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Abstract
The GOKU-net is a continuous-time generative model that allows leveraging prior1

knowledge in the form of differential equations. We present GOKU-UI, an evolu-2

tion of the GOKU-nets, which integrates attention mechanisms and a novel mul-3

tiple shooting training strategy in the latent space. On simulated data, GOKU-UI4

significantly improves performance in reconstruction and forecasting, outperform-5

ing baselines even with 16 times less training data. Applied to empirical human6

brain data, using stochastic Stuart-Landau oscillators, it is able to effectively cap-7

ture complex brain dynamics, surpassing baselines in reconstruction and better8

predicting future brain activity up to 15 seconds ahead. Ultimately, our research9

provides further evidence on the fruitful symbiosis given by the combination of10

established scientific insights and modern machine learning.11

1 Introduction12

Scientific Machine Learning (SciML) is an emerging field combining scientific models with mod-13

ern data-driven techniques, often yielding increased interpretability, generalizability, and data effi-14

ciency. (Baker et al., 2019; von Rueden et al., 2023; Shen et al., 2023). Latent Ordinary Differential15

Equations (Latent ODEs) (Chen et al., 2018; Rubanova et al., 2019) are VAE-like generative models16

that encode time series data into a latent space ruled by a differential equation which is parametrized17

by a neural network. Building on Latent ODEs, Linial et al. (2021) introduced GOKU-nets (Gener-18

ative ODE Modeling with Known Unknowns), which fundamental difference with the former is the19

inclusion of a predefined differential equation structure as a prior for the latent dynamics. Compared20

to LSTM and Latent-ODE on pendulum videos and cardiovascular system modeling, GOKU-net ex-21

celled in reconstruction, forecasting, reduced training data needs, and offered better interpretability.22

We propose an enhancement to the original GOKU-net architecture which adds attention mecha-23

nisms to the main part of the model that infers the parameters of the differential equations. Moreover,24

to overcome the inherent difficulties of training, we developed a novel strategy to train the GOKU-25

net based on the multiple shooting technique (Bock & Plitt, 1984; Ribeiro et al., 2020; Turan &26

Jäschke, 2021) in the latent space. Testing on simulated stochastic oscillators and empirical brain27

data derived from resting state human functional Magnetic Resonance Imaging (fMRI), our GOKU-28

nets with Ubiquitous Inference (GOKU-UI) surpassed both the original GOKU-net and baselines in29

accuracy and data efficiency. GOKU-UI exemplifies the potential of melding traditional scientific30

insights with modern machine learning.31

2 Methods32

2.1 Basic GOKU-nets33

A general model class that we denominate Latent Differential Equation model (Latent DE), illus-34

trated in Figure 1, begins by independently processing each temporal frame xi with a Feature Ex-35
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tractor. The sequence then passes through a Pattern Extractor which aims to learn the distribution36

of the initial conditions and possibly of the parameters for the DE that will be subsequently inte-37

grated. Lastly, a Reconstructor transforms the solution back to the input space. Training follows the38

standard VAE approach, optimizing the evidence lower bound (ELBO) (Kingma & Welling, 2013).39
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Figure 1: Diagram of a Latent Differential Equation model.

The original GOKU-net by Linial et al. (2021), understood as a Latent DE model, uses a ResNet40

with dense NNs as the Feature Extractor. Its Pattern Extractor employs an RNN for the initial condi-41

tions and a bidirectional LSTM for the ODE parameters. Unlike Latent ODEs, which parameterize42

the differential equation using another NN, in this case, the differential equation is predefined, incor-43

porating prior system knowledge. GOKU-net employs fully connected layers for the Latent in/out,44

and a ResNet similar to the Feature Extractor for the Reconstructor.45

2.2 GOKU-UI46

Attention mechanism In our GOKU-UI model, we incorporate a basic attention mecha-47

nism (Vaswani et al., 2017) into the Pattern Extractor, specifically when learning the differential48

equation parameters. Namely, instead of keeping the last element of the bidirectional LSTM (BiL-49

