
Orchestrating Heterogeneous Architecture for Fast Inference of
Mixture-of-Experts Models

Anonymous ACL submission

Abstract
Large Language Models (LLMs) with the001
Mixture-of-Experts (MoE) architectures have002
shown promising performance on various tasks.003
However, due to the huge model sizes, run-004
ning them in resource-constrained environ-005
ments where GPU memory is not abundant is006
challenging. Some existing systems propose to007
use CPU resources to solve that, but they either008
suffer from significant overhead of frequently009
moving data between CPU and GPU, or fail to010
consider different characteristics of CPU and011
GPU. This paper proposes Twiddler, a resource-012
efficient inference system for MoE models with013
limited GPU resources. Twiddler strategically014
utilizes the heterogeneous computing architec-015
ture of CPU and GPU resources by determining016
the optimal execution strategy. Our evaluation017
shows that, unlike state-of-the-art systems that018
optimize for specific scenarios such as single019
batch inference or long prefill, Twiddler has020
better performance in all scenarios. Twiddler021
achieves 1.26 times speed up in single batch022
inference, 1.30 times in long prefill process-023
ing, and 11.57 times in beam search inference,024
compared against different baselines.025

1 Introduction026

Recently, running Large Language Models (LLMs)027

in a resource-constrained environment is becom-028

ing increasingly important and relevant. There is029

a growing interest in running LLMs in local envi-030

ronments such as a personal computer or an edge031

device (Giacinto, 2023; Anand et al., 2023; Song032

et al., 2023) to improve privacy (Martínez Toro033

et al., 2023) and to customize models using propri-034

etary or personal data (Lyu et al., 2023). Enabling035

these models to operate in resource-limited settings036

democratizes access to advanced LLM technolo-037

gies, particularly for those without access to high-038

end GPU resources. This trend is strengthened by039

the proposals to use LLMs at the core of all com-040

puter systems. (Packer et al., 2023; Berger and041

Zorn, 2024). Hence, it is desirable to be able to 042

run large models on a wide range of computers 043

or servers, unlike the status quo where LLMs are 044

usually served with large GPU clusters (Patel and 045

Ahmad, 2023). 046

Especially, LLMs utilizing Mixture-of-Experts 047

(MoE) architectures have demonstrated outstand- 048

ing performance across a range of tasks (Du 049

et al., 2022; Fedus et al., 2022; Jiang et al., 2024; 050

Databricks, 2024). MoE models selectively acti- 051

vate a subset of parameters via a gating mechanism, 052

lowering computational requirements for both train- 053

ing and inference compared to dense counterparts. 054

As a result, MoE models are easier to scale to larger 055

sizes, leading to the development of many powerful 056

models (Rajbhandari et al., 2022). 057

Although MoE models appear well-suited for 058

resource-constrained environments due to their rel- 059

atively low computational requirements, imple- 060

menting local inference with these models presents 061

several challenges. Firstly, the model size is usu- 062

ally very large and scales up quickly as the number 063

of experts or the hidden dimension increases. Re- 064

cently released MoE models include Mixtral-8x7B 065

(47B parameters), Mixtral-8x22B (141B param- 066

eters), DBRX (132B parameters), DeepSeek-V2 067

(236B parameters), Grok-1 (314B parameters), and 068

Snowflake Arctic (479B parameters) (Jiang et al., 069

2024; AI, 2024; Databricks, 2024; DeepSeek-AI, 070

2024; xAI, 2024; Snowflake, 2024). Hence, a very 071

large number of GPUs are required just to store 072

model parameters, given the limited capacity of 073

GPU memory. The situation is further exacerbated 074

by the virtually unlimited number of expert com- 075

ponents in MoE models; for example, the largest 076

variant of Switch Transformer has 2048 experts 077

in each layer and has a total of 1.6T parameters 078

(Fedus et al., 2022). Without model compression 079

or quantization techniques, the model could take 080

3.2TB of storage. This means that 40 NVIDIA 081

A100 80GB GPU will be needed just to store all 082

1

Figure 1: High level overview of Twiddler. Each layer of the MoE model is placed at either the CPU memory or the
GPU memory, and Twiddler determines the optimal execution strategy using both the CPU and the GPU based on
the input size of each expert.

