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ABSTRACT

To improve generalization performance by modifying the training dynamics, we
present theoretical analyses of a modified natural gradient descent method in
the neural network function space, leveraging the neural tangent kernel theory.
Firstly, we provide an analytical expression for the function acquired through this
modified natural gradient descent under the assumptions of an infinite network
width limit and a Gaussian conditional output distribution. Subsequently, we
explicitly derive the generalization error associated with the learned neural network
function. By interpreting the generalization error as stemming from the distribution
discrepancy between the training data and the true data, we propose a criterion
for modification in the eigenspaces of the Fisher information matrix to reduce the
generalization error bound. Through this approach, we establish that modifying the
training direction of the neural network in function space leads to a reduction in
generalization error. These theoretical results are also illustrated through numerical
experiments. Additionally, we demonstrate the connections between this theoretical
framework and existing results of generalization-enhancing methods.

1 INTRODUCTION

Neural networks have achieved impressive success in tackling various challenging tasks appeared in
real world. However, understanding the generalization performance of neural networks remains a
complex and intricate problem for researchers.

Many factors affect generalization error of a model, such as the structure of neural network, the
datasets utilized, the optimization algorithm chosen for training. A modern neural network always
possessed more than millions of parameters, resulting in highly complex parameter space that make
it extremely challenging to analyze their generalization error. However, a clearer perspective emerges
when considering in the function space, since neural network is devoted to approximate the true
model in a function space rather than parameter space. Recently, the seminal work of [16] proved
that in infinite width limit, the parameter-update based training dynamics can be converted to a
differential dynamical system associated with Neural Tangent Kernel (NTK) in function space. But
conventional gradient descent optimization algorithms such as Stochastic Gradient Descent (SGD)
[9], RMSProp [37], Adam [21] are only operate directly in parameter space. Natural Gradient [3],
which utilizes curvature information, is a reparameterization invariant gradient based optimization
method which exhibits a strong connection with function space. In function space, the training
dynamics of neural network can be interpreted as training in each eigenspace [36; 8]. Since different
eigenspace associated with different spectrum contributes differently to the training dynamics[8]
and consequently to the generalization error, there might exist an operation to modify the training
dynamics in eigenspaces to enhance the generalization performance of the function learned. Building
upon the aforementioned insights, we firstly propose an approximate explicit solution of an over-
parameterized neural network trained by Modified natural gradient descent (Modified NGD) under
specific assumptions. Based on the explicit solution, we interpret the generalization error as stemming
from the distribution discrepancy between the training data and the true data, then propose a criterion
for modification in the eigenspaces of the Fisher information matrix to reduce the generalization error
bound.

Several methods have been proposed to enhance generalization performance, including gradient
suppression in cross-domain-generalization [15] and self-distillation [39; 30]. Connections exist
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between these methods and our theoretical framework, for these methods implicitly modify the
eigenvalues of the Fisher information matrix in function space and consequently the training direction
in the function space.

2 RELATED WORK

Since neural network is a complex system, whose generalization error is difficult to track, it is
reasonable to simplify the case to more trackable and representative models such as kernel method.
With kernel method, there are many impressive results on generalization error bounds [10; 6; 17;
26; 34; 8]. The classical results of Bartlett [6] proved that the generalization error bound of kernel
method is positively correlated with the trace of the kernel. Jacot et al. [17] derived a risk estimator
for kernel ridge regression. [26] derived a closed-form generalization error of kernel regression for
teacher-student distillation framework. [34] revealed that the convergence rate of kernel method. And
[8] decomposed the average generalization error into eigencomponents under the Mercer’s condition.

The forward process of an infinite-width neural network can be described using a concept known
as Neural Network Gaussian process (NNGP) [24]. Consequently, wide neural networks can be
approximated by linear models [22]. Additionally, a well-established theoretical result of Jacot
[16] has demonstrated that in infinite width limit, neural networks are dominated by a constant
kernel referred to as the neural tangent kernel (NTK). This property allows for the application of
results from kernel methods to wide neural networks. Notably, recent theoretical developments
concerning the NTK have provided a rich foundation for analyzing generalization in the NTK regime
[16; 5; 24; 12; 31; 22]. Numerous studies have investigated the impact of overparameterization on
generalization error, revealing that overparameterization tends to lead to convergence toward flat
minima [39; 20], and aids in escaping local minima [33]. Other perspectives view generalization as a
form of compression [4] and neuron unit-wise capacity [23] for analyses. Based on these theoretical
results, many researches have incorporated SGD within the NTK regime. For instance, [38] analyzed
the training loss trajectory of SGD based on the spectrum of a loss operator, while various theoretical
results of generalization error bounds of SGD have been derived in the context of the NTK regime
[35; 11; 1; 25; 23].

Due to the high-dimensional complexity of the neural network parameter space, the effect of SGD
in parameter space is not readily discernible. Natural Gradient Descent (NGD), firstly proposed by
Amari et al. [3], takes into account curvature information in function space. Martens [28] established
a connection between Fisher information matrix and Kullback-Leibler divergence in function space,
demonstrating the reparameterization invariance of NGD. In NTK regime, Bernacchia et al. [7]
derived an explicit expression for the convergence rate of NGD in deep linear neural networks.
Rudner et al. [32] provided an analytical solution of NGD with linearization under infinite width limit.
Additionally, Karakida et al. [19] established that, under specific conditions, existing approximate
Fisher methods for NGD, such as K-FAC [29; 13], exhibit the same convergence properties as exact
NGD.