STM) used in the original GOKU-net model, all of its sequential outputs pass through a dense layer50

with softmax activation to calculate the attentional scores that weight the sum of all the BiLSTM51

outputs in order to obtain its final output.52

Multiple Shooting Gradients calculations through differential equations often lead to highly com-53

plex loss landscapes (Ribeiro et al., 2020; Metz et al., 2021). Turan & Jäschke (2021) showed that54

training Neural ODEs even on basic oscillatory data could be problematic, resulting in trajectories55

resembling moving averages. To address this, they utilized multiple shooting techniques (Bock56

& Plitt, 1984; Diehl et al., 2006; Baake et al., 1992; Ribeiro et al., 2020). This method divides57

the differential equation’s time span into segments, independently inferring each segment’s initial58

conditions. These segments are then merged, enforcing continuity during the optimization.59

However, applying the multiple shooting method to GOKU-nets is not straightforward. Firstly, in60

most cases that use this method, such as in Turan & Jäschke (2021), the differential equations are61

typically directly modeling the observable data, having direct access to the true initial conditions for62

each window. In the case of GOKU-nets, the dynamics modeled by differential equations occur in63

the latent space, which is being learned simultaneously; as a result, such true initial conditions are64

not available. Secondly, it is necessary to determine how the method will behave in relation to the65

parameters of the differential equation, which in the case of Neural ODEs are implicitly learned as66

part of their parameterization through the neural network.67

Our proposal for extending the multiple shooting method to GOKU-nets is as follows. After passing68

through the Feature Extractor, we divide the temporal interval in the latent space in such a way that69

the Pattern Extractor generates in parallel different initial conditions for each temporal window, but70

provides a single set of parameters for the differential equations that will be shared by all windows.71

By this strategy, we maintain the potential benefits inherent to the multiple shooting method while72

leveraging the information available in a wider temporal range for the task of parameter inference,73

which is generally more challenging than estimating initial conditions. As mentioned before, we74

do not have access to target true initial conditions, however, what we can strive to achieve is the75

continuity of trajectories across different windows. To this end, these intervals are defined by over-76

lapping the last temporal point of each window with the first one of the following and the goal is77
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to minimize the distance between these points. Specifically, we employ regularization in the cost78

function when training the model, quadratically penalizing the discrepancy in the latent space of the79

overlapping points, that is, between the initial condition of each window and the end point of its80

preceding segment.81

Non-variational GOKU-nets outperformed their variational counterparts in our experiments (see82

Supplementary Information B.3). Consequently, we utilized non-variational GOKU-nets for subse-83

quent results. Rather than sampling from normal distributions in the latent space (Figure 1), we used84

mean values µz0 and µθ. The resulting model’s cost function excludes the KL divergence term from85

the ELBO but includes the reconstruction term, computed as the normalized mean squared error86

between the model’s outputs and inputs. Continuity regularization from multiple shooting training87

is also incorporated.88

2.3 Experiments89

We assessed our attention and multiple shooting enhancements on synthetic data based stochastic90

Stuart-Landau oscillators and empirical human brain data. We compared various GOKU-model91

variations (basic, attention-enhanced) using either the original single shooting or the new multiple92

shooting method. Baseline models included LSTM, Latent ODE, and a naïve model. For fairness,93

the LSTM and Latent ODE maintained the GOKU-net’s architecture, differing only at the differ-94

ential equation layer. Here, the Neural ODE replaced the differential equation layer for the Latent95

ODE model, while an LSTM did for the other. The Latent ODE and LSTM sizes were adjusted to96

match GOKU-UI’s total number parameters. Naïve predictors utilized time-averaged input values97

for constant predictions. Detailed training procedures, models architectures, and hyperparameters98

are available in the Supplementary Information.99

Simulated data Our simulated data derives from networks of stochastic Stuart-Landau (SL) oscil-100

lators, a standard model for resting state fMRI brain dynamics (Jobst et al., 2017; Deco et al., 2017).101

The dynamics for an oscillator node in an N node network is:102

ẋj = Re(żj) = [aj − x2
j − y2j ]xj − ωjyj +G

N∑
i=1

Cij(xi − xj) + βηj(t)

ẏj = Im(żj) = [aj − x2
j − y2j ]yj + ωjxj +G

N∑
i=1

Cij(yi − yj) + βηj(t) (1)

where Cij is the network’s connectivity matrix, G is a global coupling factor, and ηj is Gaussian103

noise. Each node has distinct bifurcation parameters aj and frequencies ωj . During the construction104

of our dataset, we perform a dimensionality augmentation on the network of oscillators, which are105

utilized as latent dynamics. Specifically, we apply a fixed random linear transformation, f : R2N →106

