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ABSTRACT

Existing defense models against adversarial examples typically provide either em-
pirical or certified robustness. Adversarially trained models empirically demon-
strate state-of-the-art defense while providing no robustness guarantees for large
classifiers or higher-dimensional inputs. In contrast, a randomized smoothing
framework provides state-of-the-art certification while significantly degrades the
empirical performance against adversarial attacks. In this work, we propose a
novel certification through adaptation technique that transforms an adversarially
trained model into a randomized smoothing classifier during inference to pro-
vide certified robustness for `2 norm without affecting their empirical robustness
against adversarial attacks. One advantage of our proposed technique is that it
allows us to separately choose the appropriate noise level for certifying each test
example during inference. It also leads to outperform the existing randomized
smoothing models for `2 certification on CIFAR-10. Therefore, our work is a step
towards bridging the gap between the empirical and certified robustness against
adversarial examples by achieving both using the same classifier for the first time.

1 INTRODUCTION

Deep neural network (DNN) based models are found to be brittle to minor, adversarially-chosen per-
turbations for their inputs that remain undetectable to human eyes. A DNN classifier that correctly
classifies an image x, can be easily fooled by an adversarial attack to misclassify x + δ (Szegedy
et al., 2014; Goodfellow et al., 2015; Madry et al., 2018). Here, δ is a minor adversarial perturbation
such that the change between x and x+ δ remains imperceptible.

Among the existing successful defense frameworks, adversarial training (AT) produces the best
empirical robustness against the known adversarial attacks without providing any guarantee (Madry
et al., 2018; Tramèr & Boneh, 2019; Zhang et al., 2019; Rice et al., 2020; Gowal et al., 2020). It
trains a DNN classifier using strong adversaries from a specific class of perturbation (e.g., a small
`p-norm) to provide robustness for the same perturbation types. Several certification techniques are
proposed that can be applied to adversarially trained models to certifiably verify if the prediction
of a test example, x remains constant within its neighborhood (Wong & Kolter, 2018; Wang et al.,
2018; Salman et al., 2019b; Dvijotham et al., 2018; Gehr et al., 2018; Sheikholeslami et al., 2021).
However, these certification techniques typically do not scale for larger networks (e.g., ResNet50)
and datasets (e.g., IMAGENET). Hence, currently, we cannot guarantee that a more powerful, not
yet known attack can not break these adversarially trained models. In fact, several recently proposed
empirical defense models are later broken by stronger adaptive adversarial attacks, indicating the
importance of investigating certified defenses with suitable robustness guarantees.

In contrast to adversarial training, randomized smoothing provides a scalable `2-certification frame-
work for any classification model, which is robust against large isotropic Gaussian noise (Cohen
et al., 2019; Salman et al., 2019a). However, the existing randomized smoothing-based certified
models produce significantly lower empirical robustness compared to the AT models. On the other
hand, this technique cannot be applied for AT models as they are not robust against such large ran-
dom Gaussian noises in the standard settings. Towards this, we investigate to bridge the gap between
the state-of-the-art empirical and certifiable robust models against adversarial examples.

In this paper, we present a novel certification through adaptation framework to transform an AT
model into a randomized smoothing framework during inference, providing `2 certification without
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`2 Radius (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 ACR
Baseline 6.96 2.04 0.09 0.0 0.0 0.0 0.0 0.0 0.026
Randσ=0.5 (Cohen et al., 2019) 51.68 40.38 30.25 20.81 13.36 7.71 3.38 0.0 0.488
(Ours) Randσ=0.5 + adaptation 62.91 52.25 40.06 25.57 17.43 10.67 5.46 1.92 0.657
SmoothAdvσ=0.5 (Salman et al., 2019a) 58.82 49.68 42.68 37.55 32.64 27.52 22.42 0.0 0.918
(Ours) SmoothAdvσ=0.5 + adaptation 59.89 50.4 41.76 35.5 30.92 26.1 20.25 15.05 1.008
Adv∞ (Rice et al., 2020) 35.95 29.44 23.51 0.0 0.0 0.0 0.0 0.0 0.317
(Ours) Adv∞ + adaptation 67.96 55.06 43.27 30.55 24.68 18.49 12.11 8.45 0.903
Adv2 (Rice et al., 2020) 41.89 34.15 26.7 0.0 0.0 0.0 0.0 0.0 0.359
(Ours) Adv2 + adaptation 68.84 58.77 49.71 37.74 33.37 28.82 23.65 18.23 1.198
MARCERσ=0.5 (Zhai et al., 2020) 60.0 53.0 46.0 38.0 29.0 19.0 12.0 0.0 0.726
Consistancyσ=0.5 (Jeong & Shin, 2020) 48.9 45.1 41.3 37.8 33.9 29.9 25.2 0.0 0.726

Table 1: CIFAR-10: Certified accuracy at various `2 radii and ACR scores. We train different models by
varying the hyper-parameters for SmoothAdv, Adv2 and Adv∞ (as in (Salman et al., 2019a)) and by choosing
σ = {0.25, 0.5, 0.75} for test-time adaptation to obtain the maximum certified radii for each test example. See
Table 5 and 6 (Appendix) for detailed results on both IMAGENET and CIFAR-10 respectively. We also present
the best reported results for MARCER and Consistancy at σ = 0.5, obtained from their respective papers.

any additional training or architectural modification. Our proposed certification technique consists
of two steps: we first apply a covariate shift adaptation to a classifier against Gaussian noise during
inference for each test example (Cariucci et al., 2017; Li et al., 2016). For our paper, we use the well-
known batch normalization adaptation. This process significantly boosts the performance of the AT
models against the random isotropic Gaussian noises compared to the standard non-robust models.
Hence, we can now directly apply the randomized smoothing based certification technique to provide
`2 certification in the next step. Further, the existing randomized smoothing models require selecting
the noise level at training time. In contrast, our proposed framework can separately choose the
appropriate noise levels for different test examples during inference (Figure 4). Furthermore, we
can also evaluate the input test examples without transforming the AT models to a randomized
smoothing model, ensuring that their empirical performance remains unaffected. Therefore, we are
the first to provide the test-time flexibility to obtain empirically robust predictions as well as certify
their predictions using the same classifier for high-dimensional datasets to the best of our knowledge.
Hence, we improve the reliability of AT models sensitive real-world applications.

Contributions:-

1. We propose a novel certification through adaptation framework that can adapt an AT model
during inference to provide certified robustness. Our experimental results on CIFAR-10
and IMAGENET demonstrate that the proposed certification framework can transform any
AT model into a randomized smoothing classifier to provide certification for `2 norm, even
when the model is learned using `∞-bounded adversaries (Table 1 & Figure 2).

2. One main advantage of our proposed framework is that it allows us to select appropriate
noise levels for different test examples during inference. This leads to outperforming the
existing state-of-the-art randomized smoothing models for `2 certification on CIFAR-10
using AT models (Table 1 & Figure 4). Further, we can provide certification at larger `2
radii for existing randomized smoothing models, improving their overall average certified
radius (ACR).

3. Our results also indicate a strong correlation between empirical and certified robustness
than previously believed (Cohen et al., 2019; Salman et al., 2019a; Tramèr & Boneh, 2019).
In particular, we observe that the empirically stronger AT models lead to better `2 certifi-
cation performance (Figure 5).

