypothesize
that this degradation arises from the large default coefficient (o = 0.5) in the RepNoise loss, which amplifies
the effective learning rate for unlearning far beyond those used in other methods such as UFT and GA
(< 1073). This aggressive unlearning, coupled with representation-level regularization toward random noise,
likely disrupts internal representations crucial for search behaviors (e.g., hypothesis branching and reward
estimation), even when the training objective (CoT reasoning) itself remains stable. These results underscore
the importance of carefully tuning the learning rate and loss coefficient when extending unlearning objectives
to LLM reasoning domains.

21

Published in Transactions on Machine Learning Research (10/2025)

Table 7: Additional results with alternative unlearning methods: CoT reasoning performance of
LLMs fine-tuned and evaluated on Game-of-24. Each cell shows the averaged result (4 seeds) of an LLM
fine-tuned on data from specified sources. We highlight our two contributions (incorporating search-derived data
and the fine-tuning method UFT).

(a) Base LLM: Qwen2.5-Math 7B (best succ rate with search: 28%)

| SFT UFT GA

RepNoise

CoT data (quality: 92.9%)
succ (greedy)
succ (pass@1)

ToT+RAP data (quality: 69.3%)
succ (greedy)
succ (pass@1)

CoT+ToT+RAP data (quality: 95.3%)
succ (greedy)
succ (pass@1)

20.5%+3.7%
17.2%+1.0%

26.8%+2.1%
25.5%+2.4%

28.2%+3.6%
23.2%43.4%

28.2%+1.7%
22.5%+3.4%

12.8%+3.0%
13.2%+5.1%

13.5%+5.1%
15.8%+2.1%

15.2%+2.2%
17.2%+1.0%

13.2%+3.6%
13.2%+2.8%

20.8%+2.1%
19.0%+2.2%

28.5%+1.7%
25.5%+3.1%

30.2%+2.1%
26.2%=+2.2%

27.5%+4.2%
24.2%+5.2%

(b) Base LLM: Qwen2.5-Math 1.5B (best succ rate with search: 8%)
\ SFT UFT GA

RepNoise

CoT data (quality: 82.1%)
succ (greedy)
succ (pass@1)

ToT+RAP data (quality: 44.7%)
succ (greedy)
succ (pass@1)

CoT+ToT+RAP data (quality: 87.6%)
succ (greedy)
succ (pass@1)

12.2%+3.3%
12.0%=+2.2%

15.8%+2.8%
17.0%=+2.2%

18.2%4+3.2%
18.5%+3.5%

14.5%4+3.8%
17.8%+3.4%

5.5%40.6%
6.2%=+1.5%

9.2%43.8%
9.0%+1.8%

8.0%+1.4%
9.5%+2.6%

9.5%40.6%
10.0%+1.4%

10.3%+3.6%
12.8%+3.6%

20.8%+2.1%
20.0%+3.4%

20.5%+3.7%
18.8%+1.3%

20.0%+2.7%
17.0%+2.2%

Table 8: Additional results with alternative unlearning methods: CoT and search-based reasoning
performance of LLMs fine-tuned and evaluated on Game-of-24. Each cell shows the averaged result (4
seeds) of an LLM fine-tuned on data from specified sources. We highlight the best results for each pair of training
data and inference method.

(a) Gradient Ascent

‘ Learning rate CoT (greedy) ToT RAP

Base LLM (Qwen2.5-Math 7B) \ N/A 6.0% 28.0% 27.0%
CoT data (quality: 92.9%) 5e-6 26.8%+2.1% 15.5%+4.1% 11.2%+1.7%
2e-6 23.0%+0.8% 31.0%+8.8% 22.8%+4.5%
le-6 20.2%+1.0% 24.2%+3.5% 28.0%=+2.6%
ToT+RAP data (quality: 69.3%) 5e-6 13.5%+5.1% 6.8%+2.9% 6.2%+2.2%
2e-6 9.8%+1.5% 20.0%+0.8% 18.8%+7.6%
le-6 11.8%+1.7% 20.8%+5.9% 18.5%+3.3%
CoT+ToT+RAP data (quality: 95.3%) 5e-6 28.5%+1.7% 14.8%+2.5% 12.0%+1.8%
2e-6 20.2%+1.9% 29.5%+3.3% 21.8%+2.5%
le-6 17.5%+1.3% 23.8%+3.8% 13.5%+3.1%