the model weight.083

Secondly, while all parameters must be stored084

in GPU memory for efficient inference, the unique085

property of MoE models means that not all parame-086

ters are used to generate a new token. The fact that087

only a subset of parameters is active during the gen-088

eration of each token leads to underutilized GPU089

memory. This is particularly problematic since the090

soaring global demand for generative AI technolo-091

gies has driven GPU prices up. The end result is an092

environment, where investing in a large number of093

GPUs is not a cost-effective proposition for all but094

major hyperscalers that serve many users simulta-095

neously to achieve greater GPU utilization through096

significant batching.097

Some existing systems use CPU resources to098

address the challenge of running large models in099

resource-limited environments, but they struggle100

with the efficient execution of MoE models. On101

the one hand, methods that offload model weights102

to CPU memory and transfer required weights to103

GPU memory on demand address memory capacity104

issues. However, they introduce significant runtime105

overhead due to the lower bandwidth of PCIe con-106

nection compared to memory access (Eliseev and107

Mazur, 2023; Xue et al., 2024b). On the other108

hand, CPU-based inference frameworks that par-109

tially utilize GPUs can reduce parameter transfer110

overhead (ggml authors, 2023). However, they fail111

to account for MoE model properties or different112

device characteristics of CPUs and GPUs, leading113

to suboptimal performance in critical use cases like114

long prefill or beam search, which is essential for115

enhanced generation quality (Dong et al., 2022;116

von Platen, 2023). We discuss more detail in §2.117

In this paper, we tackle the challenge of effi-118

ciently running MoE models with limited GPU119

resources, by strategically utilizing both CPU and120

GPU resources. We introduce Twiddler, a resource-121

efficient MoE inference system that intelligently 122

leverages the heterogeneous computing architec- 123

ture of both CPUs and GPUs. Unlike prior work 124

that either only uses CPU memory or naively splits 125

execution between CPUs and GPUs, our approach 126

generates optimal execution strategies by consider- 127

ing the different characteristics of CPUs and GPUs. 128

As CPUs have larger memory capacity despite hav- 129

ing weaker computational power, MoE models are 130

particularly interesting for this context due to their 131

small computational requirement relative to their 132

parameter size. 133

During inference, Twiddler develops a latency 134

model based on different batching effects of CPUs 135

and GPUs to determine the optimal execution strat- 136

egy for MoE layers, as shown in Figure 1. When 137

expert layers are executed on the CPU, latency in- 138

creases almost linearly with the input size (see de- 139

tailed analysis in §A). In contrast, GPU execution 140

latency remains nearly constant regardless of input 141

size but incurs an overhead if the weights need to 142

be transferred from CPU memory to GPU mem- 143

ory. Therefore, for smaller input sizes, it is more 144

efficient to execute expert layers on CPUs, avoid- 145

ing the overhead of weight transfer. However, for 146

larger batch sizes, CPU computation becomes too 147

time-consuming, making it more efficient to trans- 148

fer weights to GPU memory and perform computa- 149

tions on the GPU. Twiddler dynamically chooses 150

the execution plans that run MoE models efficiently 151

with limited GPU memory across various work- 152

loads, including long prefill and beam search. 153

We also incorporate several optimizations into 154

the design of Twiddler. To maximize the likeli- 155

hood that the required expert is available in GPU 156

memory, we place frequently used experts on the 157

GPU based on offline profiling of expert popular- 158

ity. Additionally, we design a specialized compu- 159

tation kernel for expert processing on the CPU us- 160

2

ing the AVX512_BF16 instruction set, which is not161

supported in the native PyTorch implementation162

(Paszke et al., 2019).163

We evaluate Twiddler with the uncompressed164

(16-bit) Mixtral-8x7B model, which has over 90GB165

of parameters, on two environments with single166

GPUs each. Twiddler achieves 1.26 times speed167

up in single batch inference, 1.30 times in long168

prefill processing, and 11.57 times in beam search169

inference, compared against different state-of-the-170

art systems each, on average across different en-171

vironments (§4) Notably, while existing systems172

show different trade-offs (e.g., offloading-based173

approaches excel in long prefill scenarios, while174

CPU-based methods perform well with single batch175

latency), our system integrates the advantages of176

both, achieving balanced and efficient results in177

diverse conditions.178

To summarize, our contributions are as follows:179

• We design Twiddler, an inference system for180

MoE models for heterogeneous architecture,181

that finds the optimal execution strategy using182

both the GPU and CPU.183

• We evaluate Twiddler and show that it184

achieves better performance in single batch185

inference, long prefill processing, and beam186

search inference, compared to different state-187

of-the-art systems each. It shows that Twid-188

dler integrates the advantages of different189

types of existing systems.190

2 Related Work191

2.1 Mixture-of-Experts192

LLMs based on MoE architecture have been show-193

ing promising performance in various applications194

(Rajbhandari et al., 2022; Du et al., 2022; Fedus195

et al., 2022; Jiang et al., 2024; Xue et al., 2024a;196

Dai et al., 2024). Unlike original dense Transform-197

ers (Vaswani et al., 2017), MoE models add spar-198

sity to the feed-forward layer through a system of199

experts and a gating mechanism. Each MoE layer200

contains multiple expert layers that match the shape201

of the feed-forward layer, and a gating network de-202

termines which experts are activated for each input.203

While an MoE layer can include thousands of ex-204

perts (Fedus et al., 2022), only a select few are205

activated by the gating network during training or206

inference.207

2.2 Large Models Deployment with 208

Heterogeneous Architecture 209

Deploying MoE models efficiently can be challeng- 210

ing because of their large model size, particularly 211

in resource-constrained settings. Some existing 212

systems utilize CPU resources to solve the chal- 213

lenge of running large models in resource-limited 214

environments, but they fall short of running MoE 215

models efficiently. 216