2 RELATED WORK

Empirical Defenses and Adversarial Training. Existing defense models against adversarial at-
tacks can be broadly classified into empirical and certified defenses. Empirical defenses demonstrate
empirical robustness against adversarial attacks (Schott et al., 2019; Moosavi Dezfooli et al., 2019;
Nandy et al., 2020; Mao et al., 2021). Adversarial training achieves the state-of-the-art empirical
defense (Madry et al., 2018). It optimizes the following loss function for a DNN classifier, f , to pro-
vide robustness within an ε-bounded threat model for an `p norm, where the perturbations, δ ∈ ∆
are constrained as ∆ = {δ : ||δ||p ≤ ε}:

min
θ

E(x,y)[max
δ∈∆
L(fθ(x+ δ), y)] (1)
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where, θ denotes the model parameters. L is the classification loss.

The inner maximization in Eq. 1 is solved by producing adversarial examples using strong iterative
adversaries, e.g., projected gradient descent (PGD) attack (Kurakin et al., 2016; Madry et al., 2018).
Wong et al. (2020) found that even a single-step fast gradient sign method (FGSM) attack-based AT
models also achieves high empirical robustness (Goodfellow et al., 2015). Zhang et al. (2020) pro-
posed to use the least adversaries for training. Recently Trades (Zhang et al., 2019), Adv-LLR (Qin
et al., 2019) introduced additional regularizers to achieve higher empirical robustness by smoothing
the loss surface. However, Rice et al. (2020) showed that the standard PGD based AT model with
early-stopping criteria provides one of the best empirical defenses for a given perturbation type.
Recent works also explored the importance of different hyper-parameters for adversarial training
(Gowal et al., 2020; Pang et al., 2021) as well as incorporating additional data in a semi-supervised
fashion (Carmon et al., 2019; Uesato et al., 2019) to further improve their empirical robustness.

Certified Defenses. Empirical defenses demonstrate robustness only against the known adversaries
without providing any guarantees. In fact, most empirical defenses proposed in the literature were
later broken by stronger adversaries, highlighting the importance of certified defenses to provide
robustness guarantees (Athalye et al., 2018; Uesato et al., 2018; Jalal et al., 2019).

Several recent works proposed to train neural network models with provable robustness guarantees.
These works include methods based on semi-definite relaxations (Raghunathan et al., 2018), linear
relaxations and duality (Wong & Kolter, 2018; Wong et al., 2018), abstract interpretation (Mirman
et al., 2018), and interval bound propagation (Gowal et al., 2018). Parallel to training a certified
defense, several works also focus on certifying the already trained models (Tjeng et al., 2017; Gehr
et al., 2018; Weng et al., 2018; Wang et al., 2018; Bunel et al., 2018). Recently Mueller et al.
(2021) combined a small certification network with a large, empirically robust AT model using
some selection criteria to boost overall benign accuracy along with empirical robustness for the
certified framework. However, none of these techniques scale for large networks (e.g., ResNet50)
or higher-dimensional datasets (e.g., IMAGENET).

Randomized Smoothing for Certification. A randomized smoothing classifier is not a neural
network. It uses a neural network as its base for classification. Randomized smoothing was initially
proposed as a heuristic defense (Cao & Gong, 2017; Liu et al., 2018) and later shown to be certifi-
able (Lecuyer et al., 2019; Li et al., 2019). Recently, Cohen et al. (2019) and Salman et al. (2019a)
separately provided a tight robustness guarantee for `2-norm. Salman et al. (2019a) provides the
current state-of-the-art `2 certification robustness by adversarially choosing the noise using an adap-
tive attack to train their base classifier. This framework is also analyzed for other `p norms using
different noise distributions as well (Li et al., 2019; Lee et al., 2019; Dvijotham et al., 2020; Yang
et al., 2020). Salman et al. (2020) proposed to incorporate an additional denoising module as a pre-
processing unit to convert a standard DNN classifier into a randomized smoothing model to provide
non-trivial certified robustness. Notably, randomized smoothing is the only scalable certification
framework. Further, it also achieves superior performance for different perturbation types.

While achieving the state-of-the-art certification performance, randomized smoothing significantly
degrades the empirical robustness against adversarial attacks (Lecuyer et al., 2019; Salman et al.,
2019a; Cohen et al., 2019). Towards this, our proposed technique transforms an AT model into a
randomized smoothing classifier without any additional training or architectural modification. Since
AT models already provide the state-of-the-art empirical defense, we achieve both empirical and
certified robustness against adversarial examples using the same classifier.

3 PROPOSED METHODOLOGY

In this section, we first present the background of the randomized smoothing technique and explain
why it is not directly effective for AT models. Next, we present the existing test-time co-variate
shift adaptation for domain adaptations and corruption robustness. Then, we present our proposed
certification through adaptation framework that adapts a DNN model during inference to provide
certified robustness without additional training or architectural modification.

3.1 BACKGROUND ON RANDOMIZED SMOOTHING

Consider a classifier f that maps inputs in Rd to Y classes. The randomized smoothing framework
transforms the original base classifier f into a new, smoothed classifier g. In particular, for an
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input x ∈ Rd, the smoothed classifier g returns the most probable class to be predicted by the base
classifier f under isotropic Gaussian noises of x. That is,

g(x) = argmax
y∈Y

P(f(x+ δ) == y) where, δ ∼ N (0, σ2I). (2)

The noise level, σ controls the trade-off between robustness and accuracy: Increasing σ would
improve the robustness of g at higher `2 radii. However, it degrades the robustness at lower `2 radii
as well as the benign accuracy.

Cohen et al. (2019) presented a tight robustness guarantee based on the Neyman-Pearson lemma for
the smoothed classifier g and gave an efficient algorithm using Monte Carlo sampling for certifying
of g. We can also obtain this guarantee alternatively by explicitly computing the Lipschitz constant
of the smoothed classifier as shown in (Salman et al., 2019a; Yang et al., 2020). The certification
procedure is as follows: Suppose a base classifier f classifies N (x, σ2I) to return the “most prob-
able” class, cA with probability pA = P(f(x + δ) == cA) and the “runner-up” class cB with
probability pB = maxy 6=cA P(f(x + δ) == y). Then, the smooth classifier, g is certifiably robust
around x within an `2 radius of R:

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
(3)

where, Φ−1 is the inverse of the standard Gaussian CDF.

However, computing the exact values of pA and pB is not possible in practice when f is a DNN.
Cohen et al. (2019) addressed this problem using Monte Carlo sampling to estimate some pA and
pB such that pA ≤ pA and pB ≥ pB with arbitrarily high probability. The certified radius for input
x is then computed by replacing pA and pB with pA and pB respectively in Eq. 3.

As we can see in Equation 2 that the original base classifier, f needs to be robust against large Gaus-
sian noises to provide non-trivial robustness certification results. Otherwise, it leads to lower pA
and hence a lower certification of R for the test examples. Existing randomized smoothing-based
models applies custom-trained using explicit Gaussian noises to learn their original base classifier
(Lecuyer et al., 2019; Cohen et al., 2019; Salman et al., 2019a; Zhai et al., 2020; Jeong & Shin,
2020). However, these models produce significantly lower empirical robustness compared to the AT
models. Consequently, AT models are not robust against large Gaussian noises in the standard infer-
ence settings (see Table 2). Hence, we cannot directly use them as the base classifier for randomized
smoothing.

3.2 BACKGROUND ON COVARIATE SHIFT ADAPTATION

Recent works on (Sun et al., 2017; Roy et al., 2019; Huang et al., 2018; Li et al., 2016) and corruption
robustness (Schneider et al., 2020; Nado et al., 2020; Benz et al., 2021) demonstrate the importance
of unsupervised covariate shift adaptation. We use adaptive batch-normalization (BN), one of the
most popular and effective unsupervised covariate shift adaptation mechanisms.