(b) RepNoise

‘ Learning rate ~ CoT (greedy) ToT RAP

Base LLM (Qwen2.5-Math 7B) | N/A 6.0% 28.0% 27.0%
CoT data (quality: 92.9%) 5e-6 20.5%+3.7% 0.0%+0.0% 0.0%+0.0%
2e-6 13.5%=+0.6% 0.0%=+0.0% 0.0%=+0.0%
le-6 8.0%+0.8% 0.0%+0.0% 0.0%+0.0%
ToT+RAP data (quality: 69.3%) 5e-6 12.8%+3.0% 0.0%=+0.0% 0.0%=+0.0%
2e-6 8.2%+1.3% 0.0%=+0.0% 0.0%=+0.0%
le-6 6.0%+1.4% 0.0%+0.0% 0.0%+0.0%
CoT+ToT+RAP data (quality: 95.3%) 5e-6 20.8%+2.1% 0.0%+0.0% 0.0%+0.0%
2e-6 17.8%+1.0% 0.0%=+0.0% 0.0%=+0.0%
le-6 14.5%+3.4% 0.0%+0.0% 0.0%+0.0%

22

Published in Transactions on Machine Learning Research (10/2025)

C Reasoner Details

C.1 The Problems

This section provides details on the two math games not covered in the main paper.

Game-of-24. We randomly split the first 900 cases (rank #1-900 by human average performance in the
dataset'®) into Xipain (720 cases) and Xiajq (180 cases). The Xies; are the next 100 cases (rank #901-1000)
following the setup in ToT (Yao et al., 2023a). As a result, the validation set evaluates in-distribution (ID)
generalization, while the test set evaluates out-of-distribution (OOD) generalization based on human difficulty
levels. Each case is guaranteed to be solvable using the four input numbers, which range from 1 to 13.

Countdown. We follow SoS codebase'® (Gandhi et al., 2024) to randomly generate 500k training cases, 1k
validation cases, and 1k test cases. The training and validation sets share the same distribution of target
numbers, while the test set includes distinct target numbers (including the number 24). Each problem consists
of four input numbers sampled from 1 to 99, with a target number between 10 and 100. All generated
problems are guaranteed to have at least one valid solution path using only integer intermediate results.

C.2 CoT Reasoner

Listing 1: Few-shot CoT template on Countdown (5-shot prompt; only 2 shown for brevity), used in data
generation. Here, <input> denotes a placeholder for the input numbers, <target> for the target number, and
<response> for the LLM’s output.

Use numbers and basic arithmetic operations (+ - * /) to obtain the target number. Each step
, you are only allowed to choose two of the remaining numbers to obtain a new number.

Input: 25 5 5 33 Target: 27

Steps:

25 + 5 = 30 (left: 5 33 30)
30 / 5 =6 (left: 33 6)

33 - 6 = 27 (left: 27)

Answer: 33 - ((25 + 5) / 5) = 27

Input: 45 10 11 70 Target: 94

Steps:
10 + 11 = 21 (left: 45 70 21)
45 + 70 = 115 (left: 21 115)

115 - 21 = 94 (left: 94)
Answer: (45 + 70) - (10 + 11) = 94

Input: <input> Target: <target>
Steps: <response>

Listing 2: Zero-shot CoT template on Countdown, used in fine-tuning and evaluation.

Use numbers and basic arithmetic operatiomns (+ - * /) to obtain the target number.

Input: <input> Target: <target>
Steps: <response>

Chain-of-Thought (Wei et al., 2022) uses the few-shot prompting template (see Listing 1 for Countdown;
Game-of-24 template follows the same format) for data generation and the zero-shot template (see Listing 2)
for fine-tuning and evaluation. The “greedy-decoding” evaluation uses zero temperature. The “pass@1”
evaluation uses a temperature of 0.7 and top_p of 0.8 to sample 8 paths (n=8) for Countdown and 20 paths
(n=20) for Game-of-24, then calculates the average success rate.

Mhttps://github.com/maitrix-org/llm-reasoners/blob/main/examples/ToT/game24/data/24.csv
https://github. com/kanishkg/stream-of-search

23

https://github.com/maitrix-org/llm-reasoners/blob/main/examples/ToT/game24/data/24.csv
https://github.com/kanishkg/stream-of-search

Published in Transactions on Machine Learning Research (10/2025)

C.3 ToT and RAP Reasoners

Listing 3: Proposed prompt template used for search-based reasoners on Countdown (6-shot prompt; only 3
shown for brevity).

Perform a basic arithmetic operation (+, -, *, /) on any two of the given numbers, replacing
them with the result. Your goal is to explore combinations that may lead to a final
result of the target number.