In this paper, we leveraging the theoretical properties of NGD and NTK to provide an analytical
solution for Modified NGD and derive an explicit expression for generalization error. Utilizing this
expression, we modify the training direction of NGD in function space by modifying the Fisher
information matrix to reduce the generalization error bound. These theoretical results are also
illustrated through numerical experiments. Moreover, we demonstrate the connections between our
theoretical framework and existing results of generalization-enhancing methods, such as [15; 39; 30].

3 PRELIMILARIES

3.1 PROBLEM SETUP

Suppose the distribution of data points and labels is pdata(x, y),where x ∈ Rdin , y ∈ R, the training
set {(xi, yi)}Ni=1 ∼ p̂data(x, y), and the training data and the training label after vectorization is
respectively X = (xi)

N
i=1 and Y = (yi)

N
i=1, then X ∈ RN ·din ,Y ∈ RN . A fully connected neural

network with L layers whose width are respectively dl, l = 1, 2, . . . , L, can be expressed as:

fθ(x) = W (L)σ
(
W (L−1)σ

(
. . . σ

(
W (1)x+ b(1)

)
. . .
)
+ b(L−1)

)
+ b(L) (1)
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where σ is the element-wise activation function, θ =
(
W (1),W (2), . . . ,W (L), b(1), b(2), . . . , b(L)

)
is the weights of the network, W (l) ∈ Rdl−1×dl , b ∈ Rdl for l = 1, 2, . . . , L, with d0 = din and
dL = 1.

The objective of training a neural network using a training set (X ,Y) is to minimize the loss function
with respect to the parameter θ within a parameter space Θ ⊂ RP , where P =

∑L
l=1(dl−1 + 1)dl:

min
θ∈Θ

L (fθ(X ),Y) . (2)

In the following sections, we take L to be L2 loss, i.e.

L (fθ(X ),Y) =
1

2N
∥fθ(X )− Y∥22. (3)

The generalization error, also known as expected risk, is defined as:

Definition 1. Suppose the data distribution is pdata(x, y), and corresponding marginal distributions
are pdata(x) and pdata(y), then for a predictor f , which maps the input x to the output y, the expected
risk of f w.r.t. L2 loss is

R(f) = E(x,y)∼pdata(x,y)

[
∥fθ0(x)− y∥22

]
. (4)

3.2 NATURAL GRADIENT DESCENT

Let H be some function space, and L be a divergence, fθ ∈ H is a parameterized function, then the
natural gradient under Kullback-Leibler divergence (KL divergence) of L(fθ, y) at point θ is defined
as

∇̃θL = F−1∇θL (5)

where F = Ex,y

[
∇θfθ(x, y)∇θfθ(x, y)

⊤] is the Fisher information Matrix of fθ.

Natural Gradient Descent (NGD), defined based on natural gradient is an algorithm with parameter
update rule that

∆θt = −η∇̃θL, (6)

where η is the learning rate.

3.3 MODIFIED NATURAL GRADIENT DESCENT

We propose a noval natural gradient descent algorithm framework called Modified Natural Gradient
Descent (Modified NGD).

Firstly, for a function φ : R → R, we define the φ−transform of a diagonal matrix Λ = (λ1, . . . , λn)
as Λφ = (φ(λ1), . . . , φ(λn)).

Then we define the φ−transform of a matrix A, which apply the transformation φ to its non-zero
singular values as

Aφ = U (Λφ 0)V ⊤, where A = U (Λ 0)V ⊤ is the SVD decomposition of A. (7)

Apply φ−transform to the Fisher information matrix F . With Fφ, we define the Modified NGD as
follows:

∇̃θL =F−1
φ ∇θL,

∆θt =− η∇̃θL
(8)

where η is the learning rate.

In the following sections, we will first derive the analytical solution for Modified NGD. Subsequently,
we will establish, within the NTK regime, that training with Modified NGD using an appropriate
transformation φ yields a lower generalization error compared to conventional NGD.
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4 MAIN RESULTS

4.1 ANALYTICAL SOLUTION OF MODIFIED NGD

Let us begin by outlining the principal assumptions made in this paper:

Assumption 1. For a data point x and a network function f , we assume the output conditional
probability p̃(y|f(x)) is Gaussian:

p̃(y|f(x)) = 1√
2πσ0

e
(y−f(x))2

2σ2
0 . (9)

Assumption 2. (NTK Regime Assumption) The neural network is with linear output layer and
Lipschitz activation function. The wights of neural network are initialized using He initialization
[14]. And the width of the layers of the neural network tends to infinity, as indicated in the network
expression 1 that :

nl → ∞, l = 1, 2, . . . , L− 1. (10)

Assumption 3. The neural network is with linear output layer and Lipschitz activation function.
The wights of neural network are initialized with He initialization [14]. And the neural network is
overparameterized, which is typically described as having layer widths exceeding a polynomial order
of the training sample size[2; 5; 18; 24], that is

min
l∈{1,...,L}

dl > poly(N). (11)

which generally means that P ≫ N .

Assumption 4. The neural tangent kernel at initialization is positive definite, or equivalently, the
following term is positive definite:

∇θfθ0(X )∇θfθ0(X )⊤

Assumption 5. For simplicity and without loss of generality, we take the transform φ as the following
form:

φ(ξ) =

{
0, if c(ξ) = True
ξ, if c(ξ) = False.

(12)

For some criterion c that takes binary values.

Since the empirical Fisher F̃ (θt) ∈ RP×P is given by

F̃ (θt) =
1

N
Ep̃(y|f(X ))

[
∇θ log p̃(y|f(X ))∇θ log p̃(y|f(X ))⊤

]
=

1

N
Ep̃(y|f(X ))

[
∇θf(X )⊤∇f log p̃(y|f(X ))∇f log p̃(y|f(X ))⊤∇θf(X )

]
.

