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Abstract
Sharpness, a geometric measure in the parameter space that reflects the flatness of the loss land-
scape, has long been studied for its potential connections to neural network behavior. While sharp-
ness is often associated with generalization, recent work highlights inconsistencies in this relation-
ship, leaving its true significance unclear. In this paper, we build on the original approach of Ma
and Ying to investigate how sharpness influences the local geometric features of neural represen-
tations in feature space, offering a new perspective on its role. We introduce this problem and
study the Maximum Local Sensitivity (MLS) and Network MLS (NMLS), measuring robustness
of the network output with respect to internal neural representations. We show that MLS/NMLS
correlate with the flatness of the loss around the local minima, and that this correlation is predicted
by a relatively simple mathematical relationship: a flatter loss corresponds to a lower upper bound
on the compression metrics of neural representations. Our work builds upon the linear stability
trick by Ma and Ying, deriving inequalities between various compression metrics and quantities
involving sharpness. Our inequalities readily extend to reparametrization-invariant sharpness as
well. Through empirical experiments on various feedforward, convolutional, and transformer ar-
chitectures, we find that our inequalities predict a consistently positive correlation between local
representation compression and sharpness.

1. Introduction

There has been a long-lasting interest in sharpness, a geometric metric in the parameter space that
measures the flatness of the loss landscape at local minima. Flat minima refer to regions in the
loss landscape where the loss function has a relatively large basin, and the loss does not change
much in different directions around the minimum. Empirical studies and theoretical analyses have
shown that training deep neural networks using stochastic gradient descent (SGD) with a small
batch size and a high learning rate often converges to flat and wide minima [5, 13, 16, 23, 25,
41, 43, 46]. Many works conjecture that flat minima lead to a simpler model (shorter description
length), and thus are less likely to overfit and more likely to generalize well [15, 19, 41, 44]. Based
on this rationale, sharpness-aware minimization (SAM) has been a popular method for improving a
model’s generalization ability. However, recent work has shown that SAM does not only minimize
sharpness to achieve superior generalization performance [1, 36]. More confusingly, it remains
unclear whether flatness correlates positively with the generalization capacity of the network [2, 8,
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45], and even when it does, the correlation is not perfect [18, 28]. In particular, Dinh et al. [8] argues
that one can construct very sharp networks that generalize well through reparametrization; while
[2] shows that even reparametrization-invariant sharpness cannot capture the relationship between
sharpness and generalization.

As an alternative to this contentious relationship between sharpness and generalization, we show
that there exists a different, more consistent perspective by investigating how sharpness near interpo-
lation solutions in the parameter space influences local geometric features of neural representations
in the feature space. By building a relationship between sharpness and the local compression of
neural representations, we argue that sharpness, in its essence, measures the compression of neural
representations. Specifically, we show that as sharpness decreases and the minimum flattens, certain
compression measures set a lower bound on sharpness-related quantities, meaning that the neural
representation must also undergo some degree of compression.

More specifically, our work makes the following novel contributions:

1. We identify two feature space quantities that quantify compression and are bounded by sharp-
ness – maximum local sensitivity (MLS) and Network MLS (NMLS) – and give new explicit
formulas for these bounds.

2. We improve the bound on MLS in [25] and propose Network MLS (NMLS), ensuring that
the bound consistently predicts a positive correlation between both sides of the inequality in
various experimental settings.

3. We conducted empirical experiments with VGG-11, LeNet, MLP, and ViT networks and
found that MLS/NMLS are indeed strongly correlated with their sharpness-related bound.

Our paper proceeds as follows. First, we review arguments of Ma and Ying [25] that flatter
minima can constrain the gradient of network output with respect to network input and extend the
formulation to the multidimensional input case (Section 2). Next, we prove that lower sharpness
implies a lower upper bound on metrics of the compression of the representation manifold in feature
space: the maximum local sensitivity (MLS) and network MLS (NMLS) (Section 2.1). Finally, we
empirically verify our theory by calculating various compression metrics, their theoretical bounds,
and sharpness for models during training as well as pretrained ones (Section 3).

2. Background and setup

Consider a feedforward neural network f with input data x ∈ RM and parameters θ. The output of
the network is:

y = f(x;θ) , (1)

where y ∈ RN (N < M ). We consider a quadratic loss L(y,ytrue) = 1
2 ||y − ytrue||2, a function

of the outputs and ground truth ytrue. In the following, we will simply write L(y), L(f(x,θ)) or
simply L(θ) to highlight the dependence of the loss on the output, the network, or its parameters.

Sharpness Ma and Ying [25] measures how much the loss gradient changes when the network
parameters are perturbed, and is defined by the sum of the eigenvalues of the Hessian:

S(θ) = Tr(H) , (2)

with H = ∇2L(θ) being the Hessian. The trace of the Hessian, Tr
(
∇2L(θ)

)
, is not the only

definition of sharpness, but many sharpness minimization methods have been theoretically shown
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to reduce this quantity in interpolating models. Specifically, assuming the training loss minimizers
lie on a smooth manifold [6, 10], methods like Sharpness-Aware Minimization (SAM) [11] when
used with batch size 1 and sufficiently small learning rate and perturbation radius [3, 37], or Label
Noise SGD with a small enough learning rate [4, 7, 22], tend to favor interpolating solutions with a
low Hessian trace. Therefore, we focus our analysis on the trace of the Hessian.

In particular, for small MSE training loss, Ma and Ying [25] show that

S(θ∗) ≈ 1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥2F , (3)

where ∥·∥F is the Frobenius norm. We state a proof of this equality, which appears in Ma and Ying
[25] and Wen et al. [36], in Appendix C. In practice, Equation (3) is a good enough approximation
of sharpness since the training loss drops quickly after the onset of training (see error bounds in
Theorem 2).

We note that for the cross-entropy loss function, the Hessian vanishes as the cross-entropy (CE)
loss approaches 0 [14, 40]. Therefore, the sharpness of CE loss cannot differentiate between local
minima with different traces of the Hessian. As a result, Granziol [14] showed that SGD may find
a flatter minimum with lower loss overfitted to the training data, leading to worse generalization
performance. However, our result readily extends to logistic loss with label smoothing (ref. Lemma
A.13 in Wen et al. [36]).

To see why minimizing the sharpness of the solution leads to more compressed representations,
we need to move from the parameter space to the input space. To do so we clear up the proof of
Equation (4) in Ma and Ying [25] that relates adversarial robustness to sharpness in the following.
The improvements we made are summarized in Appendix E. The proof is given in Appendix A. As
a result, we have

1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥k2 ≤ ∥W∥k2

mini∥xi∥k2
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF . (4)

Equation (4) holds for any positive k, and reveals the impact of flatness on the input sensitiv-
ity when k = 2. Note that Equation (4) corresponds to Equation (4) in Ma and Ying [25] with
multivariable output. In the next section, we will improve this bound to relate sharpness to various
metrics measuring compression of representations (for a list of improvements, see Appendix E).
Moreover, we show that the underlying theory readily extends to networks with residual connec-
tions in Appendix B.

