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Abstract
We study which machine learning algorithms have tight generalization
bounds in the overparameterized setting. Our results build on and extend
the recent work of Gastpar et al. (2024).

First, we present conditions that preclude the existence of tight generalization
bounds. Specifically, we show that algorithms that have certain inductive
biases that cause them to be unstable do not admit tight generalization
bounds. Next, we show that algorithms that are sufficiently stable do have
tight generalization bounds. We conclude with a simple characterization
that relates the existence of tight generalization bounds to the conditional
variance of the algorithm’s loss.

1 Introduction
Generalization bounds are at the heart of learning theory, and they play a central role
in attempts to mathematically explain the behavior of contemporary supervised machine
learning systems. A generalization bound is an upper bound of the form

LD(A(S)) ≤ b, (1)

where A(S) is the hypothesis output by learning algorithm A when executed with training
set S, and LD(·) represents the loss with respect to the population distribution D. The term
b is typically an expression of the form

b = LS(A(S)) + c(S, A(S), H), (2)

where LS(·) is the empirical loss, H is a hypothesis class, and c(S, A(S), H) is a ‘complexity’
term, such as the VC dimension or a spectral norm, etc.

We say that a generalization bound is valid if for every population distribution D, Eq. (1)
holds with high probability; we say that a valid bound is uniformly tight (Definition 2.4) if
for every population distribution, with high probability the difference between the two sides
of Eq. (1) is small.

Bounding the loss using a generalization bound is quite different from using a validation set.
Technically, a generalization bound does not use additional samples beyond the training set
S. And while a validation set provides a single post-hoc measurement of the population
loss after training is complete, a good generalization bound can provide insight into why
a learning algorithm performs well, and can offer guidance for model selection and the
development of new learning algorithms. For a generalization bound to be useful in this
way, it is important that the bound be tight, so that it can distinguish cases with small
population loss from cases with larger loss.

Unfortunately, experimental works have shown that many of the generalization bounds of
the form of Eq. (2) that have been proposed in the literature are vacuous1 when applied to
contemporary learning algorithms such as deep neural networks (Jiang et al., 2020; Dziugaite
et al., 2020; Viallard et al., 2024, Section 4.4).

1A bound is vacuous if it is of the form P[LD(A(S)) ≤ b] ≥ 1 − δ where δ ≥ 1 or (for the 0-1
loss) b ≥ 1. Namely, it is a true statement that provides no guarantees on the performance of the
algorithm.
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Gastpar, Nachum, Shafer, and Weinberger (2024) offered a partial theoretical explanation for
this empirical finding. They considered generalization bound as in Eq. (2), namely, bounds
that depend only on the training set, the selected hypothesis, and the hypothesis class. They
proved that any such bound cannot be uniformly tight in the overparameterized setting.2
Therefore, they recommended focusing on generalization bounds involving expressions of
the form c(S, A(S), H, A,D), i.e., bounds that depend also on the specific training algorithm
and a specific collection D of population distributions for which the bound is intended.
This recommendation raises the following natural question:

Question 1.1. For which algorithms and distribution collections do there exist
tight generalization bounds?

This question was addressed in Theorems 3, 4 and 5 of Gastpar et al. (2024), but the
general case remains open. In this paper we continue investigating this question, and present
conditions that are necessary, sufficient, or necessary and sufficient for the existence of tight
generalization bounds for a given learning algorithm and distribution collection.

1.1 Setting
Following Gastpar et al. (2024), we study the existence of tight generalization bounds using
a notion of estimability.
Definition 1.2 (Estimability). Let X and Y be sets, let m ∈ N, let

A : (X × Y)m → YX

be a learning rule, and let D ⊆ ∆(X × Y) be a collection of distributions. An estimator is a
function

E : (X × Y)m → R.

Let ε, δ ∈ [0, 1]. We say that A is uniformly estimable (or worst-case estimable) with respect
to distributions D with precision ε and confidence δ using m samples if there exists an
estimator E such that

∀D ∈ D : PS∼Dm

[∣∣E (S) − LD(A(S))
∣∣ ≤ ε

]
≥ 1 − δ.

We say that A is estimable on average with respect to distributions D with precision ε and
confidence δ using m samples if there exists an estimator E such that

PD∼U(D),S∼Dm

[∣∣E (S) − LD(A(S))
∣∣ ≤ ε

]
≥ 1 − δ.

(More briefly, we say that (A,D) is (ε, δ, m)-uniformly estimable, or (ε, δ, m)-estimable on
average.)
The connection between estimability and tight generalization bounds is as follows.
Fact 1.3. Using the notation of Definition 1.2, if (A,D) is (ε, δ, m)-estimable on average,
then there exists a generalization bound b(S) (that may depend on A and D) that is ε-tight
on average, namely

PD∼U(D),S∼Dm [b(S) − ε ≤ LD(A(S)) ≤ b(S)] ≥ 1 − δ. (3)

Indeed, the generalization bound is simply b(S) = E (S)+ε, where E is the estimator witnessing
the estimability of (A,D).
In the other direction, if (A,D) is not (ε, δ, m)-estimable on average, then there exists no
generalization bound that satisfies Eq. (3), and in particular no generalization bound can be
uniformly tight (as in Definition 2.4).
The main question studied in this paper is as follows: which general and useful conditions are
necessary, sufficient, or necessary and sufficient for a tuple (A,D) to be (ε, δ, m)-uniformly
estimable, or (ε, δ, m)-estimable on average?

2They actually showed a stronger result, that such bounds are not tight in an average-case sense
for many (algorithms, distribution) pairs.
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We are specifically interested in addressing these questions in settings where the number of
samples is not sufficient to guarantee learning in general (in the sense of the VC theorem
for example), because most contemporary machine learning algorithms (such as deep neural
networks) are used in such settings. This is captured by the following definition.3

Definition 1.4 (Overparameterized setting). Let X and Y be sets, let D ⊆ ∆(X × Y), let
α, β ∈ [0, 1] and m ∈ N. We say that (D, m) is (α, β)-learnable if there exists a learning rule
A : (X × Y)m → YX such that

PD∼U(D),S∼(D)m [LD(A(S)) ≤ α] ≥ 1 − β.

We say that (D, m) is (α, β)-overparameterized if it is not (α, β)-learnable.

1.2 Examples
We present a few simple examples to showcase the richness of the estimability setting. In
this section ε, δ ∈ (0, 1), X is a set, m ∈ N is a sample size, A : (X × {±1})m → {±1}X is a
learning rule, and S = ((x1, y1), . . . , (xm, ym)) is a training set.
Example 1.5 (Perfect learnability does not imply perfect estimability). Let X = [0, 1], let
D = ∆(X × {1}) be the set of all distributions of labeled examples (x, y) where x ∈ X and
y = 1. The collection D is perfectly learnable, that is, there exists a learning algorithm that
always achieves 0 population loss (namely, the learning algorithm that always outputs the
constant function h(x) = 1).
Nonetheless, not every learning algorithm is worst-case estimable with respect to D. Indeed,
consider the algorithm A that on input S outputs the hypothesis

h(x) =
{

−1 x ∈ {x1, . . . , xm}
+1 otherwise.

For any distribution D ∈ D, LD(A(S)) = DX ({x1, . . . , xm}), where DX is the marginal of
D on X . Hence, estimating the loss of A is equivalent to a task of support size estimation,
which is difficult. Concretely, for any finite set T ⊆ X , let DT = U(T × {1}). Let E be any
estimator, and consider an experiment where with probability 1/2, we sample T ∼ U(X )m2

and set D = DT , and with probability 1/2 we set D = DU := U(X × {1}). Consider the
probability

p = PS∼Dm

[∣∣∣E (S) − LD(A(S))
∣∣∣ ≥ 1

2m

]
.

Let E be the event where |{x1, . . . , xm}| = m. In the case where D = DT with |T | = m2,
Claim L.2 implies that P[E] ≥ 1/e. And in the case where D = DU, P[E] = 1. Hence, in
both cases, with probability at least 1/e, the estimator receives a sample of m distinct points
chosen independently and uniformly from X , and it cannot distinguish between these two
cases. However, LDU(A(S)) = 0, whereas LDT

(A(S)) = 1
m when E occurs. This implies

that p ≥ 1/2e, and so (A,D) is not ( 1
2m , δ, m)-uniformly estimable for any δ < 1/2e. □

Some algorithms are very estimable but are not good learning algorithms, as in the following
three examples.
Example 1.6 (Constant algorithms are estimable). Let m ≥ log(1/δ)/ε2. Let h0 : X →
{±1} be a function, and let A be the constant learning algorithm such that A(S) = h0 for
all S. Then by Hoeffding’s inequality, A is (ε, δ, m)-uniformly estimable with respect to the
set of all distributions D = ∆(X × {±1}), with estimator E (S) = LS(h0). □

For some algorithms, the empirical loss is not a good estimator, yet the algorithm is still
estimable.
Example 1.7 (Memorization). Let Ω

(
log(1/δ)/ε2) ≤ m ≤ O(ε|X |), and consider the

algorithm A that on input S, outputs the hypothesis

h(x) =
{

y ∃y : {y} = {yi : i ∈ [m] ∧ xi = x}
−1 otherwise.

3This is Definition 2 in Gastpar et al. (2024). See further discussion in Appendix B.
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Let D be the collection of all distributions over X × {±1} that have a uniform marginal on
X . Note that A always has 0 empirical loss. However, (A,D) is (ε, δ)-uniformly estimable,
using E (S) = |{i ∈ [m] : yi = 1}| /m. □

Example 1.8 (Most algorithms are estimable). Let d = |X | < ∞, let F = {±1}X , and for
each f ∈ F , let Df = U({(x, f(x)) : x ∈ X }). Let A be the set of all mappings (X × {±1})m

→ {±1}X , and consider a mapping A chosen uniformly from the set A. For any fixed f ∈ F
and for any fixed sample S of size m consistent with f , A(S) is a function that was chosen
uniformly from F . By Hoeffding’s inequality,

∀f ∈ F ∀S ∈ supp(Df ) : PA∼U(A)

[∣∣∣∣LDf
(A(S)) − 1

2

∣∣∣∣ ≥ ε

]
≤ 2e−2dε2

.

In particular,

PA∼U(A),f∼U(F),S∼(Df)m

[∣∣∣∣LDf
(A(S)) − 1

2

∣∣∣∣ ≥ ε

]
≤ 2e−2dε2

.