(13)

Under Assumption 1, the empirical Fisher 32 can be written as

F̃ (θt) =
1

Nσ2
0

∇θf(X )⊤∇θf(X ). (14)

Under Assumption 2, the neural network has a linearization expression as:

fθt(x) = fθ0(x) +∇θfθ0(x)(θt − θ0). (15)

Under the linearization, the Jacobian matrix of fθ remains constant. Therefore, the NTK and the
Fisher are both constant during training. Denoting the Jacobian matrix of fθt evaluated on training
data points X at θt as Jt(X ), and abbrevating J0(X ) for J unless otherwise specified.

Under Assumption 3, equation 15 is an approximation for the network function and the following
analyses are based on this linear approximation. We can apply SVD decomposition to Jacobian
matrix J :

J = U (Λ 0N,P−N )V T (16)
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where U ∈ RN×N , V ∈ RP×P are both orthogonal matrices, that is UU⊤ = U⊤U =
IN , V V ⊤ = V ⊤V = IP , and Λ = diag(λ1, . . . , λN ) with λ1 ≥ · · · ≥ λN > 0. Thus, we
have the NTK Kt and empirical Fisher information matrix F̃ (θt) that

Kt = K0 = JJ⊤ = UΛ2U⊤,

F̃ (θt) = F̃ (θ0) =
1

Nσ2
0

J⊤J =
1

Nσ2
0

V

(
Λ2 0
0 0

)
V ⊤.

(17)

The modification operation under assumption 5 on Λ2 can be written as

(Λ2)φ = diag
(
φ
(
λ2
1

)
, . . . , φ

(
λ2
N

))
= Λ2Ic(Λ2). (18)

where Ic(Λ2) is a modified identity whose positions being set zeros if the criterion c for the corre-
sponding positions of Λ2 hold.

Thus the pseudo inverse of empirical Fisher information matrix evaluated at θ0 can be wriiten as(
F̃φ

)†
≜
(
F̃φ(θ0)

)†
= Nσ2

0V

([(
Λ2
)
φ

]†
0

0 0

)
V ⊤ = Nσ2

0V

(
Λ−2Ic(Λ2) 0

0 0

)
V ⊤. (19)

Then we can derive the analytical solution of Modified NGD with training set X and Y .
Theorem 1. Under Assumptions 1, 3, 4, and linearization approximation equation 15, with L2 loss
and the decomposition equation 17, the solution of Modified NGD 8 trained on X and Y for time T
has prediction fθT (x) on the test point x ∼ pdata(x), which can be expressed analytically as:

fθt(x) = fθ0(x)−
1

σ2
0

(
1− e−ηNσ2

0t
)
J(x)

(
F̃φ

)†
∇θ0L(f(X ),Y). (20)

The proof of Theorem 1 can be found in the Appendix.
Remark 1. From the proof of Theorem 1, we can see that

∂fθt(X )

∂t
= −ηJ

(
F̃φ

)†
J⊤ (fθt(X )− Y) ,

and
∂fθt(x)

∂t
= −ηJ(x)

(
F̃φ

)†
J⊤ (fθt(X )− Y) .

The modification on Fisher information matrix will change the training direction of ft in function
space, and consequently influence the convergence point of ft. Hence, selecting an appropriate
modification can potentially reduce the generalization error of the convergence function trained using
Modified NGD.

Theorem 1 gives the neural network function trained by Modified NGD algorithm for time T . As the
convergence theory of NG algorithm [7], we claim that the network function trained by Modified
NGD converges as T → ∞.
Corollary 1. Under the same assumptions as Theorem 1, the network function trained by Modified
NGD converges to fθ∞(x) as T → ∞,

fθ∞(x) = lim
T→∞

fθT (x) = fθ0(x)−
1

σ2
0

J(x)
(
F̃φ

)†
∇θ0L(f(X ),Y). (21)

Based on the solutions given by Theorem 1 and Corollary 1, we can analyze the generalization error
of the network function trained by Modified NGD on training set. In the next subsection, we will
derive the generalization error of the convergence network function and corresponding criterion for
modification to reduce this generalization error bound.

4.2 GENERALIZATION ERROR BOUND REDUCTION

For the convergence network function fθ∞ in equation 21 trained by Modified NGD, we can derive the
generalization error of the convergence network function and corresponding criterion for modification
to reduce this generalization error bound.
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Theorem 2. Under the same assumptions as Theorem 1, the expected risk of fθ∞ trained by Modified
NGD in Corollary 1 can be expressed as:

R(fθ∞) =Ex

[
(fθ0(x)− y)

2
]
− 2

σ2
0

Ex,y

[
∇θ0L(f(x), y)⊤

] (
F̃φ

)†
∇θ0L(f(X ),Y)

+
1

σ2
0

∇θ0L(f(X ),Y)⊤
(
F̃φ

)†
F ⋆
(
F̃φ

)†
∇θ0L(f(X ),Y).

(22)

where F ⋆ = Ex,y

[
1
σ2
0
J(x)⊤J(x)

]
is the Fisher information matrix on the true data distribution.

Denote α(x, y) = fθ0(x) − y, α(X ,Y) = fθ0(X ) − Y , and U = (u1 . . . uN ). Then with
defining the criterion c(λ2

i ), where λi > 0, to be True when the following inequality holds

λi

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0u

⊤
i α(X ,Y)

<
1

2
(23)

the Modified NGD will reduce the generalization error bound.

The proof of Theorem 2 can be found in the Appendix.