2.1. Sharpness bounds over compression metrics

We introduce Maximum Local Sensitivity (MLS) and Network MLS (NMLS) in this section to
understand how sharpness affects the robustness of network output against perturbation of input
or internal neural representations. We collectively term MLS, NMLS, and those introduced in Ap-
pendix H.2 as ”compression metrics”, because these quantities measure how compressed/concentrated
a set of noise-perturbed input/internal neural representations is after going through the network.

In the following, we denote the input to the l-th linear layer as xl
i for l = 1, 2, · · · , L. In

particular, x1
i = xi is the input of the entire network. Similarly, Wl is the weight matrix of l-th

linear/convolutional layer, and W1 = W is the first layer weights. Finally, we use fl to denote the
mapping from the input of the l-th layer to the final output.
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Definition 2.1 The Maximum Local Sensitivity (MLS) of network f is defined to be MLSf =
1
n

∑n
i=1 ∥∇xf(xi)∥2, which is the sample mean of the largest singular value of ∇xf .

Intuitively, MLS is the largest possible average local change of f(x) when the norm of the pertur-
bation to x is regularized. MLS is also referred to as adversarial robustness or Lipschitz constant
of the model function in Ma and Ying [25]. Given this definition, we can obtain a bound on MLS
below.

Proposition 2.2 The maximum local sensitivity is upper bounded by a sharpness-related quantity:

MLSf =
1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥2 ≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
S(θ∗)1/2 . (5)

The derivation of the above bound is included in Appendix E. We include more analysis of the
tightness of this bound in Appendix H and discuss its connection to other works therein.

A straightforward extension of MLS is the Network MLS (NMLS), which we define as the
average of MLS w.r.t. input to each linear layer, i.e. all internal neural representations.

Definition 2.3 The Network Maximum Local Sensitivity (NMLS) of network f is defined as the
sum of MLSfl for all l, i.e.

∑L
l=1MLSfl .

Recall that xl
i is the input to the l-th linear/convoluational layer for sample xi and fl is the mapping

from the input of l-th layer to the final output. Again we have the following inequality:

Proposition 2.4 The network maximum local sensitivity is upper bounded by a sharpness related
quantity:

NMLS =
1

n

L∑
l=1

n∑
i=1

∥∇xlf l(xl
i,θ

∗)∥2 ≤

√√√√ 1

n

n∑
i=1

L∑
l=1

∥Wl∥22
∥xl

i∥2
· S(θ∗)1/2. (6)

The derivation is in Appendix E. The advantage of NMLS is that instead of only considering the
robustness of the final output w.r.t. the input, NMLS considers the robustness of the output w.r.t. all
hidden-layer representations. This allows us to derive a bound that not only considers the weights
in the first linear layer but also all other linear weights.

2.2. Connection to neural collapse

The neural collapse phenomenon [29, 47] indicates that the within-class variance of the features
in the penultimate layer vanishes at the terminal phase of training. To apply our method to study
the penultimate-layer features, we can adapt the linear stability trick in Equation (9) to establish a
relationship between their robustness and sharpness. More concretely, we can show that

∥∇xg(Wx; θ̄)∥F ≤ ∥W∥2
σmin(WL)∥x∥2

∥∇Wf(Wx; θ̄)∥F . (7)

Here again, W is the first-layer weights, WL is the last-layer linear classifier weights, and g(x) is
the penultimate-layer feature. σmin(WL) is defined as the square root of the smallest eigvalue of
WT

LWL. The proof is given in Appendix A.1.
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Let the feature dimension be d and the number of classes be K. Then, WL ∈ RK×d, and
σmin(WL) = 0 if d > K; otherwise, it is the smallest singular value of WL. It is interesting
to observe that an effective bound on the robustness of penultimate-layer features is not obtained
unless d ≤ K, i.e. when the number of classes is larger than the feature dimension. This indicates a
less-than-straightforward relationship between neural collapse and adversarial robustness [33]. On
the other hand, our theory then broadly applies to cases where the number of classes is much larger
than the feature dimension, such as language modeling, retrieval systems, and face recognition
applications, where the generalized neural collapse can occur [17].

3. Experiments

All networks are trained with MSE loss except for the pretrained ViTs in Appendix H.4.

3.1. Sharpness and compression metrics during training: verifying the theory

The theoretical results derived above show that when the training loss is low, measures of compres-
sion of the network’s representation are upper-bounded by a function of the sharpness of the loss
function in parameter space. This links sharpness and representation compression: the flatter the
loss landscape, the lower the upper bound on the representation’s compression metrics.

To empirically verify whether these bounds are sufficiently tight to show a clear relationship
between sharpness and representation compression, we trained a VGG-11 network [32] to classify
images from the CIFAR-10 dataset [20] and calculated the (approximate) sharpness (Equation (3)),
MLS (Definition 2.1) and NMLS (Definition 2.3) during the training phase (Fig 1 and 2).
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Figure 1: Trends in key variables across SGD training of the VGG-11 network with fixed batch size
(equal to 20) and varying learning rates (0.05, 0.1 and 0.2). Higher learning rates lead to
lower sharpness, MLS, and NMLS during training. From left to right: sharpness (square
root of Equation (3)),MLS, NMLS.

We trained the network using SGD on CIFAR-10 images and explored the influence of two
specific parameters that previous work has shown to affect the network’s sharpness: learning rate
and batch size [16]. For each combination of learning rate and batch size parameters, we computed
all quantities across 100 input samples and averaged across five different random initializations for
network weights.

In Figure 1, we study the link between sharpness and representation compression with a fixed
batch size (of 20). We observe that the sharpness correlates with compression metrics, MLS and
NMLS during training. The trend is consistent across multiple learning rates for a fixed batch size.
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In Figure 2, we repeated the experiments while keeping the learning rate fixed at 0.1 and varying
the batch size. The same broadly consistent trends emerged, linking sharpness to compression in
the neural representation.

We repeated the experiments with an MLP trained on the FashionMNIST dataset [42] (Figure I.8
and Figure I.9). The sharpness again follows the same trend as MLS and NMLS, consistent with
our bound. We also show that sharpness strongly correlates with MLS/NMLS for LeNet and ViTs
(Appendix H.3 and Appendix H.4).
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Figure 2: Trends in key variables across SGD training of the VGG-11 network with fixed learning
rate size (equal to 0.1) and varying batch size (8, 20, and 32). Smaller batch sizes lead to
lower sharpness, MLS, and NMLS during training. From left to right: sharpness (square
root of Equation (3)),MLS, NMLS.

4. Discussion and Conclusion

We introduced a dual perspective linking parameter-space sharpness with feature-space compression
via maximum local sensitivity (MLS). Our bounds, validated on feedforward, convolutional, and
attention-based models, show that MLS closely tracks sharpness.

Although generalization was not our primary focus, we find that sharpness aligns more with
compression than with generalization gaps (see Appendix H.3). This suggests that sharpness princi-
pally governs representation robustness, and only with additional biases does it improve generaliza-
tion. For example, higher learning rates reduce sharpness and compression (see Section 3) but can
harm out-of-distribution performance [39]. In tasks like information retrieval in long texts, output
compression may be undesirable.

