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Abstract

Leveraging inference-time search in large language models has proven effective in further en-
hancing a trained model’s capability to solve complex mathematical and reasoning problems.
However, this approach significantly increases computational costs and inference time, as the
model must generate and evaluate multiple candidate solutions to identify a viable reasoning
path. To address this, we propose an effective approach that integrates search capabilities
directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning
paths (forgetting) derived from diverse search methods. A key challenge we identify is that
naive fine-tuning can degrade the model’s search capability; we show this can be mitigated
with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Count-
down reasoning benchmarks show that, replacing CoT-generated data with search-generated
data for offline fine-tuning improves success rates by around 23% over inference-time search
baselines, while reducing inference time by 180×. On top of this, our learning and forgetting
objective consistently outperforms both supervised fine-tuning and preference-based methods.

1 Introduction
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Figure 1: Trade-off between inference time and
success rate in a challenging math reasoning
game, Countdown. We find that fine-tuning
on CoT-style data from diverse reasoners
substantially enhances CoT inference over the
base LLM (Qwen2.5-Math 7B) while preserving
inference-time search (ToT (Yao et al., 2023a),
RAP (Hao et al., 2023)) using a smaller learning
rate. Among fine-tuning methods including SFT
and preference optimization, our method (UFT)
achieves the best CoT and search performance.

The last few years has seen the rapid development of large
language models (LLMs) (Vaswani et al., 2017; Achiam
et al., 2023) and their applications to a diverse set of
tasks. In particular, these LLMs have been tested on
challenging benchmarks requiring high-level reasoning across
domains such as mathematics (Glazer et al., 2024), abstract
reasoning (Chollet et al., 2024), code generation (Zhuo et al.,
2024), and science (Mitchener et al., 2025).

Chain-of-Thought (CoT) and inference-time search (search)
have been proposed to enhance LLM generalization to
reasoning problems at test time. Specifically, given a task
description and input x, CoT (Wei et al., 2022) outputs
a single reasoning path ŷ via greedy decoding, or samples
multiple paths to compute average performance. In contrast,
search-based methods (Lightman et al., 2023; Yao et al.,
2023a; Snell et al., 2024) explicitly generate intermediate
reasoning (possibly with multiple passes) before extracting ŷ
via a reward model or self-evaluation. Despite inference-time
search’s effectiveness, it comes with greater computational
costs (e.g., Fig. 1 and Chen et al. (2024b;a)).

A beneficial outcome of utilizing inference-time sampling
strategies, such as CoT and search-based methods, is the
generation of rich datasets. These datasets can subsequently
be fed back into the model for further fine-tuning, potentially enhancing the base model’s overall performance.
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Prior work has primarily focused on distilling the knowledge from successful reasoning paths, drawing
from CoT-generated data (Zelikman et al., 2022; Yuan et al., 2023b; Singh et al., 2023), paths from search
trees (Feng et al., 2023; Tian et al., 2024; Zhang et al., 2024a), or full search traces (Gandhi et al., 2024;
Lehnert et al., 2024). However, in many complex problems, failed (reasoning) paths far outnumber successful
ones, representing an underutilized resource. While potentially valuable, these failed paths are often unpaired,
making them difficult to use in preference optimization (Rafailov et al., 2023). Diverse search algorithms
further enrich data coverage and reasoning quality but produce heterogeneous structures (e.g., trees) unlike
linear CoT traces. This raises a natural question: can we make full use of both successful and failed reasoning
paths, from both CoT and search-based methods, to improve LLM reasoning?

In this paper, we propose a straightforward method consisting of three phases designed to enhance the
reasoning capabilities of large language models: data generation, fine-tuning, and evaluation. First, we
collect heterogeneous reasoning data from both CoT and the search-based methods, and convert the data
into a unified CoT-style path format. Next, we fine-tune the base LLM by learning successful paths with
the supervised fine-tuning (SFT) and forgetting unpaired failed paths with the unlikelihood loss. We refer
to this approach as unlikelihood fine-tuning (UFT). Finally, we evaluate the fine-tuned model on test sets
using both CoT and inference-time search, with a primary focus on efficient CoT inference. We demonstrate
the effectiveness of UFT on two math reasoning domains: Game-of-24 and Countdown, using Qwen2.5-Math
1.5B and 7B (Yang et al., 2024). We summarize our key findings below:

1. Data quality drives performance: On Countdown, replacing CoT data with high-quality classic search
data boosts CoT performance from 33.5% to 57.1%, significantly outperforming the inference-time search
baseline (25%) with a 180× reduction in inference cost.

2. Unpaired forgetting reliably improves performance: Incorporating failed paths using UFT improves
CoT performance by 1–2% on average, with up to 7% gains in the best case. In contrast, preference-based
methods like CPO-SimPO (Xu, 2024) often underperform SFT due to the paired format.

3. Controlled learning rate helps maintain search capability: Naive fine-tuning can quickly degrade
a model’s search ability. A substantially reduced learning rate helps prevent this, making it a simple
but crucial step when fine-tuning with CoT-style data.

2 Related Work

LLM inference-time search. Inference-time search has shown remarkable success across reasoning (Wang
et al., 2022; Stechly et al., 2024; Hao et al., 2024; Snell et al., 2024) and planning tasks (Valmeekam et al., 2023;
Zheng et al., 2024; Bohnet et al., 2024). Approaches include best-of-n sampling (Nakano et al., 2021; Wang
et al., 2022), multi-agent debates (Du et al., 2023), and iterative correction via predefined rules (Bai et al.,
2022) or self-refinement (Shinn et al., 2023; Madaan et al., 2024). A key direction, which this paper focuses on,
integrates classic search algorithms with LLMs, employing BFS (Yao et al., 2023a; Xie et al., 2023), DFS (Qin
et al., 2023), A* (Zhuang et al., 2023; Meng et al., 2024a; Koh et al., 2024) and MCTS (Hao et al., 2023; Zhou
et al., 2023; Zhao et al., 2024; Xie et al., 2024; Gao et al., 2024). While effective, inference-time search methods
remain computationally expensive: self-refinement requires multiple expensive passes, multi-agent approaches
demand substantial GPU memory, and search trees grow exponentially with depth (Chen et al., 2024b).

LLM policy distillation from synthetic data. Synthetic data, generated by classic algorithms or
LLMs, is widely used for SFT in reasoning tasks to mitigate the scarcity of human-annotated datasets (Liu
et al., 2024). However, despite its abundance, synthetic responses may fail to solve the task. To address this,
most prior work distill reasoning knowledge to policy (Hinton et al., 2015) by selecting only correct responses.
Policy distillation strategies can be categorized based on whether the source and target data originate from
CoT or search algorithms. CoT-to-CoT distillation learns CoT reasoning from correct CoT paths filtered
by rewards, widely used in practice (Zelikman et al., 2022; 2024; Uesato et al., 2022; Yuan et al., 2023b;
Gulcehre et al., 2023; Singh et al., 2023). Search-to-search distillation either learns a meta-policy by imitating
entire search traces (Yang et al., 2022; Gandhi et al., 2024; Lehnert et al., 2024) or refines the proposal policy
in tree search by imitating extracted paths (Feng et al., 2023; Tian et al., 2024; Zhang et al., 2024a). Notably,
Zhang et al. (2024c) performs search-to-CoT distillation using preference pairs from Tree-of-Thought without
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a verifier. In comparison, we focus on {CoT, search}-to-CoT distillation from diverse reasoners and distill
unpaired positive and negative data to the policy, labeled by a rule-based verifier.

