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Abstract

Deep reinforcement learning algorithms enabled learning functioning policies
in MDPs with complex state representations. Following these advancements
deep reinforcement learning polices have been deployed in many diverse settings.
However, a line of research argued that in certain settings building a reward function
can be more complicated than learning it. Hence, several studies proposed different
methods to learn a reward function by observing trajectories of a functioning policy
(i.e. inverse reinforcement learning). Following this line of research several studies
proposed to directly learn a functioning policy by solely observing trajectories
of an expert (i.e. imitation learning). In this paper, we propose a novel method
to analyze the spectral robustness of deep neural policies. We conduct several
experiments in the Arcade Learning Environment, and demonstrate that simple
vanilla trained deep reinforcement learning policies are more robust than deep
imitation learning policies. We believe that our method provides a comprehensive
analysis on the policy robustness and can help in understanding the fundamental
properties of different training techniques.

1 Introduction

The capabilities achieved via interacting with a given environment solely based on observations
and receiving rewards upon taking actions in high-dimensional state observation MDPs gained
substantial acceleration with the recent advancements in deep reinforcement learning research Mnih
et al. (2016). Currently, from robotics objectives to solving complex games, several different fields
from pharmaceuticals to finance benefited from the advancements achieved in deep neural policies.

While deep reinforcement learning progressed towards solving more complicated tasks, a line of
research focused on the questions arising from learning functioning policies without the presence
of a reward function. In this line of research, initially some proposed to learn the reward function
via observing the trajectories of a functioning policies (i.e. inverse reinforcement learning). Others
proposed to learn a functioning policy via observing expert demonstrations (i.e. imitation learning).

The adversarial non-robustness of deep neural networks has been extensively discussed in the machine
learning community starting from the pioneering study of Goodfellow et al. (2015). Following this,
adversarial vulnerabilities have also been discussed in deep reinforcement learning policies Huang
et al. (2017); Korkmaz (2022a, 2021e). While some of these studies focus on optimization of the
adversarial directions Korkmaz (2020), in others these directions are used as a tool to highlight the
vulnerability types and variations across different training techniques Korkmaz (2021e). While the
robustness of deep reinforcement learning policies has been extensively studied we focus on the
robustness of the state-of-the-art deep inverse reinforcement learning and deep imitation learning
policies and in our paper we want to answer the following questions:

• How does learning from expert demonstrations affect the robustness of deep imitation
learning policies?
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• How can we analyze and quantify the robustness of deep imitation learning policies in the
frequency spectrum?

Hence, to answer these questions in this paper we focus on analyzing the spectral properties of deep
inverse reinforcement learning policies, and make the following contributions:

• We propose a novel method to analyze deep inverse reinforcement learning and deep
imitation learning policy robustness in the frequency spectrum.

• We conduct experiments in the Arcade Learning Environment (ALE) and we compare the
frequency vulnerabilities of the state-of-the-art imitation learning policy to the vanilla deep
reinforcement learning algorithm for high dimensional state representation environments.

• Our method reveals the spectral contrast between the vanilla deep reinforcement learning
policies and the state-of-the-art imitation learning policies.

2 Background and Related Work

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is represented as a tuple 〈S,A,P, r, γ, τ0〉 of a set of states S, a set
of actions A, transition probability distribution P(st+1|st, at), and a reward function r : S×A→ R,
discount factor γ, and initial state distribution τ0. The objective in reinforcement learning is to
learn a policy that will maximize the expected discounted cumulative rewards obtained by the policy
π : S → P(A). This objective can be achieved via Q-learning that essentially learns a Q function
Q : S ×A→ R that will assign values to each state-action (s, a) pair to reveal what would be the
expected cumulative discounted rewards obtained if the action a is taken in state s. The Q-function is
learnt via iterative Bellman update

Q(st, at) = r(st, at, st+1) + γ
∑
st

P(st+1|st, at)max
a

Q(st+1, a). (1)

Upon the construction of the state-action value function the policy would execute the action that
maximizes the state-action value function.

a∗ = argmax
a∈A

Q(s, a) and V (s) = max
a

Q(s, a) (2)

2.2 Deep Inverse Reinforcement Learning

For a given setting where the reward function is not present, inverse reinforcement learning was
proposed to learn a reward function by observing the trajectories of a functioning policy. The initial
study that proposed inverse reinforcement learning achieves this objective via linear programming
Ng & Russell (2000).

maximize
∑
s∈Sρ

min
a∈A
{p(Es′∼P(s,a1|·)V

π(s′)− Es′∼P(s,a|·)V π(s′))} (3)

s.t. |αi| ≤ 1 , i = 1, 2, . . . , d

While some studies focused on learning the reward function itself others focused on directly learning
a policy from demonstrations Kostrikov et al. (2020). Quite recently, Garg et al. (2021) focused on
learning a state-action value function via solely observing the trajectories of a functioning policy
(inverse Q-learning). Inverse Q-learning is the first algorithm that can achieve the ability to learn
policies in high dimensional state observations. Most importantly, the authors of this study argue
that once the state-action value function is learnt, the reward function can be reconstructed from
this information. Furthermore, note that the inverse Q-learning algorithm can learn a functioning
policy and a reward function simultaneously; hence, throughout the paper the inverse Q-learning
algorithm will be referred to as an imitation learning and inverse reinforcement learning algorithm
interchangeably.
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Algorithm 1 SRA: Spectral Robustness Analysis