Offloading is one approach to run large models 217

in such an environment. They store a subset of 218

model weights in the CPU memory instead of the 219

GPU memory to utilize the larger capacity (Sheng 220

et al., 2023). The required weights are transferred 221

on demand from the CPU memory to the GPU 222

memory during computation for inference. For 223

MoE models, some previous works attempted to 224

offload expert weights with caching or prefetch- 225

ing mechanisms (Eliseev and Mazur, 2023; Xue 226

et al., 2024b). These approaches address memory 227

capacity limitations and are good for throughput- 228

oriented scenarios. However, they suffer signif- 229

icant latency overhead due to the frequent trans- 230

fer of expert weights between the CPU and GPU 231

over the PCIe connection, because its bandwidth 232

is smaller than memory access bandwidth. As a 233

result, they show suboptimal performance for the 234

settings where latency is critical for user experience. 235

Twiddler overcomes this challenge by utilizing the 236

computation resources of CPUs. 237

Another line of work proposes CPU-based in- 238

ference frameworks that support running LLMs by 239

partially using GPUs (ggml authors, 2023). De- 240

pending on the availability of GPU memory, such 241

systems execute a subset of the model layers on the 242

GPU and the rest on the CPU. Although they can re- 243

duce the overhead of transferring model parameters, 244

such approaches show suboptimal performance for 245

important use cases, such as long prefill or beam 246

search, that are essential for enhanced generation 247

quality (Dong et al., 2022; von Platen, 2023). This 248

is because they do not consider the different batch- 249

ing effects of GPUs and CPUs (Chen, 2023) and 250

the properties of MoE models. 251

Even though model compression techniques like 252

quantization (Frantar and Alistarh, 2023; Zhao 253

et al., 2023) or sparsification (Alizadeh et al., 2023) 254

can reduce the model size and improve inference 255

efficiency, they come with degraded output qual- 256

ity of models, especially when trying to fit large 257

models to a GPU with limited memory capacity 258

3

Figure 2: Overview of Twiddler. (a) During the initialization phase, the parameters of non-expert layers and a
selected subset of expert layers are allocated to GPU memory as availability permits; the remaining parameters
are allocated to CPU memory. (b) At runtime, Twiddler dynamically determines the optimal execution strategy by
considering the volume of inputs that activate each expert layer along with the different expected latencies of CPU
and GPU processing.

(Eliseev and Mazur, 2023). Recently, Song et al.,259

2023 proposed to exploit the LLMs sparsity for260

faster inference with CPU offloading. However,261

this approach requires the model to use the Recti-262

fied Linear Units (ReLU) function for the nonlinear263

activation. Converting non-ReLU models, common264

in state-of-the-art LLMs, to ReLU models requires265

additional training and causes degradation of model266

quality (Mirzadeh et al., 2023; SparseLLM). For267

example, Mixtral-8x7B uses the Sigmoid Linear268

Units (SiLU) function (Elfwing et al., 2018), and269

only a small portion of values are close to zero.270

Therefore, it is difficult to exploit the sparsity (a271

more detailed discussion is given in Appendix B).272

Twiddler can achieve better performance without273

modifying the model structure or accuracy. We274

note that Twiddler is orthogonal to the compres-275

sion techniques, and these optimizations could be276

applied on top of Twiddler.277

3 Design278

This section explains the design of Twiddler. Twid-279

dler is designed for the scenario where GPU mem-280

ory capacity is insufficient to store all the MoE281

model parameters. Therefore, the weights of some282

of the experts are stored in the CPU memory in-283

stead of the GPU memory. Twiddler finds the op-284

timal execution strategy for such cases, given the285

expert selection by the input and differing batching286

behavior of CPUs and GPUs.287

3.1 Overview 288

Figure 2 illustrates the overview of Twiddler. In 289

the initialization phase, Twiddler allocates the pa- 290

rameters for non-expert layers along with those 291

for a selected subset of expert layers to the GPU 292

memory, as much as the GPU memory capacity per- 293

mits. Twiddler selects those experts to be placed on 294

the GPU memory based on their popularity, which 295

we explain in §3.4. Twiddler always allocates the 296

weights of non-expert layers on the GPU memory 297

because they are used for every token, irrespective 298

of expert choice. The size of non-expert layers is 299

usually not big (e.g., less than 2 billion parameters 300

for the Mixtral-8x7B model), and we assume they 301

fit in the GPU memory in this paper. The param- 302

eters of expert layers that do not fit in the GPU 303

memory due to capacity constraints are stored in 304

the CPU memory. 305

During the execution phase, Twiddler carefully 306

assesses and selects the most effective execution 307

strategy. This decision is informed by the number 308

of inputs each expert layer receives and the CPU’s 309

and GPU’s differing processing latencies. The gat- 310

ing layer of the model determines the number of 311

inputs each expert gets, and the processing laten- 312

cies can be predicted using the device properties. 313

Twiddler considers the different batching effects 314

of CPUs and GPUs. In processing expert layers, 315

the number of inputs affects the execution latency 316

differently on the CPU and the GPU. Specifically, 317

4

GPU processing exhibits a relatively stable latency318

across varying input sizes, which can be attributed319

to its parallel processing capabilities. These ca-320

pabilities make the execution latency bounded by321

the time it takes to load parameters from mem-322

ory. In contrast, the latency associated with CPU323

processing tends to scale almost linearly with the324

input size. This linear increase is due to the CPU’s325

weaker computation capabilities than the GPUs’,326

which makes the latency bounded by the computa-327

tion part, not the memory movement part. We give328

a more elaborate analysis in the Appendix A.329

Figure 3: Three different scenarios for the execution
of expert layers. When the expert weight is present
in GPU memory, the expert layer can be executed at
GPU without any data transfer (a). When the expert
weight is missing in GPU memory, the expert weight
can be copied from CPU memory to GPU memory and
executed at GPU (b), or the activation can be copied
from GPU memory to CPU memory and executed at
CPU (c).