Our dual-perspective framework clarifies when sharpness-driven compression benefits or hin-
ders performance, guiding future work on training strategies that balance robustness, compression,
and generalization.
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Appendix A. Linear stability trick and proof of Equation 4 in Ma & Ying, 2021

Let W be the input weights (the parameters of the first linear layer) of the network, and θ̄ be the rest
of the parameters. Following [25], as the weights W multiply the inputs x, we have the following
identities:

∥∇Wf(Wx; θ̄)∥F =

√∑
i,j,k

J2
jkx

2
i

= ∥J∥F ∥x∥2 ≥ ∥J∥2∥x∥2 ,
∇xf(Wx; θ̄) = JW ,

(8)

where J = ∂f(Wx;θ̄)
∂(Wx) is a complex expression computed with backpropagation. From Equation (8)

and the sub-multiplicative property of the Frobenius norm and the matrix 2-norm 1, we have:

∥∇xf(Wx; θ̄)∥2 ≤ ∥∇xf(Wx; θ̄)∥F

≤ ∥W∥2
∥x∥2

∥∇Wf(Wx; θ̄)∥F .
(9)

We call Equation (9) the linear stability trick. As a result, we have

1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥k2 ≤ 1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥kF

≤ ∥W∥k2
mini∥xi∥k2

1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥kF

≤ ∥W∥k2
mini∥xi∥k2

1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF .

(10)

A.1. Linear stability trick on penultimate-layer features

we define g(x) to be the penultimate-layer features such that f(x) = WLg(x) + b. With slight
abuse of notation, we define J = ∂g(Wx)

∂Wx . Similar to Equation (8), we have

∥∇Wf(Wx; θ̄)∥F = ∥WLJ∥F ∥x∥2
∇xg(Wx; θ̄) = JW ,

(11)

Lemma 1 ∥AB∥F ≥ λmin(A
TA)∥B∥F , where λmin is the smallest eigenvalue.

Proof By the definition of Frobenius norm,

∥AB∥2F = Tr(ABBTAT ) = Tr(ATABBT ). (12)

From Fang et al. [9], we have that for positive semidefinite matrices P and Q,

λmin(P ) Tr(Q) ≤ Tr(PQ) (13)

1. ∥AB∥F ≤ ∥A∥F ∥B∥2, ∥AB∥2 ≤ ∥A∥2∥B∥2

11
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Therefore,
Tr(ATABBT ) ≥ λmin(A

TA) Tr(BBT ) = λmin(A
TA)∥B∥2F (14)

As a result, ∥WLJ∥F ≥
√
λmin(WT

LWL)∥J∥F . Let d be the feature dimension, and K be the

number of classes, and WL ∈ Rd×K . Then, λmin(W
T
LWL) vanishes when K > d, otherwise√

λmin(WT
LWL) = σmin(WL), the smallest singular value of WL. Therefore,

∥∇xg(Wx; θ̄)∥F = ∥JW∥F
≤ ∥J∥F ∥W∥2

≤ ∥WLJ∥F√
λmin(WT

LWL)
∥W∥2

=
∥∇Wf(Wx; θ̄)∥F

∥x∥2
√

λmin(WT
LWL)

∥W∥2

(15)

Appendix B. Adaptation of Inequality 4 to Residual Layers

We need to slightly adapt the proof in Eq. 4 and 5. Consider a network whose first layer has a
residual connection: y = g(x + f(Wx)), where f is the nonlinearity with bias (e.g. f(x) =
tanh(x+ b)), and g is the rest of the mappings in the network. Then we have

∥∇W g(x+ f(Wx))∥F = ∥JK∥F ∥x∥2
∇xg(x+ f(Wx)) = J + JKW

(16)

where J = ∂g(x+f(Wx))
∂(x+f(Wx)) and K = ∂f(Wx)

∂(Wx) .

Therefore, ||∇xg(x+f(Wx))||2 ≤ ||J ||2+||JK||2||W ||2 ≤ ||J ||2+ ||∇W g(x+f(Wx))||F
||x||2 ||W ||2.

Now, we get the bound for the difference between MLS of input and the MLS of input to the next
layer:

∥∇xg(x+ f(Wx))∥2 − ∥J∥2 ≤
∥∇W g(x+ f(Wx))∥F

∥x∥2
∥W∥2 (17)

Notice that if we apply this inequality to every residual layer in the network, and sum the left-hand
side, we will get a telescoping sum on the left-hand side. Assuming the last layer is linear with
weights WL, we get ||∇xg(x + f(W1x))||2 − ||WL||2 ≤

∑L−1
l=1

||Wl||2
||xl||2 ||∇W gl(xl + f(Wlxl))||F .

The right-hand side is bounded by sharpness due to Cauchy, see also Equation (33).

Appendix C. Proof of Equation (3)

Lemma 2 If θ is an approximate interpolation solution, i.e. ∥f(xi,θ)− yi∥ < ε for i ∈ {1, 2, · · · , n},
and second derivatives of the network function ∥∇2

θj
f(xi,θ)∥ < M is bounded, then

S(θ∗) =
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥2F +O(ε) (18)

12
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Proof Using basic calculus we get

S(θ) = Tr(∇2L(θ))

=
1

2n

n∑
i=1

Tr(∇2
θ ∥f(xi,θ)− yi∥2)

=
1

2n

n∑
i=1

Tr∇θ(2(f(xi,θ)− yi)
T∇θf(xi,θ))

=
1

n

n∑
i=1

m∑
j=1

∂

∂θj
((f(xi,θ)− yi)

T∇θf(xi,θ))j

=
1

n

n∑
i=1

m∑
j=1

∂

∂θj
(f(xi,θ)− yi)

T∇θj
f(xi,θ)

=
1

n

n∑
i=1

m∑
j=1

∥∥∇θj
f(xi,θ)

∥∥2
2
+ (f(xi,θ)− yi)

T∇2
θj
f(xi,θ)

=
1

n

n∑
i=1

∥∇θf(xi,θ)∥2F +
1

n

n∑
i=1

m∑
j=1

(f(xi,θ)− yi)
T∇2

θj
f(xi,θ).

Therefore∣∣∣∣∣S(θ)− 1

n

n∑
i=1

∥∇θf(xi,θ)∥2F

∣∣∣∣∣ < 1

n

n∑
i=1

m∑
j=1

|(f(xi,θ)− yi)
T∇2

θj
f(xi,θ)| < mMε = O(ε).

(19)

In other words, when the network reaches zero training error and enters the interpolation phase
(i.e. it classifies all training data correctly), Equation (3) will be a good enough approximation of
the sharpness because the quadratic training loss is sufficiently small.

Appendix D. Proof of Proposition H.3 and Proposition H.5

For notation simplicity, we write fi := f(xi,θ
∗) in what follows. Because of Equation (9), we have

the following inequality due to Cauchy-Swartz inequality,

1

n

n∑
i=1

∥∇xfi∥kF ≤ ∥W∥k2
1

n

n∑
i=1

∥∇Wfi∥kF
∥xi∥k2

≤ 1

n
∥W∥k2

√√√√ n∑
i=1

1

∥xi∥2k2
·

√√√√ n∑
i=1

∥∇Wfi∥2kF .