Hence, by Markov’s inequality, 99% of algorithms A ∈ A satisfy that (A, {Df }f∈F ) is
(ε, 200e−2dε2

, m)-estimable on average. □

A similar argument shows also that most ERM algorithms are estimable in the overparame-
terized setting.4 In both cases, the algorithms are estimable because their loss is guaranteed
to be high, namely, the algorithms are poor learners.

Finally, algorithms for learning parity functions are a particularly instructive case.

Example 1.9 (Parity functions). Let d ∈ N be large enough, X = (F2)d, and let H =
{fw : w ∈ X } ⊆ (F2)X be the class of parity functions such that fw(x) =

∑
i∈[d] wi · xi. Let

D = {Df }f∈H with Df = U({(x, f(x)) : x ∈ X }). For a learning rule A and sample size m,
let

p(m) = PD∼U(D)
S∼(D)m

[LD(A(S)) = 0].

For sample size m ≥ d + 10, any ERM algorithm for H satisfies5 p(m) ≥ 0.999, meaning it
learns D well, and hence is (0, 10−3, d + 10)-estimable on average.

Similarly, for smaller sample sizes, any ERM for H satisfies p(d) ≥ 0.61, and p(d − 1) ≥ 0.38.
However, ERM algorithms differ in their degree of estimability for smaller sample sizes.
Concretely, there exist ERM algorithms such that for any 6 ≤ m ≤ d there exists a collection
Dm for which the algorithm is not (0.25, 0.32, m)-estimable on average. In contrast, for the
same hard collections Dm, ERM algorithms without an inductive bias perform poorly on all
distributions for small m, so they are significantly more estimable. □

ERM algorithms for parity functions demonstrate two important phenomena: (1) Estimability
can be a very delicate matter, in the sense that changing the sample size by a small additive
constant can make all the difference (e.g., any ERM for parities is very estimable with
m = d + 10 samples, but not very estimable with m = d); (2) when the sample size is
not sufficient for learning all the distributions in the collection D, there can be a trade-off
between learning performance and estimability. Algorithms with no inductive bias will
perform equally poorly for all distributions, and this makes them estimable. In contrast,
algorithms that have an inductive bias towards a subset D′ ⊆ D can perform well on D′, and
this can make them less estimable.

4Consider an overparameterized setting with m = o(d). The output of any (realizable) ERM will
have zero error on points in S, and will make an error on each unseen data points with probability
1/2, yielding an expected population loss of (d − m)/2d ≈ 1/2. Hence, essentially the same result as
in Example 1.8 can be obtained also for ERMs by applying Hoeffding’s inequality.

5The quantitative statements in this example follow from the results in Gastpar et al., 2024, see
Appendix D for a discussion.
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1.3 Our Results
We investigate which algorithms and collections of distributions are estimable. Recall that
in Example 1.9 we saw that estimability is a delicate phenomenon. In particular, changing
the sample size by just a small constant number can in some cases drastically change the set
of (ε, δ) estimability parameters that are achievable. This means that identifying a simple
and tight characterization that precisely determines the number of samples necessary and
sufficient for estimability can be a difficult undertaking.
In this paper, we present conditions that preclude estimability, conditions that guarantee
estimability, and a condition that is both necessary and sufficient for estimability.
Our first result is a condition that precludes estimability for algorithms that have an inductive
bias towards certain subsets of VC classes, showing a connection between estimability and a
central notion from traditional learning theory.
Theorem (Informal version of Theorem 3.1). Let H ⊆ {±1}X be a hypothesis class with
VC dimension d large enough, and let m ≤

√
d/10. Then there exists a subset F ⊆ H and

corresponding realizable distributions D such that any learning rule that has an inductive bias
towards F is not (1/4 − o(1), 1/6, m)-estimable on average over D.6

Note that the theorem precludes estimability on average, and so in particular it precludes
worst-case estimability. The proof of Theorem 3.1 uses the Johnson–Lindenstrauss lemma
(Theorem L.1), the probabilistic method, and a technical lemma (Lemma I.1) concerning the
estimability of nearly-orthogonal functions.
To the best of our knowledge, this paper is the first to provide a rigorous and general
mathematical formulation showing that any finite VC class admits inestimable algorithms.
This is somewhat surprising because it means, for instance, that for any neural network
architecture, there are some training algorithms for which one will not be able to derive tight
generalization bounds (even if the distribution is realizable!). We believe this is a meaningful
contribution.
Our next inestimability result is as follows.
Theorem (Informal version of Theorem 3.2). Let H ⊆ {±1}X be a collection of roughly 2m

nearly-orthogonal functions and corresponding realizable distributions D. Then any learning
rule that has an inductive bias towards H is not (1/4 − o(1), ∼ 1/6, m)-estimable on average
over D.7

Theorem 3.2 is partially stronger than Theorem 3.1 in the sense that it shows inestimability
for every algorithm that has an inductive bias towards a class of nearly-orthogonal functions,
whereas Theorem 3.1 only shows the existence of a subclass with this property.8 On the
other hand, Theorem 3.1 is stronger than Theorem 3.2 in the sense that if Theorem 3.2 is
applied to show inestimability for subclasses of a VC class, then it yields inestimability only
for m ≤ O

(
3
√

d
)

, whereas Theorem 3.1 obtains inestimability for all m ≤ O
(√

d
)

.9

To show Theorem 3.2, we prove a concentration inequality using the duality of linear programs
(Lemma J.1), and then invoke the technical lemma (Lemma I.1).
Remark 1.10. Theorems 3.1 and 3.2 are stated for the case of binary labels, but they
immediately imply inestimability also for regression and multi-class classification.

6Note that (D, m) is roughly a (1/4 − o(1), 1/6)-overparameterized setting. See Remark 3.3.
7Similarly, (D, m) is roughly a (1/4 − o(1), 0.24)-overparameterized setting. See Remark 3.3.
8Additionally the quantity hidden by the o(1) notation is smaller in Theorem 3.2 by a quadratic

factor (order 1/m vs. 1/
√

m).
9The limitation m ≤ O

( 3√
d
)

when using Theorem 3.2 follows from the tightness of the Johnson–
Lindenstrauss (JL) lemma. By the JL lemma, taking a collection F of 2m orthogonal functions on a
high dimensional domain, we can project F using a random projection and obtain a collection F ′ of
2m functions that are ε-orthogonal defined on a domain of dimension log (2m) /ε2. In particular,
let H be a class with VC dimension d. We want to project F onto an H-shattered set of size d
with ε = Θ(1/m). This yields d = m/(Θ(1/m))2 = Θ

(
m3). The tightness of JL implies that this

construction cannot be improved.
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One way to interpret Theorems 3.1 and 3.2 is to consider a scenario where one derives
a new generalization bound for a given algorithm, without making explicit distributional
assumptions (as is the case for many published generalization bounds), and having a sample
size within the regime of our theorems. Such bounds are generally formulated as high
probability upper bounds on the population loss. Note that the lack of distributional
assumptions means that the bound has to hold (be a valid upper bound) for all distributions,
including the families of distributions that appear in our theorems.
But this means, in the light of our theorems, that the considered bound is necessarily very
weak for many distributions unless one satisfies at least one of the following items:

1. Exclude in advance all families of distributions with nearly-orthogonal labeling functions,
and use this fact in the derivation of the generalization bound.

2. Mathematically show that the algorithm is not biased towards any set of nearly-
orthogonal functions.10

The intuition behind Theorem 3.2 is that having an inductive bias towards a collection
H of nearly-orthogonal functions makes the algorithm very unstable – small changes in
the training set will cause the algorithm to shift between hypotheses in H, which are all
very different from one another. This motivates our next result, which shows that stable
algorithms are estimable, as follows.
Theorem (Informal version of Theorem 4.3). Let A be an algorithm that is sufficiently
stable with respect to a collection of distributions D (in a sense of loss stability or hypothesis
stability similar to Rogers and Wagner, 1978, or Kearns and Ron, 1999). Then (A,D) is
estimable.
Seeing as there are many definitions of stability in the literature, Theorem 4.3 makes a
nontrivial conceptual contribution by identifying the “correct” notion of stability for under-
standing estimability. Other notions of stability, such as leave-one-out stability (Bousquet &
Elisseeff, 2002), do not capture estimability as well, as we discuss in Section 4.
An additional motivation for Theorem 4.3 is the intuition that contemporary machine learning
algorithms (like deep neural networks) might indeed be sufficiently stable. If so, Theorem 4.3
would apply, meaning that it is possible to obtain tight generalization bounds for deep neural
networks based on the stability property. To substantiate this intuition, we conduct simple
preliminary experiments to estimate the the stability of neural networks in practice. Our
empirical findings, presented in Appendix M, suggest that neural networks are indeed quite
stable.
Finally, in Section 5, we present a necessary and sufficient condition for estimability based
on the conditional variance of the algorithm’s loss. This characterization is formalized in
terms of ℓ2 estimability, which is asymptotically equivalent to average case estimability via
Markov’s inequality.
Fact (Fact 5.2). A is (ε, m)-estimable in ℓ2 with respect to D if and only if

E[var(LD(A(S)) | S)] ≤ ε.

1.4 Related Works
The most closely related works to our study are those by Gastpar et al. and prior research
on stability, which we will examine in detail in this section. For a broader comparison to
other studies addressing generalization bounds and their limitations, we refer the reader to
Appendix A.
1.4.1 Comparison to Gastpar et al. (2024)
The estimability setting studied in our paper was introduced by Gastpar, Nachum, Shafer,
and Weinberger (2024). In Theorem 3 of their paper, they show a limitation on estimability
(a learnability–estimability trade-off) for algorithm-dependent bounds that is fairly abstract

10It is known that there exist at least some neural network architectures which, when trained
with SGD, are capable of learning orthogonal functions (such as parities). See Theorem 1 in Abbe
and Sandon (2020).
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and involves a total variation condition that might be hard to check in many cases. In
contrast, Theorems 3.1 and 3.2 involve very concrete combinatorial and geometric conditions
(VC dimension, orthogonal functions). Theorems 4 and 5 in their paper are more concrete,
but they hold only for exactly orthogonal functions with strict algebraic structure (parity
functions). In contrast, our Theorem 3.2 applies generally to any nearly-orthogonal function
class (including classes that are exactly-orthogonal as a special case).