Input: 25 5 5 33 Target: 27
Possible next steps:

26 + 5 = 30 (left: 5 33 30)
25 * 5 125 (left: 5 33 125)
25 / 5 5 (left: 5 33 5)

25 + 33 = 58 (left: 5 5 58)

5 x 5 = 25 (left: 25 33 25)

5 + 33 = 38 (left: 25 5 38)
33 - 25 = 8 (left: 5 5 8)

33 - 5 = 28 (left: 25 5 28)

Input: 9 25 2 Target: 43
Possible next steps:

9 + 256 = 34 (left: 34 2)
9 * 2 = 18 (left: 25 18)
9 + 2 = 11 (left: 25 11)
25 x 2 50 (left: 9 50)
25 + 2 27 (left: 9 27)

Input: 21 115 Target: 94
Possible next steps:

115 - 21 = 94 (left: 94)
115 + 21 = 136 (left: 136)

Input: <input> Target: <target>
Possible next steps: <response>

Listing 4: Intermediate reward prompt template used for search-based reasoners on Countdown (11-shot
prompt; only 6 shown for brevity).

Evaluate if given number(s) can reach the target number (sure/likely/impossible)

Input: 27 Target: 27
sure

Input: 25 18 Target: 43
256 + 18 = 43
sure

Input: 31 10 Target: 52
31 + 10 = 41

31 - 10 = 21

31 x 10 = 310

31 / 10 = 3.1
impossible

Input: 45 70 21 Target: 94

45 + 70 + 21 = 115 + 21 = 136
-45 + 70 + 21 = 25 + 21 = 46
45 + 70 - 21 = 115 - 21 = 94
sure

Input: 15 16 16 Target: 43

15 + 16 + 16 = 47

(16 - 15) * 16 = 1 * 16 = 16

I cannot obtain 43 now, but numbers are within a reasonable range
likely

Input: 90 108 97 Target: 27

24

Published in Transactions on Machine Learning Research (10/2025)

90 + 108 + 97 295

90 - 108 + 97 79

90 108 97 are all too big
impossible

Input: <input> Target: <target>
<response>

Listing 5: Terminal reward prompt template used for search-based reasoners on Countdown (6-shot prompt;
only 4 shown for brevity). Here, <answer> is a given equation.

Use numbers and basic arithmetic operations (+ - * /) to obtain the target number. Given an
input and an answer, give a judgement (sure/impossible) if the answer is correct, i.e.
it uses each input exactly once and no other numbers, and reach the target number.

Input: 25 5 5 33 Target: 27
Answer: 33 - ((25 + 5) / 5) = 27
Judge: sure

Input: 92 91 23 54 Target: 78
Answer: 92 + 91 - (23 + 54) = 106
Judge: impossible

Input: 45 13 11 70 Target: 94
Answer: 13 + 11 + 70 = 94
Judge: impossible

Input: 25 5 5 33 Target: 27
Answer: (33 - 5) * (25 / 5) = 27
Judge: impossible

Input: <input> Target: <target>
Answer: <answer>
Judge: <response>

The search-based reasoners (ToT (Yao et al., 2023a) and RAP (Hao et al., 2023)) are implemented using
the LLM-reasoners codebase (Hao et al., 2024). Both use the same prompt templates but differ in their
underlying search algorithm.

Tree-of-Thought (Yao et al., 2023a). ToT employs a beam search strategy. It begins with an empty
set of nodes (the beam). At each search step, the LLM is prompted using the propose prompt (Listing 3)
to generate plausible next steps for each node in the beam. Each proposed step is then evaluated with the
intermediate reward prompt (Listing 4), which labels responses as “sure”, “likely”, or “impossible”. Following
the original ToT setup, these labels are mapped to heuristic scores of 1, 0.1, and 0.0001, respectively. To
reduce variance, we sample three responses for each reward step, and compute the average heuristic reward.

The beam is updated by selecting the top candidate nodes based on these heuristic scores, maintaining the
predefined beam size. Since both Countdown and Game-of-24 tasks involve four steps in chain-of-thought
reasoning, this process is repeated for four iterations. At the final search step, the terminal reward prompt
(Listing 5) is used to assign a terminal reward to each node in the final beam. The path with the highest
terminal reward is selected as the final reasoning path for evaluation, while all paths in the final beam are
retained for training data.

To improve efficiency, we optimize the codebase using vLLM (Kwon et al., 2023), which enables batched
inference across ~1000 cases at the same time. In total, the ToT process requires 4 X 2 = 8 passes (i.e., 8 calls
to 11m.generate () in vLLM) per batch. This batched approach significantly accelerates the search process,
achieving over 100x speedup compared to the original for-loop execution in the LLM-Reasoners codebase.