Offline fine-tuning with negative data. Negative data has been extensively studied in LLM safety,
where the goal is to unlearn harmful content using objectives such as gradient ascent and unlikelihood
training (Welleck et al., 2019; Keskar et al., 2019; Yao et al., 2023b; Zhang et al., 2024b). In preference
optimization, negative examples are used to increase the relative likelihood of preferred responses in paired
data (x, y+, y−), commonly used in alignment (Rafailov et al., 2023; Yuan et al., 2023a; Zhao et al., 2023; Hong
et al., 2024; Xu et al., 2024; Meng et al., 2024b) and reasoning (Pal et al., 2024; Pang et al., 2024; Zhang et al.,
2024c; Setlur et al., 2024). However, this paired format discards unpaired positives or negatives, reducing data
efficiency. KTO (Ethayarajh et al., 2024) addresses the limitation of relative likelihood (Tuan & Wang, 2024)
by learning from unpaired data, although it requires a reference model. In LLM reasoning, negative data is
also used to train a reward model (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Feng et al.,
2023; Zhang et al., 2024a; Hosseini et al., 2024) for response re-ranking and search during inference. However,
this does not inherently improve the base model as a policy. Instead of requiring preference pairs or reference
models, we adopt unlikelihood training (Welleck et al., 2019) to directly forget failed paths as an auxiliary loss.

3 Preliminaries
Reasoning task as an MDP. We formalize a reasoning task as a token-level Markov decision process
(MDP) (Sutton et al., 1998) (X , Y, R, T ). The initial state s0 = x ∈ X consists of a tokenized sequence
representing the task description and input. An action yt ∈ Y is chosen based on the current state st, which
is the sequence of all previous tokens: st = (s0, y0:t−1). A terminal state sT is reached upon generating
a special end-of-sequence token. The ground-truth reward function R is a rule-based verifier that checks
the correctness of sT , yielding r = R(sT ) ∈ {0, 1}, where 0 means failure and 1 means success. The goal
is to find a policy π that generates an action sequence y0:T −1 (denoted as y) which maximizes the reward:
maxy0:T −1 R(sT ) = maxy R(x, y). We refer to the terminal state (x, y) as a (reasoning) path.

LLM reasoners. We use an LLM policy πθ, parameterized by θ, along with a search algorithm f as the
reasoner. We denote this LLM reasoner as f(πθ) and focus on three popular LLM reasoners (Hao et al., 2024):
(1) CoT (Wei et al., 2022) that uses greedy search, (2) Tree-of-Thought (ToT) (Yao et al., 2023a) that uses beam
search, (3) Reasoning-via-Planning (RAP) (Hao et al., 2023) that uses MCTS (Kocsis & Szepesvári, 2006).

CoT directly outputs one (via greedy decoding) or multiple reasoning paths (under non-zero temperature)
without intermediate search process1. On the contrary, ToT and RAP are inference-time search methods,
first constructing a search tree of reasoning paths before selecting a final path (x, y) as the answer. Their
performance is evaluated based on the success rate of the selected reasoning path. Please see Appendix C for
more details.

4 Fine-tuning on Unpaired Correct and Failed Paths from Diverse Reasoners

In this section, we describe our approach to solving a reasoning task, as outlined in Fig. 2. Our approach
involves three stages: (1) generating reasoning data from diverse reasoners, (2) offline fine-tuning the base
LLM from unpaired correct and failed paths, and (3) evaluating it with reasoning algorithms.

4.1 CoT-style Data Generation Using LLM and Classic Reasoners

For a given reasoning task, we generate synthetic reasoning data from multiple reasoners. LLM reasoners f(πθ)
share a common base policy πθ but differ in their search algorithms f , which include CoT and inference-time
search methods such as ToT and RAP. Optionally, reasoning paths can also be generated using classical search
algorithms (classic reasoners) such as DFS and BFS, which rely on an external verifier rather than LLMs.

For search-based methods, we extract all root-to-leaf paths from the search tree – rather than only the final
selected path – to follow the format of CoT-style paths. This enables (1) unifying heterogeneous search traces

1CoT’s performance is often measured by the average success rate over generated reasoning paths, also known as the pass@1
metric (Chen et al., 2021; Guo et al., 2025), as used in this work.
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Figure 2: Our method for reasoning tasks. We first generate synthetic reasoning data using multiple
LLM reasoners (e.g., CoT, ToT, RAP) and classic algorithms (e.g., BFS, DFS). This data is converted to
a unified CoT-style format and labeled as correct or failed by a ground-truth verifier to form an unpaired
dataset. We then fine-tune the base LLM with negative log-likelihood (NLL) loss on correct paths and
unlikelihood loss on failed paths, which we refer to as unlikelihood fine-tuning (UFT). Finally, we evaluate
the improved LLM with multiple LLM reasoners on a test set.

into a common format as training data, and (2) efficient inference, as CoT inference is fastest. We aggregate
CoT-style paths from all reasoners to compose the training dataset D:

D = {(x, y, r) | f ∈ F , x ∈ X , y ∈ f(πθ)(x), r = R(x, y)}, (1)

where F is the set of considered reasoners, and f(πθ)(x) is the set of all reasoning paths produced by reasoner
f(πθ). Note that classic reasoners f do not depend on πθ. Each path is labeled by a verifier as correct (r = 1)
or failed (r = 0), splitting D into two unpaired datasets: the correct dataset D+ = {(x, y) | (x, y, 1) ∈ D}
and the failed dataset D− = {(x, y) | (x, y, 0) ∈ D}.

4.2 Unlikelihood Fine-Tuning on Unpaired Correct and Failed Paths

While prior work typically fine-tune LLMs on correct CoT-generated paths (Yuan et al., 2023b; Singh et al.,
2023) or on preference pairs of correct and failed responses (Pang et al., 2024; Zhang et al., 2024c), we extend
these approaches in two directions: (1) incorporating diverse reasoners beyond CoT to augment the training
data, (2) fine-tuning the model to avoid and forget failed reasoning patterns using only failed examples.
Unlike most preference-based methods, our approach leverages unpaired positive or negative data, without
requiring success-failure pairs for the same question.

Learning to follow correct reasoning paths. First, we consider the negative log-likelihood (NLL) loss,
also known as supervised fine-tuning (SFT) (Ouyang et al., 2022; Cen et al., 2025), on correct reasoning
paths collected from multiple reasoners:

min
θ

−E(x,y,r)∼D[1(r = 1) log πθ(y | x)] = −E(x,y+)∼D+
[
log πθ(y+ | x)

]
:= JNLL(θ; D+). (2)

Examining the gradient of the NLL objective (Eq. 2), −E(x,y,r)∼D[1(r = 1)∇ log πθ(y | x)], reveals its
connection to REINFORCE (Williams, 1992) with a binary (indicator) reward function, as noted in prior
work (Zelikman et al., 2022; Gulcehre et al., 2023; Singh et al., 2023)2.

Learning to avoid and forget incorrect reasoning paths. While NLL encourages the model to learn
correct reasoning paths, it can only leverage the limited number of available successful trajectories and
discards a large number of failed ones – which often vastly outnumber the correct ones (e.g., |D−|/|D+|
ranges from 5 to 400 in our experiments). To address the limitation of NLL, we propose leveraging failed
trajectories by incorporating the unlikelihood (UL) loss (Welleck et al., 2019) as an additional objective.
The UL loss enables the model to learn to avoid (i.e., forget) failed reasoning paths, effectively utilizing the
large set of failed trajectories.

min
θ

JUL(θ; D−) := −E(x,y−)∼D−
[
log(1 − πθ(y− | x))

]
. (3)

2This resemblance holds when D is close to on-policy data (Fakoor et al., 2020), e.g., CoT-generated, but may break down
as model weights shift during fine-tuning or if D includes search-derived data.
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This objective explicitly reduces the probability of incorrect paths under the model. Unlike gradient ascent
(GA) unlearning (Yao et al., 2023b)3, UL objective has a smooth optimization landscape, with gradient:

∇JUL(θ) = E(x,y−)∼D−

[
πθ(y− | x)

1 − πθ(y− | x)∇ log πθ(y− | x)
]
. (4)

The gradient implies convergence to the stationary point where πθ(y− | x) = 0, ∀(x, y−) ∈ D−. From a
REINFORCE view, Eq. 4 imposes an adaptive penalty of − πθ(y−|x)

1−πθ(y−|x) , penalizing higher-probability failures
more strongly and thus efficiently suppressing wrong paths.