Unlike Gastpar et al. (2024), our work also presents positive results (Theorem 4.3 and Fact 5.2),
showing cases where generalization bounds for specific algorithms can be tight even in the
overparameterized setting. The conceptual connections between estimability, stability and
conditional variance appearing in those results was not present in Gastpar et al. (2024).

Finally, our techniques also differ from those of Gastpar et al. (2024). We use the Johnson–
Lindenstrauss lemma, our technical lemma (Lemma I.1), and the duality of linear program-
ming — expanding the arsenal of tools readily available for the study of estimability.

In summary, our work builds upon the foundation laid by Gastpar et al. (2024), but we
make several important contributions that go beyond their results.

1.4.2 Stability
In Definitions 4.1 and 4.2, we formalize simple stability conditions that guarantee the
existence of tight generalization bounds, as we show in Theorem 4.3. There are many
definitions of stability in the literature, and it is important to appreciate that Theorem 4.3
makes a nontrivial conceptual contribution by identifying the “correct” notion of stability
for understanding estimability.

Definitions 4.1 and 4.2 are similar to the definition of hypothesis stability and loss stability
in Kearns and Ron (1999), Elisseeff, Evgeniou, and Pontil (2005), and Rogers and Wagner
(1978). Lei, Jin, and Ying (2022) use another similar definition for stability and utilize it to
derive generalization bounds for GD and SGD.

In contrast, our definitions of stability are also reminiscent of the replace-one stability in
Bousquet and Elisseeff (2002), but as we explain in Section 4, our definitions overcome an
important limitation present in their definition. In particular, the memorization algorithm
(Example 1.7), which is very estimable, is not stable according to the definition of stability
of Bousquet and Elisseeff (2002), but it is stable according to our definitions.

2 Preliminaries
Definition 2.1. For m ∈ N and sets X and Y, a learning rule is a function A : (X × Y)m →
YX . We will also consider learning rules with variable-size input, i.e., A : (X × Y)∗ → YX .

In this paper we informally use the terms ‘learning algorithm’ and ‘learning rule’ interchange-
ably. Both words refer to a function, ignoring considerations of computability. All learning
algorithms in this paper are deterministic.11

Notation 2.2. For a set Ω, we write ∆(Ω) to denote the collection of all probability measures
over a measurable space (Ω, F), where F is some fixed σ-algebra that is implicitly understood.
We write U(Ω) to denote the uniform distribution over Ω.

Definition 2.3. Let m ∈ N, let X , Y be sets, let h : X → Y, let S =
((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m, and let D ∈ ∆(X × Y). The empirical loss of h

with respect to S is LS(h) = 1
m

∑
i∈[m] 1(h(xi) ̸= yi). The population loss of h with respect

to D is LD(h) = P(x,y)∼D[h(x) ̸= y].

Definition 2.4 (Uniformly tight generalization bound for an algorithm). Let m ∈ N,
ε, δ ∈ [0, 1], let X and Y be sets, let m ∈ N, let A : (X × Y)m → YX be a learning rule, and
let b : (X × Y)m → [0, 1] be a generalization bound (that may depend on A). We say that b is
uniformly tight for A with precision ε and confidence δ if for any distribution D ∈ ∆(X × Y),

PS∼Dm [b(S) − ε ≤ LD(A(S)) ≤ b(S)] ≥ 1 − δ.

11See Appendix C for a discussion on how our results can be extended to randomized algorithms.
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Notation 2.5. Let X be a set, let F ⊆ {±1}X be a hypothesis class, and let S ∈ (X × {±1})∗.
We denote FS = {f ∈ F : LS(f) = 0}.

The following definition captures the notion of a learning rule having an inductive bias
towards a particular set of hypotheses.

Definition 2.6. Let m ∈ N, let X be a set, and let F ⊆ {±1}X be a hypothesis class. We
say that a learning rule A : (X × {±1})m → {±1}X is F-interpolating if A(S) ∈ FS for
every sample S ∈ (X × {±1})m such that FS ̸= ∅.

Remark 2.7. The property of F-interpolation is similar to the more common property of
proper empirical risk minimization (proper ERM) for F . However, F-interpolation is a
slightly weaker requirement. Specifically, if S is not F-realizable (i.e., FS = ∅), then an
F-interpolating learning rule may output any function in {±1}X , whereas a proper learning
rule for F must always output a function from F .

Definition 2.8. Let ε ≥ 0, let X be a set, and let F ⊆ {±1}X be a hypothesis class. We say
that F is ε-orthogonal with respect to X , denoted F ∈ ⊥ε,X , if every distinct f, g ∈ F satisfy∣∣Ex∼U(X )[f(x)g(x)]

∣∣ ≤ ε.

For simplicity, we write F ∈ ⊥ε when X is understood from context.

Fact 2.9. Let ε > 0 and let F ⊆ {±1}X be ε-orthogonal. Then for any distinct f, g ∈ F ,

1
2 − ε

2 ≤ Px∼U(X )[f(x) = g(x)] ≤ 1
2 + ε

2 .

Proof. Px∼U(X )[f(x) = g(x)] = Ex∼U(X )[1(f(x) = g(x))] = Ex∼U(X )

[
1 + f(x)g(x)

2

]
= 1

2 + 1
2 · Ex∼U(X )[f(x)g(x)].

3 Conditions that Preclude Estimability
We present two conditions that preclude estimability.

3.1 Inestimability for VC Classes

Theorem 3.1. There exists d0 > 0 as follows. For any integer d ≥ d0, let X be a set, let
H ⊆ {±1}X such that VC(H) = d, and let m ∈ N such that m ≤

√
d/10. Then there exists a

subset F ⊆ H and a collection D ⊆ ∆(X × {±1}) of F-realizable distributions such that for
any F-interpolating learning rule A and for any estimator E : (X × {±1})m → [0, 1] that
may depend on D and A,

PD∼U(D)
S∼Dm

[∣∣E (S) − LD(A(S))
∣∣ ≥ 1

4 − 1
2d1/4

]
≥ 1

6 . (4)

The proof of Theorem 3.1 appears in Appendix E. We note that some of the constants
appearing in the theorem were chosen for simplicity, and can be improved.

3.2 Inestimability for Nearly-Orthogonal Functions

Theorem 3.2. Let m ∈ N, let X be a set, and let A : (X × {±1})m → {±1}X be a
learning rule. Assume that A is F-interpolating for a set F ⊆ {±1}X ′ where X ′ ⊆ X ,
100m2 ≤ |X ′| < ∞, F ∈ ⊥1/1000m,X ′ and |F| = 2m + 1. Then there exists a collection of
F-realizable distributions D ⊆ ∆(X ′ × {±1}) such that for any estimator function E : (X ×
{±1})m → [0, 1] that may depend on D and A,

PD∼U(D)
S∼Dm

[∣∣E (S) − LD(A(S))
∣∣ ≥ 1

4 − 1
4000m

]
≥ 0.16.
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The proof of Theorem 3.2 appears in Appendix F. We note that here too, the constants
appearing in the theorem were chosen for simplicity, and can be improved. In particular,
using a similar technique it is possible to show a lower bound of 1/6 instead of 0.16, matching
the bound in Theorem 3.1.
Remark 3.3. Both theorems in Section 3 show inestimability results in the overparameterized
setting (Definition 1.4).12 In particular, examining Eq. (7) in the proof of Theorem 3.1
reveals that the pair (D, m) appearing in the theorem statement constitutes a(

1
4 − 1

4d1/4 − ξ,
1
6 − ξ′

)
overparameterized setting for any non-negative ξ and ξ′ where at least one is positive.
Similarly, Eq. (12) in the proof of Theorem 3.2 implies that (D, m) in that theorem is a(

1
4 − 1

4000m
− ξ, 0.24 − ξ′

)
overparameterized setting for ξ and ξ′ as above.13

4 Sufficient Conditions for Estimability
In Examples 1.6 and 1.7 we saw that the constant algorithm and the memorization algorithm
are very estimable. These algorithms are also very stable. Indeed, they always output the
same (or essentially the same) hypothesis.14 In the other direction, Theorem 3.2 shows that
certain algorithms that are very unstable, are not estimable. This suggests that stability
might play an important role in determining the estimability of an algorithm.
One notion of algorithmic stability that is common in the literature is leave-one-out stability
(Bousquet & Elisseeff, 2002). However, it is easy to see that the memorization algorithm,
which is estimable and is (intuitively) very stable, does not satisfy their definition of stability.
Therefore, we use the following alternative definitions of algorithmic stability, which are
similar to Rogers and Wagner (1978) and Kearns and Ron (1999).
Definition 4.1. Let m, k ∈ N, k < m, α, β ∈ [0, 1]. Let X be a set, let A : (X × {±1})∗ →
{±1}X be a learning rule, and let D ⊆ ∆(X × {±1}). We say that A is (α, β, m, k)-hypothesis
stable with respect to D if

∀D ∈ D : P
S1∼Dm−k

S2∼Dk

[distDX (A(S1), A(S1 ◦ S2)) ≤ α] ≥ 1 − β,

where DX is the marginal of D on X , distP(f, g) = Px∼P [f(x) ̸= g(x)], and ◦ denotes
concatenation.
Definition 4.2. In the notation of Definition 4.1, we say that A is (α, β, m, k)-loss stable
with respect to D if ∀D ∈ D : PS1∼Dm−k,S2∼Dk

[∣∣∣LD(A(S1)) − LD(A(S1 ◦ S2))
∣∣∣ ≤ α

]
≥ 1−β.

Theorem 4.3. Let k ∈ N and α0, β0 ∈ (0, 1) such that k ≥ Ω
(
log(1/β0)/α2

0
)
. Let A be a

learning rule that is (α1, β1, m, k)-hypothesis stable or loss stable with respect to D (as in
Definitions 4.1 and 4.2). Then (A,D) is (ε = α0 + α1, δ = β0 + β1, m)-uniformly estimable.
The proof of Theorem 4.3 appears in Appendix G.
Hence, stability is a sufficient condition for estimability. We remark that it is not a necessary
condition. For instance, a learning rule selected at random as in Example 1.8 most likely is

12Indeed, if a setting is not overparameterized, then estimability is typically easy due to standard
uniform convergence bounds for VC classes (specifically, for proper learning rules in realizable settings;
see Example 1.5 for a counterexample when the algorithm is not proper). So when discussing
inestimability, we focus on overparameterized settings. See further discussion in Appendix B.