3.2 Execution Strategies330

There are three scenarios for the processing of ex-331

pert layers, as shown in Figure 3. After the expert332

is selected for each input token at the non-expert333

layer, (Figure 3 a) 1 if the corresponding weight334

is present on the GPU memory, 2 the expert layer335

is executed on the GPU, without any data transfer336

between the CPU and the GPU.337

However, as all the model parameters do not fit338

in the GPU memory, sometimes the expert weights339

are not present in the GPU memory. In that case,340

two different strategies exist to execute the expert341

layer. The first method is to copy the model weight342

from CPU memory to GPU memory, then execute343

the expert using the GPU (Figure 3 b). When some 344

expert weights are missing on the GPU memory 345

(1), they are copied from the CPU memory to the 346

GPU memory (2), and then the GPU executes the 347

expert layer (3). Existing offloading systems use 348

this method. 349

Another approach is to copy the activations from 350

the GPU memory to CPU memory and execute 351

the expert layer on the CPU (Figure 3 c). In this 352

approach, when some expert weights are missing 353

on the GPU memory (1), the activation values are 354

copied from the GPU memory to the CPU memory 355

(2) instead of copying the weights. Then, the 356

computation of the expert layer happens on the 357

CPU (3), and the output activations are copied 358

back to the GPU after the computation finishes 359

(4). A similar method is used by llama.cpp. 360

The latter two strategies (b. and c. above) have 361

different trade-offs. On the one hand, GPUs have 362

stronger computation ability that is suited for ex- 363

pert processing. Therefore, (b) has an advantage 364

over (c) regarding computation latency. Moreover, 365

as discussed before, the computation latency of 366

(c) becomes longer as the input size grows due to 367

the different batching effects of the CPUs and the 368

GPUs. 369

On the other hand, considering the CPU-GPU 370

communication, the method in (b) needs to trans- 371

fer model weights, while (c) only needs to trans- 372

fer activation values. As the size of activations 373

(input size× 4096 for the Mixtral-8x7B) is signifi- 374

cantly smaller than the weight size (3 matrices with 375

size 4096×14336 per expert for the Mixtral-8x7B, 376

consuming more than 300MB with 16-bit preci- 377

sion) for small input sizes, (c) has an advantage in 378

reducing communication overhead. 379

Overall, (c) is advantageous when the input size 380

to an expert is small, while (b) is better if the in- 381

put size is above some threshold, even with large 382

communication overhead. When processing long 383

prefills, the input size can reach a thousand. How- 384

ever, in such scenarios, the computation latency 385

of method (c) becomes more prohibitive than the 386

weight transfer latency of (b), making (c) an im- 387

practical choice. Consequently, the transfer latency 388

for activation is negligible when (c) is employed. 389

We give a more detailed quantitative analysis in 390

Appendix A. 391

3.3 Algorithm 392

Based on the analysis described above, Twiddler 393

serves MoE models in the following way. 394

5

Initialization. Before starting the inference395

process, Twiddler distributes the model weights396

between the CPU and GPU memory. First, the397

weights of non-expert layers are placed on the GPU398

memory because they are used for every token, ir-399

respective of expert choice. The size of non-expert400

layers is usually not big (less than 2 billion param-401

eters for the Mixtral-8x7B model), and Twiddler402

assumes they fit in the GPU memory in this paper.403

Next, Twiddler puts a subset of expert layers into404

the GPU memory. For this, it selects as many ex-405

perts as the memory capacity permits to maximize406

the hit rate, i.e., the likelihood an expert’s weight407

is in GPU memory. For the expert selection, we408

apply an optimization as discussed in §3.4.409

We also measure the latency to copy weights410

and execute experts on either the CPU or the GPU411

with different input sizes to inform the decision at412

runtime.413

Execution. At runtime, Twiddler identifies the414

optimal configurations to execute expert layers415

across the GPU and CPU. Twiddler knows which416

expert(s) should be used for each token being pro-417

cessed after executing the gating function for each418

layer. This allows Twiddler to learn the input size419

for each expert. Note that multiple inputs can be420

processed simultaneously, even for a single request,421

during the prefill stage or when beam search is422

utilized.423

Based on the input size information, Twiddler424

determines the most efficient execution strategy for425

distributing workloads across the CPU and GPU.426

To achieve this, Twiddler employs Algorithm 1.427

The function is_at_gpu(i, j) checks whether428

the weight of expert j in the i-th layer was placed429

in the GPU memory at the initialization time. Ad-430

ditionally, cpu_lat(s) and gpu_lat(s) provide431

the expected latency for executing an expert on the432

CPU and GPU, respectively, given an input size433

of s. The function transfer_lat() estimates the434

latency required to transfer an expert’s weight from435

CPU memory to GPU memory.436

When executing an expert on a GPU along with437

weight transfer, the latency is primarily dominated438

by the time it takes to transfer the expert’s weight439

from the CPU to the GPU memory, which is inde-440

pendent of the batch size. In contrast, executing441

an expert layer on the CPU demonstrates different442

behavior: as the number of input tokens increases,443

the latency also increases. However, the time re-444

quired to copy activation from the GPU to the CPU445

is negligible, accounting for less than 1% of the446

Algorithm 1 Expert Execution Strategy

1: Inputs:
2: ne: number of experts in one layer
3: i: the layer to consider (we consider i-th

layer)
4: inp_size: array of size of input for each

expert
5: for j = 1 to ne do
6: s← inp_size[j]
7: if s == 0 then
8: continue
9: end if

10: if is_at_gpu(i, j) then
11: // run j-th expert at GPU
12: else if cpu_lat(s) > gpu_lat(s) +

trans_lat() then
13: // run j-th expert at GPU
14: else
15: // run j-th expert at CPU
16: end if
17: end for

total latency (see Appendix A for more details). 447

To optimize the processing of the prefill stage, 448

we employ a model where the GPU execution time 449

is considered constant, whereas the CPU execution 450

time is assumed to increase linearly with the num- 451

ber of input tokens. Specifically, for the number 452

of input tokens s, gpu_lat(s) returns a constant 453

value, while cpu_lat(s) returns a value propor- 454

tional to s, multiplied by another constant. These 455

constants are determined in the initialization phase. 456

3.4 Optimizations 457

The best execution performance is achieved when 458

the approach of Figure 3 a is used as frequently as 459

possible, i.e., when the expert weight required by 460

the input is present in GPU memory as frequently 461

as possible. To maximize the likelihood that the 462

required expert is available in GPU memory, we 463

place frequently used experts on the GPU based 464

on offline profiling. For this, we select as many 465

experts as the memory capacity permits in order of 466

popularity to maximize the hit rate, i.e., the likeli- 467

hood an expert’s weight is in GPU memory. We 468

determine the popular experts based on the pro- 469

file of expert selection using calibration data. We 470

assume this method is enough as the expert selec- 471

tion is known to be based on token characteristics, 472

and the popularity of experts is almost universal 473

across different input domains (Jiang et al., 2024; 474

6

Table 1: Evaluation setups

Environment 1 Environment 2
GPU Quadro RTX 6000 (NVIDIA, a) RTX 6000 Ada (NVIDIA, b)
GPU Memory 24576MiB 49140MiB
PCIe Gen3 x16 (32GB/s) Gen4 x16 (64GB/s)
CPU Intel(R) Xeon(R) Gold 6126 (48 core) Intel Xeon Platinum 8480+ (112 core)
Number of Experts on GPU 56/256 125/256