In practice, we vary the beam size between 5 and 16 while keeping all other search parameters fixed during
training data generation. Empirically, we find that a beam size of 5 for Countdown and 6 for Game-of-24
yields the best performance on Qwen2.5-Math 7B, while beam sizes of 8 and 10 perform best for the respective

25

Published in Transactions on Machine Learning Research (10/2025)

tasks on Qwen2.5-Math 1.5B. Accordingly, we adopt these optimal beam sizes for evaluating both the base
LLMs and the improved models fine-tuned from them.

Reasoning-via-Planning (Hao et al., 2023). RAP employs a Monte Carlo Tree Search (MCTS) strategy,
maintaining a search tree initialized as empty. At each iteration, a node is selected for expansion using the
Upper Confidence Bound applied to Trees (UCT) algorithm (Kocsis & Szepesvari, 2006), where the exploration
parameter balances exploitation and exploration. The selected node is then expanded by simulating a full
rollout: the propose prompt generates plausible next steps, and reward prompts are used to assign scores to
each step along the way. Steps are sampled proportionally to their rewards throughout the rollout. After
completing the rollout, the terminal reward is backpropagated through the tree to update the value estimates
of the visited nodes.

We run this process for 100 iterations, resulting in up to 100 x 4 x 2 = 800 passes. This is a loose upper bound,
as many selected nodes are leaf nodes or near-terminal, leading to shorter rollouts in practice. While the
original LLM-Reasoners implementation uses only 10 iterations, we increase it to 100 to improve performance,
made feasible by our use of batched inference. At the end of the search, the path with the highest terminal
reward is selected for evaluation, and all explored paths are extracted for training data.

In practice, we vary the exploration parameter over (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) while keeping all other search
parameters fixed during training data generation. Empirically, we find that an exploration parameter of 1.0
yields the best performance for both Countdown and Game-of-24 on Qwen2.5-Math 7B, whereas a value of
2.0 performs best for both tasks on Qwen2.5-Math 1.5B. Accordingly, we adopt these optimal exploration
parameters for evaluating both the base LLMs and the improved models fine-tuned from them.

C.4 Loss of Search Capability after CoT Fine-Tuning: A Planning Perspective

An important insight emerges when comparing the prompting strategies used in CoT reasoning versus
search-based methods like ToT and RAP: although they aim to solve the same task, they frame the role of
the LLM in fundamentally different ways.

CoT treats the LLM as an open-loop controller, generating complete reasoning paths in a single pass (Listing 1)
without any feedback or evaluation. In contrast, search-based methods integrates the LLM into a closed-loop
system, where the LLM serves two interconnected roles: a policy that proposes next steps (Listing 3) and a
reward model that evaluates them (Listing 4, Listing 5). This interaction between proposal and intermediate
feedback is central to structured planning and search.

This difference has meaningful consequences for fine-tuning. When an LLM is fine-tuned on CoT-style paths
that strip away reward signals, it may weaken its ability to perform reward modeling, which is critical in
search-based reasoning. This observation offers a planning-theoretic explanation for why models fine-tuned
on CoT-style paths may struggle with inference-time search.

C.5 Classic BFS and DFS Reasoners

We also employ classic search algorithms, Breadth-First Search (BFS) and Depth-First Search (DFS), to
generate training data for the Countdown task. We adopt the implementation from SoS (Gandhi et al., 2024)
without modification. These symbolic reasoners are significantly faster than LLM reasoners and achieve high
success rates of 65.4% (BFS) and 81.5% (DFS) on the training set (due to the use of pruning heuristics, they
do not guarantee a solution in all cases). However, unlike LLM reasoners, these methods rely on external
tools such as calculators and goal checkers to guide the search process.

D Limitation

This paper focuses on improving reasoning language models. Preliminary experiments on one generic language
model, Mistral 7B (Jiang et al., 2023), show that while diverse reasoners still provide benefits, small learning
rate and the forgetting objective offer limited improvement. We suspect these effects depend more on the
base model’s reasoning ability than size, similar to observations in RL that performance is bounded by base

26

Published in Transactions on Machine Learning Research (10/2025)

model capability (Yue et al., 2025). Extending our method to other reasoning-oriented LLMs is a valuable
direction for future work.

E Results on Standardized Math Benchmarks

For completeness, we also report results on standardized math benchmarks. These evaluations are not the
main focus of our work, which centers on math puzzles such as Countdown and Game-of-24.

The training problems for our standardized math experiments are drawn from the OpenThoughts-114k-math
dataset'®(Guha et al., 2025), which itself is extracted from NuminaMath-CoT (Li et al., 2024). This corpus
integrates problems from many high-school math competitions, including the Olympiad, MATH (Hendrycks
et al., 2021), AoPS forums, and AMC/AIME competitions. From this collection, we curated a subset of 38k
problems with numerical gold answers, which we used as our training problems.

