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ABSTRACT

Most offline reinforcement learning (RL) methods suffer from the trade-off between
improving the policy to surpass the behavior policy and constraining the policy to
limit the deviation from the behavior policy as computing Q-values using out-of-
distribution actions will suffer from errors due to distributional shift. The recent
proposed In-sample Learning paradigm (e.g., IQL), which improves the policy
by quantile regression using only data samples, shows great promise because it
learns an optimal policy without querying the value function of any unseen actions.
However, it remains unclear how this type of method handles the distributional
shift in learning the value function. In this work, we make a key finding that
the in-sample learning paradigm arises under the Implicit Value Regularization
(IVR) framework. This gives a deeper understanding of why the in-sample learning
paradigm works, i.e., it applies implicit value regularization to the policy. Based on
the IVR framework, we further propose a practical algorithm, which uses the same
value regularization as CQL, but in a complete in-sample manner. Compared with
IQL, we find that our algorithm introduces sparsity in learning the value function,
we thus dub our method Sparse Q-learning (SQL). We verify the effectiveness
of SQL on D4RL benchmark datasets. We also show the benefits of sparsity by
comparing SQL with IQL in noisy data regimes and show the robustness of in-
sample learning by comparing SQL with CQL in small data regimes. Under all
settings, SQL achieves better results and owns faster convergence compared to
other baselines.

1 INTRODUCTION

Reinforcement learning (RL) is an increasingly important technology for developing highly capable
Al systems, it has achieved great success in game-playing domains (Mnih et al.,[2013; Silver et al.,
2017). However, the fundamental online learning paradigm in RL is also one of the biggest obstacles
to RL’s widespread adoption, as interacting with the environment can be costly and dangerous in
real-world settings. Offline RL, also known as batch RL, aims at solving the abovementioned problem
by learning effective policies solely from offline data, without any additional online interactions. It is
a promising area for bringing RL into real-world domains, such as robotics (Kalashnikov et al.| 2021)),
healthcare (Tang & Wiens, 2021)) and industrial control (Zhan et al.,[2022). In such scenarios, arbitrary
exploration with untrained policies is costly or dangerous, but sufficient prior data is available.

While most off-policy RL algorithms are applicable in the offline setting by filling the replay buffer
with offline data, improving the policy beyond the level of the behavior policy entails querying the
Q-function about values of actions produced by the policy, which are often not seen in the dataset.
Those out-of-distribution actions can be deemed as adversarial examples of the Q-function, which
cause extrapolation errors of the Q-function (Kumar et al.| [2020). To alleviate this issue, prior
model-free offline RL methods typically add pessimism to the learning objective, in order to be
pessimistic about the distributional shift. Pessimism can be achieved by policy constraint, which
constrains the policy to be close to the behavior policy (Kumar et al., 2019} |Wu et al., 20195 |Nair
et al., [2020; |[Fujimoto & Gu, 2021); or value regularization, which directly modifies the Q-function
to be pessimistic (Kumar et al., 2020; Kostrikov et al., [2021a; |An et al., 2021} Bai et al., 2021).
Nevertheless, this imposes a trade-off between accurate value estimation (more regularization) and
maximum policy performance (less regularization).
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In this work, we find that we could alleviate the trade-off in out-of-sample learning by performing
implicit value regulazization, this bypasses querying the value function of any unseen actions, allows
learning an optimal policy using in-sample learning[ﬂ More specifically, we propose the Implicit
Value Regulazization (IVR) framework, in which a general form of behavior regularizers is added to
the policy learning objective. Because of the regularization, the optimal policy in the IVR framework
has a closed-form solution, which can be expressed by imposing weight on the behavior policy.
The weight can be computed by a state-value function and an action-value function, the state-value
function serves as a normalization term to make the optimal policy integrate to 1. It is usually
intractable to find a closed form of the state-value function, however, we make a subtle mathematical
transformation and show its equivalence to solving a convex optimization problem. In this manner,
both of these two value functions can be learned by only dataset samples.