13In both cases, the parameters we state are not tight, and the settings are actually more
overparameterized than stated.

14The memorization algorithm always outputs the function h(x) = −1, except that it alters h in
a small number of locations to fit the training set.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

estimable (because it has high loss for any distribution), but not hypothesis stable (since for
each possible input sample, it outputs a different hypothesis that was chosen at random).
To see that loss stability is also not necessary for estimability, fix a degenerate distribution
D such that D((x∗, 1)) = 1 for some x∗, and consider an algorithm A that for samples of
size m outputs the constant hypothesis h1(x) = 1, and for samples of size m − k outputs the
constant hypothesis h−1(x) = −1. A is perfectly estimable with respect to {D}, but it is not
loss stable.
One might object that Theorem 4.3 is of limited utility, because it is hard to check whether
a given algorithm is hypothesis stable or loss stable. Our response to this criticism is that in
practice, it is quite easy to check whether an algorithm is loss (or hypothesis) stable with
respect to a particular population distribution – and indeed we do so in our experiments
(see Appendix M).
The process for estimating loss stability is simple: take a set S of m i.i.d. labeled samples
from the population distribution. Randomly choose a subset S′ of size m − k. Execute the
learning algorithm twice, once with training set S to produce a hypothesis h, and another
time with training set S′ to produce a hypothesis h′. Use an additional validation set to
estimate the difference in population loss between h and h′. Repeating this process a number
of times and taking an average gives a good estimate of the (m, k)-loss stability. A similar
process can be used to estimate hypothesis stability. Simply measure the disagreement
between h and h′ on the validation set (note that in this case, the validation set can be
unlabeled, which is an advantage when labeling data is expensive).

5 A Simple Characterization
The following definition is a variant of Definition 1.2. Such a variant allows us to have
a simple characterization of estimability in Fact 5.2. Namely, to understand whether an
algorithm is estimable with respect to a set of distributions, one can examine the quantity
ED∼U(D),S∼Dm [var(LD(A(S)) | S)].
Definition 5.1. Let D be a set of distributions and let A be a learning algorithm. We say
that A is (ε, m)-estimable in ℓ2 with respect to D, if there exists an estimator E such that

ED∼U(D),S∼Dm

[
(E (S) − LD(A(S)))2] ≤ ε

We remark that for bounded loss functions, one can move between Definition 5.1 and
Definition 1.2 using Markov’s inequality. Furthermore, although the characterization in the
following theorem is simple, it might provide a technical condition that will be useful for
future work.
Fact 5.2. A is (ε, m)-estimable in ℓ2 with respect to D if and only if

ED∼U(D),S∼Dm [var(LD(A(S)) | S)] ≤ ε.

The proof of Fact 5.2 appears in Appendix H.

References
Abbe, E., & Sandon, C. (2020). On the universality of deep learning. In H. Larochelle, M. Ran-

zato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information process-
ing systems (pp. 20061–20072, Vol. 33). Curran Associates, Inc. https://proceedings.
neurips . cc/paper_ files /paper/2020/file/ e7e8f8e5982b3298c8addedf6811d500 -
Paper.pdf

Achlioptas, D. (2003). Database-friendly random projections: Johnson–Lindenstrauss with
binary coins. Journal of Computer and System Sciences, 66 (4), 671–687. https:
//doi.org/10.1016/S0022-0000(03)00025-4

Aminian, G., Cohen, S. N., & Szpruch, L. (2023). Mean-field analysis of generalization errors.
CoRR, abs/2306.11623. https://doi.org/10.48550/ARXIV.2306.11623

Bartlett, P. L., & Long, P. M. (2021). Failures of model-dependent generalization bounds
for least-norm interpolation. The Journal of Machine Learning Research, 22 (1),
9297–9311.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.48550/ARXIV.2306.11623


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bassily, R., Moran, S., Nachum, I., Shafer, J., & Yehudayoff, A. (2018). Learners that use
little information. Algorithmic Learning Theory, 25–55.

Blake, I. F., & Studholme, C. (2006). Properties of random matrices and applications.
Unpublished report. http://www.cs.toronto.edu/~cvs/coding/random_report.pdf

Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. The Journal of Machine
Learning Research, 2, 499–526.

Boyd, S. P., & Vandenberghe, L. (2014). Convex optimization. Cambridge University Press.
https://doi.org/10.1017/CBO9780511804441

Chen, Z., Cao, Y., Gu, Q., & Zhang, T. (2020). A generalized neural tangent kernel anal-
ysis for two-layer neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.
Balcan, & H. Lin (Eds.), Advances in neural information processing systems 33:
Annual conference on neural information processing systems 2020, neurips 2020,
december 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/2020/hash/
9afe487de556e59e6db6c862adfe25a4-Abstract.html

Dziugaite, G. K., Drouin, A., Neal, B., Rajkumar, N., Caballero, E., Wang, L., Mitliagkas, I.,
& Roy, D. M. (2020). In search of robust measures of generalization. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information
processing systems 33: Annual conference on neural information processing systems
2020, neurips 2020, december 6-12, 2020, virtual. https://proceedings.neurips.cc/
paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html

Dziugaite, G. K., Hsu, K., Gharbieh, W., Arpino, G., & Roy, D. (2021). On the role of
data in pac-bayes bounds. International Conference on Artificial Intelligence and
Statistics, 604–612.

Elisseeff, A., Evgeniou, T., & Pontil, M. (2005). Stability of randomized learning algorithms.
Journal of Machine Learning Research, 6 (3), 55–79. http://jmlr.org/papers/v6/
elisseeff05a.html

Esposito, A. R., Gastpar, M., & Issa, I. (2021). Generalization error bounds via Rényi-,
f-divergences and maximal leakage. IEEE Transactions on Information Theory,
67 (8), 4986–5004. https://doi.org/10.1109/TIT.2021.3085190

Gastpar, M., Nachum, I., Shafer, J., & Weinberger, T. (2024). Fantastic generalization
measures are nowhere to be found. The 12th International Conference on Learning
Representations, ICLR 2024. https://openreview.net/pdf?id=NkmJotfL42

Grimmett, G., & Stirzaker, D. (2020). Probability and random processes. Oxford university
press.

Haghifam, M., Moran, S., Roy, D. M., & Dziugiate, G. K. (2022a). Understanding general-
ization via leave-one-out conditional mutual information. 2022 IEEE International
Symposium on Information Theory (ISIT), 2487–2492. https://doi.org/10.1109/
ISIT50566.2022.9834400

Haghifam, M., Moran, S., Roy, D. M., & Dziugiate, G. K. (2022b). Understanding general-
ization via leave-one-out conditional mutual information. 2022 IEEE International
Symposium on Information Theory (ISIT), 2487–2492.

Harutyunyan, H., Raginsky, M., Ver Steeg, G., & Galstyan, A. (2021). Information-theoretic
generalization bounds for black-box learning algorithms. Advances in Neural Infor-
mation Processing Systems, 34, 24670–24682.

Hellström, F., & Durisi, G. (2022). A new family of generalization bounds using samplewise
evaluated cmi. Advances in Neural Information Processing Systems, 35, 10108–10121.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 13–30. https://doi.org/10.2307/2282952

Issa, I., Esposito, A. R., & Gastpar, M. (2019). Strengthened information-theoretic bounds
on the generalization error. 2019 IEEE International Symposium on Information
Theory (ISIT), 582–586. https://doi.org/10.1109/ISIT.2019.8849834

Issa, I., Esposito, A. R., & Gastpar, M. (2023). Generalization error bounds for noisy, iterative
algorithms via maximal leakage. In G. Neu & L. Rosasco (Eds.), Proceedings of
thirty sixth conference on learning theory (pp. 4952–4976, Vol. 195). PMLR. https:
//proceedings.mlr.press/v195/issa23a.html

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., & Bengio, S. (2020). Fantastic gener-
alization measures and where to find them. The 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
https://openreview.net/forum?id=SJgIPJBFvH

11

http://www.cs.toronto.edu/~cvs/coding/random_report.pdf
https://doi.org/10.1017/CBO9780511804441
https://proceedings.neurips.cc/paper/2020/hash/9afe487de556e59e6db6c862adfe25a4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9afe487de556e59e6db6c862adfe25a4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
http://jmlr.org/papers/v6/elisseeff05a.html
http://jmlr.org/papers/v6/elisseeff05a.html
https://doi.org/10.1109/TIT.2021.3085190
https://openreview.net/pdf?id=NkmJotfL42
https://doi.org/10.1109/ISIT50566.2022.9834400
https://doi.org/10.1109/ISIT50566.2022.9834400
https://doi.org/10.2307/2282952
https://doi.org/10.1109/ISIT.2019.8849834
https://proceedings.mlr.press/v195/issa23a.html
https://proceedings.mlr.press/v195/issa23a.html
https://openreview.net/forum?id=SJgIPJBFvH


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a
Hilbert space. Conference on Modern Analysis and Probability, 26, 189–206. https:
//doi.org/10.1090/conm/026/737400

Kearns, M. J., & Ron, D. (1999). Algorithmic stability and sanity-check bounds for leave-
one-out cross-validation. Neural Comput., 11 (6), 1427–1453. https://doi.org/10.
1162/089976699300016304

Lei, Y., Jin, R., & Ying, Y. (2022). Stability and generalization analysis of gradient methods
for shallow neural networks. ArXiv, abs/2209.09298. https://api.semanticscholar.
org/CorpusID:252383365

Nagarajan, V., & Kolter, J. Z. (2019). Uniform convergence may be unable to explain
generalization in deep learning. Advances in Neural Information Processing Systems,
32.

Negrea, J., Dziugaite, G. K., & Roy, D. (2020). In defense of uniform convergence: Gen-
eralization via derandomization with an application to interpolating predictors.
International Conference on Machine Learning, 7263–7272.