A BN layer computes the mean and variance of the hidden activation maps across the channels to
normalize these activations to N (0, 1) before feeding into the next hidden layer (Ioffe & Szegedy,
2015). It reduces the dependencies among different hidden layers, improving the training efficiency
for deep architectures. Hence, most of the recent DNN architectures frequently incorporate BN
layers for complex machine learning tasks. However, the distributional shifts in the test examples
lead to different activation statistics compared to the training examples. Hence, impacted by the
covariate shift, the statistics estimated during training fail to normalize the activation tensors to
N (0, 1). As a result, it breaks the crucial assumption for the subsequent hidden layers to work.

More formally, let PT : X × Y → R+ as the training distribution and Pt : X × Y → R+ as the
test distribution; where x ∈ X are inputs and y ∈ Y are the corresponding class labels. There exists
covariate shift between training and test distribution iff: PT (y|x)=Pt(y|x) and PT (x) 6= Pt(x)
(Sugiyama & Kawanabe, 2012; Schölkopf et al., 2012). If the covariate shift only affects the first
and second-order moments of the hidden layer feature activations, fh(x), we can remove it using
normalization (Schneider et al., 2020):

PT
(fh(x)− ET [fh(x)]√

VT [fh(x)]

)
PT (x) ≈ Pt

(fh(x)− Et[fh(x)]√
Vt[fh(x)]

)
Pt(x). (4)

4



Under review as a conference paper at ICLR 2022

Covariate shift adaptation using adaptive BN computes the BN statistics from the feature activations,
µt, s2

t , of the test batch. We can adapt them with the existing training statistics, µT , s2
T , obtained

using the training batches as (Cariucci et al., 2017; Li et al., 2016; Schneider et al., 2020):

µ = ρ · µt + (1− ρ) · µT s = ρ · st + (1− ρ) · sT (5)

where, ρ ∈ [0, 1] is the momentum. The choice of ρ = 0 is equivalent to the standard inference setup
with a deterministic DNN classifier in the IID settings. We should choose ρ = 1 when receiving
larger test batches as it can provide a better estimation of the test distributions.

Assumptions for BN adaptation. It is noteworthy that these existing adaptive BN-based frame-
works require a large set of test images from the same covariate shift to estimate the BN parame-
ters. However, this assumption may not hold for several real-world applications, e.g., stateless web
APIs. Also, these test images should be semantically diverse, preferably over multiple classes, to
effectively estimate the test distributions. Hence, it further limits the practical usability of these
frameworks for real-world applications, e.g., autonomous cars.

In contrast to these models for domain adaptation and corruption robustness, our proposed certifi-
cation framework against adversarial examples does not make any such assumptions. In this case,
we already know the perturbation type on which we need to adapt the model to provide the certi-
fication. Hence, we can explicitly pre-select a diverse set of clean images, Xbatch and control the
perturbations to adapt the models, addressing both of these limitations.

Algorithm 1: Steps for CERTIFICATION THROUGH ADAPTATION Algorithm
Input: f : classifier, xtest: test example, σ: desired noise-level, Xbatch: set of clean

images (preselected from validation data or test stream).
Output: Certifiably robust `2 radius of R for xtest.

/* Step 1: Adapt BN parameters using Xbatch with ρ = 1 (Eqn 5). */

1 X̃batch = [x+N (0, σI) ∀ x ∈ Xbatch] // perturb Xbatch with desired noise.
2 fadapt = CLONE(f.train()) // clone f with train-mode.

3 = fadapt(X̃batch) // forward pass for BN parameter adaptation.
4 fadapt.eval() // fix the parameters.

/* Step 2: Certify xtest using Randomized Smoothing framework. */
5 g = GETRANDOMIZEDMODEL(fadapt) // Convert fadapt to randomized-smoothing

classifier g (Eqn 2).
6 R = CERTIFY(g, xtest, σ) // Execute 3 for `2 certification.
7 return R

3.3 PROPOSED CERTIFICATION THROUGH ADAPTATION

The robustness guarantee in Eq. 3 suggests that randomized smoothing gives a framework for cer-
tifying any classifier f that is robust against large Gaussian noises. Previous works proposed cus-
tomized training using explicit Gaussian noise augmentation for their training (Section 3.1). Sub-
sequently, in Section 3.2 we note that robustness against random Gaussian noises of any classifier,
f can be improved by applying covariate shift adaptation using adaptive BN technique without any
additional training. However, it modifies the original base classifier f at each forward pass by re-
computing the BN parameters. Since the certification guarantee in Eq. 3 is provided only for a fixed
base classifier f , we cannot directly apply adaptive BN to provide `2 certification using the ran-
domized smoothing framework. This motivates us to propose a novel certification framework that
applies the covariate shift adaptation using adaptive BN as an offline pre-processing step to improve
the robustness against random Gaussian noises, addressing the above problem.

Our proposed certification through adaptation framework consists of two steps: Given test image
xtest, we first apply the adaptive BN technique to achieve robustness against Gaussian perturba-
tions. Recall that adaptive BN requires a large set of diverse test images to correctly re-estimate
the batch-normalization statistics. However, to provide certification for `2-norm, we only need to
adapt our model against Gaussian perturbations. Hence, we can pre-select a sufficiently large set
of diverse clean images, Xbatch and apply Gaussian perturbations to adapt our classifier, f , as an
offline pre-processing step to obtain fadapt. Alternatively, when a large set of diverse test examples
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are available, we can also use them for our BN adaptation. The Gaussian noise samples should be
drawn from the same isotropic Gaussian distribution N (0, σ2I) as we need to use for the certifica-
tion process. Then, we freeze the model parameters and use the adapted model, fadapt, as our base
classifier to certify the test example, xtest. Hence, the base classifier fadapt remains fixed during
calculating the certification radius R (Equation 3). Our proposed certification through adaptation
technique is presented in Algorithm 1.

Advantages. The main advantage of our proposed framework is that we can adapt the classifier,
f at any noise level σ as an offline pre-processing step, without any additional training (see Figure
4). As we can see in Equation 3, that we should select a large σ to certify at a bigger `2 radius of
R. However, a test image that does not remain robust at higher σ produces a lower value of pA.
It leads to reducing the overall certification radius, R. Hence, providing the flexibility of choosing
appropriate noise levels for different test examples allows us to improve the certification radius, R.

In contrast to our proposed framework, existing randomized smoothing frameworks cannot choose
a different σ at test-time since it typically degrades their overall certification performance. Hence,
they need to fix σ during training their base models or its components.

Applicability. Our proposed certification through adaptation technique can be applied to any
classification model, f with batch-normalization layers. However, note that achieving high accuracy
against large random Gaussian perturbations is only a necessary condition: a randomized smoothing
classifier, g requires to consistently predict the correct class to provide higher certification guarantees
at larger radii. Hence, we achieve non-trivial `2 certification guarantees at very small `2 radii for
standard non-robust DNN classifiers (see Appendix B.1).

On the other hand, for existing randomized smoothing models, we achieve higher certification at
larger `2 radii by adapting their base models with larger σ, improving their overall average certified
radius (ACR) (Table 6 and 5 (Appendix)). However, we could not find any σ to obtain a signifi-
cant improvement at lower `2 radii. In contrast, AT models with our proposed offline adaptation
technique significantly improve their performance against large Gaussian perturbations, providing
non-trivial certification robustness. Experimentally we find that our proposed technique outperforms
the state-of-the-art certification models for the `2 norm.