Remark 2. From the proof of Theorem 2, it shows that the ideal modified Fisher should satisfy the
condition (

F̃φ⋆

)†
∇θ0L(f(X ),Y) = (F ⋆)

† Ex,y[∇θ0L(f(x), y)]. (24)

On the left-hand side is the modified training direction in parameter space, while the right-hand
side represents the training direction on the true data distribution. This condition implies that the
modified training direction should closely align with the training direction based on the true data
distribution. Consequently, the training direction in function space is adjusted to closely match the
true model function.

Remark 3. If the distribution of training data is consistent with the distribution of true data, then by
the law of large number, when the sample size N is large enough, we have

F̃ ≈F ⋆,

∇θ0L(f(X ),Y) ≈Ex,y[∇θ0L(f(x), y)].
(25)

In this case, when F̃φ⋆ = F̃ , it serves as the optimal candidate for equation 24, signifying that no
modification is necessary in the absence of distribution discrepancy. And the criterion

λi

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0u

⊤
i α(X ,Y)

≈
λi(V

⊤
(

1
Nσ2

0
J⊤J

)†
1
N J⊤α(X ,Y))i

σ2
0u

⊤
i α(X ,Y)

=
λi

(
λ−1
i u⊤

i α(X ,Y)
)

u⊤
i α(X ,Y)

= 1 <
1

2
.

(26)

This observation also recommends no modification of the Fisher matrix when the distributions of the
training data and the true data are consistent, aligning with empirical claims.

5 NUMERICAL EXPERIMENTS

This section aims to illustrate our theoretical results of Modified NGD. Specifically, based on the
theoretical criterion for modification, the Modified NGD can reduce the generalization error compared
with ordinary NGD and NGD with modifications with other criteria. It’s important to note that the
primary goal in conducting these experiments is to provide empirical support for our theoretical
results, rather than proposing a practical algorithm1.

1All codes, data and results are available in the Supplementary Materials. More details can be found in the
Appendix.
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Due to the high dimension of Fisher, we have refrained from employing complex network architec-
tures. With the dicussions of the discrepancy bounds of NTK regime and general neural network
[16; 5; 32], our theoretical and numerical results is possible to be generalized to general deep neural
networks (DNN).

We illustrate our theoretical results through two numerical experiments: the first one employs a
synthetic dataset to validate the effectiveness of our Modified NGD with derived theoretical criterion
23 with distribution discrepancy of dataset; the second one is implemented with HTRU2 dataset,
a realistic dataset which describes a sample of pulsar candidates collected during the High Time
Resolution Universe Survey [27], to present the generality of our therotical results. We use a MLP
model with three hidden layers of 28, 2 and 212 neurons perspectively, with He initialization [14] and
MSE loss as the loss function. σ2

0 in Gaussian conditional output distribution assumption 1 is set as
0.01 for all experiments. For all experiments in this paper, when we perform different optimization
algorithms, except the optimization algorithm itself, all the other settings such as learning rate are
same. Modified NGD uses validation set for the true distribution computation in the criterion 23 to
decide which direction to be modified.

SETUP

Synthetic Dataset Experiments To generate the synthetic data for a function fitting task, we firstly
draw samples uniformly from interval [0, 1), then split the samples to training set with 256 samples,
validation set with 64 samples and test set with 64 samples, and apply perturbation to the training set:

x → xe−
(1−x)2

σ2 (27)
with different perturbation factor of σ2. This perturbation results in different distributions of training
set and test set, while the distributions of the validation set and test set remaining same.

The object of the model is to fit the following function:
f⋆(x) = cosx sinx. (28)

The first tuple of experiments involves two algorithms: NGD and Modified NGD, on training sets
with different perturbations. For robustness and reliability, we conduct each experiment using 20
random seeds, and the results are reported on the average. We implements the numerical experiments
with the perturbation factors σ2 being set as: 10, 5, and 1.

The second tuple of experiments aim to demonstrate that the advantages of Modified NGD are not
the result of arbitrary eigenvalue truncation in the Fisher information matrix, but the effectiveness
of the theoretical criterion 23. In this tuple of experiments, we employ with four algorithms: NGD,
Modified NGD, NGD with small eigenvalues being cut and NGD with large eigenvalues being cut.
For the latter two algorithms, the eigenvalues of the Fisher information matrix are modified with
specific criteria: small eigenvalues are set to zero while preserving the larger ones in one case, and
large eigenvalues are set to zero while preserving the smaller ones in the other. Importantly, we
ensure the number of Fisher’s non-zero eigenvalues being same after modification for the latter three
algorithms. The training set is sujected to a perturbation factor of σ2 = 1.

For all experiments on synthetic dataset, the initial learning rate is set as 1 with learning rate half
decay and train for 500 epochs.

HTRU2 Dataset Experiments The HTRU2 dataset contains total 17,898 examples, 16,259 spurious
examples caused by RFI/noise, and 1,639 real pulsar examples. These examples have all been checked
by human annotators. Each candidate is described by 8 continuous variables. We implemented two
algorithms: NGD and Modified NGD on HTRU2 dataset.

The first experiment is implemented with HTRU2 dataset splited to training set, validation set and
test set of ratio 8 : 1 : 1, and the three sets are of similar distribution that negative examples : positive
examples ≈ 0.91 : 0.09.

In the second experiments, the distribution of training set is made different from validation set and test
set, where negative examples : positive examples = 0.875 : 0.125 in training set while 0.75 : 0.25 in
validation set and test set.

For all experiments on HTRU2 dataset, the initial learning rate is set as 1 with learning rate half decay
and train for 200 epochs.