Note that the recently proposed method, IQL (Kostrikov et al2021b), also learns a state-value func-
tion and an action-value function iteratively, then extracts the policy using these two value functions.
Although derived from a different view (i.e., approximate an upper expectile of dataset actions given
a state), IQL remains much close to the learning paradigm of our framework. Furthermore, our IVR
framework explains why learning the state-value function is important in IQL and gives a deeper
understanding of how IQL handles the distributional shift: it is doing implicit value regularization,
with the hyperparameter 7 to control the strength. This explains one disturbing issue of IQL, i.e., the
role of 7 does not have a perfect match between theory and practice. In theory, 7 should be close to 1
to obtain an optimal policy while in practice a larger 7 may give a worse result.

Based on the IVR framework, we further propose a practical algorithm. We find that the value
regularization term used in CQL belongs to one of the valid choices in our framework. However,
when applying it to our framework, we get a complete in-sample learning algorithm. The resulting
algorithm also bears similarities to IQL, we find that our algorithm introduces sparsity in learning
the state-value function, which is missing in IQL. The sparsity term filters out those bad actions
whose Q-values are below a threshold, which brings benefits when the quality of offline datasets is
inferior, we thus dub our method Sparse Q-learning (SQL). We verify the effectiveness of SQL on
widely-used D4RL benchmark datasets and demonstrate the state-of-the-art performance, especially
on suboptimal datasets in which value learning is necessary (e.g., Antmaze and Kitchen). We also
show the benefits of sparsity by comparing SQL with IQL in noisy data regimes and the robustness
of in-sample learning by comparing SQL with CQL in small data regimes. Under all settings, SQL
achieves better results and owns faster convergence compared with other baselines.

To summarize, the contributions of this paper are as follows:

* We propose a general implicit value regularization framework, where different behavior regularizers
can be included, all leading to a complete in-sample learning paradigm.

* Based on the proposed framework, we design an effective offline RL algorithm, Sparse Q-Learning,
which obtains SOTA results on benchmark datasets and shows robustness in both noisy and small
data regimes.

2 RELATED WORK

In order to tackle the distributional shift problem, most model-free offline RL. methods augment
existing off-policy methods (e.g., Q-learning or actor-critic) with a behavior regularization term. The
primary ingredient of this class of methods is to propose various regularizers to ensure that the learned
policy does not stray too far from the behavior policy, i.e., stays in distribution. These regularizers can
appear explicitly as divergence penalties (Wu et al.l 2019; Kumar et al.l|2019; |[Fujimoto & Gu, [2021)),
implicitly through weighted behavior cloning (Wang et al.l 2020; Nair et al., | 2020), or more directly
through careful parameterization of the policy (Fujimoto et al.l 2018;Zhou et al., [2020)). Another
way to apply behavior regularizers is via modification of the critic learning objective to incorporate
some form of regularization, so as to encourage staying near the behavioral distribution and being
pessimistic about unknown state-action pairs (Nachum et al.| 2019; [Kumar et al.| 2020; Kostrikov
et al.} 2021a; [Xu et al., [2022). There are also several works incorporating behavior regularization

'The core difference between in-sample learning and out-of-sample learning is that in-sample learning uses
only dataset actions to learn the value function while out-of-sample learning uses actions produced by the policy.
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through the use of uncertainty (Wu et al.,[2021;|An et al.| [2021}; Bai et al.,|[2021)) or distance function
(Dadashi et al., 2021 [L1 et al.| [2022).

However, in-distribution constraints used in these works might not be sufficient to avoid value function
extrapolation errors. Another line of methods, on the contrary, avoid value function extrapolation
by performing some kind of imitation learning on the dataset. When the dataset is good enough or
contains high-performing trajectories, we can simply clone or filter dataset actions to extract useful
transitions. For instance, recent work filters trajectories based on their return (Chen et al.||2020; |Peng
et al.,2019), or directly filters individual transitions based on how advantageous they could be under
the behavior policy and then clones them Brandfonbrener et al.|(2021); Gulcehre et al.| (2021). While
alleviating extrapolation errors, these methods only perform single-step dynamic programming, and
lose the ability to "stitch" suboptimal trajectories by multi-step dynamic programming.