Finally, while we focus on adaptive BN, there also exists other unsupervised covariate shift adapta-
tion techniques such as self-supervised domain adaptation on single test examples (Sun et al., 2020),
pseudo-labeling (French et al., 2017; Xie et al., 2020) etc. Wang et al. (2020) also proposed to up-
date the normalization parameters by entropy minimization to improve the corruption robustness.
Future studies may also explore these techniques for the offline pre-processing step.

4 EXPERIMENTS

Experimental setup. We use CIFAR-10 (Krizhevsky et al., 2009) and IMAGENET (Deng et al.,
2009) datasets for our experiments. For CIFAR-10, we use pre-activation ResNet18 and ResNet50
for IMAGENET (He et al., 2016a;b). Our AT models are trained using early stopping criteria
(Rice et al., 2020) as follows: For IMAGENET, we use two AT models, Adv∞[`∞ ≤ 4/255] and
Adv2[`2 ≤ 3], learned at `∞ and `2 threat models with threat boundaries of 4/255 and 3 respectively.
For CIFAR-10, we train multiple AT models with different threat boundaries. For example, we de-
note Adv∞[`∞ ≤ 8/255] and Adv2[`2 ≤ 1] as the AT models for `∞ and `2 threat models, trained
with threat boundaries of 8/255 and 1, respectively. We compare with Baseline and Randσ=0.5 mod-
els. Baseline models are trained using clean images. Randσ=0.5 models are trained by augmenting
random noise, sampled from isotropic Gaussian distribution, N (0, σ2I) with σ = 0.5. We also
compare with the current state-of-the-art certification models, SmoothAdv for CIFAR-10 (Salman
et al., 2019a). Please refer to Appendix A for more details. 1

4.1 PERFORMANCE UNDER GAUSSIAN NOISE.

We first investigate the performance of different classification models under significantly larger
Gaussian perturbations. It is a necessary condition to provide `2 robustness certification. In Table 2,

1For IMAGENET, we obtain Adv∞ and Adv2 from https://github.com/locuslab/robust overfitting and Base-
line and Randσ=0.5 models from https://github.com/locuslab/smoothing.
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(a) IMAGENET (b) CIFAR-10

Model σ = 0 σ = 0.25 σ = 0.5 σ = 0.75 Model σ = 0 σ = 0.25 σ = 0.5 σ = 0.75
Baseline 75.2±0.0 11.8±0.22 0.3±0.01 0.1±0.0 Baseline 95.2±0.0 10.9±0.88 10.6±0.76 10.5±1.19

+ adaptive BN 74.4±0.04 31.0±0.27 7.7±0.24 2.4±0.01 + adaptive BN 95.0±0.57 40.1±0.97 22.0±0.83 17.2±0.66

Adv∞[`∞ ≤ 4/255] 62.8±0.0 3.9±0.03 0.4±0.01 0.2±0.01 Adv∞[`∞ ≤ 8/255] 82.1±0.0 40.2±4.56 16.1±7.85 12.2±5.23

+ adaptive BN 60.8±0.16 53.4±0.15 44.9±0.08 33.7±0.28 + adaptive BN 81.6±0.96 74.2±0.95 62.4±0.64 51.0±1.03

Adv2[`2 ≤ 3] 59.8±0.0 9.8±0.08 0.9±0.01 0.3±0.0 Adv2[`2 ≤ 1] 81.6±0.0 47.5±5.1 21.5±7.79 14.3±5.63

+ adaptive BN 58.3±0.08 53.7±0.14 47.3±0.14 39.8±0.18 + adaptive BN 81.8±0.7 75.8±0.43 64.9±0.73 53.5±1.71

Rand σ=0.5 22.0±0.0 32.8±0.11 60.9±0.04 0.9±0.06 Rand σ=0.5 66.7±0.0 69.1±1.01 61.2±0.84 25.9±1.41

+ adaptive BN 62.7±0.03 62.3±0.18 59.5±0.11 51.4±0.27 + adaptive BN 74.0±2.1 73.0±2.04 66.8±2.01 56.7±0.94

Table 2: Top-1 accuracy of different classifiers under different levels of Gaussian noises augmented to the test
images. We randomly shuffle test images and sample the noises and report (mean ± 2× sd) of five runs.

we present the performance. We observe that when the test examples are sampled from IID settings
as training distributions (i.e., σ = 0 for Baseline, Adv∞, and Adv2 and σ = 0.5 for Randσ=0.5),
these models produces the best results regardless of whether BN adaptation is applied. However, as
we move away from the IID settings by increasing (or decreasing) σ, the performance of all these
models significantly degrades in the standard inference setup. In contrast, covariate shift adaptation
using adaptive BN improves the performance for all models. In particular, AT models achieve sig-
nificantly higher performance gain using adaptive BN than the non-robust baseline models at higher
noise levels. For example, at σ = 0.5, Baseline, Adv2[`2 ≤ 3] and Adv∞[`∞ ≤ 4/255] respectively
achieve top-1 accuracy of 0.3%, 0.4%, and 0.9% for IMAGENET without using BN adaptation (Ta-
ble 2 (a)). However, adaptive BN for Adv2[`2 ≤ 3] and Adv∞[`∞ ≤ 4/255] significantly improves
the top-1 accuracy to 47.3% and 44.9% respectively. In contrast, the baseline model only achieves
7.7% accuracy. We observe similar results for CIFAR-10 in Table 2 (b).

(a) σ = 0 (Clean) (b) σ = 0.25 (c) σ = 0.5 (d) σ = 0.75

Figure 1: Visualizing loss-gradients produced by AT models as we apply different levels of Gaussian noises.

Loss Gradients under Gaussian Noises. To further investigate the performance of AT models,
we visualize the loss gradients for individual pixels of an image as we increase the Gaussian noise
(i.e., σ) (Figure 1). Loss-gradients reflect the most relevant input pixels for classification predictions.
Here, we scale, translate and clip the loss-gradient values without using any sophisticated techniques
(as suggested in Tsipras et al. (2019)). At σ = 0 (i.e., for clean images), the loss-gradients from
AT models align properly with perceptually relevant features (as observed previously (Tsipras et al.,
2019; Etmann et al., 2019)). However, as we choose higher noise using σ=0.5 and σ=0.75, the
overall loss gradients become noisier. Specifically, AT models without adaptation produce sharper
loss gradients (i.e., greater importance) even for background pixels. In contrast, test-time BN adap-
tation produces gradients for the pixels from the object of interest and suppress the gradients for
background pixels (see Figure 1(c) and Figure 1(d)). Hence, they extract the required semantic in-
formation for correct classifications. It is interesting to note that Adv2 produces significantly more
human-aligned loss gradients compared to Adv∞. This behavior is also reflected in their classifica-
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tion (Table 2) and overall certification (Table 1) as we note that Adv2 overall produces much better
performance compared to Adv∞.

4.2 CERTIFICATION USING RANDOMIZED SMOOTHING

We now present the `2 certification results using the randomized smoothing framework as the back-
bone, as proposed in our Algorithm 1. We certify the test images with 99.9% probability. We
estimate the class label probabilities of g (in Equation 3) using Monte-Carlo sampling with 100, 000
noisy samples for each test image, as in Cohen et al. (2019); Salman et al. (2019a). We use the
full test-set for CIFAR-10 and a sub-sample of 500 test images for IMAGENET (as in Cohen et al.
(2019)). We provide the detailed results of certified accuracy along with average certified radius
(ACR) for several models, trained using different specifications and adapting with different σ in
Table 5 and 6 (Appendix).
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Figure 2: Certified top-1 accuracy at various `2 radii
for (Left) IMAGENET using ResNet-50 and (Right)
CIFAR-10 using preactivation ResNet-18.