7



Under review as a conference paper at ICLR 2024

RESULTS

Synthetic Dataset Experiments The numerical results of the first tuple of experiments on synthetic
dataset are depicted in Figure 1 and figure 2. In figure 1, figure 1a, figure 1b and figure 1c are the
test loss results trained on training data perturbed with the perturbation factor of σ2 = 10, 5 and 1,
perspectively. These results illustrate that Modified NGD consistently exhibits a lower generalization
error compared to NGD across various levels of perturbation in the training data. In the plots, a
line represents the mean on random seeds and the envelope around it reflects 0.3 times standard
deviation, the start point of the plots is the 50th epoch. Notably, as σ2 decreases, indicating a decrease
in the homogeneity between the training and test sets, a degradation in NGD’s performance arises
compared to Modified NGD. Figure 2 provides insight into the trend of the difference between NGD
and Modified NGD at the convergence point. It becomes evident that this difference decreases as the
distribution of the training and test sets approaches similarity. Figure 3 presents the results of the
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Figure 1: The test loss of NGD and Modified NGD with different degrees of perturbation.
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Figure 3: The results of algorithms with different modifica-
tion criteria.

second tuple of experiments conducted on synthetic dataset with the perturbation factor of σ2 = 1.
The test loss of these four algorithms are shown in left subfigure of figure 3, the start point of the
plot is the 50th epoch. The experimental results demonstrate that modifying eigenvalues through the
criteria of "cutting small" or "cutting large" is indeed effective in reducing the generalization error.
However, our proposed criterion 23 consistently outperforms these approaches, thus validating our
theoretical results. The right subfigure of figure 3 illustrates the proportion of eigenvalues of Fisher
information matrix being preserved during 500 training epochs. It can be obeserved that almost all
eigenvalues would be modified in some epochs, and smaller one are more likely to be modified.
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Figure 4: Results on HTRU2 dataset.
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Figure 5: Results on perturbed HTRU2 dataset.
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HTRU2 Dataset Experiments The numerical results of the first and second experiment on HTRU2
dataset are depicted in Figure 4 and figure 5, respectively. The left subfigure of figure 4 illustrates the
test accuracy of NGD and Modified NGD with more homogeneous training set and test set, while the
left subfigure of figure 5 with more heterogeneous training set and test set, where a line represents the
mean on random seeds and the envelope around it reflects 0.3 times standard deviation, the start point
of the plots is the 0th epoch. The right subfigures of figure 4 and figure 5 illustrate the proportion of
eigenvalues of Fisher information matrix being preserved during 200 training epochs of these two
algorithms. From the results, we can observe that when the training set and test set share a similar
distribution, the test accuracy of both NGD and Modified NGD remains close, with a difference
of less than 1%. However, as the distribution discrepancy between them increases, this difference
escalates to approximately 8%. Additionally, the proportion of preserved eigenvalues indicates that
more eigenvalues would be modified by our criterion 23 when confronted with lerger distribution
discrepancy.

6 CONNECTION WITH EXISTING GENERALIZATION-ENHANCING METHODS

Since the machine learning achieved good performance on a lot of tasks, several algorithms aiming
for enhancing the generalization performance were proposed. There are some connections between
our theoretical framework and thier methods. In the following, we give two examples.

Cross domain generalization Zeyi Huang et al. [15] proposed an intuitive algorithm to enhance
the performance of cross-domain generalization by cutting the largest components of the gradient
∇θL(f(X ),Y), which can be derived as modifying the singular values of the Jacobian matrix as:

∇θ,Cut lagrestL(f(X ),Y) = J ′ (f(X )− Y) , (29)

where J ′ is the transformed Jacobian matrix. Therefore, we can define a Modified NGD with
modified Fisher as

F̃φ ≜ J ′ (J⊤)† . (30)

for some transformation φ that may be in a more general transformation class than the class in
Assumption 5. With this transformation, Modified NGD will possesses the same training directions
as their method in the training dynamics.

Self distillation Self distillation is a post-training method. Mobahi et al. [30] shows that self
distillation amplifies regularization effect at each distillation round, which make the eigenvalues of
the Gram matrix of the kernel of the regularizer evolve. And after several distillation rounds, the new
corresponding kernel’s Gram matrix possesses smaller eigenvalues, thus enhances the generalization
performance. They shown in [30] that the solution of the regularized optimization problem after t
rounds distillation is equivalent to the solution of a modified kernel without distillation

f⋆
t (x) = g⊤

x

† (
c0I +G†)−1 Y. (31)

where g is the Green function of the regularizer ,ci are the regulaization parameters, and G† is the
Gram matrix of the modified Green function. Compared [30] with the solution of Modified NGD,
we can observe that the modified Gram matrix in [30] has the similar role of the modified Fisher
matrix in Modified NGD. And Mobahi et al. [30] proved that the eigenvalues λ†

k of modified Gram
matrix is descending as t increasing. Therefore, in our framework, self distillation employs a mild
modification on training directions in function space introduced by the kernel.

7 CONCLUSION

We firstly presented a Modified NGD framework and proceed to derive an analytical expression
for the function trained by this Modified NGD. Based on this solution, we explicitly computed the
generalization error of the learned neural network function and proposed a criterion to decide the
directions to be modified. We established theoretical results and implemented numerical experiments
to verify that modifying the training direction of the neural network in function space leads to a
reduction in the generalization error bound. Furthermore, We demonstrate the connections between
this theoretical framework and existing results of generalization-enhancing methods.
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A APPENDIX

THE DERIVATION OF EMPIRICAL FISHER INFORMATION MATRIX

Recall Assumption 1. Since the empirical Fisher F̃ (θt) ∈ RP×P is given by

F̃ (θt) =
1

N
Ep̃(y|f(X ))

[
∇θ log p̃(y|f(X ))∇θ log p̃(y|f(X ))⊤

]
=

1

N
Ep̃(y|f(X ))

[
∇θf(X )⊤∇f log p̃(y|f(X ))∇f log p̃(y|f(X ))⊤∇θf(X )

]
.