Xue et al., 2024a). Appendix C discusses expert475

selection in more detail.476

Additionally, we design a specialized computa-477

tion kernel for expert processing on the CPU us-478

ing the AVX512_BF16 instruction set, which is not479

supported in the native PyTorch implementation480

(Paszke et al., 2019).481

4 Evaluation482

4.1 Setup483

Model and Data. We use Mixtral-8x7B model484

(Jiang et al., 2024) with 16-bit precision for the485

evaluation. For the evaluation and calibration data,486

we use ShareGPT (ShareGPT), a dataset of conver-487

sations between humans and chatbots, to model the488

realistic behavior of expert selection. We pick the489

subset of conversations randomly. We implement490

Twiddler on top of PyTorch (Paszke et al., 2019).491

Environments. We evaluate Twiddler on two492

environments as shown in Table 1. None of the493

environments has enough GPU memory capacity494

to store all the model parameters. The “Number of495

Experts on GPU" row shows the maximum number496

of experts that can fit on the GPU memory out of497

256 experts (32 layers × 8 experts/layer), giving498

the memory capacity.499

Baselines. For baselines, we evaluate500

DeepSpeed-MII version v0.2.3 (Microsoft),501

Mixtral-Offloading (Eliseev and Mazur, 2023),502

and llama.cpp version b2956 (ggml authors, 2023).503

For DeepSpeed-MII, we enable ZeRO-Infinity504

optimization (Rajbhandari et al., 2021) so that it505

offloads model parameters to the CPU memory506

and loads them from CPU to GPU dynamically507

during inference when needed. We enable508

pin_memory in the configuration to use paged-509

locked CPU memory, which improves performance510

of read/writes from CPU memory and reduce511

memory defragmentation. Mixtral-Offloading512

originally supports only a quantized version of513

the Mixtral-8x7B model by default. For a fair514

comparison, we extend Mixtral-Offloading to515

support running the original version of the model516

with 16-bit precision. Mixtral-Offloading provides 517

an offload_per_layer parameter to determine 518

how many experts in each expert layer to offload 519

to CPU memory. We set the offload_per_layer 520

parameter to 7 for Environment 1 and 5 for 521

Environment 2 as this is the best configuration 522

for the environments we test. For llama.cpp, we 523

set the ngl parameters that control the number 524

of layers being executed in the GPU to be 8 for 525

Environment 1 and 16 for Environment 2. 526

Metrics. We evaluate the performance of Twid- 527

dler against baselines in three different scenarios 528

that serve a single request: a end-to-end latency 529

with different lengths of input and output tokens, 530

b prefill processing for the long context input, and 531

c end-to-end latency of beam search with different 532

widths. These metrics reflect important use cases: 533

long context input is used for in-context learning or 534

retrieval augmented generation (Dong et al., 2022; 535

Gao et al., 2023), and beam search is used for en- 536

hanced quality of generated tokens (von Platen, 537

2023). We report the inference speed measured by 538

token per second for a and c (number of gener- 539

ated tokens divided by the end-to-end latency), and 540

Time To First Token (TTFT) for b . For the eval- 541

uation with N input tokens, we randomly select 542

samples from ShareGPT with N tokens or more 543

of prompt and use the initial N tokens. For a , the 544

input length is among [32, 64, 128, 256], and the 545

output length is among [64, 128, 256]. The input 546

length for b is among [512, 1024, 2048, 4096]. 547

We set the beam search width for c to be among 548

[4, 8, 12] with an input length of 32 and an output 549

length of 64. For the beam search, we compare 550

Twiddler only against llama.cpp as the other base- 551

lines do not support beam search inference. 552

4.2 Results 553

Figure 4 shows the end-to-end performance of three 554

methods in two environments. On average, across 555

all the configurations and environments, Twiddler 556

outperforms the best baseline, llama.cpp, Twiddler 557

achieves performance that is 1.26 times faster on 558

average across different input/output lengths and 559

7

Figure 4: The end-to-end performance comparison by the number of tokens generated per second (scenario a ,
higher is better), with 15 different input/output length configurations. The rightmost set of bars shows the average
of 15 configurations.

Figure 5: The performance comparison by TTFT (sce-
nario b , lower is better), with 15 different input/output
length configurations. The rightmost set of bars shows
the average of 4 different lengths.

environments. Figure 5 shows the TTFT for the560

long context prefill. In this case, offloading-based561

methods (DeepSpeed-MII and Eliseev and Mazur,562

2023) are better than llama.cpp. Still, Twiddler563

shows better performance than any existing meth-564

ods, outperforming DeepSpeed-MII by 1.07 times565

and Eliseev and Mazur, 2023 by 1.17 times on566

average across different configurations. Figure567

6 shows the end-to-end latency of beam search568

inference with different search widths, compared569

against llama.cpp. On average, Twiddler achieves570

11.57 times better performance than llama.cpp.571

These results show that Twiddler performs better572

in a wide range of applications than existing sys-573

tems. The benefits primarily come from Twiddler’s574

ability to determine execution strategy dynamically575

based on batching effects of CPUs and GPUs and576

place experts based on popularity profile. Notably,577

while existing systems show different trade-offs578

(e.g., offloading-based approaches excel in long579

Figure 6: The performance comparison for beam search
inference measured by the number of tokens generated
per second (scenario c , higher is better), with input
length of 32 and output length of 64. The rightmost set
of bars shows the average of 4 beam search widths.