Certifying AT models. In Figure 2, we
first demonstrate that AT models can pro-
vide non-trivial `2 certified robustness us-
ing our proposed framework for both IMA-
GENET and CIFAR-10 datasets. Here, we
use Adv∞[`∞ ≤ 4/255] and Adv2[`2 ≤ 3]
for ImageNet and Adv∞[`∞ ≤ 8/255] and
Adv2[`2 ≤ 1] for CIFAR-10 and use σ =
0.5 for adaptation and certification using Al-
gorithm 1. We compare with the certification
results of Baseline, Adv∞ and Adv2 models in
the standard settings, without using any adap-
tation and certified at σ = 0.25. We can see
a significant boost of `2 certification results for
both Adv∞ and Adv2 models using our proposed framework. Further, Adv2 models consistently
achieve better performance compared to Adv∞ in terms of certified accuracy. For CIFAR-10, both
Adv∞[`∞ ≤ 8/255] and Adv2[`2 ≤ 1] outperform the standard randomized smoothing frame-
work i.e., Randσ=0.5, certified using σ = 0.5 (Cohen et al., 2019). For IMAGENET, Adv2[`2 ≤ 3]
achieves better certified accuracy compared to Randσ=0.5 beyond `2-radii of 1.5.
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Figure 3: CIFAR-10: Certified top-1 accuracy achieved by (a) Adv∞ and (b) Adv2 models (with test-time
adaptive BN at σ = 0.5), learned at different threat boundaries. (c) Comparison with the state-of-the-art
SmoothAdv models (Salman et al., 2019a), trained at σ = 0.5 using preactivation ResNet-18.

Larger Threat Boundary for Better Certified Robustness. Learning AT models at a higher threat
boundary improves the certification accuracy at higher `2 radii. We demonstrate this phenomena for
both Adv∞ and Adv2 models in Figure 3(a) and 3(b) respectively for CIFAR-10.

Figure 3(c) also compares the certified accuracy of Adv2 models with the existing state-of-the-art
SmoothAdv models (Salman et al., 2019a). SmoothAdv utilizes adversarial training using an adap-
tive attack with `2 threat boundary of ε and Gaussian noises,N (0, σ2I) (See details in Appendix A).
We set the noise to σ = 0.5 and vary ε for their training to compare with different SmoothAdv mod-
els in Figure 3(c). By adapting Adv2 models with σ = 0.5 at test-time using our proposed Algorithm
1, we already achieve similar performance as SmoothAdv. Moreover, unlike existing frameworks,
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we also provide test-time flexibility to adapt the same models using different σ, without retraining,
to improve their certification, as shown below. 2
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Figure 4: Certified accuracy at various `2 radii by varying σ for test-time adaptation of the same models.
Choosing large σ degrades certification at lower `2 radii, while provides better performance at higher `2 radii.

Flexibility of choosing different noise-level σ for certification at test-time. Figure 4 presents the
certification results as we vary σ = {0.25, 0.5, 0.75} for test-time adaptation of the same models
using our Algorithm 1. We note that the choice of large σ degrades certification at lower `2 radii
while providing better performance for higher `2 radii. For each test example, we adapt the models
with appropriate σ that provides the maximum certified radius to obtain the upper envelope of the
certification accuracy curves in Figure 4. This leads to the state-of-the-art certification performance
for Adv2 models, outperforming the existing SmoothAdv models for CIFAR-10 (Table 1). Further
for randomized smoothing models (Figure 4(c)), we consistently provide certification at larger `2
radii by adapting using larger σ values, improving their overall ACR scores (see Table 6 and 5
(Appendix)). Additional results using several models with different training setups are provided in
Figure 7 and 8 (Appendix).
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Figure 5: CIFAR-10: Comparing the certified accuracy of
Adv∞ (Left) and Adv2 (Right) models with and without ap-
plying early-stopping criteria (denoted as Advoverfit).

Over-fitting reduces Certification.
Rice et al. (2020) demonstrate that
AT models overfit as we train without
early stopping criteria. It degrades
their empirical robustness against
adversarial attacks. In Figure 5, we
compare with the certification accu-
racy of such overfitted AT models,
denoted as Advoverfit. We observe
that Advoverfit models also degrade
the certified robustness, in particular,
at higher `2 radii, compared to their
corresponding AT models with early
stopping criteria. These results also indicate that the empirical and certified robustness are closely
related: improving empirical robustness also improves the certified robustness.

5 CONCLUSION

We propose a novel certification through adaptation algorithm that transforms adversarially trained
models into a randomized smoothing classifier using test-time covariate shift adaptation to provide
certified robustness for `2 norm. Unlike existing models using BN adaptation for different applica-
tions, our certification framework does not make any assumptions on the test examples. One main
advantage of our proposed certification algorithm is to separately choose appropriate noise levels σ
during inference for each test example. We achieve the state-of-the-art `2 certification using Adv2

models for CIFAR-10. Finally, while we mainly focus on `2 certification using Gaussian noise, we
can also extend this framework for other types of perturbations as long as randomized smoothing
works (e.g., uniform noise for `1 norm (Yang et al., 2020)) for different applications without any
additional training.

2Since adversarial training for IMAGENET is still at a nascent stage, we did not compare with Salman et al.
(2019a) in this paper.
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6 CODE OF ETHICS AND REPRODUCIBILITY

Code of Ethics. Existing defense models can only provide either empirical or certified robustness
against adversarial attacks for higher dimensional input domains. In this paper, we propose a solu-
tion to provide high performance to achieve both empirical or certified robustness. It allows us to
improve the reliability and trustworthiness for large AI models for sensitive real-world applications.

Reproducibility. The key results of our paper are presented using adversarially
trained models. For CIFAR-10, we train the models using the codes provided in
https://github.com/locuslab/robust overfitting (Rice et al., 2020). For IMAGENET, we ob-
tained the already trained AT models from https://github.com/locuslab/robust overfitting (Rice
et al., 2020). Please refer to Appendix A for more details. We have provided the codes for our
certification algorithms in the supplementary materials for reproducing the results of our paper.
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APPENDIX ORGANIZATION

• Section A: Experimental setup.

• Section B: Additional Results on Certification.

• Section C:Performance against different corruptions

A EXPERIMENTAL SETUP

A.1 IMPLEMENTATION DETAILS

We present our experimental results on CIFAR-10 (Krizhevsky et al., 2009) and IMAGENET (Deng
et al., 2009) datasets. The descriptions of different models and training hyper-parameters are pro-
vided in the following:

A.1.1 CIFAR-10.

We use pre-activation ResNet18 architecture (He et al., 2016b) for our experiments on CIFAR-10.
We apply the SGD optimizer with a batch size of 128. We execute a total of 200 training epochs and
apply a step-wise learning rate decay set initially at 0.1 and divided by 10 at 100 and 150 epochs,
and weight decay 5× 10−4.

AT models (Madry et al., 2018; Rice et al., 2020): Unless and otherwise specified, our AT
models are learned using early stopping criteria as described in (Rice et al., 2020). We learn several
AT models with different threat boundaries for our experiments. We denote them by specifying their
corresponding threat model and threat boundaries. For example, Adv2[`2 ≤ 1.5] denotes an AT
model that is learned using PGD adversary with `2 threat model and a threat boundary of ε = 1.5,
along with early-stopping criteria (Rice et al., 2020). We also learn AT models without using early-
stopping criteria, as in (Madry et al., 2018) for our comparison in Figure 5. These models are
denoted as Advoverfit.