Combining learning and forgetting: unlikelihood fine-tuning (UFT). Our final objective UFT
combines NLL (Eq. 2) and UL losses (Eq. 3) with a coefficient α ∈ (0, 1):

min
θ

J(θ; D, α) := (1 − α)JNLL(θ; D+) + αJUL(θ; D−). (5)

Since correct paths provide explicit solutions while wrong paths only rule out alternatives, we treat UL as an
auxiliary loss by setting α close to 0. Moreover, as correct and failed paths may be drawn from the same
search trees, they often share prefixes, introducing conflicts when α is large, as also noted in preference-based
methods (Zhang et al., 2024c). For example, suppose a prefix sequence (x, y0:t) (t < T −1) appears in both D+

and D− with equal frequency. The gradient of Eq. 5 w.r.t. this prefix is
(

α
1−πθ(y0:t|x) − 1

)
∇ log πθ(y0:t | x),

which has a stationary point at πθ(y0:t | x) = 1 − α. Thus, 1 − α sets the desired probability of the shared
prefix, further motivating the need for a small α to avoid conflicting objectives. Unlike prior work (Zhang
et al., 2024c; Setlur et al., 2024) that identify high-credit steps with more computation, we sidestep this with
an auxiliary loss without preference pairs.

4.3 Practical Algorithm

We summarize our method in Algo. 1. For a given reasoning task, we partition the initial state set X into
training, validation and test sets, namely, Xtrain, Xvalid, Xtest. Each subset has distinct input cases with
follows the same instruction template. Our approach assumes access to a ground-truth verifier in Xtrain (for
generating training data) and Xvalid (for checkpoint selection), but not in Xtest on which the final evaluation
is conducted.

Algorithm 1 Unlikelihood fine-tuning (UFT) for reasoning
Require: Reasoning task (X ,Y, R, T ), base LLM πθ, set of reasoners F , number of epochs E, batch size B, learning

rate η, UL coefficient α (close to 0)
1: Generate CoT-style training data from various reasoners: D = {(x, y, r) | f ∈ F , x ∈ Xtrain, y ∈ f(πθ)(x), r =

R(x, y)}, and split D into correct data D+ and failed data D−.
2: Fine-tune the LLM with UFT (Eq. 5) for E|D+|/B steps. In each step, sample batches B+ ∼ D+ and B− ∼ D−

of size B each, and update:

θ ← θ − η[(1− α)∇JSFT(θ;B+) + α∇JUL(θ;B−)]. (6)

3: Evaluate the fine-tuned LLM πθ on test cases by collecting D′ = {(x, y, r) | f ∈ F , x ∈ Xtest, y ∈ f(πθ)(x), r =
R(x, y)}.

5 Experiments
We evaluate our approach on two mathematical reasoning tasks.

Game-of-24. In Game-of-244, the goal is to use basic arithmetic operations (+-*/) and parentheses to
combine four input numbers to obtain the number 24. Each input number can only be used once, which

3The GA objective minθ E(x,y−)∼D−
[
log πθ(y− | x)

]
is unstable to optimize (Zhang et al., 2024b;d), as it has an unbounded

optimum (−∞) and a divergent gradient near the optimum.
4https://en.wikipedia.org/wiki/24_(puzzle)
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Table 1: Performance on Countdown and Game-of-24 using Qwen2.5-Math 7B as the base model
fine-tuned on Countdown. Each cell shows (success rate / inference time) averaged with 3 seeds, where the time is
measured in minutes (m) on an A100 GPU. We compare the base LLM with three fine-tuning methods (SFT (Ouyang
et al., 2022), CPO-SimPO (Xu, 2024), UFT (ours)) under two learning regimes (varying learning rate and training
data). SimPO (Meng et al., 2024b) is omitted due to near-zero success rate. Bolded numbers indicate the best
success rate per row. Fig. 1 visualizes the stronger result per fine-tuning method across learning regimes.

Test set
& Inference Base LLM lr=5e-6, CoT+BFS+DFS training data lr=1e-6, CoT training data

SFT (α=0) CPO-SimPO UFT (α=1e-3) SFT (α=0) CPO-SimPO UFT (α=1e-4)

Countdown (1000 cases)
CoT (greedy) 6.2% / 1.0m 55.4% / 0.6m 50.6% / 0.7m 57.4% / 0.5m 24.7% / 0.5m 23.4% / 0.8m 24.7% / 0.5m
CoT (pass@1) 5.6% / 3.4m 51.8% / 3.5m 45.7% / 4.7m 53.5% / 3.4m 24.1% / 2.9m 22.1% / 5.7m 24.7% / 3.3m
search: ToT 25.0% / 90m 2.4% / 104m 4.1% / 61m 0.0% / 1.9m 22.2% / 96m 23.3% / 179m 28.6% / 153m
search: RAP 10.2% / 278m 7.3% / 155m 7.0% / 137m 0.0% / 341m 17.5% / 141m 17.7% / 190m 28.9% / 439m

Game-of-24 (100 cases)
CoT (greedy) 6.0% / 0.1m 35.0% / 0.1m 24.7% / 0.1m 42.0% / 0.1m 8.0% / 0.1m 6.7% / 0.1m 8.3% / 0.1m
CoT (pass@1) 6.0% / 0.6m 28.3% / 0.7m 23.0% / 1.3m 29.7% / 0.8m 7.3% / 0.6m 7.0% / 1.5m 6.7% / 0.8m
search: ToT 28.0% / 6.5m 2.3% / 8.2m 1.0% / 4.3m 0.3% / 0.4m 30.7% / 8m 22.7% / 13m 24.0% / 13m
search: RAP 27.0% / 8.3m 1.3% / 13m 3.0% / 19m 3.7% / 29m 27.7% / 16m 25.7% / 42m 33.7% / 75m

requires exactly three high-level reasoning steps. We follow the step-by-step response format from ToT (Yao
et al., 2023a). For example, given numbers 2 9 10 12, a correct reasoning path is 12 * 2 = 24 (left:
9 10 24), 10 - 9 = 1 (left: 1 24), 24 * 1 = 24 (left: 24), Answer: (12 * 2) * (10 - 9)
= 24. Each high-level step must include the remaining numbers after the operation. We implement a
process-based verifier (Uesato et al., 2022) that checks both the intermediate steps and the final answer.
For evaluation, we use the same test set from Yao et al. (2023a), consisting of 100 cases. For training and
validation, we use 900 distinct cases, considered easier than the test set based on the human performance.

Countdown. The Countdown game (Gandhi et al., 2024) extends Game-of-24 by requiring the use of
four integers to obtain a specified target number beyond 24. All other rules remain the same including the
step-by-step format. Following Gandhi et al. (2024), we randomly generate 500k training cases, excluding 24
as a target number. For evaluation, we randomly generate 1,000 test cases with distinct target numbers from
training set. This setup allows us to test generalization to Game-of-24 when trained on Countdown data.

5.1 Setup
Base LLMs. We use Qwen2.5-Math 1.5B (Q1.5B) and Qwen2.5-Math 7B (Q7B) (Yang et al., 2024) as
base LLMs. Qwen2.5-Math series were state-of-the-art open-weight mathematical LLMs as of December 2024.

Step 1: Data generation setup. We mainly build upon the LLM-reasoners repository5 (Hao et al., 2024),
which provides a unified library for all the LLM reasoners studied here. We significantly accelerate inference
by batching inputs using vLLM (Kwon et al., 2023). All reported inference time in our results is based on our
optimized codebase. For each LLM reasoner algorithm, we vary its hyperparameters to gather data from Xtrain.
For CoT (Wei et al., 2022), we vary the temperature between (0.5, 0.7, 1.0) and top-p between (0.7, 0.8, 0.9) to
have 9 variants. For each variant, we use a fixed 5-shot prompt template and collect 100 paths for each case
in Game-of-24 and 3 paths for Countdown. For Game-of-24, we follow LLM-reasoners to implement ToT (Yao
et al., 2023a) (varying the beam size from 5 to 16) and RAP (Hao et al., 2023) (varying the exploration
parameter from 1.0 to 10.0). Since Countdown is implemented in Stream-of-Search (SoS) (Gandhi et al.,
2024), we use SoS code to implement classic BFS and DFS algorithms, which do not use LLMs but rely on
the oracle verifier. We merge the reasoning paths generated by all the variants of the same reasoner, and
then remove duplicates by exact matching, to serve as our training dataset. See Appendix C for all details.