prefill scenarios and methods like llama.cpp per- 580

form well with single batch latency), our system 581

integrates the advantages of both, achieving bal- 582

anced and efficient results in diverse conditions. 583

5 Conclusion 584

This paper proposes Twiddler, a resource-efficient 585

inference system for MoE models with limited 586

GPU resources. Twiddler strategically utilizes the 587

heterogeneous computing architecture of CPU and 588

GPU resources by determining the optimal exe- 589

cution strategy. Twiddler achieves better perfor- 590

mance in all common scenarios for local inference 591

while state-of-the art systems are only optimized 592

for part of them. Our evaluation shows that com- 593

pared to state-of-the-art systems, Twiddler archives 594

1.26 times speed up in single batch inference, 1.30 595

times in long prefill processing, and 11.57 times in 596

beam search inference. 597

8

6 Limitations598

While Twiddler provides valuable insights for us-599

ing the heterogeneous computing architectures of600

the CPUs and the GPUs, it has several limitations.601

First, Twiddler is restricted to the case where the602

model size is larger than the GPU memory but not603

larger than the CPU memory. Otherwise, compres-604

sion techniques such as quantization are needed.605

Second, due to the limited memory of the GPU,606

Twiddler does not support the sequence lengths607

whose KV cache size exceeds the GPU memory ca-608

pacity. For such cases, KV cache offloading to the609

CPU memory is needed. Further research on how610

to efficiently address this issue would be beneficial.611

References612

Mistral AI. 2024. Cheaper, better, faster, stronger.613

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,614
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,615
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.616
Llm in a flash: Efficient large language model617
inference with limited memory. arXiv preprint618
arXiv:2312.11514.619

Yuvanesh Anand, Zach Nussbaum, Brandon Duder-620
stadt, Benjamin Schmidt, and Andriy Mulyar. 2023.621
Gpt4all: Training an assistant-style chatbot with large622
scale data distillation from gpt-3.5-turbo. https:623
//github.com/nomic-ai/gpt4all.624

Emery Berger and Ben Zorn. 2024. Ai software should625
be more like plain old software.626

Lequn Chen. 2023. Dissecting batching effects in gpt627
inference.628

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.629
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding630
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,631
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,632
and Wenfeng Liang. 2024. Deepseekmoe: Towards633
ultimate expert specialization in mixture-of-experts634
language models. Preprint, arXiv:2401.06066.635

Databricks. 2024. Introducing dbrx: A new state-of-the-636
art open llm.637

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-638
cal, and efficient mixture-of-experts language model.639
Preprint, arXiv:2405.04434.640

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-641
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and642
Zhifang Sui. 2022. A survey on in-context learning.643
arXiv preprint arXiv:2301.00234.644

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,645
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,646
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.647

Glam: Efficient scaling of language models with 648
mixture-of-experts. In International Conference on 649
Machine Learning, pages 5547–5569. PMLR. 650

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. 651
Sigmoid-weighted linear units for neural network 652
function approximation in reinforcement learning. 653
Neural networks, 107:3–11. 654

Artyom Eliseev and Denis Mazur. 2023. Fast inference 655
of mixture-of-experts language models with offload- 656
ing. arXiv preprint arXiv:2312.17238. 657

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 658
Switch transformers: Scaling to trillion parame- 659
ter models with simple and efficient sparsity. The 660
Journal of Machine Learning Research, 23(1):5232– 661
5270. 662

Elias Frantar and Dan Alistarh. 2023. Qmoe: Practical 663
sub-1-bit compression of trillion-parameter models. 664
arXiv preprint arXiv:2310.16795. 665

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 666
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen 667
Wang. 2023. Retrieval-augmented generation for 668
large language models: A survey. arXiv preprint 669
arXiv:2312.10997. 670

The ggml authors. 2023. llama.cpp. 671

Ettore Di Giacinto. 2023. Localai. https://github. 672
com/mudler/LocalAI. 673

Albert Q Jiang, Alexandre Sablayrolles, Antoine 674
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 675
ford, Devendra Singh Chaplot, Diego de las Casas, 676
Emma Bou Hanna, Florian Bressand, et al. 2024. 677
Mixtral of experts. arXiv preprint arXiv:2401.04088. 678

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang 679
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, 680
Yuandong Tian, Christopher Re, et al. 2023. Deja 681
vu: Contextual sparsity for efficient llms at infer- 682
ence time. In International Conference on Machine 683
Learning, pages 22137–22176. PMLR. 684

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, 685
and Jiebo Luo. 2023. Llm-rec: Personalized rec- 686
ommendation via prompting large language models. 687
arXiv preprint arXiv:2307.15780. 688

Iván Martínez Toro, Daniel Gallego Vico, and Pablo 689
Orgaz. 2023. PrivateGPT. 690

Microsoft. Deepspeed-mii. https://github.com/ 691
microsoft/DeepSpeed-MII. 692

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, 693
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei, 694
Mohammad Rastegari, and Mehrdad Farajtabar. 695
2023. Relu strikes back: Exploiting activation 696
sparsity in large language models. arXiv preprint 697
arXiv:2310.04564. 698

9

https://mistral.ai/news/mixtral-8x22b/
https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://www.sigarch.org/ai-software-should-be-more-like-plain-old-software/
https://www.sigarch.org/ai-software-should-be-more-like-plain-old-software/
https://www.sigarch.org/ai-software-should-be-more-like-plain-old-software/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://github.com/ggerganov/llama.cpp
https://github.com/mudler/LocalAI
https://github.com/mudler/LocalAI
https://github.com/mudler/LocalAI
https://github.com/imartinez/privateGPT
https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed-MII