We use projected gradient descent (PGD) adversarial attack (Madry et al., 2018) to train these AT
models as follows: For Adv∞, we use 10 iterations and an `∞ step size of ε/4. For Adv2, we use 10
iterations and an `2 step size of ε/8.5. This is the same experimental setup as in (Rice et al., 2020)).
We choose a small set of 1, 000 images from the CIFAR-10 test set for our validation. We apply
the PGD attack with the same hyper-parameters for our validation during training. We save the best
model using the early-stopping criteria (Rice et al., 2020).

Randomized smoothing model by Cohen et al. (2019): We also train Randσ=0.5 by training with
augmented random noise, sampled from an isotropic Gaussian distributionN (0, σ2I) with σ = 0.5.
Here, we keep the same model architecture, learning rates, batch sizes, and other hyper-parameters
as used to learn the AT models.

Randomized smoothing model by Salman et al. (2019a): We also compare with the state-of-
the-art certification models, called ‘SmoothAdv’, by Salman et al. (2019a) for our experiments on
`2 certification We train the SmoothAdv models by choosing random noise vectors followed by an
adaptive adversarial attack with specified `2 threat boundary of ε at each iteration. The noise vectors
are sampled from an isotropic Gaussian distribution N (0, σ2I).

We note that the training hyper-parameter ε has the most significant impact on the certifi-
cation curve for a SmoothAdv model (please refer to Table 7-15 of (Salman et al., 2019a)
for more details). For our experiments, we train 4 different SmoothAdv models with ε =
{0.25, 0.5, 1, 2} and σ = 0.5 using adaptive PGD attack with 10 steps. We denote them as
SmoothAdvσ=0.5,ε=0.25, SmoothAdvσ=0.5,ε=0.5, SmoothAdvσ=0.5,ε=1 and SmoothAdvσ=0.5,ε=2

respectively. We use the same training set-up and other hyper-parameters as specified in their Github:
https://github.com/Hadisalman/smoothing-adversarial.
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A.1.2 IMAGENET.

We use ResNet50 architecture (He et al., 2016a) for IMAGENET. We obtain the Baseline and
Randσ=0.5 models from (Cohen et al., 2019)3. These models are trained using Gaussian augmented
noises, sampled from isotropic Gaussian distribution N (0, σ2I) with σ = 0.0 (i.e., no noise) and
σ = 0.5 respectively.

The AT models i.e., Adv∞[`∞ ≤ 4/255] and Adv2[`2 ≤ 3] are learned for `∞ and `2 threat models
with threat boundary of 4/255 and 3, respectively. We use the publicly available models provided
by Rice et al. (2020) 4. These models are fine-tuned using PGD-based adversarial training with early
stopping criteria, originally provided by Engstrom et al. (2019) 5.

We resize the input images to 256× 265 pixels and crop 224× 224 pixels from the center. For our
experiments on certification, we use a set of 500 test images by choosing at most 1 sample for each
class.

A.2 CHOICE OF TEST-TIME ADAPTIVE BN HYPER-PARAMETERS

BN adaptation technique is controlled by two hyper-parameters, i.e., the test batch-size and mo-
mentum (ρ) (see Equation 5) to update the statistics of the batch-normalization layers. Assuming
that the test images are obtained independently from the same test distribution, we can efficiently
compute the BN statistics from these images. The hyper-parameter ρ ∈ [0, 1] controls the tread-off
between pre-computed training statistics and test statistics. We can obtain a better estimation of the
test distribution from a large test batch. Hence, we can choose a higher value of ρ.

Here, we compare the top-1 test accuracy of AT models under Gaussian augmented noise with
σ = 0.5 for different choices of ρ and the batch size. We skip the standard baseline models from
our analysis and refer to the previous works (Schneider et al., 2020; Nado et al., 2020) that analyzed
the effects of these hyper-parameters for the standard baseline DNN classifiers.

(a) IMAGENET (b) CIFAR-10

ρ Adv∞ Adv2 ρ Adv∞ Adv2

0.0 (No adaptation) 0.4±0.01 0.9±0.01 0.0 (No adaptation) 16.1±7.85 21.5±7.79

0.1 2.1±0.04 7.7±0.09 0.1 45.1±0.49 46.9±0.48

0.3 20.6±0.16 36.6±0.09 0.3 59.2±0.42 60.8±0.33

0.5 41.1±0.09 45.5±0.13 0.5 62.4±0.27 64.4±0.6

0.7 43.5±0.14 46.7±0.13 0.7 62.8±0.52 64.9±0.31

0.9 44.2±0.12 46.8±0.13 0.9 62.8±0.71 64.9±0.31

1.0 (Full adaptation) 44.8±0.13 47.2±0.14 1.0 (Full adaptation) 62.4±0.64 64.9±0.73

Table 3: Top-1 accuracy using fixed test batch-size = 512 for AT models under Gaussian augmented noise
with σ = 0.5 for different choices of momentum, ρ during inference. We randomly shuffle the test images to
report (mean+ 2× sd) of 5 different runs.

Momentum (ρ). We first investigate the effect of momentum (ρ) as we choose a large batch size
of 512. In Table 3, we present the performance of AT models for different values of ρ. Recall that,
ρ = 1 denotes full adaptation (Equation 5). Here, we completely ignore the training statistics and
recompute the BN statistics using the test batches. In contrast, ρ = 0 represents no adaptation,
i.e., the same as the standard ‘deterministic’ inference setup. In this case, we use the previously
computed BN statistics obtained during training.

We observe that for IMAGENET (Table 3 [Left]) the performance started converging at ρ = 0.7. For
CIFAR-10 (Table 3 [Right]), the convergence started even earlier at ρ = 0.5.

Batch Size. Next, we investigate the minimum size of the test batches to choose ρ = 1 (i.e., full-
adaptation). In Table 4, we fix ρ = 1 and vary the test batch sizes as we evaluate these AT models.
We observe that the performance of these models started improving even when we are using the

3https://github.com/locuslab/smoothing
4https://github.com/locuslab/robust overfitting
5https://github.com/MadryLab/robustness
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(a) IMAGENET (b) CIFAR-10

Batch Size Adv∞ Adv2 Batch Size Adv∞ Adv2

w/o BN adapt 0.4±0.01 0.9±0.01 w/o BN adapt 16.1±7.85 21.5±7.79

8 11.5±0.22 9.1±0.15 8 57.2±1.23 59.5±0.38

16 28.1±0.22 26.7±0.14 16 60.2±0.79 62.3±0.87

32 37.1±0.24 37.6±0.2 32 61.5±0.46 63.6±0.55

64 41.4±0.26 42.9±0.12 64 62.3±0.5 64.0±0.38

128 43.3±0.15 45.4±0.13 128 62.7±0.68 64.4±0.53

256 44.4±0.21 46.7±0.07 256 62.7±0.68 64.9±0.48

512 44.8±0.13 47.2±0.14 512 62.4±0.64 64.9±0.73

Table 4: Top-1 accuracy using fixed ρ = 1 for AT models under Gaussian augmented noise with σ = 0.5 for
different size of test batches during inference. We randomly shuffle the test images to report (mean+2×s.d.)
of 5 different runs.

test batches of size 8. The performance further improves as we choose larger sizes of test batches.
We can see that their performance started converging as we choose the test batches of size 64 for
IMAGENET. On the other hand, the convergence started much earlier for CIFAR-10.