Step 2: Fine-tuning setup and baselines. We follow the alignment handbook (Tunstall et al., 2024) to
implement all fine-tuning methods on an instance with 8 A100 GPUs. All methods share the same datasets
and use common hyperparameters when applicable. We fix the batch size B to 128 and train E = 10 epochs
on each dataset for Game-of-24 and E = 2 epochs for Countdown. We use a cosine schedule and sweep the
peak learning rate η over (1e-5, 5e-6, 2e-6) for Q1.5B and over (5e-6, 2e-6, 1e-6) for Q7B. We set α = 0
to have the SFT baseline and sweep α over (1e-3, 1e-4, 1e-5, 1e-6) for our UFT. We also implement two

5https://github.com/maitrix-org/llm-reasoners
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preference-based baselines: SimPO (Meng et al., 2024b), which optimizes over paired preference data
constructed from successful and failed reasoning paths, and CPO-SimPO (Xu, 2024), which augments
SimPO with NLL term to better support reasoning tasks. Both methods are reference-free and leverage
negative data as UFT. Notably, CPO-SimPO closely resembles the non-iterative variant of RPO (Pang et al.,
2024). See Appendix A for details and Table 4 for method comparison.

Step 3: Evaluation on CoT and search-based reasoning. Since our training dataset are all CoT-style
reasoning paths, fine-tuning on these data should directly improve CoT reasoning capability. This is
measured by performing zero-shot CoT (via greedy decoding or sampling) on Xtest with fine-tuned LLM. On
the other hand, we also aim to retain search-based reasoning capability after fine-tuning. This is measured
by performing ToT or RAP on Xtest.

Inference-time baselines on CoT and search-based reasoning. Inference-time baselines refer to
reasoners that use base LLMs without fine-tuning. For CoT reasoning, we use the few-shot CoT (via
greedy-decoding or sampling) on the base LLMs. For search-based reasoning, we report the best variants of
ToT and RAP with the base LLM. The results for these baselines are shown in Table 1 for Q7B and Table 6
for Q1.5B. We find that search-based reasoning (especially ToT) significantly improves success rates over
CoT reasoning for Q7B (6.2% → 25% in Countdown, 6% → 28% in Game-of-24), but not for Q1.5B (2.2%
→ 2.2% in Countdown, 2% to 8% in Game-of-24). However, search-based reasoning substantially increases
inference time compared to CoT; for example, in Countdown, ToT and RAP are 90× and 278× slower than
CoT (greedy decoding).

5.2 Boosting Chain-of-Thought Reasoning

We present CoT reasoning results at inference time for LLMs fine-tuned on the Countdown (Table 2) and
the Game-of-24 datasets (Table 3). Similar to Ye et al. (2024), we also evaluate the models trained on
Countdown on the Game-of-24 test set, because conceptually Game-of-24 is a subset of Countdown. For
both tables, we use the highest learning rate (1e-5 for Q1.5B and 5e-6 for Q7B) that yields best performance
in CoT reasoning, leaving further discussion on the learning rate for Sec. 5.3. For the UFT objective, we
fix the coefficient α for the same model across different datasets, selected by the average success rate on
validation set Xvalid. Our key findings are summarized below.

NLL loss is essential for offline fine-tuning on reasoning tasks. The most salient observation is
that SimPO, while successful in alignment tasks using only a preference loss (Meng et al., 2024b), yields
near-zero success across model sizes and datasets. In contrast, CPO-SimPO (Xu, 2024), which simply adds
an NLL term to SimPO, achieves substantially better results. This highlights the critical role of NLL loss,
shared by SFT, CPO-SimPO, and UFT, which explicitly encourages models to follow correct reasoning paths.
These findings align with prior results in Pang et al. (2024); Pal et al. (2024).

Incoporating high-quality training data is decisive for CoT reasoning. Second, among methods
that use NLL loss, performance is primarily determined by the quality of the training data, outweighing
the effect of forgetting objective. We measure data quality by the best-of-n success rate: the fraction of
unique solved cases out of all the training cases.6 The best performances in Table 2 and Table 3 correspond
to the datasets with the highest quality (BFS+DFS data in Countdown, CoT data in Game-of-24). In
addition, when the two datasets have similar quality (BFS+DFS vs CoT+BFS+DFS in Countdown, CoT
vs CoT+ToT+RAP in Game-of-24), their performances are also alike. Remarkably, fine-tuning on the
high-quality classic search (BFS+DFS) data from Countdown yields significantly better performance on
Game-of-24 than models fine-tuned directly on Game-of-24 CoT data (37% vs 28.2% for Q7B and 29.7% vs
14.5% for Q1.5B). This highlights the importance of incorporating high-quality training data, rather than
relying solely on CoT data, as is common practice.

Unpaired learning and forgetting is more robust than paired one. Lastly, we analyze the effect of for-
getting loss to SFT. First, we observe that UFT consistently improves over SFT in most scenarios: 14 out of 18

6Although ToT and RAP greatly outperform CoT as inference-time methods (Table 1, Table 6) in Game-of-24, they produce
lower-quality training data than CoT (Table 3), because CoT’s best-of-n (n=100) success rate far exceeds its average (93%
versus 6% in Q7B, 82% versus 5% in Q1.5B).
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Table 2: CoT reasoning performance of LLMs fine-tuned on Countdown. Each row shows the averaged result
(3 seeds) of an LLM fine-tuned on data from specified sources. Models are evaluated on Countdown (1000 cases) and
Game-of-24 (100 cases) test sets using zero-shot CoT via greedy decoding (greedy) or sampling (pass@1). BFS+DFS
data are generated by oracle reasoners without LLMs. We highlight our two contributions (incorporating
search-derived data and the fine-tuning method UFT) and the best cell for each (test set, CoT inference) pair.

(a) Base LLM: Qwen2.5-Math 7B (best succ rate with search: 25% on Countdown, 28% on Game-of-24)
SFT SimPO CPO-SimPO UFT

CoT data (quality: 37.6%)
Countdown succ (greedy) 32.5%±0.3% 0.0%±0.0% 27.8%±0.5% 33.5%±1.0%
Countdown succ (pass@1) 32.2%±0.6% 0.0%±0.0% 25.9%±1.3% 32.5%±1.7%
Game-of-24 succ (greedy) 16.0%±1.0% 0.0%±0.0% 11.7%±3.1% 16.7%±2.9%
Game-of-24 succ (pass@1) 12.3%±2.3% 0.0%±0.0% 10.3%±4.0% 14.7%±4.6%

BFS+DFS data (quality: 86.2%)
Countdown succ (greedy) 56.1%±0.4% 0.0%±0.0% 51.4%±0.6% 57.1%±0.3%
Countdown succ (pass@1) 53.1%±2.6% 0.0%±0.0% 48.6%±1.3% 54.4%±1.1%
Game-of-24 succ (greedy) 37.0%±1.0% 0.0%±0.0% 31.7%±2.5% 39.7%±2.5%
Game-of-24 succ (pass@1) 28.3%±4.0% 0.0%±0.0% 28.3%±4.0% 24.7%±5.7%

CoT+BFS+DFS data (quality: 86.9%)
Countdown succ (greedy) 55.4%±1.9% 0.0%±0.0% 50.6%±0.6% 57.4%±0.4%
Countdown succ (pass@1) 51.8%±2.4% 0.0%±0.0% 45.7%±0.4% 53.5%±0.5%
Game-of-24 succ (greedy) 35.0%±1.0% 0.0%±0.0% 24.7%±3.1% 42.0%±1.7%
Game-of-24 succ (pass@1) 28.3%±6.7% 0.0%±0.0% 23.0%±3.0% 29.7%±4.0%