Input: Actions a ∈ A, states s ∈ S, policy π(s, a), δ blocked frequencies, d dimension of the
state
Output: Performance Drop
for δ = 0 to d/2 do

for s = s0 to sT do
Fs(i, j) =

1

MN
∑M−1
m=0

∑N−1
n=0 s(m,n)e

−j2π(um/M+vn/N )

Fs[δ,−δ : δ] = Fs[−δ,−δ : δ] = Fs[−δ : δ, δ] = Fs[−δ : δ,−δ] = 0

sF (m,n) =
∑M−1
i=0

∑N−1
j=0 F(i, j)ej2π(um/M+vn/N )

π(sF , a) = softmax(Q(sF , a))
end for

end for
Return: Impact I

2.3 Robustness in Reinforcement Learning

The adversarial vulnerabilities of deep reinforcement learning policies were initially discussed in
Huang et al. (2017). This study essentially introduces fast gradient sign method produced adversarial
perturbations Goodfellow et al. (2015) in to the observation system of the deep reinforcement learning
policy. In this line of research some studies tried to further optimize adversarial directions Korkmaz
(2020), while others focused on contrasting the differences between adversarial and natural directions
Korkmaz (2023, 2021d). Targeting the adversarial vulnerabilities of deep reinforcement learning
policies, some studies proposed to train with an adversary to gain robustness to adversarial directions
Gleave et al. (2020); Pinto et al. (2017). However, some recent studies discussed the problems with
adversarial training starting from learning a different set of non-robust features Korkmaz (2021e)1, to
losing generalization capacity Korkmaz (2023) and learning inaccurate and inconsistent state-action
value functions Korkmaz (2021c). Some further argued that there are underlying shared adversarial
directions that are learnt by many different policies independent from the algorithm, and that are
shared across MDPs Korkmaz (2022a).

3 Spectral Robustness Analysis of Deep Imitation Learning and Deep
Inverse Reinforcement Learning

In this section we will describe the main proposal of the paper. In particular, Spectral Robustness
Analysis (SRA) is based on systematically blocking frequencies and analyzing the effects of these
frequencies on the deep reinforcement learning policy performance. In particular, for a state s ∈ S
the discrete Fourier transform of the state s is

Fs(i, j) =
1

MN

M−1∑
m=0

N−1∑
n=0

s(m,n)e−j2π(um/M+vn/N ) (4)

Upon the blocking the δ-frequencies the discrete Fourier transform is inverted and the observation of
the deep neural policy consists of sF

sF (m,n) =

M−1∑
i=0

N−1∑
j=0

Fs(i, j)ej2π(um/M+vn/N ). (5)

Algorithm 1 provides the pseudocode for the Spectral Robustness Analysis (SRA) algorithm.

1The adversarially trained deep reinforcement learning policies are shown to be more vulnerable towards
lower frequency adversarial directions Korkmaz (2021b). Furthermore, it is demonstrated that the non-robust
features learnt by the adversarially trained policies form different patterns than the vanilla trained deep reinforce-
ment learning policies. These non-robust features are not eliminated by the adversarially training techniques,
but rather shifted Korkmaz (2021a), Korkmaz (2021e). Some recent studies further utilized the techniques
proposed in Korkmaz (2021e) to demonstrate the non-robust features learnt by deep inverse reinforcement
learning algorithms Korkmaz (2022b).
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Baseline δ = 5 δ = 10 δ = 20

Figure 1: Left: Spectral Robustness Analysis (SRA) with variations of blocked frequencies δ.

Spectral Robustness Analysis

Figure 2: Spectral Robustness Analysis (SRA) results for the deep reinforcement learning policy and
the state-of-the-art deep inverse reinforcement learning policy in the Seaquest game.

4 Experimental Analysis

Our experiments are conducted in the Arcade Learning Environment Bellemare et al. (2013). The
deep reinforcement learning policy is trained via double-Q learning Hasselt et al. (2016). The
experiments are conducted with 10 random runs. We included standard error of the mean in all of the
results presented in the paper. The impact on the policy performance is measured by

I =
Scorebaseline − ScoreFs

Scorebaseline
. (6)

Figure 1 reports the steps of the spectral robustness analysis (SRA) with variations of blocked
frequencies. Figure 2 provides results on the spectral robustness analysis of the deep reinforcement
learning policy and the deep inverse reinforcement learning policy as we block the δ-frequencies
that have been described in Algorithm 1. The results reported in Figure 2 demonstrate that the
vanilla trained deep reinforcement learning policies are more robust than the policies trained via deep
inverse reinforcement learning. In particular, there is a high increase in the sensitivities towards lower
frequencies for the deep inverse reinforcement learning policy.

5 Conclusion

This paper aims to answer the following questions: (i) How can we analyze the deep neural policies
that are trained in MDPs with complex state representations in the spectral domain?, (ii) Is there a
fundamental difference between learning via exploration vs learning via observing functioning poli-
cies in terms of their robustness?, and (iii) How can we unveil the fundamental robustness differences
between deep reinforcement learning policies and deep inverse reinforcement learning policies? To
be able to address these questions we propose a novel method that provides a comprehensive analysis
of the spectral robustness of deep neural policies. We conduct extensive experiments in the Arcade

4



Learning Environment and demonstrate that the deep reinforcement learning policies are more robust
than the deep inverse reinforcement learning policies.
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