The training CoTs are constructed from three sources: (1) human-written CoTs containing gold answers in
OpenThoughts, (2) self-generated CoTs whose final answers match the gold answers, and (3) self-generated
CoTs whose final answers do not match the gold answers. Since OpenThoughts, like many other public datasets,
does not include negative CoTs, we generate them ourselves. To verify correctness, we employ math-verify!’
to check the answers wrapped by \\boxed{} in CoTs, following common practice. The instruction used for both
training and testing is: Please reason step by step, and put your final answer within \\boxed{}.
SFT is trained only on CoTs (1) and (2), while the other methods are trained with CoTs (1)—(3). It is worth
noting that although CoTs in category (2) contain gold answers, their reasoning steps may still be incorrect,
since no process-based verifier exists for general math problems.

Due to computational resource limits, we train each method for 2 epochs with a context length of 2048, using
4 random seeds. The training time for the 7B models is around 15 hours on 8 A100 GPUs (40GB each).

We evaluate each fine-tuned LLM on the held-out test datasets using real math competitions AMC-12
(2023 and 2024)'®. We do not include more advanced contests in our evaluation, as they typically require
substantially longer context lengths (exceeding 4k tokens (Yang et al., 2025)) and large-scale online RL (Guo
et al., 2025), which go beyond the scope of offline fine-tuning considered in this work.

Table 9: CoT reasoning performance of LLMs fine-tuned on 38k high-school math problems
and evaluated on AMC-12 datasets. Each method is trained with 4 seeds. The evaluation metrics
are pass@1 success rate, estimated from 32 sampled paths for each problem.

(a) Base LLM: Qwen2.5-Math 7B

‘ Base SFT SimPO CPO-SimPO UFT

56.3% 61.5%+0.9% 0%+0% 59.3%+2.2% 61.6%+0.8%
29.5% 30.1%+0.7% 0%+0% 30.6%+2.2% 29.8%+0.6%

AMC 2023
AMC 2024

(b) Base LLM: Qwen2.5-Math 1.5B
| Base SFT SimPO CPO-SimPO UFT
AMC 2023 | 38.3% 50.0%+2.2% 0%+0% 50.9%+3.2% 50.2%+1.2%

AMC 2024 | 18.6% 28.8%=+05% 0%+0% 28.6%+0.6% 28.7%+0.5%

Table 9 shows the results. Except for SimPO, all other methods are not statistically distinguishable. Moreover,
the improvements over the base LLM are minor for all 7B models. This likely reflects the noisier nature of
human-written general math training data compared to the synthetic, structured data in our math puzzles. In
math competitions, test problems differ substantially in style and content from training problems across years,
making it harder to generalize from failed reasoning paths. By contrast, in our math puzzles, training and
test problems share the same synthetic structure, which facilitates generalization. The weaker performance

6https://huggingface.co/datasets/open-r1/0OpenThoughts-114k-math
https://github.com/huggingface/Math-Verify
18nttps://artofproblemsolving. com/wiki/index.php/AMC_12_Problems_and_Solutions

27

https://huggingface.co/datasets/open-r1/OpenThoughts-114k-math
https://github.com/huggingface/Math-Verify
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions

Published in Transactions on Machine Learning Research (10/2025)

may also stem from our limited training setup (38k problems, 2048 context length). Nevertheless, unlike
SimPO, our method UFT, which also leverages negative paths, remains as stable as SF'T, underscoring its
robustness under limited training conditions.

28

	Introduction
	Related Work
	Preliminaries
	Fine-tuning on Unpaired Correct and Failed Paths from Diverse Reasoners
	CoT-style Data Generation Using LLM and Classic Reasoners
	Unlikelihood Fine-Tuning on Unpaired Correct and Failed Paths
	Practical Algorithm

	Experiments
	Setup
	Boosting Chain-of-Thought Reasoning
	Mitigating Forgetting in Search-based Reasoning

	Conclusion and Future Work
	Fine-tuning Details
	SFT Baseline and UFT
	Preference-based (Reference-free) Baselines: SimPO and CPO-SimPO

	Additional Results on Countdown and Game-of-24
	Training Dataset Statistics
	Additional Results with SFT and UFT
	Additional Results with Alternative Unlearning Methods

	Reasoner Details
	The Problems
	CoT Reasoner
	ToT and RAP Reasoners
	Loss of Search Capability after CoT Fine-Tuning: A Planning Perspective
	Classic BFS and DFS Reasoners

	Limitation
	Results on Standardized Math Benchmarks