(b) Base LLM: Qwen2.5-Math 1.5B (best succ rate with search: 2.2% on Countdown, 8% on Game-of-24)
SFT SimPO CPO-SimPO UFT

CoT data (quality: 20.0%)
Countdown succ (greedy) 24.2%±0.3% 0.6%±0.6% 21.6%±0.6% 26.1%±0.6%
Countdown succ (pass@1) 24.4%±0.4% 0.6%±0.5% 21.3%±0.4% 26.1%±0.4%
Game-of-24 succ (greedy) 13.3%±0.6% 0.0%±0.0% 8.7%±1.5% 14.3%±0.6%
Game-of-24 succ (pass@1) 9.3%±2.5% 0.0%±0.0% 7.3%±2.1% 14.0%±2.0%

BFS+DFS data (quality: 86.2%)
Countdown succ (greedy) 50.8%±0.7% 0.0%±0.0% 50.5%±1.4% 53.7%±1.2%
Countdown succ (pass@1) 47.5%±0.8% 0.0%±0.0% 47.4%±1.6% 51.2%±1.1%
Game-of-24 succ (greedy) 29.7%±3.2% 0.0%±0.0% 27.3%±3.8% 32.0%±4.6%
Game-of-24 succ (pass@1) 23.0%±7.0% 0.0%±0.0% 20.3%±2.5% 23.0%±5.2%

CoT+BFS+DFS data (quality: 86.3%)
Countdown succ (greedy) 51.1%±0.9% 0.0%±0.0% 48.9%±0.8% 51.5%±0.7%
Countdown succ (pass@1) 47.1%±1.1% 0.0%±0.0% 45.3%±1.2% 46.5%±1.3%
Game-of-24 succ (greedy) 26.3%±1.5% 0.0%±0.0% 24.7%±2.9% 26.0%±2.6%
Game-of-24 succ (pass@1) 24.0%±2.0% 0.0%±0.0% 20.7%±2.1% 25.0%±5.3%

times for Q1.5B and 16 out of 18 for Q7B. In terms of magnitude, UFT yields an average improvement of 1.3%
(with a maximum of 4%) in Table 3, and an average of 1.5% (with a maximum of 7%) in Table 2. In contrast,
CPO-SimPO shows mixed results. While it improves over SFT with an average gain of 1.2% and maximum of
5% in Table 3, it consistently underperforms SFT in all scenarios in Table 2, with an average drop of 3.5%.

We believe several factors contribute to the contrasting behavior of CPO-SimPO relative to SFT (and
UFT) when fine-tuned on Countdown versus Game-of-24. First, as shown in Appendix Table 5, the paired
preference requirement in CPO-SimPO results in the exclusion of 0.1% to 5.8% of correct data on Countdown,
while no such filtering occurs for Game-of-24. Since correct data determines data quality, this reduction likely
contributes to CPO-SimPO’s weaker performance on Countdown. Second, the exclusion of unpaired failed
data, along with the challenge of balancing preference and NLL objectives, may have a greater impact on the
more difficult Countdown task.

5.3 Mitigating Forgetting in Search-based Reasoning

We investigate whether fine-tuned LLMs can retain search-based reasoning abilities (e.g., ToT, RAP), a
question that remains underexplored in the absence of continued pretraining. Evaluating this retention is
analogous to measuring backward transfer (Lopez-Paz & Ranzato, 2017) in continual learning, i.e., whether
performance on a prior task (search-based reasoning) degrades after fine-tuning on a new one (CoT-style

8
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Table 3: CoT reasoning performance of LLMs fine-tuned and evaluated on Game-of-24. Each
row shows the averaged result (4 seeds) of an LLM fine-tuned on data from specified sources. We highlight
our two contributions (incorporating search-derived data and the fine-tuning method UFT) and the best cell
for each (test set, CoT inference) pair.

(a) Base LLM: Qwen2.5-Math 7B (best succ rate with search: 28%)
SFT SimPO CPO-SimPO UFT

CoT data (quality: 92.9%)
succ (greedy) 28.2%±1.7% 2.2%±1.3% 28.5%±1.9% 28.2%±3.6%
succ (pass@1) 22.5%±3.4% 2.2%±1.5% 27.5%±2.4% 23.2%±3.4%

ToT+RAP data (quality: 69.3%)
succ (greedy) 13.2%±3.6% 0.0%±0.0% 16.5%±2.9% 15.2%±2.2%
succ (pass@1) 13.2%±2.8% 0.0%±0.0% 15.0%±4.1% 17.2%±1.0%

CoT+ToT+RAP data (quality: 95.3%)
succ (greedy) 27.5%±4.2% 0.2%±0.5% 26.8%±5.7% 30.2%±2.1%
succ (pass@1) 24.2%±5.2% 0.2%±0.5% 22.8%±1.7% 26.2%±2.2%

(b) Base LLM: Qwen2.5-Math 1.5B (best succ rate with search: 8%)
SFT SimPO CPO-SimPO UFT

CoT data (quality: 82.1%)
succ (greedy) 14.5%±3.8% 0.0%±0.0% 18.5%±1.9% 18.2%±3.2%
succ (pass@1) 17.8%±3.4% 0.0%±0.0% 17.3%±0.5% 18.5%±3.5%

ToT+RAP data (quality: 44.7%)
succ (greedy) 9.5%±0.6% 0.0%±0.0% 10.3%±1.9% 8.0%±1.4%
succ (pass@1) 10.0%±1.4% 0.0%±0.0% 9.5%±1.3% 9.5%±2.6%

CoT+ToT+RAP data (quality: 87.6%)
succ (greedy) 20.0%±2.7% 0.0%±0.0% 21.8%±1.7% 20.5%±3.7%
succ (pass@1) 17.0%±2.2% 0.0%±0.0% 18.0%±2.6% 18.8%±1.3%

data). We focus on Q7B, which exhibits strong search-based reasoning performance and a clear gap over
CoT baselines (Table 1). For completeness, the results of Q1.5B is shown in Appendix B.

Although learning rate decay is employed following the alignment handbook, we find that using a peak
learning rate of 2e-5, as in the original Qwen2.5-Math setup (Yang et al., 2024), leads to catastrophic
forgetting (McCloskey & Cohen, 1989), with near-zero performance in inference-time search. We hypothesize
that this degradation stems from the lack of reward modeling in CoT-style supervision, which would be
essential for search-based reasoning (see Sec. C.4 for details).

A very low (peak) learning rate is crucial to retaining search capability. Inspired by continual
learning (Mirzadeh et al., 2020), we adopt a much smaller learning rate to keep parameters within the “basic
capability basin” (Chen et al., 2025), preserving pretrained knowledge. Fig. 3 and Fig. 5 shows the effects
of (peak) learning rate in standard SFT on Q7B. As we reduce the learning rate from 5e-6 to 1e-6 (an
exceptionally low value for SFT), we observe a clear trade-off: CoT reasoning performance declines rapidly
(although it remains above the baseline), while inference-time search improves significantly (although often
remains below the baseline). This behavior is similar to learning rate effects seen in reference-free preference
optimization (Meng et al., 2024b).

CoT training data is more effective for preserving search capability. An interesting observation
from Fig. 3 to Fig. 5 is that in both Countdown and Game-of-24 training settings, CoT data leads to better
inference-time search than search-derived data, although CoT data has much lower quality compared to
BFS+DFS data. Both CoT and search-derived data fall under CoT-style paths, but the latter is generated by
a search algorithm rather than directly by the LLM. This suggests that CoT data, being more aligned with
the LLM’s on-policy distribution, induces less distribution shift during SFT, thereby reducing forgetting.