RD, to the latent trajectories of each sample, with D = 784. Each sample corresponds to a unique107

random set of initial conditions and parameters for the N = 3 coupled oscillators.108

Empiric data We assessed our models on resting-state fMRI data from the human brain, sourced109

from 153 subjects in the Track-On HD study (Klöppel et al., 2015). After preprocessing as outlined110

in Polosecki et al. (2020), we applied a 20-component Canonical ICA (Varoquaux et al., 2010),111

retaining 11 components post artifact removal. This resulted in 306 samples, each with 160 time112

points collected every 3 seconds. We reserved 20% of the data (n=60) for testing, ensuring balanced113

representation, and used the remaining (n = 246) for training and validation. The first 114 time114

points from each of these samples were used for model training, with the remainder reserved for115

validation. The GOKU-UI model employed 20 Stuart-Landau oscillators (Eq. 1) in its latent space.116

3 Results117

We assessed four GOKU-net variants for both reconstruction and forecast tasks, considering sin-118

gle/multiple shooting methods and the presence or absence of attention. We compared them to three119

baselines: LSTM, Latent ODEs, and a naïve predictor. Although models were exclusively trained120

for reconstruction, we evaluated their forecasting during testing. The normalized root mean square121

error (NRMSE) measures the prediction error against the target ground truth.122

Simulated data Figure 2a depicts GOKU-net variants with multiple shooting having significantly123

reduced errors on a synthetic dataset of three stochastic Stuart-Landau oscillators. Attention mech-124

anism enhanced performance, especially in single shooting. GOKU-UI, combining attention and125
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multiple shooting, remained the top performer, with Wilcoxon tests confirming significance at p-126

values < 0.02 after Holm correction. Latent ODEs underperformed, resembling the naïve predictor,127

while LSTMs surpassed basic GOKU-nets. Notably, when trained on just 150 unique samples,128

GOKU-UI outperformed all other single shooting models, even those trained on datasets 32 times129

larger. In forecasting, as shown in Figure 2b, attention-aided GOKU-nets excelled over LSTMs, with130

GOKU-UI standing out up to 150 samples (p-values < 0.02, Wilcoxon signed-rank, Holm corrected),131

beyond which its performance was statistically indistinguishable from that of the basic GOKU model132

with multiple shooting (p-values > 0.05, Wilcoxon signed-rank tests, Holm corrected).133

Empirical data Figure 2c demonstrates that the attention mechanism didn’t boost single shooting134

GOKU-net performance. Yet, multiple shooting training significantly improved results, with the135

GOKU-UI model, merging both techniques, reducing the median reconstruction error by five times136

compared to single shooting baselines. Furthermore, GOKU-UI had a significantly lower recon-137

struction NRMSE than the multiple shooting GOKU basic model (p < 0.04, Wilcoxon signed-rank138

test). In forecasting, GOKU-UI outperformed other models, achieving lower forecast errors for up139

to 15 seconds of brain activity.140

a b

c d

Figure 2: Comparison of reconstruction (left panels) and forecast (right panels) performances on
the synthetic Stuart-Landau (top panels) and fMRI (bottom panels) test data sets, using normalized
RMSE. Averages are taken across input dimensions and time span, with shaded areas indicating
standard errors from multiple training runs with varied random seeds. Forecasts in panel b are
assessed over a 20 time-step horizon.

4 Conclusion141

We enhanced the GOKU-nets with attention and multiple shooting, with the latter yielding the most142

impact. The resulting model, GOKU-UI, showed improved performance and data efficiency on143

both synthetic and empirical brain data. By leveraging established scientific insights into modern144

machine learning, GOKU-UI was able to encode whole-brain dynamics into a latent representation,145

learning a low-dimensional interpretable dynamical system model that could offer insights into brain146

functionality and open avenues for multiple practical applications.147

Applying GOKU-UI to new problems might not be as straightforward as a general-purpose black-148

box neural network model due to the need for a specific differential equation. Still, with guidance149

from dynamical systems theory, it is not only feasible but also beneficial.150
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Supplementary Information218