(20)

Since the input weights W is just a part of all the weights (θ) of the network, we have ∥∇Wfi∥kF ≤
∥∇θfi∥kF .

We next show the correctness of Proposition H.3 with a standard lemma.

13
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Lemma 3 For vector x, ∥x∥p ≥ ∥x∥q for 1 ≤ p ≤ q ≤ ∞.

Proof First we show that for 0 < k < 1, we have (|a|+ |b|)k ≤ |a|k + |b|k. It’s trivial when either
a or b is 0. So W.L.O.G, we can assume that |a| < |b|, and divide both sides by |b|k. Therefore
it suffices to show that for 0 < t < 1, (1 + t)k < tk + 1. Let f(t) = (1 + t)k − tk − 1,
then f(0) = 0, and f ′(t) = k(1 + t)k−1 − ktk−1. Because k − 1 < 0, 1 + t > 1 and t < 1,
tk−1 > 1 > (1 + t)k−1. Therefore f ′(t) < 0 and f(t) < 0 for 0 < t < 1. Combining all cases, we
have (|a|+ |b|)k ≤ |a|k + |b|k for 0 < k < 1. By induction, we have (

∑
n |an|)k ≤

∑
n |an|k.

Now we can prove the lemma using the conclusion above,(∑
n

|xn|q
)1/q

=

(∑
n

|xn|q
)p/q·1/p

≤

(∑
n

(|xn|q)p/q
)1/p

=

(∑
n

|xn|p
)1/p

Now we can prove Proposition H.3

Proposition The local volumetric ratio is upper bounded by a sharpness related quantity:

dVf(θ∗) ≤
N−N/2

n

n∑
i=1

∥∇xf(x,θ
∗)∥NF ≤ 1

n

√√√√ n∑
i=1

∥W∥2N2
∥xi∥2N2

(
nS(θ∗)

N

)N/2

(21)

for all N ≥ 1.

Proof Take the xi in Lemma 3 to be ∥∇θf(xi,θ
∗)∥2F and let p = 1, q = k, then we get(

n∑
i=1

(∥∇θfi∥2F )k
)1/k

≤
n∑

i=1

∥∇θfi∥2F . (22)

Therefore,

1

n
∥W∥k2

√√√√ n∑
i=1

1

∥xi∥2k2
·

√√√√ n∑
i=1

∥∇Wfi∥2kF ≤ nk/2−1∥W∥k2

√√√√ n∑
i=1

1

∥xi∥2k2

(
1

n

n∑
i=1

∥∇θfi∥2F

)k/2

= nk/2−1∥W∥k2

√√√√ n∑
i=1

1

∥xi∥2k2
S(θ∗)k/2

(23)

Next, we show that the first inequality in Equation (23) can be tightened by considering all linear
layer weights.

Proposition The network volumetric ratio is upper bounded by a sharpness related quantity:

L∑
l=1

dVfl ≤
N−N/2

n

L∑
l=1

n∑
i=1

∥∇xlf l
i∥NF ≤ 1

n

√√√√ L∑
l=1

n∑
i=1

∥Wl∥2N2
∥xl

i∥2N2
·
(
nS(θ∗)

N

)N/2

. (24)
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Proof Recall that the input to l-th linear layer as xli for l = 1, 2, · · · , L. In particular, x1i is the input
of the entire network. Similarly, Wl is the weight matrix of l-th linear/convolutional layer. With a
slight abuse of notation, we use f l to denote the mapping from the activity of l-th layer to the final
output, and f l

i := f l(xi,θ
∗). We can apply Cauchy-Swartz inequality again to get

1

n

L∑
l=1

n∑
i=1

∥∇xlf l
i∥kF ≤ 1

n

L∑
l=1

√√√√ n∑
i=1

∥Wl∥2k2
∥xl

i∥2k2
·

√√√√ n∑
i=1

∥∇Wl
f l
i∥2kF

≤

√√√√ 1

n

L∑
l=1

n∑
i=1

∥Wl∥2k2
∥xl

i∥2k2
·

√√√√ 1

n

L∑
l=1

n∑
i=1

∥∇Wl
f l
i∥2kF .

(25)

Using Lemma 3 again we have(
L∑
l=1

(∥∇W l
f l
i∥2F )k

)1/k

≤
L∑
l=1

∥∇W l
f l
i∥2F = ∥∇θfi∥2F ,(

n∑
i=1

(∥∇θfi∥2F )k
)1/k

≤
n∑

i=1

∥∇θfi∥2F = nS(θ∗),

(26)

The second equality holds because both sides represent the same gradients in the computation graph.
Therefore from Equation (25), we have

1

n

L∑
l=1

n∑
i=1

∥∇xlf l
i∥kF ≤

√√√√ 1

n

L∑
l=1

n∑
i=1

∥Wl∥2k2
∥xl

i∥2k2
·
√

nk−1S(θ∗)k (27)

Appendix E. Proof of Proposition 2.2 and Proposition 2.4

Compared to Equation (4) of Ma and Ying [25], we make the following improvements:

1. We replace the reciprocal of the minimum with the quadratic mean to achieve a more stable
bound (Proposition 2.2). This term remains relevant as common practice in deep learning does
not normalize the input by its 2-norm, as this would erase information about the modulus of
the input.

2. While Ma and Ying [25] only considers scalar output, we extend the result to consider net-
works with multivariable output throughout the paper.

3. We introduce Network MLS (Definition 2.3) and their sharpness-related bounds (Proposi-
tion 2.4), which have two advantages compared to prior results (cf. the right-hand side of
Equation (4)):

(a) our metrics consider all linear weights so that bounds remain stable to weight changes
during training.
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(b) they avoid the gap between derivative w.r.t. the first layer weights and the derivative
w.r.t. all weights, i.e. the second inequality in Eq. 6, thus tightening the bound.

Below we give the proof of Proposition 2.2.

Proposition The maximum local sensitivity is upper bounded by a sharpness related quantity:

MLS =
1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥2 ≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
S(θ∗)1/2 . (28)

Proof From Equation (9), we get

MLS =
1

n

n∑
i=1

∥∇xfi∥2 ≤ ∥W∥2
1

n

n∑
i=1

∥∇Wfi∥F
∥xi∥2

. (29)

Now the Cauchy-Schwarz inequality tells us that(
n∑

i=1

∥∇Wfi∥
∥xi∥2

)2

≤

(
n∑

i=1

1

∥xi∥22

)
·

(
n∑

i=1

∥∇Wfi∥2F

)
. (30)

Therefore

MLS ≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
·

√√√√ 1

n

n∑
i=1

∥∇Wfi∥2F

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
· S(θ∗)1/2.

(31)

Now we can prove Proposition 2.4.