Nikolakakis, K., Haddadpour, F., Karbasi, A., & Kalogerias, D. (2023). Beyond lipschitz:
Sharp generalization and excess risk bounds for full-batch GD. The Eleventh Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=pOyi9KqE56b

Nishikawa, N., Suzuki, T., Nitanda, A., & Wu, D. (2022). Two-layer neural network on
infinite dimensional data: Global optimization guarantee in the mean-field regime.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.),
Advances in neural information processing systems 35: Annual conference on neural
information processing systems 2022, neurips 2022, new orleans, la, usa, november
28 - december 9, 2022. http://papers.nips.cc/paper%5C_files/paper/2022/hash/
d2155b1f7eb42350d7bc3013eefe5480-Abstract-Conference.html

Nitanda, A., Wu, D., & Suzuki, T. (2021). Particle dual averaging: Optimization of mean field
neural network with global convergence rate analysis. In M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in neural information
processing systems 34: Annual conference on neural information processing systems
2021, neurips 2021, december 6-14, 2021, virtual (pp. 19608–19621). https : / /
proceedings.neurips.cc/paper/2021/hash/a34e1ddbb4d329167f50992ba59fe45a-
Abstract.html

Rammal, M. R., Achille, A., Golatkar, A., Diggavi, S., & Soatto, S. (2022). On leave-one-out
conditional mutual information for generalization. Advances in Neural Information
Processing Systems, 35, 10179–10190.

Rogers, W. H., & Wagner, T. J. (1978). A finite sample distribution-free performance bound
for local discrimination rules. The Annals of Statistics, 506–514.

Viallard, P., Emonet, R., Habrard, A., Morvant, E., & Zantedeschi, V. (2024). Leveraging
pac-bayes theory and gibbs distributions for generalization bounds with complexity
measures. In S. Dasgupta, S. Mandt, & Y. Li (Eds.), International conference on
artificial intelligence and statistics, 2-4 may 2024, palau de congressos, valencia,
spain (pp. 3007–3015, Vol. 238). PMLR. https://proceedings.mlr .press/v238/
viallard24a.html

Wang, Z., & Mao, Y. (2023). Tighter information-theoretic generalization bounds from
supersamples. arXiv preprint arXiv:2302.02432.

Xu, A., & Raginsky, M. (2017). Information-theoretic analysis of generalization capability of
learning algorithms. Advances in Neural Information Processing Systems, 30.

Zhang, P., Teng, J., & Zhang, J. (2023). Lower generalization bounds for gd and sgd in
smooth stochastic convex optimization. arXiv preprint arXiv:2303.10758.

A Other Related works
The works of Nagarajan and Kolter (2019, Theorem 3.1) and Bartlett and Long (2021,
Theorem 1) also study cases where generalization bounds fall short of estimating the
performance of learning algorithms (while Negrea et al., 2020 provide a response to these
claims). They preclude tight algorithm-dependent generalization bounds only for uniform
convergence and linear classifiers. Their theorems consider specific distributions (Gaussian
in Nagarajan and Kolter, 2019, a different distribution per sample in Bartlett and Long,
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2021) and specific types of SGD. In contrast, our work uses the same marginal distribution
across all sample sizes, and applies to many algorithms and distributions.

We now mention a few of the algorithm-dependent generalization bounds in the literature.
Zhang, Teng, and Zhang (2023) study convex optimization, so their results apply only to a
single neuron. While providing matching lower and upper bounds, these bounds match only
asymptotically when the sample size n is very large, far from the overparameterized regime
relevant for neural networks. Nikolakakis, Haddadpour, Karbasi, and Kalogerias (2023)
proposes generalization bounds for algorithms satisfying a certain symmetry property (e.g.,
full-batch gradient descent) when using smooth losses. These bounds are algorithm-dependent
but distribution-free, making no distributional assumptions.

There are a number of information-theoretic generalization bounds that are both algorithm
and distribution-dependent, such as Theorem 1 of Xu and Raginsky, 2017. However,
such bounds are sometimes difficult to approximate numerically in a tight manner. These
bounds are part of the PAC-Bayes framework.15 Unfortunately, when these PAC-Bayes or
information-theoretic bounds can be approximated in a tight manner,16 they do not reveal
what properties of the (distribution, algorithm) pair allowed for such success in learning
and estimation. The works of Haghifam, Moran, Roy, and Dziugiate (2022b) and Rammal,
Achille, Golatkar, Diggavi, and Soatto (2022) use the notion of leave-one-out conditional
mutual information to derive generalization bounds, which provide another characterization
of VC classes and yield non-vacuous generalization bounds for neural networks.

A.1 Neural Tangent Kernel and Mean-Field Theory
There are many works that study generalization in the overparameterized regime using
the neural tangent kernel (NTK) or mean-field theory (MFT) approach.17 To the best of
our knowledge, these works do not provide general necessary or sufficient conditions for
generalization bounds to be tight, which is the focus of our work. Additionally, they study
generalization bounds for fairly specific families of algorithms such as gradient descent (or
idealized versions thereof), while our work applies to a broader and more general class of
algorithms.18

B On the Definition of Overparameterization
In this paper we use a definition of overparameterization (Definition 1.4) introduced by
Gastpar et al. (2024) (see Definition 2 in that paper).

This definition is motivated by the need to formalize many common definitions of overpa-
rameterization in a manner that is true to the basic intuitive notion of overparameterization
while also being is suitable for proving mathematical theorems.

Appendix D19 of Gastpar et al. (2024) offers a detailed discussion of the merits of Definition 1.4,
and how it generalizes many common definitions. Below, we provide a brief summary of
the main points made in that appendix (the reader is encouraged to consult the original
appendix for a more detailed discussion).

Gastpar et al. (2024) identify three informal notions of overparameterization that are common
in the literature:

15See proof 4 for Theorem 8 in Bassily et al. (2018), which is equivalent to Theorem 1 in Xu and
Raginsky (2017).

16Such as in Issa et al. (2019), Issa et al. (2023), Esposito et al. (2021), Harutyunyan et al. (2021),
Dziugaite et al. (2021), Haghifam et al. (2022a), Hellström and Durisi (2022), and Wang and Mao
(2023).

17E.g., Aminian et al. (2023), Chen et al. (2020), Nishikawa et al. (2022), and Nitanda et al.
(2021).

18We note that Theorems 3.1 and 3.2 apply to learning algorithms that achieve 0 training error.
Because this property is satisfied by most contemporary overparameterized learning algorithms
(even if the labels are random), we do not view this as a significant limitation on the generality of
our results. This assumption is not essential, and it could easily be relaxed in future work.

19This is Appendix D of the official ICLR version of the paper, linked to in our References section.
The numbering of appendices might differ in other versions.
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Definition A. The number of independently-tunable parameters in the machine learning
system is significantly larger than the number of samples in the training set.
Definition B. The learning system can interpolate arbitrary data.
Definition C. The size of the training set is smaller than the VC dimension.

The authors argue that each of these definitions, as typically understood, implies their
proposed formalization of overparameterization as in Definition 1.4. In particular, this means
that any impossibility result proved for overparameterized settings as in Definition 1.4 also
hold for settings that are overparameterized according to any of the above three definitions.
We are specifically interested in understanding estimability in the overparameterized setting,
both because most contemporary machine learning systems are overparameterized, and also
because estimability in the standard (non-overparameterized) supervised learning setting is
typically trivial due to standard uniform convergence bounds for VC classes (specifically, for
proper learning rules in realizable settings; see Example 1.5 for a counterexample when the
algorithm is not proper).
Overparameterization as in Definition 1.4 appears in the current paper in the following
contexts:

1. In Theorems 3.1 and 3.2, show that show cases where algorithms are not estimable.
These results are in the overparameterized setting.

2. In Theorem 4.3 we give a condition that implies that an algorithm is estimable, even if
the setting is overparameterized.

3. In Fact 5.2 we give a necessary and sufficient condition for estimability, including in the
overparameterized setting.

Remark B.1. One way to understand the motivation for Definition 1.4 is to consider an
analogy with the definition of a continuous function. The most common and basic definition
of a continuous function is the ε-δ definition (developed by Bolzano, Cauchy, Weierstrass
and Jordan in the 1800s). That definition very clearly captures the intuitive notion of
continuity. Later on, however, that definition was generalized by Hausdorff, who gave a
modern topological definition of a continuous function, requiring that the preimage of any
open set is an open set. This more modern definition might appear rather strange at first, and
somewhat removed from the basic intuition of what a continuous function is. Nonetheless, it
turns out that the topological definition does not just generalize the basic definition, but it
does so in a way that is very useful, while remaining true to the intuitive notion of continuity.
Similarly, Definition 1.4 generalizes the intuitive notion of overparameterization in a way
that is useful for proving mathematical theorems.

C On Extending Our Results to Randomized Algorithms
For simplicity, in this paper we focus on deterministic learning rules. However, we recognize
that the topic of randomized learning algorithms is very important, seeing as most algorithms
used in practice today are randomized.
The estimability framework explored in this paper can be extended to handle randomized
algorithms as well, and in fact the original work of Gastpar et al. (2024) already contains
some initial treatment of randomized algorithms.
We expect that the results presented in this paper can be extended to randomized algorithms,
and that the essence of the results remains mostly unchanged.
The first step in such an extension would be to clearly define what estimability means for
randomized learning algorithms. A definition that one might initially consider is one where
the estimator knows the randomness used by the algorithm, and must output a number
that is with high probability close to the true population loss of the randomized algorithm.
This definition is not very interesting, because a setting in which the estimator knows the
randomness used by the randomized algorithm is equivalent to the setting of a deterministic
algorithm, which is already covered by the results in this paper. Nonetheless, it is good to
keep this definition in mind, because it means that our results for deterministic algorithms
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already apply as-is to randomized algorithms (like SGD) once the randomly chosen seed
is fixed, which might be a simple and satisfactory approach for many purposes (SGD with
a fixed random seed typically performs as well for most purposes as SGD with a fresh
randomly-chosen seed).

Perhaps the more “correct” and interesting definition of estimability for randomized learning
algorithms is one where the estimator knows the training set, but does not know the
randomness used by the learning algorithm, and it is required to output a number that
is close with high probability to the expected population loss of the randomized algorithm
when executed with this training set (where the expectation is over the randomness of the
algorithm). In this setting, we believe the essence of our results carries through, with an
important conceptual difference: using randomness, one can always engineer a learning
algorithm that is estimable, essentially by adding noise to the output of the algorithm. As
the noise in the algorithm’s output increases, the expected 0-1 loss of the algorithm becomes
closer to 1/2, and so the algorithm becomes estimable with a trivial estimator that simply
always outputs the number 1/2. (With intermediate amounts of noise, a number between 0
and 1/2 will be optimal).