A Models architectures219

Referring to the diagram in Figure 1, the specific architecture used for the different models, for both220

simulated and empirical data experiments, is as follows:221

A.1 Basic GOKU-nets222

Feature Extractor223

ResNet with 4 fully-connected layers, each with 200 neurons and using mish activation func-224

tions (Misra, 2019). Input dimension = number of dimensions in the input data. Output dimension225

= 128.226

Pattern Extractor227

Initial values path: an RNN with 2 layers and 64 neurons in each with ReLU activations. Input dim228

= 128. Output dim = 64.229

Parameters path: Bidirectional LSTM with 2 layers and 64 neurons in each. Input dimension =230

128. Output dimension = 128. Note that the dimension of the output of the forward LSTM and the231

backward LSTM are 64 but when concatenating them, the resulting output dimension is the given232

one.233

Latent in234

Initial values path: single-layered fully connected NN. Input dim = 64. Output dim = 64.235

Parameters path: fully connected NN with 1 layer. Input dim = 128. Output dim = 128.236
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Latent out237

Initial values path: fully connected NN with 2 layers and 200 neurons in the hidden layer, using238

no activation function (identity). Input dim = 64. Output dim = number of state variables of the239

differential equation.240

Parameters path: fully connected NN with 2 layers and 200 neurons in the hidden layer, using sig-241

moid activation function. The parameters are projected from the interval [0, 1] to the desired range242

when integrating the differential equation. Input dim = 128. Output dim = number of parameters of243

the differential equation.244

Differential Equation layer245

The predefined differential equation is solved numerically for each of the sets of parameters and ini-246

tial conditions provided by the previous layer. The output is the trajectories at time points equivalent247

to the input data.248

Reconstructor249

ResNet is similar to the one in the Feature Extractor, except that in this case the input dimension250

is the number of state variables of the differential equation and the output dimension is the one251

corresponding to the input data.252

A.2 GOKU-nets with attention253

With the exception of the Pattern Extractor, the rest of the layers in the GOKU-nets with attention254

model remain identical to those in the basic GOKU-nets.255

Pattern Extractor256

Initial values path: LSTM with 1 layer. Input dimension = 128. Output dimension = 128.257

Parameters path: Bidirectional LSTM (BiLSTM) with 1 layer. Input dim = 128. Output dim = 128.258

A fully connected NN with input and output dimensions of 128 is used for the attention mechanism.259

This attention NN processes all the output sequences of the BiLSTM, after which a softmax is260

applied across the time dimension in order to obtain the attentional scores that will be used in the261

weighted sum of all the time steps returned by the BiLSTM.262

A.3 LSTM baseline model263

The whole architecture is the same as in the basic GOKU-net, except for the Differential Equation264

layer, which is replaced by an LSTM:265

LSTM layer266

We used a single-layered LSTM with input and output dimensions set to z_dim. This value is267

determined in each experiment to ensure that the total number of parameters in the LSTM model268

closely matches that of the corresponding GOKU-UI. For the simulated dataset experiments, we set269

z_dim = 42. In the case of the empirical dataset experiments, z_dim = 105. The LSTM operates270

recursively. It takes as its first input the value equivalent to the initial condition in differential271

equations. Subsequently, the model feeds back its last output as the new input, continuing this272

process until the number of time steps matches that of the model’s input.273

A.4 Latent ODE baseline model274

The whole architecture is the same as in the basic GOKU-net, except for the Differential Equation275

layer, which is replaced by a Neural ODE:276

Neural ODE layer277

Neural ODE is parametrized by a fully connected NN with 3 layers and node_hidden_dim neurons278

in each. The input and output dimensions are given by z_dim, which is the number of state variables.279

In the case of the simulated dataset experiments, the number of state variables was selected to match280
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the true latent dimension z_dim = 6 and the number of neurons in each layer was adjusted so that281

the total number of parameters in the model matched as closely as possible that of the corresponding282

GOKU-UI, resulting in node_hidden_dim = 137. On the other hand, in the case of the fMRI283

experiments, the number of state variables was set to z_dim = 20 and node_hidden_dim = 317,284

also matching the total number of parameters of the corresponding GOKU-UI model.285

B Comprehensive description of experiments286

B.1 Simulated dataset generation287

The high-dimensional simulated dataset used for training the model was constructed based on the288

simulations of 3 coupled Stuart-Landau oscillators (Eqs. 1) with different random sets of parameters.289