(32)

If we assume the output probability is Gaussian,

∇f log p̃(y|f(X )) = ∇f

(
(y − f(X )⊤(y − f(X )))

2σ2
0

)
=

y − f(X )

σ2
0

, (33)

Then, the empirical Fisher 32 can be writer as

F̃ (θt) =
1

Nσ4
0

Ep̃(y|f(X ))

[
∇θf(X )⊤(y − f(X ))(y − f(X ))⊤∇θf(X )

]
=

1

Nσ4
0

∇θf(X )⊤Ep̃(y|f(X ))

[
(y − f(X ))(y − f(X ))⊤

]
∇θf(X )

=
1

Nσ4
0

∇θf(X )⊤σ2
0I∇θf(X )

=
1

Nσ2
0

∇θf(X )⊤∇θf(X ).

(34)

PROOF OF THEOREM 1

Proof. Firstly, we derivate the solution of Modified NGD on training set (X ,Y).

The training dynamics of Modified NGD in function space on training set can be write as:

∂fθt(X )

∂t
= ∇θfθt(X )

∂θt(X )

∂t
= −ηJ

(
F̃φ

)†
J⊤ (fθt(X )− Y) . (35)

Since

J
(
F̃φ

)†
J⊤ = Nσ2

0UIc(Λ2)U
⊤ (36)
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∂fθt(X )

∂t
= −ηNσ2

0UIc(Λ2)U
⊤ (fθt(X )− Y) , (37)

we can analytically solve this ODE by

fθt(X ) = Y + e−ηNσ2
0UIc(Λ2)U

⊤t (fθ0(X )− Y)

= Y +
[
I +

(
e−ηNσ2

0t − 1
)
UIc(Λ2)U

⊤
]
(fθ0(X )− Y) , ∀t ∈ [0, T ].

(38)

After that, let us foucs on the function dynamics on test point x ∼ pdata(x). Recall the expression of
fθt(X ) in equation 38, we have

∂fθt(x)

∂t
= −ηJ(x)

(
F̃φ

)†
J⊤ (fθt(X )− Y)

= −ηJ(x)
(
F̃φ

)†
J⊤
[
I +

(
e−ηNσ2

0t − 1
)
UIc(Λ2)U

⊤
]
(fθ0(X )− Y)

= −ηNσ2
0J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤

[
I +

(
e−ηNσ2

0t − 1
)
UIc(Λ2)U

⊤
]
(fθ0(X )− Y)

= −ηNσ2
0e

−ηNσ2
0tJ(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y) .

(39)
Integrad by t in the two sides of this equation, we get

fθt(x) =fθ0(x)−
(
1− e−ηNσ2

0t
)
J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

=fθ0(x)−
1

Nσ2
0

(
1− e−ηNσ2

0t
)
J(x)

(
F̃φ

)†
J⊤ (fθ0(X )− Y)

=fθ0(x)−
1

σ2
0

(
1− e−ηNσ2

0t
)
J(x)

(
F̃φ

)†
∇θ0L(f(X ),Y).

(40)

This solution holds for ∀t ∈ [0, T ]. In particular, it holds for t = T , which concludes the proof.

PROOF OF THEOREM 2

Proof. Recall the definition of expected risk and the expression of f∞ that

fθt(x) = fθ0(x)− J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y) . (41)

We have

R(fθ∞) = E(x,y)∼pdata(x,y)

[
(fθ∞(x)− y)2

]
= Ex

[(
fθ0(x)− y − J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

)2
]

= Ex

[
(fθ0(x)− y)

2
]

− 2Ex

[
(fθ0(x)− y)J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

]
+ Ex

[(
J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

)2
]

≜ T1 − T2 + T3.

(42)

The first term on the right side T1 is

T1 = Ex

[
(fθ0(x)− y)

2
]

(43)
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For the second term on the right side T2, we have

T2 = 2Ex,y

[
(fθ0(x)− y)J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

]
= 2Ex,y [(fθ0(x)− y)J(x)]V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

=
2

σ2
0

Ex,y

[
∇θ0L(f(x), y)⊤

] (
F̃φ

)†
∇θ0L(f(X ),Y).

(44)

The third term T3 can be similarly rewritten as

T3 = Ex

[(
J(x)V

(
Λ−1Ic(Λ2)

0

)
U⊤ (fθ0(X )− Y)

)2
]

= α(X ,Y)⊤U
(
Λ−1Ic(Λ2) 0

)
V ⊤Ex

[
J(x)⊤J(x)

]
V

(
Λ−1Ic(Λ2)

0

)
U⊤α(X ,Y)

=
1

σ2
0

∇θ0L(f(X ),Y)⊤
(
F̃φ

)†
F ⋆
(
F̃φ

)†
∇θ0L(f(X ),Y).

(45)

Therefore, the generaliztion error can be written as:

R(fθ∞) =Ex

[
(fθ0(x)− y)

2
]
− 2

σ2
0

Ex,y

[
∇θ0L(f(x), y)⊤

] (
F̃φ

)†
∇θ0L(f(X ),Y)

+
1

σ2
0

∇θ0L(f(X ),Y)⊤
(
F̃φ

)†
F ⋆
(
F̃φ

)†
∇θ0L(f(X ),Y).