Consequently, for randomized algorithms, our lower bounds in Theorems 3.1 and 3.2 can
no longer be stated as absolute limitations on estimability. Rather there is now a trade-off
between the performance of the algorithm and its estimability. As one adds more noise, the
algorithm becomes more estimable, but its performance degrades. Thus, the corresponding
theorems for randomized algorithm would state that no algorithm can simultaneously make
good predictions for some large set of labeling functions and also be estimable.

On the other hand, the upper bound in Theorem 4.3 that states that stable algorithms are
estimable remains basically unchanged for randomized algorithms.

To summarize, under a suitable definition of estimability for randomized algorithms, we
expect that our results would not change much, though the statement (and proof) of the
lower bounds would be somewhat more complex. We leave this work to future research.

D Details about Example 1.9

For sample size m ≥ d + 10, any ERM algorithm for H satisfies p(m) ≥ 0.999, meaning it
learns D well, and hence is (0, 10−3, d + 10)-estimable on average. This holds because for an
ERM to output the ground truth, it is clearly sufficient that only a single sample-consistent
function exists in the concept class (the ground truth). Similarly, in the event that there
are t > 1 sample-consistent functions, the success probability is given by 1/t due to the
uniform prior over ground truth distributions. Parity functions are fully characterized by
their coefficient vector w = [w1, . . . , wd]. Since the labels y are a bilinear function in the
inputs x and coefficients w, one can obtain w from m ≥ d linearly independent samples xi

by solving the linear system of equation y = Xw with design matrix X ∈ {0, 1}m×d. More
generally, X having rank d − k is equivalent to the event of having t = 2k sample-consistent
functions (coefficient vectors) since every additional linearly independent row rules out half
of all parity functions. Now assume X consists of all i.i.d. Ber(½) entries and y contains
the labels of all samples. The probability of zero population loss can now be obtained from
the law of total probability with the probabilities of rank deficiency computed according to
Corollary 2.2 in Blake and Studholme (2006).

Similar calculations show that for smaller sample sizes, any ERM for H satisfies p(d) ≥ 0.61,
and p(d − 1) ≥ 0.38. An application of Theorem 5 in Gastpar et al. (2024) shows that there
exist ERM algorithms such that for any 6 ≤ m ≤ d there exists a collection Dm for which the
algorithm is not (0.25, 0.32, m)-estimable on average. These algorithms have an inductive
bias towards a subset F ⊆ H, such that they perform well for distributions labeled by a
function from F , and perform poorly for target functions from the complement of F .
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E Proof of Theorem 3.1
Recall the definition of nearly-orthogonal functions (Definition 2.8). The proof of Theorem 3.1
uses a corollary of the Johnson–Lindenstrauss lemma (Theorem L.1), which states that
random vectors in a high dimensional space are nearly orthogonal, as follows.20

Claim E.1. Let ε ∈ (0, 1/2), and let d, n ∈ N such that

n ≤ exp
(
dε2/54

)
.

Let U = U
(
{±1}[d]) be the uniform distribution over functions [d] → {±1}, and consider a

random sequence F of functions F1, . . . , Fn sampled independently from U . Then

PF ∼Un

[
F ∈ ⊥ε,[d]

]
≥ 0.99.

Proof of Claim E.1. If n = 1 there is nothing to prove, so we assume n ≥ 2. Let R ∼
U
(
{±1}d×n

)
be a d × n matrix with entries in {±1} chosen independently and uniformly

at random. In particular, for each i ∈ [n], the i-th column of R is a vector of d numbers in
{±1} chosen independently and uniformly at random. Hence, using e1, . . . , en to denote the
standard basis of Rn, we identify the vector Rei, which is the i-th column of R, with the
random function Fi : [d] → {±1}.
Recall that for vectors u, v ∈ Rd,

∥u − v∥2
2 = ⟨u − v, u − v⟩ = ∥u∥2

2 − 2 ⟨u, v⟩ + ∥v∥2
2,

so

⟨u, v⟩ = ∥u∥2
2 + ∥v∥2

2 − ∥u − v∥2
2

2 . (5)

Invoking Theorem L.1 with s = n, β = 7, V = {e1, . . . , en} ⊆ Rn, and d, n, ε as in the claim
statement implies that

P
R∼U({±1}d×n)

 ∀i, j ∈ [n], i ̸= j :

(1 − ε) · 2 ≤
∥∥∥ 1√

d
Rei − 1√

d
Rej

∥∥∥2

2
≤ (1 + ε) · 2

 ≥ 1 − 1
nβ

. (6)

Hence, with probability at least 1 − 1/nβ ≥ 1 − 1/27 ≥ 0.99 over the choice of F , every
distinct i, j ∈ [n] satisfy∣∣Ex∼U([d])[Fi(x)Fj(x)]

∣∣ =

∣∣∣∣∣∣1d
∑

x∈[d]

Fi(x)Fj(x)

∣∣∣∣∣∣ =
∣∣∣∣1d ⟨Rei, Rej⟩

∣∣∣∣ (Identifying Fi with Rei)

=
∣∣∣∣∥Rei∥2

2 + ∥Rej∥2
2 − ∥Rei − Rei∥2

2
2d

∣∣∣∣ (By Eq. (5))

=
∣∣∣∣∣1 − 1

2

∥∥∥∥ 1√
d

Rei − 1√
d

Rei

∥∥∥∥2

2

∣∣∣∣∣
≤ ε, (By Eq. (6))

as desired.

Proof of Theorem 3.1. Fix an H-shattered set Xd ⊆ X with cardinality |Xd| = d, and for
each f : Xd → {±1} let Df = U({(x, f(x)) : x ∈ Xd}). Note that the distributions Df are
H-realizable. We will show that there exists a collection D = {Df : f ∈ F} that satisfies
Eq. (4), where F ⊆ {±1}Xd is a set of k = 2m + 1 functions.
Consider the following experiment:

20It is also possible to prove a similar claim by directly using concentration of measure (e.g.,
Hoeffding’s inequality), without using the Johnson–Lindenstrauss lemma.
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1. Sample a sequence of functions G = (G1, . . . , Gk) independently and uniformly at
random from {±1}Xd .

2. Sample a function F uniformly from G.
3. Sample a sequence of points X = (X1, . . . , Xm) independently and uniformly at random

from Xd. (X is sampled independently of (G, F ).)
4. For each i ∈ [m], let Yi = F (Xi), let Y = (Y1, . . . , Ym), and let S =(

(X1, Y1), . . . , (Xm, Ym)
)

.

Let P be the joint distribution of (G, F, X, Y, S). Consider the following events:

• E1 = {G ∈ ⊥ε,Xd
} for ε = 2/d1/4. By Claim E.1 and the choice of k, P(E1) ≥ 0.99 for d

large enough.21

• E2 =
{

|{X1, . . . , Xm}| = m
}

. By Claim L.2 and the choice of m, P(E2) ≥ 0.99.

• E3 =
{

|GS | = 2
}

. P(E3 | E2) ≥ 1/e. To see this, note that each function Gi ∈ G \ {F} is
chosen independently of F . Hence, the probability that a function Gi agrees with F on
the m distinct samples in X (i.e., the probability that Gi(Xj) = F (Xj) for all j ∈ [m],
given E2) is p = 2−m. The functions in G are chosen independently, so the number
T of functions in G \ {F} that agree with F on m distinct samples has a binomial
distribution T ∼ Bin(k − 1, p). So

P[T = 1] = (k − 1) · p · (1 − p)k−2 = (1 − p)k−2

≥
(

e− p
1−p

)k−2
(∀p < 1 : 1 − p ≥ e−p/(1−p))

= 1/e.

Let E = E1 ∩ E3. Combining the above bounds yields
P(E) = P(E1 ∩ E3)

≥ P(E3) − P
(
EC

1
)

≥ P(E3 | E2) · P(E2) − P
(
EC

1
)

≥ 0.99 · 1/e − 0.01 > 1/3.

By an averaging argument, this implies that there exists F ⊆ {±1}Xd such that F ∈ ⊥ε,Xd

for ε = 2/d1/4 and
P(|GS | = 2 | G = F) ≥ 1/3. (7)

Fix this F , and let A be an F-interpolating learning rule. From the technical lemma
(Lemma I.1), there exists a collection of F-realizable distributions D ⊆ ∆(Xd × {±1}) such
that for any estimator E : (X × {±1})m → [0, 1] that may depend on D and A,

PD∼U(D)
S∼Dm

[∣∣E (S) − LD(A(S))
∣∣ ≥ 1

4 − ε

4

]
≥ 1

2 · PD∼U(D)
S∼Dm

[|FS | = 2]

≥ 1
2 · 1

3 = 1
6 , (By Eq. (7))

as desired.

F Proof of Theorem 3.2
Proof of Theorem 3.2. We take D = {Df : f ∈ F} where Df = U({(x, f(x)) : x ∈ X }). Fix
a function f∗ ∈ F , let S ∼ (Df∗)m, and consider the random variable Z = |FS |. We bound
the expectation and variance of Z, and then show a lower bound on the probability that
Z ∈ {2, 3}.

21We choose d0 ∈ N to be the universal constant such that this inequality holds for all integers
d ≥ d0 and all m ≤

√
d/10.
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Let S =
(
(X1, Y1), . . . , (Xm, Ym)

)
and X = {X1, . . . , Xm}, and let E denote the event in

which |X| = m (i.e., S is collision-free). For each f ∈ F , let Zf = 1(∀i ∈ [m] : f(Xi) = Yi),
so that Z =

∑
f∈F Zf .