Proposition The network maximum local sensitivity is upper bounded by a sharpness related quan-
tity:

NMLS =
1

n

L∑
l=1

n∑
i=1

∥∇xlf l(xl
i,θ

∗)∥2 ≤

√√√√ 1

n

n∑
i=1

L∑
l=1

∥Wl∥22
∥xl

i∥2
· S(θ∗)1/2. (32)
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Proof We can apply Equation (31) to every linear layer and again apply the Cauchy-Schwarz
inequality to obtain

NMLS =
1

n

L∑
l=1

n∑
i=1

∥∇xfl(x
l
i,θ

∗)∥2

≤
L∑
l=1

√√√√ 1

n

n∑
i=1

∥Wl∥22
∥xl

i∥22

√√√√ 1

n

n∑
i=1

∥∇Wl
f l
i∥2F


≤

√√√√ 1

n

n∑
i=1

L∑
l=1

∥Wl∥22
∥xl

i∥22

√√√√ 1

n

n∑
i=1

L∑
l=1

∥∇Wl
f l
i∥2F

≤

√√√√ 1

n

n∑
i=1

L∑
l=1

∥Wl∥22
∥xl

i∥22
· S(θ∗)1/2.

(33)

Note that the gap in the last inequality is significantly smaller than that of Equation (31) since now
we consider all linear weights.

Appendix F. Reparametrization-invariant sharpness and input-invariant MLS

Dinh et al. [8] argues that a robust sharpness metric should have the reparametrization-invariant
property, meaning that scaling the neighboring linear layer weights should not change the metric.
While the bounds in Proposition 2.2 and Proposition 2.4 are not strictly reparametrization-invariant,
metric that redesign the sharpness [34] to achieve invariance can be proved to tighten our bounds
(see Appendix F.1). Another more aggressive reparametrization-invariant sharpness is proposed
in Andriushchenko et al. [2], Kwon et al. [21], and we again show that it upper-bounds input-
invariant MLS in Appendix F.2. We also empirically evaluate the relative flatness [30], which is
also reparametrization-invariant in Appendix H.3, but no significant correlation is observed. Over-
all, we provide a novel perspective: reparametrization-invariant sharpness is characterized by the
robustness of outputs to internal neural representations.

F.1. Reparametrization-invariant sharpness in Tsuzuku et al. [34]

In this appendix, we show that the reparametrization-invariant sharpness metrics introduced in
Tsuzuku et al. [34] can seen as an effort to tighten the bound that we derived above. For matrix-
normalized sharpness (cf. Equation 13), the connection is immediately seen from Equation (31).
Let

x =

(
1

n

n∑
i=1

1

∥xi∥22

)− 1
2

. (34)

Then from Equation (31) we have

L∑
l=1

xl ·MLSl ≤
L∑
l=1

∥Wl∥2

√√√√ 1

n

n∑
i=1

∥∇Wl
f l
i∥2F ≈

L∑
l=1

∥Wl∥2
√
S(Wl), (35)
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where S(Wl) is the trace of Hessian of the loss w.r.t. the weights of the l-th layer. The right-hand
side of Equation (35) is exactly what Tsuzuku et al. [34] refer to as the matrix-normalized sharpness.
Note that a similar inequality holds if we use Frobenius norm instead of 2-norm of the weights.

Tsuzuku et al. [34] also pose an interesting optimization problem (cf. Equation 17) to define the
normalized sharpness:

min
σ,σ′

∑
i,j

(
∂2L

∂Wi,j∂Wi,j
(σiσ

′
j)

2 +
W 2

i,j

4λ2(σiσ′
j)

2

)
. (36)

Note that by Lemma 2, ∂2L
∂Wi,j∂Wi,j

≈ ∥∇Wi,jf∥22. Moreover, we have

∑
i,j

(
∥∇Wi,jf∥2(σiσ′

j)
2 +

W 2
i,j

4λ2(σiσ′
j)

2

)
≥ 1

λ

√∑
i,j

(∇Wi,jf)
2(σiσ′

j)
2 ·

√√√√∑
i,j

W 2
i,j

(σiσ′
j)

2

≥ 1

λ
∥diag(σ)J∥F ∥diag(σ′)x∥2∥diag(σ−1)W diag(σ′−1)∥F

≥ 1

λ
∥diag(σ′−1)W TJ∥F ∥diag(σ′)x∥2

=
1

λ
∥diag(σ′−1)∇xf∥F ∥diag(σ′)x∥2,

(37)

where J = ∂f(Wx;θ̄)
∂(Wx) (see some of the calculations in Equation (8)). Therefore, the optimization

problem Equation (36) is equivalent to choosing σ,σ′ to minimize the upper bound on a scale-
invariant MLS-like quantity (the quantity is invariant under the transformation of the first layer
from Wx to W diag(σ−1)(diag(σ)x), where diag(σ)x becomes the new input). For simplicity,
we do not scale the original dataset in our work and only compare MLS within the same dataset. As
a result, we can characterize those reparametrization-invariant sharpness metrics by the robustness
of output to the input. If we consider all linear weights in the network, then those metrics indicate
the robustness of output to internal network representations.

F.2. Reparametrization-invariant sharpness upper-bounds input-invariant MLS

In this appendix, we consider the adaptive average-case n-sharpness considered in Andriushchenko
et al. [2], Kwon et al. [21]:

Sρ
avg(w, |w|) ≜ 2

ρ2
ES∼Pn,δ∼N (0,ρ2diag(|w|2)) [LS(w + δ)− LS(w)] , (38)

which is shown to be elementwise adaptive sharpness in Andriushchenko et al. [2]. They also show
that for a thrice differentiable loss, L(w), the average-case elementwise adaptive sharpness can be
written as

Sρ
avg(w, |w|) = ES∼Pn

[
Tr
(
∇2LS(w)⊙ |w||w|⊤

)]
+O(ρ). (39)

Definition F.1 We define the Elementwise-Adaptive Sharpness Sadaptive to be

Sadaptive(w) ≜ lim
ρ→0

Sρ
avg(w, |w|) = ES∼Pn

[
Tr
(
∇2LS(w)⊙ |w||w|⊤

)]
(40)
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In this appendix, we focus on the property of Sadaptive instead of the approximation Equation (39).
Adapting the proof of Theorem 2, we have the following lemma.

Lemma 4 If θ is an approximate interpolation solution, i.e. ∥f(xi,θ)− yi∥ < ε for i ∈ {1, 2, · · · , n},
|θj |2∥∇2

θj
f(xi,θ)∥ < M for all j, and L is MSE loss, then

Sadaptive(θ
∗) =

1

n

n∑
i=1

m∑
j=1

|θj |2
∥∥∇θj

f(xi,θ)
∥∥2
2
+O(ε), (41)

where m is the number of parameters.