(46)

Now let us regard the term
(
F̃φ

)†
∇θ0L(f(X ),Y) as a free variable ξ, then consider the quadratic

function:

R(fθ∞)(ξ) =
1

σ2
0

(
ξ⊤F ⋆ξ − 2Ex,y

[
∇θ0L(f(x), y)⊤

]
ξ

+Ex

[
∇θ0L(f(x), y)⊤ (F ⋆)

† ∇θ0L(f(x), y)⊤
]) (47)

Since F ⋆ is positive semi-definite, the above function obtains its minimum at

ξ⋆ = (F ⋆)
† Ex,y [∇θ0L(f(x), y)] . (48)

which is equivalently (
F̃φ

)†
∇θ0L(f(X ),Y) = (F ⋆)

† Ex,y [∇θ0L(f(x), y)] (49)

Write the lefthands more explicitly, we have

σ2
0V

((
(Λ2)φ

)†
0

0 0

)
V ⊤V

(
Λ
0

)
U⊤α(X ,Y) = (F ⋆)

† Ex,y [∇θ0L(f(x), y)](
Λ
(
(Λ2)φ

)†
0

)
U⊤α(X ,Y) =

1

σ2
0

V ⊤ (F ⋆)
† Ex,y [∇θ0L(f(x), y)]

(50)

For the i-th component (1 ≤ i ≤ N ) of the above equation, we have

λi

(
φ(λ2

i )
)†

u⊤
i α(X ,Y) =

1

σ2
0

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i
. (51)

Notice that there may be no proper transformation φ in our transformation class in Assumption 5. So
we denote the transformation satisfying equation 51 as the ideal transformation φ⋆.

Define the F ⋆-semi-norm for vector ξ as

∥ξ∥F ⋆ ≜ ξ⊤F ⋆ξ. (52)
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We can rewrite R(fθ∞)(ξ) with respect to R(fθ∞)(ξ⋆):

R(fθ∞)(ξ) =R(fθ∞) ((ξ − ξ⋆) + ξ⋆)

=
1

σ2
0

(
((ξ − ξ⋆) + ξ⋆)

⊤
F ⋆ ((ξ − ξ⋆) + ξ⋆)− 2Ex,y

[
∇θ0L(f(x), y)⊤

]
((ξ − ξ⋆) + ξ⋆)

+Ex

[
∇θ0L(f(x), y)⊤ (F ⋆)

† ∇θ0L(f(x), y)⊤
])

=
1

σ2
0

(ξ − ξ⋆)⊤F ⋆(ξ − ξ⋆) +R(fθ∞)(ξ⋆)

+
2

σ2
0

(ξ⋆)⊤F ⋆(ξ − ξ⋆)− 2

σ2
0

Ex,y

[
∇θ0L(f(x), y)⊤

]
(ξ − ξ⋆)

=
1

σ2
0

∥ξ − ξ⋆∥F ⋆ +R(fθ∞)(ξ⋆).

(53)
To minimize R(fθ∞)(ξ) with ξ with corresponding transformation φ in the transformation class in
Assumption 5, it is equivalently to minimize ∥ξ − ξ⋆∥F ⋆ in corresponding transformation class.

By the norm equivalence theorem in finite dimensional vector space, we have

∥ξ − ξ⋆∥F ⋆ ≤C1∥ξ − ξ⋆∥2
≤C1Nσ2

0∥V ∥22 ∥Ex,y [∇θ0L(f(x), y)]∥2

·

∥∥∥∥∥∥∥∥

(
φ(λ2

1)
)† − (φ⋆(λ2

1)
)†

. . . (
φ(λ2

N )
)† − (φ⋆(λ2

N )
)†

∥∥∥∥∥∥∥∥
2

=C2

N∑
i=1

[(
φ(λ2

i )
)† − (φ⋆(λ2

i )
)†]2

.

(54)

The above bound determined the generalization error bound of Modified NGD. To minimize the last

term is equivalently to minimize each eigencomponent
[(
φ(λ2

i )
)† − (φ⋆(λ2

i )
)†]2

for 1 ≤ i ≤ N .

Recall our form of transformation φ with criterion c in Assumption 5. If we want the generalization
error bound with Modified NGD got minimized, it is directly to set c(λ2

i ) as

c(λ2
i ) =

([(
φ⋆(λ2

i )
)†]2

<
[
λ−2
i −

(
φ⋆(λ2

i )
)†]2)

(55)

Take the expression of φ⋆(λ2
i ) in equation 51, we have

c(λ2
i ) =

([(
φ⋆(λ2

i )
)†]2

<
[
λ−2
i −

(
φ⋆(λ2

i )
)†]2)

=



(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0λiu⊤

i α(X ,Y)

2

<

λ−2
i −

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0λiu⊤

i α(X ,Y)

2
=


λi

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0u

⊤
i α(X ,Y)

2

<

1− λi

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0λiu⊤

i α(X ,Y)

2
=

λi

(
V ⊤ (F ⋆)

† Ex,y [∇θ0L(f(x), y)]
)
i

σ2
0u

⊤
i α(X ,Y)

<
1

2

 .

(56)
Notice that the λi, 1 ≤ i ≤ N , are singular values thus non-negative, no confusion would arise in the
definition of c(λ2

i ).

15



Under review as a conference paper at ICLR 2024

NUMERICAL EXPERIMENTS

This section aims to illustrate our theoretical results of Modified NGD, that is, based on the theoretical
criterion for modification, the Modified NGD can reduce the generalization error compared with
ordinary NGD and NGD with modification on other directions.