E
S∼(Df∗)m

[Z | E] = E

∑
f∈F

Zf

∣∣∣ E


= 1 +

∑
f∈F
f ̸=f∗

P
[
∀i ∈ [m] : f(Xi) = Yi

∣∣ E
]

(ZF = 1)

≤ 1 + 2m ·
(

1
2 + 1

2 · 1
1000m

)m

(By Fact 2.9)

≤ 1 + e1/1000 < 2.002. (8)

E
S∼(Df∗)m

[Z | E] ≥ 1 + 2m ·
(

1
2 − 1

2 · 1
1000m

)m

(By Fact 2.9)

≥ 1 + e−1/500. (1 − x ≥ e−x/(1−x))
(9)

E
S∼(Df∗)m

[
Z2 | E

]
= E

∑
f∈F

Zf

∑
g∈F

Zg

 ∣∣∣ E



= E


1 +

∑
f∈F
f ̸=f∗

Zf


1 +

∑
g∈F
g ̸=f∗

Zg

 ∣∣∣ E

 (Zf∗ = 1)

= E

1 + 2
∑
f∈F
f ̸=f∗

Zf +
∑
f∈F
f ̸=f∗

∑
g∈F
g ̸=f∗

Zf Zg

∣∣∣ E



= E

1 + 3
∑
f∈F
f ̸=f∗

Zf +
∑

f,g∈F\{f∗}
f ̸=g

Zf Zg

∣∣∣ E


= 1 + 3 (E[Z | E] − 1) +

∑
f,g∈F\{f∗}

f ̸=g

E
[
Zf Zg

∣∣∣ E
]
. (10)

∑
f,g∈F\{f∗}

f ̸=g

E
[
Zf Zg

∣∣∣ E
]

=
∑

f,g∈F\{f∗}
f ̸=g

P
[
∀i ∈ [m] : f(Xi) = g(Xi) = f∗(Xi)

∣∣ E
]

≤ 22m ·
(

1
4 + 3

4 · 1
1000m

)m

(By Claim K.1)

=
(

1 + 3
1000m

)m

≤ e3/1000. (11)
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Combining Eqs. (8) to (11) yields

Var[Z | E] = E
[
Z2 | E

]
− (E[Z | E])2

≤ 1 + 3e1/1000 + e3/1000 −
(

1 + e−1/500
)2

< 1.02.

By Lemma J.1,

P[Z ∈ {2, 3} | E] ≥ 1 − Var[Z | E]
2 ≥ 0.49.

Claim L.2 and |X ′| ≥ 100m2 imply that P[E] ≥ 0.99. Hence,

P[Z ∈ {2, 3}] ≥ P[E] · P[Z ∈ {2, 3} | E] ≥ 0.99 · 0.49 ≥ 0.48. (12)

Finally, invoking our technical lemma (Lemma I.1) yields

P F ∼U(F)
S∼(DF )m

[∣∣E (S) − LDF
(A(S))

∣∣ ≥ 1
4 − 1

4000m

]
≥ P[Z ∈ {2, 3}]

3 ≥ 0.16,

as desired.

G Proof of Theorem 4.3
Proof of Theorem 4.3. If (A,D) is (α, β, m, k)-hypothesis stable, then in particular (A,D)
is also (α, β, m, k)-loss stable. Hence, it suffices to prove the claim for the case of loss
stability. We construct a uniform estimator E as follows. Given a sample S ∈ Zm for
Z = (X × {±1}), let S1 ◦ S2 = S be the partition of S such that S1 ∈ Zm−k and S2 ∈ Zk.
Take E (S) = LS2(A(S1)).

By the triangle inequality,

|E (S) − LD(A(S))| ≤ |E (S) − LD(A(S1))| + |LD(A(S1)) − LD(A(S))| ,

so

PS∼Dm [|E (S) − LD(A(S))| > ε] ≤ P
[

|LS2(A(S1)) − LD(A(S1))| > α0 ∨
|LD(A(S1)) − LD(A(S))| > α1

]
≤ P[|LS2(A(S1)) − LD(A(S1))| > α0]

+ P[|LD(A(S1)) − LD(A(S))| > α1]
≤ β0 + β1 = δ,

where the final step follows from Hoeffding’s inequality, the choice of k, and the stability
of A.

H Proof of Fact 5.2
Proof. The result that the minimum mean-square error (MMSE) estimator corresponds
to the conditional expectation is a well-established theorem in probability theory (see, for
instance, Section 7.9 in Grimmett and Stirzaker (2020)). For the sake of completeness, we
present a proof of this result.

We will use the following simple claim.

Claim H.1. Let c1, ..., ck, p1, ..., pk ∈ R such that
∑k

i=1 pi = 1, then

argminx∈R

k∑
i=1

pi · (x − ci)2 =
k∑

i=1
pi · ci.
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The claim follows by taking the derivative of
∑k

i=1 pi · (x − ci)2 with respect to x which
yields the equation:∑k

i=1 2pi(x − ci) = 0 that implies x =
∑k

i=1 pici since
∑k

i=1 pi = 1.
The following shows that the estimator E ∗(S) := E [LD(A(S)) | S] is optimal and the
inequality follows from Claim H.1. Let E be any estimator for A.

ED∼U(D),S∼Dm

[
(E (S) − LD(A(S)))2]

=
∑

S

P(S)
∑
D∈D

P(D|S) (LD(A(S)) − E (S))2

= E

[∑
D∈D

P(D|S) (LD(A(S)) − E (S))2

]

≥ E

∑
D∈D

P(D|S)
(

LD(A(S)) −
∑
D∈D

[P(D|S)LD(A(S))]
)2


= E

[∑
D∈D

P(D|S) (LD(A(S)) − E ∗(S))2

]
= ED∼U(D),S∼Dm

[
(E ∗(S) − LD(A(S)))2] .

This means that A is square loss (ε, m)-estimable with respect to D if and only if E ∗ can
achieve ε accuracy. It achieves such accuracy if and only if E [var(LD(A(S)) | S)] ≤ ε. This
follows by the following equalities that complete the proof.

E [var(LD(A(S)) | S)] = E
[
E
[
(LD(A(S)) − E [LD(A(S))|S])2 | S

]]
= E

[∑
D∈D

P(D|S) (LD(A(S)) − E [LD(A(S)) | S])2

]

= E

∑
D∈D

P(D|S)
(

LD(A(S)) −
∑
D∈D

[P(D|S)LD(A(S))]
)2


= E

[∑
D∈D

P(D|S) (LD(A(S)) − E ∗(S))2

]
= ED∼U(D),S∼Dm

[
(E ∗(S) − LD(A(S)))2]

I Technical Lemma for Inestimability
Lemma I.1. Let m ∈ N, let ε > 0, let X be a finite set, let F ⊆ {±1}X such that F ∈ ⊥ε,X ,
and let A : (X × {±1})m → {±1}X be an F-interpolating learning rule. For each f ∈ F let
Df = U({(x, f(x)) : x ∈ X }), and for each k ∈ N let

pk = P F ∼U(F)
S∼(DF )m

[|FS | = k].

Then for any estimator E : (X × {±1})m → [0, 1] that may depend on A,

P F ∼U(F)
S∼(DF )m

[∣∣E (S) − LDF
(A(S))

∣∣ ≥ 1
4 − ε

4

]
≥

∑
k∈{2,...,|F|}

pk

k
.

Proof. Consider the following experiment:
1. Sample a sequence of points X = (X1, . . . , Xm) independently and uniformly at random

from X .
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2. Sample a function F uniformly from F , independently of X.
3. For each i ∈ [m], let Yi = F (Xi), let Y = (Y1, . . . , Ym), and let S =(

(X1, Y1), . . . , (Xm, Ym)
)

.

Let P be the joint distribution of (X, F, Y, S). Fix k ∈ {2, . . . , |F|}, and let

s =
(
(x1, y1), . . . , (xm, ym)

)
∈ (X × {±1})m

with x = (x1, . . . , xm) and y = (y1, . . . , ym) such that |Fs| = k. Denote Fs = {f1, . . . , fk}.
Then for any i, j ∈ [k], i ̸= j,

P(S = s | F = fi) = P(X = x | F = fi)
= P(X = x | F = fj) (X⊥F )
= P(S = s | F = fj). (13)

So,

P(F = fi | S = s) = P(S = s | F = fi) · P(F = fi)
P(S = s)

= P(S = s | F = fj) · P(F = fj)
P(S = s) (By Eq. (13), F ∼ U(F))

= P(F = fj | S = s), (14)
Seeing as P(F ∈ Fs | S = s) = 1, this implies that for all i ∈ [k], P(F = fi | S = s) = 1/k.
Because A is F -interpolating, A(s) ∈ Fs. Without loss of generality, denote A(s) = f1. From
F ∈ ⊥ε,X and Fact 2.9, LDfi

(fj) ≥ 1
2 − ε

2 := 2α for all i, j ∈ [k], i ̸= j. Hence,

P(LDF
(A(S)) = 0 | S = s) = P(F = A(S) | S = s) (F, A(s) ∈ Fs)

= P(F = f1 | S = s) (A(s) = f1)
= 1/k, (15)

and
P(LDF

(A(S)) ≥ 2α | S = s) = P(F ̸= A(S) | S = s)
= P(F ∈ {f2, . . . , fk} | S = s)
= (k − 1)/k. (16)

Hence, for any η ∈ R,

P
(
|LDF

(A(S)) − η| ≥ α
∣∣ S = s

)
≥ 1

k
. (17)

We conclude that for any estimator E : (X × {±1})m → R,
P(|LDF

(A(S)) − E (S)| ≥ α)

≥
∑

k∈{2,...,|F|}

P
(

|LDF
(A(S)) − E (S)| ≥ α

∧
|FS | = k

)
=

∑
k∈{2,...,|F|}

∑
s: |Fs|=k

P
(
|LDF

(A(S)) − E (S)| ≥ α
∣∣ S = s

)
· P(S = s)

≥
∑

k∈{2,...,|F|}

∑
s: |Fs|=k

inf
η∈R

P
(
|LDF

(A(S)) − η| ≥ α
∣∣ S = s

)
· P(S = s)

≥
∑

k∈{2,...,|F|}

∑
s: |Fs|=k

1
k

· P(S = s) (By Eq. (17))

=
∑

k∈{2,...,|F|}

1
k

· P(|FS | = k)

as desired.
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J Concentration Bound via Linear Programming
Lemma J.1. Let n ∈ N, vmax ∈ R. Let Z be a random variable taking values in [n] such
that µ = E[Z] ∈ [2,

√
2 + 1] and Var[Z] ≤ vmax. Then P[Z ∈ {2, 3}] ≥ 1 − vmax/2.

We prove this concentration of measure bound using the duality of linear programs (see
Section 7.4.1 in Boyd and Vandenberghe, 2014 for an exposition of this approach).