NVIDIA. a. Nvidia quadro rtx 6000 pcie server699
card. https://www.nvidia.com/content/dam/700
en-zz/Solutions/design-visualization/701
quadro-product-literature/702
NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.703
pdf.704

NVIDIA. b. Nvidia rtx 6000 ada generation.705
https://www.nvidia.com/content/dam/en-zz/706
Solutions/design-visualization/rtx-6000/707
proviz-print-rtx6000-datasheet-web-2504660.708
pdf.709

Charles Packer, Vivian Fang, Shishir G Patil, Kevin710
Lin, Sarah Wooders, and Joseph E Gonzalez. 2023.711
Memgpt: Towards llms as operating systems. arXiv712
preprint arXiv:2310.08560.713

Adam Paszke, Sam Gross, Francisco Massa, Adam714
Lerer, James Bradbury, Gregory Chanan, Trevor715
Killeen, Zeming Lin, Natalia Gimelshein, Luca716
Antiga, et al. 2019. Pytorch: An imperative style,717
high-performance deep learning library. Advances in718
neural information processing systems, 32.719

Dylan Patel and Afzal Ahmad. 2023. The inference720
cost of search disruption – large language model cost721
analysis.722

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-723
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-724
mad Awan, Jeff Rasley, and Yuxiong He. 2022.725
Deepspeed-moe: Advancing mixture-of-experts in-726
ference and training to power next-generation ai scale.727
In International Conference on Machine Learning,728
pages 18332–18346. PMLR.729

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,730
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:731
Breaking the gpu memory wall for extreme scale732
deep learning. Preprint, arXiv:2104.07857.733

ShareGPT. Sharegpt. https://huggingface.co/734
datasets/anon8231489123/ShareGPT_Vicuna_735
unfiltered.736

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan737
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi738
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.739
High-throughput generative inference of large lan-740
guage models with a single gpu. arXiv preprint741
arXiv:2303.06865.742

Snowflake. 2024. Snowflake arctic: The best llm for743
enterprise ai — efficiently intelligent, truly open.744

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.745
2023. Powerinfer: Fast large language model serv-746
ing with a consumer-grade gpu. arXiv preprint747
arXiv:2312.12456.748

SparseLLM. Relullama-70b. https://huggingface.749
co/SparseLLM/ReluLLaMA-70B.750

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 751
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 752
Kaiser, and Illia Polosukhin. 2017. Attention is all 753
you need. Advances in neural information processing 754
systems, 30. 755

Patrick von Platen. 2023. How to generate text: using 756
different decoding methods for language generation 757
with transformers. 758

xAI. 2024. Open release of grok-1. 759

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang- 760
wei Zheng, Wangchunshu Zhou, and Yang You. 761
2024a. Openmoe: An early effort on open mixture- 762
of-experts language models. 763

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Ma- 764
hesh Marina. 2024b. Moe-infinity: Activation-aware 765
expert offloading for efficient moe serving. arXiv 766
preprint arXiv:2401.14361. 767

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 768
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 769
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 770
Opt: Open pre-trained transformer language models. 771
arXiv preprint arXiv:2205.01068. 772

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn 773
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, 774
Tianqi Chen, and Baris Kasikci. 2023. Atom: Low- 775
bit quantization for efficient and accurate llm serving. 776
arXiv preprint arXiv:2310.19102. 777

A Microbenchmarks 778

In this section, we show the results of the mi- 779

crobenchmarks. Figure 7 shows the latency of the 780

following workloads: 781

• W copy: Transferring weight of one expert 782

from the CPU memory to the GPU memory 783

• A copy: Transferring one activation from the 784

GPU memory to the CPU memory 785

• GPU N: Executing one expert at GPU with in- 786

put size N (excluding the time for transferring 787

weight from CPU) 788

• CPU N: Executing one expert at CPU with 789

input size N 790

For each value, we execute the workload 32 791

times (once for each layer of Mixtral-8x7B) and 792

present the average and standard deviation results. 793

When tasks are executed on a GPU, the latency 794

for transferring weights from CPU memory to GPU 795

memory is about 2-5 times longer than the actual 796

computation time. The computation latency on 797

the GPU remains largely constant regardless of 798

10

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-6000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx-6000/proviz-print-rtx6000-datasheet-web-2504660.pdf
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://huggingface.co/SparseLLM/ReluLLaMA-70B
https://huggingface.co/SparseLLM/ReluLLaMA-70B
https://huggingface.co/SparseLLM/ReluLLaMA-70B
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://x.ai/blog/grok-os

batch size. An exception occurs in Environment799

1 when the batch size is 1, as PyTorch uses dif-800

ferent implementations for single-batch and multi-801

batch scenarios. However, this difference is minor802

(approximately 10%) compared to the overall la-803

tency, which includes weight transfer. Therefore,804

we model GPU latency as a constant in Section 3.3.805

On the CPU, execution latency generally in-806

creases linearly with the size of the input batch.807

However, the time needed to transfer activations is808

negligible (less than 1% of the latency with a single809

input). Due to this minimal impact, our model in810

Section 3.3 assumes that CPU latency has a linear811

relationship with the number of inputs.812

Figure 7: The microbenchmark results measuring the
latency of transferring weights or activations between
the CPU and GPU, as well as executing an expert layer
on either the CPU or GPU with varying input sizes. The
y-axis is displayed on a log scale.