Unlikelihood auxiliary loss can significantly improve search capability. Building on the findings
in Fig. 3, we observe that the effect of a low learning rate extends to UFT and CPO-SimPO as well. Here,
we examine the impact of the unlikelihood loss specifically at the lowest learning rate of 1e-6. Consistent
with Sec. 5.2, UFT provides marginal improvements over SFT in CoT reasoning, regardless of the choice
of α. However, with α=1e-4, inference-time search improves considerably compared to SFT (α=0) in most
cases. For example, with the same CoT data, ToT achieves 28.6% vs. 22.2% under SFT, and RAP reaches
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Figure 3: Impact of (peak) learning rate and data sources on CoT vs. search-based reasoning for
standard SFT (α=0) using Qwen2.5-Math 7B as the base model. Learning rate mediates a trade-off between CoT and
search performance; CoT data better preserves search capability in most cases.
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Figure 4: Effects of unlikelihood loss and data sources on CoT vs. search-based reasoning using Qwen2.5-
Math 7B as the base model, with the peak learning rate as 1e-6. Unlikelihood loss leads to greater improvements in
search performance than in CoT inference in most cases.

28.9% vs. 17.5% – far exceeding the RAP baseline of 10.2%. This indicates that learning to forget incorrect
CoT-style paths could generalize to forgetting incorrect intermediate search steps.

6 Conclusion

We propose a simple and effective method for mathematical reasoning, addressing three underexplored
challenges: (1) augmenting training data by unifying mixed data formats from diverse reasoners into a CoT-
style format, (2) leveraging unpaired correct and failed paths via unlikelihood fine-tuning, and (3) mitigating
loss of search capability using a small learning rate. Experiments on Countdown and Game-of-24 show that
data quality, unlikelihood loss, and learning rate are key to balancing CoT efficiency and search capability.
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A Fine-tuning Details

We follow the alignment handbook7 (Tunstall et al., 2024) to fine-tune two base LLMs with full parameters,
Qwen2.5-Math 1.5B (Q1.5B)8 and Qwen2.5-Math 7B (Q7B)9 (Yang et al., 2024). Below are common setups
for all the methods (i.e., SFT, UFT, and preference-based methods).

We disable sequence packing to prevent cross-contamination10 and set a context length of 256 tokens. which
is sufficient for our tasks. Training is performed in bfloat16 precision, and model checkpoints are saved
every 5% epochs for later evaluation.

The learning rate follows cosine_with_min_lr schedule11: it linearly warms up from 0 to η over the first
10% epochs, then decays to a minimum of 7e-8 via cosine function for the rest epochs. In Sec. 5.2, we use
a peak learning rate η of 1e-5 for Q1.5B and 5e-6 for Q7B, while in Sec. 5.3, we decrease η to much lower
values, as discussed in the main paper.

A.1 SFT Baseline and UFT

Following Sec. 4.2, in our implementation, Unlikelihood Fine-Tuning (UFT) and Supervised Fine-Tuning
(SFT) differ only by the unlikelihood loss coefficient α. A batch size B = 128 is used for both successful and
failed data batches (after gradient accumulation) in UFT.

A.2 Preference-based (Reference-free) Baselines: SimPO and CPO-SimPO

Background. In addition to SFT, we compare UFT against offline preference-based methods:
SimPO (Meng et al., 2024b) and CPO-SimPO (Xu, 2024), both designed to align LLMs with human
preferences. While UFT is not a preference-based method per se, our reasoning task can be interpreted
through the lens of preference alignment, where successful reasoning paths are preferred over failed ones.
Like preference-based approaches, UFT learns from both successful and failed paths, making these methods
natural baselines for comparison. The implementations of these methods follow the TRL library12 (von Werra
et al., 2020).

SimPO and CPO-SimPO build on DPO (Rafailov et al., 2023) and CPO (Xu et al., 2024), requiring preference
pairs but eliminating the need for a reference model used in KL regularization (i.e., reference-free). This
results in improved training efficiency and reduced GPU memory usage. By contrast, while KTO (Ethayarajh
et al., 2024) like UFT operates on unpaired data, it still requires a reference model during training. In our
preliminary experiments, running KTO using the same global batch size as UFT necessitated precomputing
reference model logits and offloading the optimizer to the CPU, resulting in a 3× increase in training time
on the Game-of-24 dataset and out-of-memory errors on the Countdown dataset. Consequently, we exclude
KTO from our baselines and instead focus on reference-free approaches such as SimPO.

Table 4 summarizes the comparison between UFT and several offline preference-based methods. Notably,
UFT is both reference-free and does not require preference pairs.

Table 4: Brief comparison of selected offline preference-based methods and UFT.
Offline fine-tuning method Preference data Reference-free?

DPO (Rafailov et al., 2023), (non-iterative) RPO (Pang et al., 2024) Paired No
CPO (Xu et al., 2024), SimPO (Meng et al., 2024b), CPO-SimPO (Xu, 2024) Paired Yes

KTO (Ethayarajh et al., 2024) Unpaired No
UFT (Ours) Unpaired Yes

7https://github.com/huggingface/alignment-handbook
8https://huggingface.co/Qwen/Qwen2.5-Math-1.5B
9https://huggingface.co/Qwen/Qwen2.5-Math-7B

10https://github.com/huggingface/transformers/issues/25452
11https://github.com/huggingface/transformers/blob/a22a4378d97d06b7a1d9abad6e0086d30fdea199/src/transformers/

optimization.py#L338C5-L338C48
12https://huggingface.co/docs/trl/en/cpo_trainer
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Simple Preference Optimization with a Reference-Free Reward (SimPO) (Meng et al., 2024b).
SimPO relies on paired preference data, denoted as Dpaired = {(x, y+, y−)}, where (y+, y−) are successful
and failed reasoning paths for the same input x, respectively. To construct Dpaired from our original dataset
D, we first filter for inputs that have both successful and failed paths. For each successful path (x, y+), we
generate E preference pairs by randomly sampling E failed paths (x, y−) corresponding to the same input,
treating them as rejected responses. This sampling strategy ensures that the resulting dataset is similar in
size to that used for UFT and captures as much diversity as possible within the constraint of pairing.

The training objective is defined as:

min
θ

JSimPO(θ; Dpaired) = −E(x,y+,y−)∼Dpaired

[
log σ

(
β

|y+|
log πθ(y+ | x) − β

|y−|
log πθ(y− | x) − γ

)]
, (7)

where σ is the sigmoid function, β = 0.1 is a scaling factor, and γ = 0.5 is the target reward margin, following
default values in TRL. The length normalization terms (|y+|, |y−|) help reduce bias toward longer responses.
This normalization could also be explored in UFT as future work. The margin γ enforces a minimum
separation between the preferred and rejected log-probabilities.

CPO-SimPO (Xu, 2024). Although pure preference-based methods (e.g., DPO, SimPO) perform well in
alignment tasks, they have been found to underperform on reasoning tasks that require explicit maximization
of preferred responses (Meng et al., 2024b; Pal et al., 2024; Pang et al., 2024). While CPO-SimPO was not
originally motivated by reasoning tasks, we adopt it because CPO-SimPO addresses this issue by augmenting
SimPO with the NLL term from CPO (Xu et al., 2024):

min
θ

JCPO-SimPO(θ; Dpaired)

= −E(x,y+,y−)∼Dpaired

[
log σ

(
β

|y+|
log πθ(y+ | x) − β

|y−|
log πθ(y− | x) − γ

)
+ λ log πθ(y+ | x)

]
,

(8)

where the NLL coefficient λ = 1.0 following the TRL.

Connection with RPO (Pang et al., 2024). CPO-SimPO (Xu, 2024) resembles a non-iterative version
of Iterative Reasoning Preference Optimization (IRPO) (Pang et al., 2024), which we call RPO:

min
θ

JRPO(θ; Dpaired)

= −E(x,y+,y−)∼Dpaired

[
log σ

(
β log πθ(y+ | x)

πref(y+ | x) − β log πθ(y− | x)
πref(y− | x)

)
+ λ

|y+|
log πθ(y+ | x)

]
,

(9)

where πref is the reference model (i.e., the base LLM). CPO-SimPO becomes equivalent to RPO when a
reference model is introduced, the length normalization and reward margin in the preference term are removed,
and length normalization is applied in the NLL term instead. However, since RPO, like DPO and KTO,
depends on a reference model, we exclude it from our baseline comparisons.