Each set of parameters corresponds to a different training sample. Whenever we used the Stuart-290

Landau model in our experiments (both when generating the dataset and when using it inside the291

GOKU-nets), the time was rescaled by multiplying the right-hand side of Eqs. 1 by 20. Thus,292

when integrating the equations with the used dt = 0.05, the input sequences of length 46 time steps293

contain a few oscillations. The parameters a, ω and C were sampled from uniform distributions294

within the following ranges295

a ∈ [−0.2, 0.2]; ω ∈ [0.08π, 0.14π]; C ∈ [0, 0.2]296

while G = 0.1 and η = 0.02. On the other hand, the initial conditions for the six state variables were297

sampled from uniform distributions within the ranges [0.3, 0.4]. For each set of parameters and initial298

conditions, the system is integrated with the SOSRI solver, a Stability-optimized adaptive strong299

order 1.5 and weak order 2.0 for diagonal/scalar Ito SDEs, from the DifferentialEquations.jl Julia300

package (Rackauckas & Nie, 2017). The complete time span of the integration is 35 units of time301

and the trajectories are saved every 0.05, resulting in 700 time points. The first 100 time steps are302

trimmed, in order to remove possible initial transients. Afterwards, a random linear transformation303

is independently applied to each of the 600 remaining time steps, in order to obtain 784 dimensions.304

In other words, every state vector of length 6 from each sample is multiplied by the same 784Œ6305

matrix, initialized randomly sampling from a uniform distribution in the range [-1, 1]. A training306

dataset was created with 5000 samples, which serves as the source for the different training instances307

using different sizes of training sets (see Figure 2a). A different test set with 900 samples was created308

for the posterior evaluations of the model.309

B.2 Empirical dataset generation310

We used resting state fMRI data from 153 participants, obtained from the Track-On HD study (Klöp-311

pel et al., 2015). The data underwent pre-processing, as described in Polosecki et al. (2020), and312

a 20-component Canonical ICA (Varoquaux et al., 2010) was performed. Upon inspecting the re-313

sulting 20 components, 9 were identified as artifacts and thus discarded, leaving 11 components for314

further analysis in our experiments. Each subject contributed data from two visits, accumulating a315

total of 306 data samples. Each sample comprised 160 time points, obtained at a temporal resolution316

of 3 seconds.317

For our investigation, we set aside approximately 20% of the data samples (n=60) for testing, while318

ensuring balanced representation from sex, condition, and measurement site. The remaining data319

samples (n=246) were allocated for training and validation. Specifically, the first 114 time points320

from each of these samples were utilized for model training, with the remainder reserved for valida-321

tion and early training termination. Finally, the training, validation, and test splits were all normal-322

ized by the standard deviation of the training set.323

B.3 Training settings324

All the experiments underwent the same training procedure with identical hyperparameters, which325

will be described here.326

The input sequence length for all the models was 46 time steps, and the batch size was set at 64.327

As described above, the full length of each sample in the training sets was 600 time steps for the328

synthetic dataset and 114 for the fMRI dataset. The procedure for generating a batch of training data329

is as follows: First, 64 samples that have not been used previously in the current training epoch are330
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randomly selected. Then, for each sample, a 46 time-step-long interval is randomly chosen within331

the 600 or 114 time steps available in the full sample length.332

The GOKU-net based models, contain the same Stuart-Landau differential equations as described333

above, however, the allowed ranges of parameters differ from the ones used during the generation334

of the synthetic dataset. In order to be closer to a real world use-case we allow for a wider range of335

parameters than those actually used for generating the data, since in principle one would not know336

the true range:337

a ∈ [−1, 1]; ω ∈ [0, 1]338

while keeping, the other parameters the same except of the connectivity in the empirical fMRI339

training, in which case it was allowed to be negative: C ∈ [−0.2, 0.2]. The differential equa-340

tions definitions were optimized for higher computational performance with the help of Modeling-341

Toolkit.jl (Ma et al., 2021). During training, they were solved with the SOSRI solver, a Stability-342

optimized adaptive strong order 1.5 and weak order 2.0 for diagonal/scalar Ito SDEs, from the Dif-343

ferentialEquations.jl Julia package (Rackauckas & Nie, 2017). The sensitivity algorithm used was344