B Sparsity Analysis813

This section analyzes the sparsity within Mixtral-814

8x7B models, highlighting the challenges of ap-815

plying traditional sparsity-based optimization tech-816

niques from previous studies (Song et al., 2023;817

Alizadeh et al., 2023). These methods primarily818

target LLMs that utilize the ReLU activation func-819

tion, which nullifies negative inputs and allows for820

the pruning of channels with consistently zero out-821

puts. This approach leverages the binary nature of822

ReLU’s output—either zero or positive—enabling823

straightforward identification and elimination of in-824

active channels, thereby optimizing computational825

efficiency without sacrificing critical information.826

Conversely, state-of-the-art MoE models often827

use different activation functions, complicating the828

direct application of these sparsity-exploiting strate-829

gies. For instance, Mixtral-8x7B uses SiLU as the830

activation function. Unlike ReLU, SiLU does not831

provide a clear threshold of zero for pruning, neces-832

sitating a more sophisticated approach to leverage833

sparsity. Pruning channels that are not sufficiently834

close to zero could negatively impact the model’s835

output quality.836

Table 2 presents an analysis of the absolute val-837

ues after the SiLU function across the layers of838

the Mixtral-8x7B model. This analysis is based on 839

data from 100 samples within the ShareGPT dataset 840

(ShareGPT), without differentiating between differ- 841

ent experts in identical layers. The data indicates 842

a generally low occurrence of values close to zero. 843

Specifically, for all layers, the proportion of chan- 844

nels with absolute values below 0.001 is less than 845

2%, and for 30 out of the 32 layers, this figure 846

is even below 1%. Additionally, in 28 out of 32 847

layers, fewer than 5% of the values are smaller 848

than 0.01, and in 24 layers, fewer than 30% of the 849

values are under 0.1. Despite variations across lay- 850

ers, these results collectively suggest a significant 851

challenge in harnessing sparsity within this model 852

using approaches from previous works. In contrast, 853

Liu et al., 2023 reported that over 90% of values 854

after the ReLU function are zero for the MLP lay- 855

ers of OPT models (Zhang et al., 2022). Utilizing 856

sparsity within models like Mixtral-8x7B to speed 857

up inference with tolerable quality loss remains an 858

intriguing direction for future research. 859

C Expert Popularity 860

Figure 8 displays a heat map illustrating the popu- 861

larity of expert selection within the Mixtral-8x7B 862

model. Similar to the analysis in Appendix B, this 863

profile is generated by running inferences on ran- 864

dom samples from the ShareGPT dataset and count- 865

ing the number of tokens routed to each expert. The 866

color intensity of each cell represents the frequency 867

of expert selection, equivalent to the number of 868

tokens that activated the expert. The value of the 869

most popular expert is normalized to 1, with the 870

popularity of other experts expressed as a ratio rel- 871

ative to this value. 872

Among the 256 experts, the average value is 873

0.71, with a standard deviation of 0.08, a 25th per- 874

centile of 0.67, and a 75th percentile of 0.76. Al- 875

though the minimum value is 0.22, only 15 experts 876

have values below 0.6, and 27 experts exceed 0.8, 877

indicating a relatively balanced distribution. 878

In Environment 1, selecting the 56 most popular 879

experts out of 256 yields a maximum expected hit 880

rate (the likelihood that an expert’s weight is avail- 881

able in the GPU memory) of 25.2%, compared to 882

a minimum of 18.7%. Random selection results in 883

an average hit rate of 56/256 = 21.9%. In Envi- 884

ronment 2, with GPU memory capacity for 125 ex- 885

perts, the expected hit rates for the best, worst, and 886

random selections are 53.0%, 44.6%, and 48.8%, 887

respectively. Therefore, we can conclude that plac- 888

11

ing popular experts on the GPU could improve the889

hit rate by approximately 3 to 5 percentage points890

compared to random placement.891

Figure 8: A heat map visualizing expert selection fre-
quency in the Mixtral-8x7B model, using color intensity
to represent the frequency, with the most popular expert
normalized to 1.

Table 2: Distribution of absolute values after SiLU func-
tion of Mixtral-8x7B model across all layers. Each cell
displays the percentage of values whose absolute value
is below a specified threshold.

Layer < 0.001 < 0.01 < 0.1 < 1.0

1 1.75 17.17 93.89 100.00
2 1.21 11.95 85.08 100.00
3 0.92 9.10 74.80 99.99
4 0.71 7.06 63.69 99.99
5 0.50 5.00 49.67 99.95
6 0.41 4.08 41.60 99.93
7 0.36 3.56 36.66 99.91
8 0.30 2.97 31.04 99.88
9 0.29 2.90 29.96 99.86

10 0.27 2.73 28.25 99.80
11 0.24 2.37 24.65 99.74
12 0.24 2.43 25.15 99.69
13 0.24 2.36 24.55 99.65
14 0.22 2.22 23.05 99.53
15 0.20 2.02 21.03 99.32
16 0.18 1.78 18.61 99.14
17 0.15 1.53 16.14 98.91
18 0.15 1.50 15.86 98.58
19 0.13 1.33 14.24 98.15
20 0.12 1.19 12.94 97.95
21 0.11 1.09 12.04 97.86
22 0.10 0.97 11.09 97.96
23 0.10 1.02 11.58 97.61
24 0.10 1.02 11.72 97.36
25 0.09 0.95 11.55 97.34
26 0.10 0.95 11.91 97.05
27 0.09 0.95 12.19 96.72
28 0.09 0.89 12.28 96.76
29 0.08 0.86 13.89 95.86
30 0.09 1.03 15.16 94.02
31 0.12 1.37 16.65 92.12
32 0.36 2.73 20.27 89.64

12

	Introduction
	Related Work
	Mixture-of-Experts
	Large Models Deployment with Heterogeneous Architecture

	Design
	Overview
	Execution Strategies
	Algorithm
	Optimizations

	Evaluation
	Setup
	Results

	Conclusion
	Limitations
	Microbenchmarks
	Sparsity Analysis
	Expert Popularity