Proof Using basic calculus we get

Sadaptive(θ) =
1

2n

n∑
i=1

Tr(∇2
θ ∥f(xi,θ)− yi∥2 ⊙ |θ||θ|⊤)

=
1

2n

n∑
i=1

Tr∇θ(2(f(xi,θ)− yi)
T∇θf(xi,θ))⊙ |θ||θ|⊤

=
1

n

n∑
i=1

m∑
j=1

|θj |2
∂

∂θj
((f(xi,θ)− yi)

T∇θf(xi,θ))j

=
1

n

n∑
i=1

m∑
j=1

|θj |2
∂

∂θj
(f(xi,θ)− yi)

T∇θj
f(xi,θ)

=
1

n

n∑
i=1

m∑
j=1

|θj |2
∥∥∇θj

f(xi,θ)
∥∥2
2
+ |θj |2(f(xi,θ)− yi)

T∇2
θj
f(xi,θ)

=
1

n

n∑
i=1

m∑
j=1

|θj |2
∥∥∇θj

f(xi,θ)
∥∥2
2
+

1

n

n∑
i=1

m∑
j=1

|θj |2(f(xi,θ)− yi)
T∇2

θj
f(xi,θ)

Therefore∣∣∣∣∣S(θ)− 1

n

n∑
i=1

∥∇θf(xi,θ)∥2F

∣∣∣∣∣ < 1

n

n∑
i=1

m∑
j=1

|(f(xi,θ)−yi)
T |θj |2∇2

θj
f(xi,θ)| < mMε = O(ε).

(42)

Definition F.2 We define the Input-invariant MLS of a network f : RN → RM to be

1

n

n∑
i=1

N∑
p=1

∥∥∥∇
x
(i)
p
f
∥∥∥2
2
(x(i)p )2 , (43)

where x
(i)
p is the p-th entry of i-th training sample.
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It turns out that again the adaptive sharpness upper bounds the input-invariant MLS.

Proposition F.3 Assuming that the condition of Theorem 4 holds, then elementwise-adaptive sharp-
ness upper-bounds input-invariant MLS:

1

n

n∑
i=1

m∑
j=1

|θj |2
∥∥∇θj

f(xi,θ)
∥∥2
2
≥ 1

nd

n∑
i=1

N∑
p=1

∥∥∥∇
x
(i)
p
f
∥∥∥2
2
(x(i)p )2 (44)

Proof Now we adapt the linear stability trick. For θ = W the first layer weight, we have
m∑
j=1

|θj |2
∥∥∇θj

f(x,θ)
∥∥2
2
=
∑
i,j,k

J2
jkW

2
kix

2
p

=
∑
i,j

(
d∑

k=1

J2
jkW

2
ki

)
x2p

≥ 1

d

∑
i

∥∥∇xpf
∥∥2
2
x2p

(45)

where same as in Equation (8), J = ∂f(Wx;θ̄)
∂(Wx) , ∇xf(Wx; θ̄) = JW, and xp is the p-th entry of x.

Taking the sample mean of both sides proves the proposition.

Appendix G. Numerical approximation of normalized MLS and
elementwise-adaptive sharpness

In this appendix, we detail how we approximate the normalized MLS and adaptive sharpness in
Appendix H.4. Note that for all network f the last layer is the sigmoid function, so the output is
bounded in (0, 1), and we use MSE loss to be consistent with the rest of the paper.

For the adaptive sharpness, we adopt the definition in Andriushchenko et al. [2] and uses sample
mean to approximate the expectation in Equation (38). Therefore, for network f(w),

Sadaptive(f) =
1

nm

n∑
i=1

m∑
j=1

L(xi;w + δj)− L(xi;w), (46)

where δ ∼ N (0, 0.01 diag(|w|2)).
For normalized MLS, we first reiterate the definition from the main text. We use normalized

MLS below as an approximation to the input-invariant MLS (Definition F.2), because the latter is
computationally prohibitive for modern large ViTs. On the other hand, there is an efficient way to
estimate normalized MLS as detailed below.

Definition G.1 We define the normalized MLS as 1
n

∑n
i=1 ∥xi∥22 ∥∇xif∥

2
2

Therefore, to approximate normalized MLS, we need to approximate ∥∇xif∥2. By definition of
matrix 2-norm,

∥∇xf∥2 = sup
δ

∥∇xf δ∥2
∥δ∥2

≈ max
δ

∥f(x+ δ)− f(x)∥2
∥δ∥2

. (47)

To solve this optimization problem, we start from a randomly sampled vector δ that has the same
shape as the network input, and we update δ using gradient descent.
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Appendix H. Empirical analysis of the bound

H.1. Tightness of the bound

In this section, we mainly explore the tightness of the bound in Equation (5) for reasons discussed
in Section 2.1. First we rewrite Equation (5) as

MLS =
1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥2 := A

≤ ∥W∥2
n

n∑
i=1

∥∇Wf(xi,θ
∗)∥F

∥xi∥2
:= B

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22

√√√√ 1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥2F := C

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
S(θ∗)1/2 := D

(48)

Thus Equation (5) consists of 3 different steps of relaxations. We analyze them one by one:

1. (A ≤ B) The equality holds when ∥W TJ∥2 = ∥W∥2∥J∥2 and ∥J∥F = ∥J∥2, where
J = ∂f(Wx;θ̄)

∂(Wx) . The former equality requires that W and J have the same left singular
vectors. The latter requires J to have zero singular values except for the largest singular
value. Since J depends on the specific neural network architecture and training process, we
test the tightness of this bound empirically (Figure H.3).

2. (B ≤ C) The equality requires ∥∇Wf(xi,θ
∗)∥F

∥xi∥2 to be the same for all i. In other words, the

bound is tight when ∥∇Wf(xi,θ
∗)∥F

∥xi∥2 does not vary too much from sample to sample.

3. (C ≤ D) The equality holds if the model is linear, i.e. θ = W.

We empirically verify the tightness of the above bounds in Figure H.3

H.2. More metrics in the feature space

H.2.1. SHARPNESS BOUNDS LOCAL VOLUMETRIC TRANSFORMATION

Now we quantify how a network compresses its input volumes via the local volumetric ratio, be-
tween the volume of a hypercube of side length h at x, H(x), and its image under transformation
f , f(H(x),θ∗):

dVol|f(x,θ∗) = lim
h→0

Vol(f(H(x),θ∗))

Vol(H(x))

=
√
det (∇xfT∇xf) ,

(49)

which is equal to the square root of the product of all positive eigenvalues of C lim
f (see Equa-

tion (54)).
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Figure H.3: Empirical tightness of the bounds. We empirically verify that the inequalities in
Equation (48) hold and test their tightness. The results are shown for a fully connected
feedforward network trained on the FashionMNIST dataset. The quantities A, B, C,
and D are defined in Equation (48). We see that the gap between C and D is large
compared to the gap between A and B or B and C. This indicates that partial sharpness
∥∇Wf(xi,θ

∗)∥F (sensitivity of the loss w.r.t. only the input weights) is more indica-
tive of the change in the maximum local sensitivity (A). Indeed, correlation analysis
shows that bound C is positively correlated with MLS while bound D, perhaps surpris-
ingly, is negatively correlated with MLS (Figure H.5).

Definition H.1 The Local Volumetric Ratio at input x of a network f with parameters θ is defined
as dVol|f(x,θ) =

√
det (∇xfT∇xf).