B Additional Results

B.1 Training Dataset Statistics

For Countdown, we train for 2 epochs due to the large dataset size, shown as in Table 5. On an instance
with 8×A100 GPUs (40GB), total training time on CoT+BFS+DFS data is under 5 hours for Q1.5B and
under 30 hours for Q7B using UFT. For Game-of-24, we train for 10 epochs. Total training time is under 0.5
hours for Q1.5B and under 2.5 hours for Q7B using UFT. SimPO and CPO-SimPO only require a single
dataloader over paired data, resulting in roughly 2× shorter training time compared to UFT.

We emphasize that our goal is to reduce inference time in reasoning. While training may be relatively
expensive, it is performed offline and does not impact deployment efficiency or user-facing latency.
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Table 5: Statistics of training datasets: total correct paths are used by SFT and UFT, while paired correct
paths are used by SimPO and CPO-SimPO (shown as a percentage of total). Data quality refers to the
best-of-n success rate reported in Table 2 and Table 3.

Training data (task, base, reasoner) # Total correct paths # Paired correct paths Quality

Countdown, Q7B, CoT 428.0k 97.50% 37.6%
Countdown, N/A, BFS+DFS 614.2k 97.55% 86.2%
Countdown, Q7B, CoT+BFS+DFS 985.3k 99.88% 86.9%
Countdown, Q1.5B, CoT 147.9k 94.22% 20.0%
Countdown, Q1.5B, CoT+BFS+DFS 734.3k 99.86% 86.3%

Game-of-24, Q7B, CoT 9.1k 100% 92.9%
Game-of-24, Q7B, ToT+RAP 5.1k 100% 69.3%
Game-of-24, Q7B, CoT+ToT+RAP 13.7k 100% 95.3%
Game-of-24, Q1.5B, CoT 4.4k 100% 82.1%
Game-of-24, Q1.5B, ToT+RAP 1.7k 100% 44.7%
Game-of-24, Q1.5B, CoT+ToT+RAP 6.0k 100% 87.6%

B.2 Results on Qwen2.5-Math 7B
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Figure 5: Results of standard SFT (α=0) using Qwen2.5-Math 7B as the base model for Game-of-24.
The same conclusion in Fig. 3 holds.

B.3 Results on Qwen2.5-Math 1.5B

Although not the primary focus of this work, we provide fine-tuning results based on Qwen2.5-Math 1.5B in
Fig. 6 and Fig. 7 for completeness. Given its weak search-based reasoning performance as a base model (e.g.,
success rate ≈2% in Countdown) shown in Table 6, the effects of learning rate, CoT data, and unlikelihood
loss are minimal, likely due to its poor initial capability. This suggests that the observed benefits depend on
the model size.

Table 6: Performance on Countdown and Game-of-24 test sets, using Qwen2.5-Math 1.5B as the base
model. Due to its weak search capability, we omit fine-tuning results here (please see Table 2 and Table 3 for
fine-tuning results on CoT inference).

Test set
& Inference Base LLM

Countdown (1000 cases)
CoT (greedy) 2.2% / 0.6m
CoT (pass@1) 2.1% / 3.2m
search: ToT 2.2% / 68m
search: RAP 1.4% / 143m

Game-of-24 (100 cases)
CoT (greedy) 2.0% / <0.1m
CoT (pass@1) 3.0% / 0.5m
search: ToT 8.0% / 5.4m
search: RAP 4.0% / 11.3m
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Figure 6: Results of standard SFT (α=0) using Qwen2.5-Math 1.5B as the base model for Countdown
(top) and Game-of-24 (bottom). Due to the base model’s weak search ability, learning rate and data source
have little observable effect.
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Figure 7: Results of UFT using Qwen2.5-Math 1.5B as the base model for Countdown, with the peak
learning rate as 1e-5. Due to the base model’s weak search ability, unlikelihood loss has little observable
effect.

C Reasoner Details

C.1 The Problems

This section provides details on the two math games not covered in the main paper.
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Game-of-24. We randomly split the first 900 cases (rank #1-900 by human average performance in the
dataset13) into Xtrain (720 cases) and Xvalid (180 cases). The Xtest are the next 100 cases (rank #901-1000)
following the setup in ToT (Yao et al., 2023a). As a result, the validation set evaluates in-distribution (ID)
generalization, while the test set evaluates out-of-distribution (OOD) generalization based on human difficulty
levels. Each case is guaranteed to be solvable using the four input numbers, which range from 1 to 13.

Countdown. We follow SoS codebase14 (Gandhi et al., 2024) to randomly generate 500k training cases, 1k
validation cases, and 1k test cases. The training and validation sets share the same distribution of target
numbers, while the test set includes distinct target numbers (including the number 24). Each problem consists
of four input numbers sampled from 1 to 99, with a target number between 10 and 100. All generated
problems are guaranteed to have at least one valid solution path using only integer intermediate results.

C.2 CoT Reasoner

Listing 1: Few-shot CoT template on Countdown (5-shot prompt; only 2 shown for brevity), used in data
generation. Here, <input> denotes a placeholder for the input numbers, <target> for the target number, and
<response> for the LLM’s output.
Use numbers and basic arithmetic operations (+ - * /) to obtain the target number . Each step

, you are only allowed to choose two of the remaining numbers to obtain a new number .

Input : 25 5 5 33 Target : 27
Steps :
25 + 5 = 30 (left: 5 33 30)
30 / 5 = 6 (left: 33 6)
33 - 6 = 27 (left: 27)
Answer : 33 - ((25 + 5) / 5) = 27

Input : 45 10 11 70 Target : 94
Steps :
10 + 11 = 21 (left: 45 70 21)
45 + 70 = 115 (left: 21 115)
115 - 21 = 94 (left: 94)
Answer : (45 + 70) - (10 + 11) = 94

Input : <input > Target : <target >
Steps : <response >

Listing 2: Zero-shot CoT template on Countdown, used in fine-tuning and evaluation.
Use numbers and basic arithmetic operations (+ - * /) to obtain the target number .

Input : <input > Target : <target >
Steps : <response >

Chain-of-Thought (Wei et al., 2022) uses the few-shot prompting template (see Listing 1 for Countdown;
Game-of-24 template follows the same format) for data generation and the zero-shot template (see Listing 2)
for fine-tuning and evaluation. The “greedy-decoding” evaluation uses zero temperature. The “pass@1”
evaluation uses a temperature of 0.7 and top_p of 0.8 to sample 8 paths (n=8) for Countdown and 20 paths
(n=20) for Game-of-24, then calculates the average success rate.

C.3 ToT and RAP Reasoners

Listing 3: Proposed prompt template used for search-based reasoners on Countdown (6-shot prompt; only 3
shown for brevity).
Perform a basic arithmetic operation (+, -, *, /) on any two of the given numbers , replacing

them with the result . Your goal is to explore combinations that may lead to a final
result of the target number .