ForwardDiffSensitivity from the SciMLSensitivity.jl package (Rackauckas et al., 2020). The345

models were defined and trained within the deep learning framework of the Flux.jl package (Innes346

et al., 2018). The experiments were managed using DrWatson.jl package (Datseris et al., 2020).347

The model was trained with Adam with a weight decay of 10−10, and the learning rate was dynam-348

ically determined by the following schedule. The learning rate begins with a linear growth (also349

referred to as learning rate warm-up) from 10−7, escalating up to 0.005251 across 20 epochs. After-350

wards, it maintains that value until the validation loss stagnates (has not achieved a lower value for351

50 epochs), at which point it starts a sinusoidal schedule with an exponentially decreasing amplitude.352

For the multiple shooting training, all the presented experiments used a time window length of 10,353

therefore partitioning 46-time-steps-long sequences into 5 windows with their endpoints overlap-354

ping. The regularization coefficient in the loss function for the continuity constraint had a value of355

2.356

Since we found that models with variational versions of the GOKU-nets underperformed their357

non-variational versions, all the results presented in this work were obtained using non-variational358

GOKU-nets. This is, instead of sampling from normal distributions in the latent space as depicted359

in Figure 1, we pass forward the mean values µz0 and µθ. Thus, the associated loss function does360

not have the KL divergence term associated with the ELBO but retains the reconstruction loss given361

by the mean squared error between the output of the model and the input, normalized by the mean362

absolute value of the input. In addition, when multiple shooting training is employed, the extra363

term regarding the continuity constraint is included in the loss function. This extra term consists of364

the mean squared differences between the last point of a window and the initial from the next one,365

divided by the number of junctions and multiplied by a regularization coefficient. Please, note that366

this continuity regularization is performed in the state space of the differential equation and not in367

the input space.368

C Reconstruction plots369

To provide a visual representation of the model’s performance, this section presents trajectories370

from both the synthetic and empirical fMRI test sets, along with their corresponding reconstructions371

by GOKU-UI and the original GOKU-nets (lacking attention mechanisms and trained with single372

shooting). The x-axis represents time steps in all cases. To display representative cases, samples373

were selected based on their mean reconstruction RMSE being closest to the median error across374

all samples. For the synthetic data, 11 components were randomly selected for display in Figures375

3 and 4, due to the impracticality of displaying all 784 components. Each figure displays results376

from different instances of models, all trained with 4800 samples but each initialized with a unique377

random seed. For the fMRI data, all 11 ICA components are displayed in Figures 5 and 6.378
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Figure 3: Representative example of a 46-time-step input sequence from the synthetic test set, ac-
companied by its reconstructions from both GOKU-UI and the original GOKU-nets (lacking atten-
tion mechanisms and trained with single shooting). The sample was selected so that its RMSE was
the closest to the median error across all samples. 11 randomly selected components out of the 784
are displayed.

Figure 4: Representative example of a 46-time-step input sequence from the synthetic test set, ac-
companied by its reconstructions from both GOKU-UI and the original GOKU-nets (lacking atten-
tion mechanisms and trained with single shooting). The sample was selected so that its RMSE was
the closest to the median error across all samples. 11 randomly selected components out of the 784
are displayed. This figure is similar to the previous one but presents results from different instances
of the trained models, each initialized with a unique random seed.
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Figure 5: Representative example of a 46-time-steps input sequence for all considered ICA com-
ponents from the empirical fMRI test set, accompanied by its reconstructions from both GOKU-UI
and the original GOKU-nets (lacking attention mechanisms and trained with single shooting). The
sample was selected so that its RMSE was closest to the median error across all samples. The x-axis
represents time steps, each corresponding to 3 seconds.

Figure 6: Representative example of a 46-time-steps input sequence for all considered ICA com-
ponents from the empirical fMRI test set, accompanied by its reconstructions from both GOKU-UI
and the original GOKU-nets (lacking attention mechanisms and trained with single shooting). The
sample was selected so that its RMSE was closest to the median error across all samples. This fig-
ure is similar to the previous one but presents results from different instances of the trained models,
each initialized with a unique random seed. The x-axis represents time steps, each corresponding to
3 seconds.
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