Exploiting the bound on the gradients derived earlier in Equation (9), we derive a similar bound
for the volumetric ratio:

Lemma 5

dVol|f(x,θ∗) ≤
(
Tr∇xf

T∇xf

N

)N/2

= N−N/2∥∇xf(x,θ
∗)∥NF ,

(50)

where the first inequality uses the inequality of arithmetic and geometric means, and the second the
definition of the Frobenius norm. Next, we introduce a measure of the volumetric ratio averaged
across input samples.

Definition H.2 The Local Volumetric Ratio (LVR) of a network f with parameters θ is defined as
the sample mean of Local Volumetric Ratio at different input samples: dVf(θ) =

1
n

∑n
i=1 dVol|f(xi,θ).
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Then we have the following inequality that relates the sharpness to the mean local volumetric
ratio:

Proposition H.3 The local volumetric ratio is upper bounded by a sharpness related quantity:

dVf(θ∗) ≤
N−N/2

n

n∑
i=1

∥∇xf(x,θ
∗)∥NF

≤ 1

n

√√√√ n∑
i=1

∥W∥2N2
∥xi∥2N2

(
nS(θ∗)

N

)N/2
(51)

for all N ≥ 1.

The proof of the above inequalities is given in Appendix D.
Next, we give an inequality that is obtained by applying Equation (51) to every intermediate

layer. Instead of only considering the input layer, all linear weights (including any convolution
layers) are taken into account. Denote the input to the l-th linear layer as xl

i for l = 1, 2, · · · , L.
In particular, x1

i = xi is the input of the entire network. Similarly, Wl is the weight matrix of l-th
linear/convolutional layer. With a slight abuse of notation, we use fl to denote the mapping from
the input of the l-th layer to the final output. Then we define the Network Volumetric Ratio:

Definition H.4 The Network Volumetric Ratio (NVR) is defined as the sum of the local volumetric
ratios dVfl for all fl, that is, dVnet =

∑L
l=1 dVfl

Then we have the following inequality:

Proposition H.5 The network volumetric ratio is upper bounded by a sharpness related quantity:

L∑
l=1

dVfl ≤
N−N/2

n

L∑
l=1

n∑
i=1

∥∇xlf l
i∥NF

≤ 1

n

√√√√ L∑
l=1

n∑
i=1

∥Wl∥2N2
∥xl

i∥2N2
·
(
nS(θ∗)

N

)N/2

.

(52)

Again, a detailed derivation of the above inequalities is given in Appendix D. Proposition H.3 and
Proposition H.5 imply that flatter minima of the loss function in parameter space contribute to local
compression of the data’s representation manifold.

H.2.2. LOCAL DIMENSIONALITY IS TIED TO, BUT NOT BOUNDED BY, SHARPNESS

Now we introduce a local measure of dimensionality. Consider an input data point x̄ drawn from the
training set: x̄ = xi for a specific i ∈ {1, · · · , n}. Let the set of all possible perturbations around
x̄ in the input space are samples from an isotropic normal distribution, B(x̄)α ∼ N (x̄, αI), where
CB(x̄) = αI, with I as the identity matrix, is the covariance matrix. We first propagate B(x̄)α
through the network transforming each point x into its corresponding image f(x). Following a
Taylor expansion for points within B(x̄)α as α → 0 with high probability we have:

f(x) = f(x̄) +∇xf(x̄,θ
∗)T (x− x̄) +O(∥x− x̄∥2) . (53)
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We can express the limit of the covariance matrix Cf(B(x)) of the output f(x) as

C lim
f := lim

α→0

Cf(B(x)α)

α
= ∇xf(x̄,θ

∗)∇T
xf(x̄,θ

∗) . (54)

Our covariance expressions capture the distribution of the samples in B(x̄)α as they go through the
network f(x̄,θ∗). The local Participation Ratio based on this covariance is given by:

DPR(f(x̄)) = lim
α→0

Tr[Cf(B(x)α)]
2

Tr[(Cf(B(x)α))
2]

=
Tr[C lim

f ]2

Tr[(C lim
f )2]

(55)

(Recanatesi et al. 31, cf. nonlocal measures in Gao et al. 12, Litwin-Kumar et al. 24, Mazzucato
et al. 26).

Definition H.6 The Local Dimensionality of a network f is defined as the sample mean of local
participation ratio at different input samples: D(f) = 1

n

∑n
i=1DPR(f(xi))

This quantity in some sense represents the sparseness of the eigenvalues of C lim
f : If we let λ be

all the eigenvalues of C lim
f , then the local dimensionality can be written as DPR = (∥λ∥1/∥λ∥2)2,

which attains its maximum value when all eigenvalues are equal to each other, and its minimum
when all eigenvalues except for the leading one are zero. Note that the quantity retains the same
value when λ is arbitrarily scaled. As a consequence, it is hard to find a relationship between the
local dimensionality and the fundamental quantity on which our bounds are based: ∥∇xf(x,θ

∗)∥2F ,
which is ∥λ∥1.

H.3. Correlation analysis

We empirically show how different metrics correlate with each other, and how these correlations
can be predicted from our bounds. We train 100 VGG-11 networks with different batch sizes,
learning rates, and random initialization to classify images from the CIFAR-10 dataset, and plot
pairwise scatter plots between different quantities at the end of the training: local dimensionality,
sharpness (square root of Equation (3)), log volume (Equation (49)), MLS (Equation (5)), NMLS
(Equation (6)), generalization gap (gen gap), D (Equation (48)), bound (right-hand side of Equa-
tion (6)) and relative sharpness [30] (see Figure H.4). We only include CIFAR-10 data with 2 labels
to ensure that the final training accuracy is close to 100%.

We repeat the analysis on MLPs and LeNets trained on the FashionMNIST dataset and the
CIFAR-10 dataset (Figure H.5 and Figure H.6). We find that

1. The bound over NMLS, MLS, and NMLS introduced in Equation (6) and Equation (5) con-
sistently correlates positively with the generalization gap.

2. Although the bound in Equation (51) is loose, log volume correlates well with sharpness and
MLS.

3. Sharpness is positively correlated with the generalization gap, indicating that little reparametriza-
tion effect [8] is happening during training, i.e. the network weights do not change too much
during training. This is consistent with observations in Ma and Ying [25].

4. The bound derived in Equation (6) correlates positively with NMLS in all experiments.
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Figure H.4: Pairwise correlation among different metrics. We trained 100 different VGG-11
networks on the CIFAR-10 dataset using vanilla SGD with different learning rates,
batch sizes, and random initializations and plot pairwise scatter plots between different
quantities: local dimensionality, sharpness (square root of Equation (3)), log volume
(Equation (49)), MLS (Equation (5)), NMLS (Equation (6)), generalization gap (gen
gap), MLS bound (Proposition 2.2), NMLS bound (Proposition 2.4) and relative sharp-
ness ([30]). The Pearson correlation coefficient ρ is shown in the top-left corner for
each pair of quantities. See Appendix H.3 for a summary of the findings in this figure.

5. MLS that only consider the first layer weights can sometimes negatively correlate with the
bound derived in Equation (5) (Figure H.5).
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6. Relative flatness that only consider the last layer weights introduced in [30] shows weak (even
negative) correlation with the generalization gap. Note that “relative flatness” is a misnomer
that is easier understood as “relative sharpness”, and is supposed to be positively correlated
with the generalization gap.