Proof. Let Z ′ = Z − µ. Z ′ is a random variable with E[Z ′] = 0 and Var[Z ′] =
Var[Z]. Furthermore, P[Z ∈ {2, 3}] = P[Z ′ ∈ {2 − µ, 3 − µ}]. We show a lower bound
on P[Z ′ ∈ {2 − µ, 3 − µ}] across all distribution of Z ′ with the above moment constraints.
Indeed, let X be a random variable taking values in {1−µ, 2−µ, . . . , n−µ} with E[X] = 0 and
Var[X] ≤ vmax such that P[X ∈ {2 − µ, 3 − µ}] is minimal. In particular, the distribution of
X is a solution to the following minimization problem.

min
DX

P[X ∈ {2 − µ, 3 − µ}]

s.t.
E[X] = 0
Var[X] ≤ vmax

The minimization problem can be formulated as a linear program with variables pk =
P[X = k − µ] for each k ∈ [n].

min
DX

p2 + p3

s.t.∑
k∈[n]

pk ≥ 1

∑
k∈[n]

−pk ≥ −1

∑
k∈[n]

pk · (k − µ) ≥ 0

∑
k∈[n]

pk · (µ − k) ≥ 0

∑
k∈[n]

−pk · (k − µ)2 ≥ −vmax

∀k ∈ [n] : pk ≥ 0.

This linear program can be represented as

min (0, 1, 1, 0, . . . , 0) · p

s.t.
1 1 . . . 1

−1 −1 . . . −1
1 − µ 2 − µ . . . n − µ
µ − 1 µ − 2 . . . µ − n

−(1 − µ)2 −(2 − µ)2 . . . −(n − µ)2


p1

...
pn

 ≥


1

−1
0
0

−vmax


p ≥ 0.

Recall the symmetric duality

min cT x max bT y
s.t. ↭ s.t.

Ax ≥ b AT y ≤ c
x ≥ 0 y ≥ 0.
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Hence, the dual linear program is

max (1, −1, 0, 0, −vmax) · y

s.t.
1 −1 1 − µ µ − 1 −(1 − µ)2

1 −1 2 − µ µ − 2 −(2 − µ)2

1 −1 3 − µ µ − 3 −(3 − µ)2

...
1 −1 n − µ µ − n −(n − µ)2


y1

...
y5

 ≤



0
1
1
0
...
0


y ≥ 0.

A direct calculation shows that the vector

y∗ =
(
1, 0, α, 0, 1

2
)

, α = 1
µ − 1 − µ − 1

2

is a feasible solution for the dual program for any µ ∈ [2,
√

2 + 1]. The value of the dual
program at y∗ is u = 1 − vmax/2. The weak duality theorem for linear programs implies that
u is a lower bound on the value of the primal problem. Hence,

minP[X ∈ {2 − µ, 3 − µ}] ≥ u.

This implies that P[Z ∈ {2, 3}] ≥ u, as desired.

K Agreement Between Nearly-Orthogonal Functions
Claim K.1. Let ε > 0, let X be a set, and let f, g, h : X → {±1} such that {f, g, h} ∈ ⊥ε,X .
Then Px∼U(X )[f(x) = g(x) = h(x)] ≤ 1

4 + 3ε
4 .

Proof. Denote

a = Px∼U(X )[f(x) = g(x) = h(x)]
b = Px∼U(X )[f(x) ̸= g(x) = h(x)]
c = Px∼U(X )[f(x) = g(x) ̸= h(x)]
d = Px∼U(X )[f(x) ̸= g(x) ̸= h(x)]

From {f, g, h} ∈ ⊥ε,X and Fact 2.9,

a + b = Px∼U(X )[g(x) = h(x)] ≤ 1
2 + ε

2
a + c = Px∼U(X )[f(x) = g(x)] ≤ 1

2 + ε

2
a + d = Px∼U(X )[f(x) = h(x)] ≤ 1

2 + ε

2 .

Adding these inequalities yields

3a + b + c + d ≤ 3
2 + 3ε

2 .

From the identity a + b + c + d = 1,

2a ≤ 1
2 + 3ε

2 ,

so a ≤ 1
4 + 3ε

4 , as desired.
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L Miscellaneous Lemmas
The following result from Achlioptas (2003) is a variant of a lemma of Johnson and Linden-
strauss (1984).
Theorem L.1 (Johnson–Lindenstrauss). Let n, s ∈ N, let ε, β > 0, and let V ⊆ Rs be a set
with cardinality |V | = n. Let d ∈ N such that

d ≥ 4 + 2β

ε2/2 − ε3/3 ln(n).

Let R be a d × s random matrix such that each entry is chosen independently and uniformly
at random from {±1}. Let fR : Rs → Rd be given by fR(v) = (1/

√
d) · Rv. Then

P
R∼U({±1}d×s)

[
∀u, v ∈ V : (1 − ε)∥u − v∥2

2 ≤ ∥fR(u) − fR(v)∥2
2 ≤ (1 + ε)∥u − v∥2

2
]

≥ 1− 1
nβ

.

Claim L.2 (Converse to Birthday Paradox). Let d, m ∈ N, and let β ∈ (0, 1). If

m ≤ min
{√

d ln
(

1
β

)
,

d

2

}
then PX∼(U([d]))m [|X| = m] ≥ β.

Proof. We use the inequality 1 − x ≥ e−x/(1−x), which holds for x < 1.

PX∼(U([d]))m [|X| = m] = 1 ·
(

1 − 1
d

)
·
(

1 − 2
d

)
· · ·
(

1 − m − 1
d

)
≥

m−1∏
k=0

exp
(

− k

d − k

)
= exp

(
−

m−1∑
k=0

k

d − k

)
(∗)
≥ exp

(
−2

d

m−1∑
k=0

k

)
≥ exp

(
−m2

d

)
,

where (∗) follows from m ≤ d/2. Solving exp
(

− m2

d

)
≥ β yields the desired bound.

Theorem L.3 (Hoeffding, 1963). Let a, b, µ ∈ R and m ∈ N. Let Z1, . . . , Zm be a sequence
of i.i.d. real-valued random variables and let Z = 1

m

∑m
i=1 Zi. Assume that E[Z] = µ, and

for every i ∈ [m], P[a ≤ Zi ≤ b] = 1. Then, for any ε > 0,

P[|Z − µ| > ε] ≤ 2 exp
(

−2mε2

(b − a)2

)
.

M Experiments
M.1 Motivation and Setup
Here, we examine if there are practical algorithms that admit loss stability or even hypothesis
stability with substantial numerical values. To this end, we conduct experiments over a
simple neural network architecture across four datasets: MNIST, FashionMNIST, CIFAR10,
and CIFAR10 with random labels (figures 1-4, respectively). Throughout all experiments, we
employ one-hidden-layer perceptrons with 512 hidden neurons. We train the models using
stochastic gradient descent (SGD) with a momentum factor of 0.9 and a batch size of 1000,
optimizing the cross-entropy loss. For every data set, we train the models across learning
rates 0.1, 0.035,22 and 0.01. We average all the curves over 10 random seeds (tied for the
pairs of networks) and plot the standard deviation for all the curves.

22Except for CIFAR10, we present the results only for learning rate 0.1 and 0.01 to prevent clutter.
The qualitative results are consistent across all datasets; that is, the curves of learning rate 0.035 lie
between the curves of learning rate 0.1 and 0.01.
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The training procedure is as follows: we train two models in tandem, starting from the same
random initialization. The first model is provided with the full training set, whereas the
second model has k = 100 data points removed from its training set. These points are drawn
uniformly at random before the beginning of the training, and fixed thereafter. After each
epoch, we evaluate the training accuracy, test accuracy and hypothesis stability, i.e., the
agreement between the two models (which we calculate across the test set).
We set our main focus on the agreement of the models since the most amenable way to
show loss stability might be by way of proving hypothesis stability. The latter can perhaps
be mathematically proven in the case of neural networks by analyzing the stability of the
training dynamics under two slightly different training sets.

M.2 Results
Across all experiments, the training and test accuracy of the model pairs are essentially
identical throughout the training process. This suggests that at least simple models are loss
stable across vision tasks. In order to reduce visual clutter, we hence only plot training and
test accuracy of the first model (which has access to the full training set), respectively.
We observe higher agreement for simpler data sets and smaller learning rates. For example,
the learning rate has a considerable effect on agreement for CIFAR10 (≈ 0.65 for learning
rate 0.1 vs ≈ 0.8 for learning rate 0.01).
The key takeaway from Figures 1 through 4 is that the agreement is consistently higher than
the test accuracy. This relationship ensures that when applying the estimation procedure
outlined in Theorem 4.3, we can avoid vacuous predictions of perfect accuracy. In the
scenarios presented, the estimated accuracy will always be bounded away from 1, as it can
be expressed as test error + (1 - agreement). For instance, with a learning rate of 0.01, the
maximum estimated accuracies are: 98% for MNIST (compared to 97.5% test accuracy),
90% for FashionMNIST (87% test accuracy), 72% for CIFAR10 (52% test accuracy), and
65% for CIFAR10 with random labels (10% test accuracy). These results illustrate a strong
correlation between stability estimation and data complexity.
We repeat the same experiments, modifying the width of the hidden layer to investigate its
impact on stability. The results, summarized in Table 1, reveal a strong positive correlation
between network width and stability. This effect is particularly pronounced for more complex
tasks, such as CIFAR10 and CIFAR10 with random labels. For instance, in the CIFAR10
random labels setting with a learning rate of 0.01, increasing the width from 256 to 1024
neurons improves agreement from 32% to 50%, highlighting the stabilizing effect of greater
network width.
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Figure 1: MNIST

Figure 2: FashionMNIST
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Figure 3: CIFAR10

Figure 4: CIFAR10 with random labels
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MNIST FMNIST CIFAR10 CIFAR10 - RAND
#N lr Agree #N lr Agree #N lr Agree #N lr Agree
256 0.1 99% 256 0.1 92% 256 0.1 62% 256 0.1 21%
256 0.01 99.5% 256 0.01 97% 256 0.01 71% 256 0.01 32%
512 0.1 99% 512 0.1 94% 512 0.1 67% 512 0.1 30%
512 0.01 99.5% 512 0.01 97% 512 0.01 80% 512 0.01 41%
1024 0.1 99% 1024 0.1 95% 1024 0.1 76% 1024 0.1 39%
1024 0.01 99.5% 1024 0.01 98% 1024 0.01 85% 1024 0.01 50%

Table 1: Agreement percentages across datasets with varying number of neurons in the
hidden layer (#N) and learning rates (lr). The setup is the same as in M.1 except for the
number of training epochs, which is {50, 150, 150, 300} for {MNIST, FMNIST, CIFAR10,
CIFAR10 random}, respectively. In scenarios where agreement has not yet reached saturation,
agreement is positively correlated with the width of the network.
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