Due to the high dimension of Fisher, all of our experiments are implemented on a two layers MLP
(Multi-Layer Perceptron) with synthetic data. However, with the dicussions of the discrepancy bounds
of NTK regime and general neural network [16; 5; 32], our theoretical and numerical results can be
generalized to general DNN.

We illustrate our theoretical results by two numerical experiments2: the first one is implemented with
synthetic dataset to varify that our Modified NGD with derived theoretical criterion 23 is effiective
to correct the training direction for better generalization with respect to distribution discrepancy of
dataset; the second one is implemented with HTRU2 dataset, a realistic dataset which describes a
sample of pulsar candidates collected during the High Time Resolution Universe Survey [27], to
present the generality of our therotical results. We use a MLP model with three hidden layers of
28, 2 and 212 neurons perspectively, with He initialization [14] and MSE loss as the loss function.
σ2
0 in Gaussian conditional output distribution assumption 1 is set as 0.01 for all experiments. For

all experiments in this paper, when we perform different optimization algorithms: NGD, Modified
NGD, NGD with small eigenvalues being cut and NGD with large eigenvalues being cut, except the
optimization algorithm itself, all the other settings such as learning rate are same. Modified NGD uses
validation set for the true distribution computation in the criterion 23 to decide which direction to be
modified. NGD with small eigenvalues being cut and NGD with large eigenvalues being cut modify
the eigenvalues of Fisher with criteria that small eigenvalues being set to zeros whlie remaining larger
ones and large eigenvalues being set to zeros whlie remaining smaller ones, respectively. To compute
the Fisher information matrix and criterion 23 on training set and validation set, we perform SVD
decomposition to the Jacobian matrices in the training procedure. For the stability of training, for all
optimization algorithms used in this paper, we set a threshold to suppress too large eigenvalues of the
inverse Fisher. The threshold is taken as 1e3, and the eigenvalues greater than it will be set as the
value of the threshold. The Fisher information matrix is updated at each epoch for the beginning 25
epochs, and updated once per 10 epochs after that. The Fisher information matrix is updated with all
training samples, while the criterion is computed with all validation samples in the synthetic dataset
experiments. For the first experiment of HTRU2 dataset, the Fisher information matrix is updated
with randomly sampled 512 training samples, while the criterion is computed with randomly sampled
512 validation samples. For the second experiment of HTRU2 dataset, the Fisher information matrix
is updated with all training samples, while the criterion is computed with all validation samples.

Synthetic Dataset Experiments To generate the synthetic data for a function fitting task, we firstly
draw samples uniformly from interval [0, 1), then split the samples to training set with 256 samples,
validation set with 64 samples and test set with 64 samples, and apply perturbation to the training set:

x → xe−
(1−x)2

σ2 (57)

with different perturbation factor of σ2. This perturbation results in different distributions of training
set and test set, while the distributions of the validation set and test set remaining same.

The object of the model is to fit the following function:

f⋆(x) = cosx sinx. (58)

The first tuple of experiments is implemented with two algorithms: NGD and Modified NGD, on
training sets with different perturbations. We run each experiments for 20 random seed, and the results
are reported on the average of different random seeds. We implements the numerical experiments for
different degrees of perturbation with the mean of perturbed data changing roughly equally, where
the perturbation factors σ2 are set to be: 10, 5, and 1.

The second tuple of experiments aim to demonstrate that the benifit of Modified NGD is not due to
casually cutting eigenvalues of Fisher information matrix, and the effectiveness of the theoretical
criterion 23. The second tuple of experiments is implemented with four algorithms: NGD, Modified

2All codes, data and results are available in the Supplementary Materials. More details can be found in the
Appendix.
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NGD, NGD with small eigenvalues being cut and NGD with large eigenvalues being cut. For the
later three algorithms, we ensure the number of Fisher’s non-zero eigenvalues of them being same
after modification. The training set is with perturbation factor of σ2 = 1.

For all experiments on synthetic dataset, the initial learning rate is set as 1 with learning rate half
decay, batch size is set as 256, and train for 500 epochs.

HTRU2 Dataset Experiments The HTRU2 dataset contains total 17,898 examples, 16,259 spurious
examples caused by RFI/noise, and 1,639 real pulsar examples. These examples have all been checked
by human annotators. Each candidate is described by 8 continuous variables. We implemented two
algorithms: NGD and Modified NGD on HTRU2 dataset.

The first experiment is implemented with HTRU2 dataset splited to training set, validation set and test
set of ratio 8 : 1 : 1, and the three sets are of similar distribution that negative examples : positive ex-
amples ≈ 0.91 : 0.09. Here we sample the three sets with Python functional Numpy.random.shuffle()
to achieve similar distributions.

In the second experiments, the distribution of training set is made different from validation set and test
set, where negative examples : positive examples = 0.875 : 0.125 in training set while 0.75 : 0.25 in
validation set and test set. Here we first use Python functional Numpy.random.shuffle() for positive
examples and negative examples, perspectively. Then we split the positive set and negative set to
three subsets, perspectively. For training set, we randomly sample 64 positive examples from the
first subset of positive set and 448 negative examples from the first subset of the negative set, then
the negative examples : positive examples is 0.875 : 0.125 in training set; For validation set, we
randomly sample 128 positive examples from the second subset of positive set and 128 negative
examples from the second subset of the negative set, then the negative examples : positive examples
is 0.75 : 0.25 in validation set; For test set, we randomly sample 128 positive examples from the third
subset of positive set and 128 negative examples from the third subset of the negative set, then the
negative examples : positive examples is 0.75 : 0.25 in test set.

For all experiments on HTRU2 dataset, the initial learning rate is set as 1 with learning rate half
decay, batch size is set as 256, and train for 200 epochs.
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