26



COMPRESSION AND SHARPNESS

1.5

2.0

2.5

Lo
ca

l d
im

15

20

25

Sh
ar

pn
es

s

 = -0.65

6

5

4

Lo
g 

vo
lu

m
e

 = -0.52  = 0.82

0.50

0.75

1.00

1.25

M
LS

 = -0.67  = 0.95  = 0.85

10

11

NM
LS

 = -0.62  = 0.49  = 0.07  = 0.49

9.0

9.5

10.0

ge
n 

ga
p

 = -0.57  = 0.48  = 0.40  = 0.53  = 0.39

5

6

7

8

M
LS

 b
ou

nd

 = 0.72  = -0.62  = -0.60  = -0.60  = -0.41  = -0.61

60

80

NM
LS

 b
ou

nd

 = -0.70  = 0.95  = 0.66  = 0.89  = 0.68  = 0.51  = -0.63

1.5 2.0 2.5
Local dim

20

30

40

re
la

tiv
e 

fla
tn

es
s  = 0.64

15 20 25
Sharpness

 = -0.76

6 4
Log volume

 = -0.85

0.5 1.0
MLS

 = -0.78

10 11
NMLS

 = -0.23

9 10
gen gap

 = -0.48

6 8
MLS bound

 = 0.80

50 75
NMLS bound

 = -0.71

20 40
relative flatness

Figure H.5: Pairwise correlation among different metrics. We trained 100 different 4-layer
MLPs on the FashionMNIST dataset using vanilla SGD with different learning rates,
batch size, and random initializations and plot pairwise scatter plots between different
quantities: local dimensionality, sharpness (square root of Equation (3)), log volume
(Equation (49)), MLS (Equation (5)), NMLS (Equation (6)), generalization gap (gen
gap), MLS bound (Proposition 2.2), NMLS bound (Proposition 2.4) and relative sharp-
ness ([30]). The Pearson correlation coefficient ρ is shown in the top-left corner for
each pair of quantities. See Appendix H.3 for a summary of the findings in this figure.
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Figure H.6: Pairwise correlation among different metrics. We trained 100 different LeNets on
the CIFAR-10 dataset using vanilla SGD with different learning rates, batch size, and
random initializations and plot pairwise scatter plots between different quantities: local
dimensionality, sharpness (square root of Equation (3)), log volume (Equation (49)),
MLS (Equation (5)), NMLS (Equation (6)), generalization gap (gen gap), MLS bound
(Proposition 2.2), NMLS bound (Proposition 2.4) and relative sharpness ([30]). The
Pearson correlation coefficient ρ is shown in the top-left corner for each pair of quanti-
ties. See Appendix H.3 for a summary of the findings in this figure.
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H.4. Empirical evidence in Vision Transformers (ViTs)

Since our theory applies to linear and convolutional layers as well as residual layers (Appendix B),
relationships among sharpness and compression, as demonstrated above for VGG-11 and MLP net-
works, it should hold more generally in modern architectures such as the Vision Transformer (ViT)
and its variants. However, naive ways of evaluating the quantities discussed in previous sections are
computationally prohibitive. Instead, we look at the MLS normalized by the norm of the input and
the elementwise-adaptive sharpness defined in Andriushchenko et al. [2], Kwon et al. [21]. Both of
the metrics can be estimated efficiently for large networks. Specifically, in Figure H.7 we plot the
normalized MLS against the elementwise-adaptive sharpness. The analytical relationship between
the normalized MLS and the elementwise-adaptive sharpness and the details of the numerical ap-
proximation we used are given in Appendix F.2 and Appendix G respectively. For all the models,
we attach a sigmoid layer to the output logits and use MSE loss to calculate the adaptive sharpness.
Figure H.7 shows the results for 181 pretrained ViT models provided by the timm package [38].
We observe that there is a general trend that lower sharpness indeed implies lower MLS. However,
there are also outlier clusters that with data corresponding to the same model class; an interesting
future direction would be to understand the mechanisms driving this outlier behavior. Interestingly,
we did not observe this correlation between unnormalized metrics, indicating that weight scales
should be taken into account when comparing between different models.

MobileViT

FastViT

Figure H.7: Adaptive sharpness vs Normalized MLS for 181 ViT models and variants. Different
colors represent different model classes. For most models, there is a positive correlation
between Sharpness and MLS. However, outlier clusters also exist, for MobileViT [27]
models in the upper left corner, and two FastViT [35] models in the lower right corner.

29



COMPRESSION AND SHARPNESS

Appendix I. Additional experiments
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Figure I.8: Trends in key variables across SGD training of a 4-layer MLP with fixed learning rate
(equal to 0.1) and varying batch size (8, 20, and 32). MLS/NMLS closely follows the
trend of sharpness during the training. From left to right: train loss, NMLS, sharpness
(square root of Equation (3)), log volumetric ratio (Equation (49)), MLS (Equation (5)),
and local dimensionality of the network output (Equation (55)).
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Figure I.9: Trends in key variables across SGD training of a 4-layer MLP with fixed batch size
(equal to 20) and varying learning rates (0.05, 0.1 and 0.2). MLS/NMLS closely follows
the trend of sharpness during the training. From left to right: train loss, NMLS, sharp-
ness (square root of Equation (3)), log volumetric ratio (Equation (49)), MLS (Equa-
tion (5)), and local dimensionality of the network output (Equation (55)).

Appendix J. Sharpness and compression on test set data

Even though Equation (3) is exact for interpolation solutions only (i.e., those with zero loss), we
found that the test loss is small enough (Figure J.10) so that it should be a good approximation for
test data as well. Therefore we analyzed our simulations to study trends in sharpness and volume for
these held-out test data as well (Figure J.10). We discovered that this sharpness increased rather than
diminished as a result of training. We hypothesized that sharpness could correlate with the difficulty
of classifying testing points. This was supported by the fact that the sharpness of misclassified test
data was even greater than that of all test data. Again we see that MLS has the same trend as the
sharpness. Despite this increase in sharpness, the volume followed the same pattern as the training
set. This suggests that compression in representation space is a robust phenomenon that can be
driven by additional phenomena beyond sharpness. Nevertheless, the compression still is weaker
for misclassified test samples that have higher sharpness than other test samples. Overall, these
results emphasize an interesting distinction between how sharpness evolves for training vs. test
data.

Appendix K. Computational resources and code availability

All experiments can be run on one NVIDIA Quadro RTX 6000 GPU. The code will be released
after acceptance.
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Figure J.10: Trends in key variables across SGD training of the VGG-11 network with fixed learn-
ing rate (equal to 0.1) and batch size (equal to 20) for samples of the test set. After
the loss is minimized, we compute sharpness and volume on the test set. Moreover,
the same quantities are computed separately over the entire test set or only on samples
that are misclassified. In order from left to right in row-wise order: test loss, sharpness
(Equation (2)), log volumetric ratio (Equation (49)), MLS, and local dimensionality of
the network output (Equation (55)).
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