B ADDITIONAL RESULTS ON CERTIFICATION
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Figure 6: `2 Certification for standard non-robust classifiers. For CIFAR-10, we observe that, even after
adaptation, the baseline produces lower certification compared to Adv2[`2 ≤ 1] model without any adaptation.

B.1 `2 CERTIFICATION FOR STANDARD NON-ROBUST CLASSIFIERS

In Figure 6, we present the `2 certification results for standard non-robust classification models
using our proposed Algorithm 1. In Table 2, we note that the adaptive BN technique can also
significantly improve the performance of a non-robust model at lower noise levels, σ. In particular,
for CIFAR-10 dataset, Baseline models using adaptation achieve similar performance as Adv2[`2 ≤
1] without BN adaptation, while produces significantly lower `2 certification robustness. This is
because, Baseline models, even after adaptation cannot consistently predict the same class to provide
higher certified robustness at larger `2 radii. As a result, we can only improve the certified robustness
at smaller `2 radii.
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Figure 7: IMAGENET: Certified top-1 accuracy at various `2 radii as we vary the noise-level, σ at test-time
using proposed Algorithm 1. Adv∞ and Adv2 models are as defined in experimental set-up (section 4). Refer
to Table 5 for complete results of all models and different settings.
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Figure 8: CIFAR-10: Certified top-1 accuracy at various `2 radii as we vary the noise-level, σ at test-time
using proposed Algorithm 1. Refer to Table 6 for complete results of all models and different settings.

IMAGENET

Model BN adaption Certification `2 Radius
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 ACR

Baseline - at σ = 0.25 7.8 4.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.054

at σ = 0.25 at σ = 0.25 50.0 46.4 41.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.445
at σ = 0.50 at σ = 0.50 43.6 39.4 35.8 31.4 27.6 23.4 18.2 0.0 0.0 0.0 0.0 0.607Adv∞[`∞ ≤ 4/255]
at σ = 0.75 at σ = 0.75 31.6 26.4 22.4 18.6 16.8 14.4 11.8 9.4 7.6 5.6 3.6 0.443

Adv∞[`∞ ≤ 4/255] + adapt [Best Radii] (Ours) 50.0 46.4 41.6 31.4 27.6 23.4 18.2 9.4 7.6 5.6 3.6 0.759

at σ = 0.25 at σ = 0.25 53.2 50.2 46.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.480
at σ = 0.50 at σ = 0.50 47.0 43.0 39.0 36.4 32.8 30.8 27.0 0.0 0.0 0.0 0.0 0.711Adv2[`2 ≤ 3.00]
at σ = 0.75 at σ = 0.75 37.8 32.2 28.4 26.0 22.4 20.2 19.0 17.4 14.2 12.0 9.6 0.639

Adv2[`2 ≤ 3.00] + adapt [Best Radii] (Ours) 53.2 50.2 46.8 36.4 32.8 30.8 27.0 17.4 14.2 12.0 9.6 0.930

Randσ=0.5 Cohen et al. (2019) - at σ = 0.50 60.8 54.4 47.8 39.0 34.2 29.0 23.8 0.0 0.0 0.0 0.0 0.809
at σ = 0.25 at σ = 0.25 59.8 53.6 46.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.507
at σ = 0.50 at σ = 0.50 58.6 51.0 43.8 37.4 32.2 27.4 22.4 0.0 0.0 0.0 0.0 0.768+ adaptation
at σ = 0.75 at σ = 0.75 48.6 41.6 36.6 31.2 26.2 22.4 18.6 16.8 12.8 8.6 5.4 0.720

Randσ=0.5 + adapt [Best Radii] (Ours) 59.8 53.6 46.6 37.4 32.2 27.4 22.4 16.8 12.8 8.6 5.4 0.973

Table 5: IMAGENET: Certified top-1 accuracy at various `2 radii as we vary σ for BN adaptation
and certification along with average certified radii (ACR). We use ResNet50 for IMAGENET. Each
gray block is corresponding to one classification model while the rows are corresponding to its
certification performances as we choose different noise levels for adaptations and certifications. The
Best Radii are obtained by selecting the highest radius for each test example as we adapt the models
with different noise levels, σ.
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CIFAR-10
Model BN adaption Certification `2 Radius

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 ACR

Baseline - at σ = 0.25 6.96 2.04 0.09 0.0 0.0 0.0 0.0 0.0 0.026

at σ = 0.25 at σ = 0.25 67.96 50.46 31.96 0.0 0.0 0.0 0.0 0.0 0.485
at σ = 0.50 at σ = 0.50 47.34 31.83 18.78 9.98 4.44 1.62 0.28 0.0 0.350Adv∞[`∞ ≤ 4/255]
at σ = 0.75 at σ = 0.75 26.89 15.92 8.44 4.31 2.03 0.79 0.23 0.08 0.146
at σ = 0.25 at σ = 0.25 66.43 55.06 42.86 0.0 0.0 0.0 0.0 0.0 0.527
at σ = 0.50 at σ = 0.50 53.65 42.91 32.58 22.68 14.24 7.88 2.94 0.0 0.515Adv∞[`∞ ≤ 8/255]
at σ = 0.75 at σ = 0.75 39.96 30.76 22.01 14.64 8.84 4.81 2.29 1.15 0.352
at σ = 0.25 at σ = 0.25 60.52 52.42 43.27 0.0 0.0 0.0 0.0 0.0 0.499
at σ = 0.50 at σ = 0.50 51.53 43.94 36.41 28.69 21.25 14.53 8.03 0.0 0.581Adv∞[`∞ ≤ 12/255]
at σ = 0.75 at σ = 0.75 42.61 35.56 28.47 22.39 16.69 11.58 7.42 4.43 0.482
at σ = 0.25 at σ = 0.25 53.75 47.57 41.18 0.0 0.0 0.0 0.0 0.0 0.454
at σ = 0.50 at σ = 0.50 48.07 42.51 36.54 30.55 24.68 18.49 12.11 0.0 0.598Adv∞[`∞ ≤ 16/255]
at σ = 0.75 at σ = 0.75 42.05 36.42 31.24 26.05 20.74 16.15 12.01 8.45 0.557

Adv∞ + adapt [Best Radii] (Ours) 67.96 55.06 43.27 30.55 24.68 18.49 12.11 8.45 0.903