13https://github.com/maitrix-org/llm-reasoners/blob/main/examples/ToT/game24/data/24.csv
14https://github.com/kanishkg/stream-of-search
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Input : 25 5 5 33 Target : 27
Possible next steps :
25 + 5 = 30 (left: 5 33 30)
25 * 5 = 125 (left: 5 33 125)
25 / 5 = 5 (left: 5 33 5)
25 + 33 = 58 (left: 5 5 58)
5 * 5 = 25 (left: 25 33 25)
5 + 33 = 38 (left: 25 5 38)
33 - 25 = 8 (left: 5 5 8)
33 - 5 = 28 (left: 25 5 28)

Input : 9 25 2 Target : 43
Possible next steps :
9 + 25 = 34 (left: 34 2)
9 * 2 = 18 (left: 25 18)
9 + 2 = 11 (left: 25 11)
25 * 2 = 50 (left: 9 50)
25 + 2 = 27 (left: 9 27)

Input : 21 115 Target : 94
Possible next steps :
115 - 21 = 94 (left: 94)
115 + 21 = 136 (left: 136)

Input : <input > Target : <target >
Possible next steps : <response >

Listing 4: Intermediate reward prompt template used for search-based reasoners on Countdown (11-shot
prompt; only 6 shown for brevity).
Evaluate if given number (s) can reach the target number (sure/ likely / impossible )

Input : 27 Target : 27
sure

Input : 25 18 Target : 43
25 + 18 = 43
sure

Input : 31 10 Target : 52
31 + 10 = 41
31 - 10 = 21
31 * 10 = 310
31 / 10 = 3.1
impossible

Input : 45 70 21 Target : 94
45 + 70 + 21 = 115 + 21 = 136
-45 + 70 + 21 = 25 + 21 = 46
45 + 70 - 21 = 115 - 21 = 94
sure

Input : 15 16 16 Target : 43
15 + 16 + 16 = 47
(16 - 15) * 16 = 1 * 16 = 16
I cannot obtain 43 now , but numbers are within a reasonable range
likely

Input : 90 108 97 Target : 27
90 + 108 + 97 = 295
90 - 108 + 97 = 79
90 108 97 are all too big
impossible

Input : <input > Target : <target >
<response >
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Listing 5: Terminal reward prompt template used for search-based reasoners on Countdown (6-shot prompt;
only 4 shown for brevity). Here, <answer> is a given equation.
Use numbers and basic arithmetic operations (+ - * /) to obtain the target number . Given an

input and an answer , give a judgement (sure/ impossible ) if the answer is correct , i.e.
it uses each input exactly once and no other numbers , and reach the target number .

Input : 25 5 5 33 Target : 27
Answer : 33 - ((25 + 5) / 5) = 27
Judge : sure

Input : 92 91 23 54 Target : 78
Answer : 92 + 91 - (23 + 54) = 106
Judge : impossible

Input : 45 13 11 70 Target : 94
Answer : 13 + 11 + 70 = 94
Judge : impossible

Input : 25 5 5 33 Target : 27
Answer : (33 - 5) * (25 / 5) = 27
Judge : impossible

Input : <input > Target : <target >
Answer : <answer >
Judge : <response >

The search-based reasoners (ToT (Yao et al., 2023a) and RAP (Hao et al., 2023)) are implemented using
the LLM-reasoners codebase (Hao et al., 2024). Both use the same prompt templates but differ in their
underlying search algorithm.

Tree-of-Thought (Yao et al., 2023a). ToT employs a beam search strategy. It begins with an empty
set of nodes (the beam). At each search step, the LLM is prompted using the propose prompt (Listing 3)
to generate plausible next steps for each node in the beam. Each proposed step is then evaluated with the
intermediate reward prompt (Listing 4), which labels responses as “sure”, “likely”, or “impossible”. Following
the original ToT setup, these labels are mapped to heuristic scores of 1, 0.1, and 0.0001, respectively. To
reduce variance, we sample three responses for each reward step, and compute the average heuristic reward.

The beam is updated by selecting the top candidate nodes based on these heuristic scores, maintaining the
predefined beam size. Since both Countdown and Game-of-24 tasks involve four steps in chain-of-thought
reasoning, this process is repeated for four iterations. At the final search step, the terminal reward prompt
(Listing 5) is used to assign a terminal reward to each node in the final beam. The path with the highest
terminal reward is selected as the final reasoning path for evaluation, while all paths in the final beam are
retained for training data.

To improve efficiency, we optimize the codebase using vLLM (Kwon et al., 2023), which enables batched
inference across ≈1000 cases at the same time. In total, the ToT process requires 4 × 2 = 8 passes (i.e., 8 calls
to llm.generate() in vLLM) per batch. This batched approach significantly accelerates the search process,
achieving over 100× speedup compared to the original for-loop execution in the LLM-Reasoners codebase.

In practice, we vary the beam size between 5 and 16 while keeping all other search parameters fixed during
training data generation. Empirically, we find that a beam size of 5 for Countdown and 6 for Game-of-24
yields the best performance on Qwen2.5-Math 7B, while beam sizes of 8 and 10 perform best for the respective
tasks on Qwen2.5-Math 1.5B. Accordingly, we adopt these optimal beam sizes for evaluating both the base
LLMs and the improved models fine-tuned from them.

Reasoning-via-Planning (Hao et al., 2023). RAP employs a Monte Carlo Tree Search (MCTS) strategy,
maintaining a search tree initialized as empty. At each iteration, a node is selected for expansion using the
Upper Confidence Bound applied to Trees (UCT) algorithm (Kocsis & Szepesvári, 2006), where the exploration
parameter balances exploitation and exploration. The selected node is then expanded by simulating a full
rollout: the propose prompt generates plausible next steps, and reward prompts are used to assign scores to
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each step along the way. Steps are sampled proportionally to their rewards throughout the rollout. After
completing the rollout, the terminal reward is backpropagated through the tree to update the value estimates
of the visited nodes.

We run this process for 100 iterations, resulting in up to 100×4×2 = 800 passes. This is a loose upper bound,
as many selected nodes are leaf nodes or near-terminal, leading to shorter rollouts in practice. While the
original LLM-Reasoners implementation uses only 10 iterations, we increase it to 100 to improve performance,
made feasible by our use of batched inference. At the end of the search, the path with the highest terminal
reward is selected for evaluation, and all explored paths are extracted for training data.

In practice, we vary the exploration parameter over (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) while keeping all other search
parameters fixed during training data generation. Empirically, we find that an exploration parameter of 1.0
yields the best performance for both Countdown and Game-of-24 on Qwen2.5-Math 7B, whereas a value of
2.0 performs best for both tasks on Qwen2.5-Math 1.5B. Accordingly, we adopt these optimal exploration
parameters for evaluating both the base LLMs and the improved models fine-tuned from them.

C.4 Loss of Search Capability after CoT Fine-Tuning: A Planning Perspective

An important insight emerges when comparing the prompting strategies used in CoT reasoning versus
search-based methods like ToT and RAP: although they aim to solve the same task, they frame the role of
the LLM in fundamentally different ways.

CoT treats the LLM as an open-loop controller, generating complete reasoning paths in a single pass (Listing 1)
without any feedback or evaluation. In contrast, search-based methods integrates the LLM into a closed-loop
system, where the LLM serves two interconnected roles: a policy that proposes next steps (Listing 3) and a
reward model that evaluates them (Listing 4, Listing 5). This interaction between proposal and intermediate
feedback is central to structured planning and search.

This difference has meaningful consequences for fine-tuning. When an LLM is fine-tuned on CoT-style paths
that strip away reward signals, it may weaken its ability to perform reward modeling, which is critical in
search-based reasoning. This observation offers a planning-theoretic explanation for why models fine-tuned
on CoT-style paths may struggle with inference-time search.

C.5 Classic BFS and DFS Reasoners

We also employ classic search algorithms, Breadth-First Search (BFS) and Depth-First Search (DFS), to
generate training data for the Countdown task. We adopt the implementation from SoS (Gandhi et al., 2024)
without modification. These symbolic reasoners are significantly faster than LLM reasoners and achieve high
success rates of 65.4% (BFS) and 81.5% (DFS) on the training set (due to the use of pruning heuristics, they
do not guarantee a solution in all cases). However, unlike LLM reasoners, these methods rely on external
tools such as calculators and goal checkers to guide the search process.

D Limitation

This paper focuses on improving reasoning language models. Preliminary experiments on one generic language
model, Mistral 7B (Jiang et al., 2023), show that while diverse reasoners still provide benefits, small learning
rate and the forgetting objective offer limited improvement. We suspect these effects depend more on the
base model’s reasoning ability than size, similar to observations in RL that performance is bounded by base
model capability (Yue et al., 2025). Extending our method to general-purpose LLMs is a valuable direction
for future work.
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