at σ = 0.25 at σ = 0.25 68.84 54.04 37.13 0.0 0.0 0.0 0.0 0.0 0.518
at σ = 0.50 at σ = 0.50 48.81 33.82 20.95 11.5 5.64 2.29 0.62 0.0 0.382Adv2[`2 ≤ 0.50]
at σ = 0.75 at σ = 0.75 27.38 16.15 9.23 4.56 2.06 0.91 0.33 0.08 0.153
at σ = 0.25 at σ = 0.25 68.02 58.54 46.98 0.0 0.0 0.0 0.0 0.0 0.551
at σ = 0.50 at σ = 0.50 56.45 46.24 35.6 26.89 18.73 11.37 5.41 0.0 0.580Adv2[`2 ≤ 1.00]
at σ = 0.75 at σ = 0.75 43.04 33.08 24.81 17.68 11.39 6.6 3.57 1.95 0.405
at σ = 0.25 at σ = 0.25 67.13 58.77 49.43 0.0 0.0 0.0 0.0 0.0 0.557
at σ = 0.50 at σ = 0.50 57.73 48.8 39.64 31.07 22.61 15.82 8.96 0.0 0.647Adv2[`2 ≤ 1.25]
at σ = 0.75 at σ = 0.75 46.54 37.53 29.35 22.0 15.62 10.51 6.55 3.68 0.496
at σ = 0.25 at σ = 0.25 64.21 57.13 49.71 0.0 0.0 0.0 0.0 0.0 0.543
at σ = 0.50 at σ = 0.50 56.55 49.19 41.72 34.47 27.36 20.23 12.98 0.0 0.689Adv2[`2 ≤ 1.50]
at σ = 0.75 at σ = 0.75 47.73 40.89 33.78 27.22 20.78 15.19 10.51 6.77 0.585
at σ = 0.25 at σ = 0.25 60.4 54.71 48.35 0.0 0.0 0.0 0.0 0.0 0.523
at σ = 0.50 at σ = 0.50 54.27 48.89 43.1 37.34 31.52 25.74 19.14 0.0 0.731Adv2[`2 ≤ 2.00]
at σ = 0.75 at σ = 0.75 47.96 42.54 37.04 31.65 26.17 21.12 16.59 12.44 0.698
at σ = 0.25 at σ = 0.25 57.08 52.5 47.11 0.0 0.0 0.0 0.0 0.0 0.504
at σ = 0.50 at σ = 0.50 52.1 46.99 42.26 36.9 31.58 26.08 20.03 0.0 0.724Adv2[`2 ≤ 2.25]
at σ = 0.75 at σ = 0.75 46.45 41.71 36.75 31.88 26.95 22.33 17.82 13.55 0.713
at σ = 0.25 at σ = 0.25 54.88 50.79 46.29 0.0 0.0 0.0 0.0 0.0 0.487
at σ = 0.50 at σ = 0.50 50.53 46.26 41.84 37.74 33.2 28.69 23.34 0.0 0.734Adv2[`2 ≤ 2.50]
at σ = 0.75 at σ = 0.75 45.95 41.89 37.53 33.55 29.31 25.27 20.98 17.28 0.765
at σ = 0.25 at σ = 0.25 53.82 49.69 45.04 0.0 0.0 0.0 0.0 0.0 0.475
at σ = 0.50 at σ = 0.50 49.41 45.57 41.52 37.43 33.37 28.82 23.65 0.0 0.720Adv2[`2 ≤ 3.00]
at σ = 0.75 at σ = 0.75 45.37 41.54 37.75 33.49 29.35 25.62 21.83 18.23 0.771

Adv2 + adapt [Best Radii] (Ours) 68.84 58.77 49.71 37.74 33.37 28.82 23.65 18.23 1.198

Randσ=0.5 - at σ = 0.50 51.68 40.38 30.25 20.81 13.36 7.71 3.38 0.0 0.488
at σ = 0.25 at σ = 0.25 62.91 52.25 40.06 0.0 0.0 0.0 0.0 0.0 0.497
at σ = 0.50 at σ = 0.50 57.58 46.46 35.5 25.57 17.43 10.67 5.46 0.0 0.575+ adaptation
at σ = 0.75 at σ = 0.75 46.4 35.63 26.06 18.17 11.61 6.86 3.64 1.92 0.427

Randσ=0.5 + adapt [Best Radii] (Ours) 62.91 52.25 40.06 25.57 17.43 10.67 5.46 1.92 0.657

SmoothAdvσ=0.5,ε=0.25 - at σ = 0.50 57.8 47.63 37.41 27.88 20.33 13.53 8.03 0.0 0.609
at σ = 0.25 at σ = 0.25 58.74 48.29 36.7 0.0 0.0 0.0 0.0 0.0 0.464
at σ = 0.50 at σ = 0.50 54.0 42.91 32.63 23.6 16.08 9.93 5.5 0.0 0.535+ adaptation
at σ = 0.75 at σ = 0.75 43.15 32.29 23.61 16.41 10.94 6.65 3.88 2.16 0.390

SmoothAdvσ=0.5,ε=0.50 - at σ = 0.50 58.82 49.68 40.35 31.93 24.18 17.05 10.57 0.0 0.661
at σ = 0.25 at σ = 0.25 59.89 50.4 39.99 0.0 0.0 0.0 0.0 0.0 0.483
at σ = 0.50 at σ = 0.50 55.73 45.79 36.6 27.4 20.03 13.48 7.85 0.0 0.592+ adaptation
at σ = 0.75 at σ = 0.75 46.25 36.72 28.2 20.9 14.73 9.46 5.78 3.32 0.470

SmoothAdvσ=0.5,ε=1.0 - at σ = 0.50 56.53 49.53 41.38 34.63 27.81 21.22 14.41 0.0 0.691
at σ = 0.25 at σ = 0.25 57.13 48.38 39.7 0.0 0.0 0.0 0.0 0.0 0.467
at σ = 0.50 at σ = 0.50 53.56 45.79 37.64 30.06 23.12 17.27 11.14 0.0 0.620+ adaptation
at σ = 0.75 at σ = 0.75 47.17 39.4 31.8 24.74 18.93 13.7 9.26 5.8 0.545

SmoothAdvσ=0.5,ε=2.0 - at σ = 0.50 52.82 47.67 42.68 37.55 32.64 27.52 22.42 0.0 0.732
at σ = 0.25 at σ = 0.25 52.23 47.24 41.76 0.0 0.0 0.0 0.0 0.0 0.451
at σ = 0.50 at σ = 0.50 50.28 45.24 40.39 35.5 30.92 26.1 20.25 0.0 0.692+ adaptation
at σ = 0.75 at σ = 0.75 46.7 41.79 37.14 33.05 28.28 23.88 19.34 15.05 0.727

SmoothAdvσ=0.5 [Best Radii] 58.82 49.68 42.68 37.55 32.64 27.52 22.42 0.0 0.918
SmoothAdvσ=0.5 + adapt [Best Radii] (Ours) 59.89 50.4 41.76 35.5 30.92 26.1 20.25 15.05 1.008

MARCERσ=0.5 (Zhai et al., 2020) 60.0 53.0 46.0 38.0 29.0 19.0 12.0 0.0 0.726
Consistancyσ=0.5 (Jeong & Shin, 2020) 48.9 45.1 41.3 37.8 33.9 29.9 25.2 0.0 0.726

Table 6: CIFAR-10: Certified top-1 accuracy at various `2 radii as we vary σ for test-time BN adaptation
along with average certified radii (ACR) for individual settings. Each gray block is corresponding to one
classification model while the rows are corresponding to its certification performances as we choose different
noise levels for adaptations and certifications. The Best Radii are obtained by training different models with
varying hyper-parameters and adapting them with different noise levels during inference. We also present the
best reported results for MARCER (Zhai et al., 2020) and Consistancy Jeong & Shin (2020) at σ = 0.5,
obtained from the respective papers.

C PERFORMANCE AGAINST DIFFERENT CORRUPTIONS

We mainly focus on `2 certification using Gaussian noise in this paper. However, we note that ran-
domized smoothing techniques have been also applied to provide certifications for other perturbation

19



Under review as a conference paper at ICLR 2022

types as well (e.g., random uniform noise for `1 norm (Yang et al., 2020)). Consequently, we can
apply our proposed Algorithm 1 to adapt an AT model for any given perturbation types without any
additional training for different applications.

Further, Hendrycks & Dietterich (2019) recently introduced ImageNet-C and CIFAR10-C datasets
by algorithmically generated random corruptions from noise, blur, weather, and digital categories
with 5 different severity levels for each corruption. Several recent works demonstrated that adaptive
BN techniques can significantly improve the performance of any classifier (including AT models)
against different random corruptions. Further, – also demonstrated the effectiveness of AT models
even without applying any adaptation. Hence, our proposed certification framework for AT models
is a step forward towards further improving the reliability of sensitive real-world applications.
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