Our method can be viewed as a combination of these two methods while sharing the best of both
worlds: SQL implicitly controls the distributional shift, and learns an optimal policy by in-sample
generalization. SQL is less vulnerable to erroneous value estimation as in-sample actions induce less
distributional shift than out-of-sample actions. Similar to our work, IQL (Kostrikov et al.,|2021b)
approximates the optimum by fitting the upper expectile of the behavior policy’s action-value function,
however, it is not motivated by remaining pessimistic to the distributional shift.

Our method adds a behavior regularization term to the RL learning objective. In online RL, there
is also some work incorporating an entropy-regularized term into the learning objective (Haarnoja
et al., |2018; Nachum et al.l [2017; |Lee et al., 2019; Neu et al.,[2017;|Geist et al.,[2019;|Ahmed et al.,
2019), this brings multi-modality to the policy and is beneficial for the exploration. Note that the
entropy-regularized term only involves the policy, it could be directly computed, resulting in a similar
learning procedure as in SAC (Haarnoja et al., [2018). While our method considers the offline setting,
and provides a different learning procedure to solve the problem by jointly learning a state-value
function and an action-value function.

3 PRELIMINARIES

We consider the RL problem presented as a Markov Decision Process (MDP) (Sutton et al., |1998),
which is specified by a tuple M = (S, A, T, r, p,~) consisting of a state space, an action space, a
transition probability function, a reward function, an initial state distribution, and the discount factor.
The goal of RL is to find a policy 7(a|s) : S x A — [0, 1] that maximizes the expected discounted
cumulative reward (or called return) along a trajectory as

oo
ZVtT (st 1)
t=0

In this work, we focus on the offline setting. Unlike online RL methods, offline RL aims to learn an
optimal policy from a fixed dataset D consisting of trajectories that are collected by different policies.
The dataset can be heterogenous and suboptimal, we denote the underlying behavior policy of D as
1, which represents the conditional distribution p(a|s) observed in the dataset.

so=8,a0 =a,8¢ ~ T (-|sg—1,a1-1),at ~m(:|sy) fort > 1|. (1)

max E
s

RL methods based on approximate dynamic programming (both online and offline) typically maintain
an action-value function (Q-function) and, optionally, a state-value function (V' -function), refered
as (s, a) and V (s) respectively (Haarnoja et al.,2017; Nachum et al.|, 2017; Kumar et al.| [2020;
Kostrikov et al. 2021b)). These two value functions are learned by encouraging them to satisfy
single-step Bellman consistencies. Define a collection of policy evaluation operator (of different
policy x) on Q and V" as

(T*Q)(s,a) :=1(s,a) + VEy|s,aBarnx [Q(s", a)]
(T*V)(s) == Eanr [1(s,0) = Vg0 [V(s)]]
then @ and V are learned by ming J(Q) = 1E (s 0p [(T*Q — Q)(s,a)?] and miny J(V) =
1Esup [(TXV = V)(s)?], respectively. Note that x could be the learned policy 7 or the behavior

policy p, if x = u, then a ~ p and a’ ~ p are equal to a ~ D and a’ ~ D, respectively. In offline
RL, since D typically does not contain all possible transitions (s, a, s’), one actually uses an empirical

policy evaluation operator that only backs up a single s’ sample, we denote this operator as 7.
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In-sample Learning via Expectile Regression Instead of adding explicit regularization to the
policy evaluation operator to avoid out-of-distribution actions, IQL uses only in-sample actions to
learn the optimal (Q-function. IQL uses an asymmetric /5 loss (i.e., expectile regression) to learn the
V -function, which can be seen as an estimate of the maximum )-value over actions that are in the
dataset support, thus allowing implicit Q-learning:

mvin E(s,a)~D HT — ll(Q(s, a)—V(s) < O) | (Q(s, a) — V(s))Z] 2)

min By, (1(5,0) + V(') = Q(5,)’],

where 1 is the indicator function. After learning @ and V, IQL extracts the policy by advantage-
weighted regression (Peters et al.,[2010; Peng et al., 2019; Nair et al., |[2020):

min E; 0)p [e(Q(S’a)fv(s))/a log 7 (als)]. 3)

While IQL achieves superior DARL benchmark results, several issues remain unsolved:

» The hyperparameter 7 has a gap between theory and practice: in theory 7 should be close to 1 to
obtain an optimal policy while in practice a larger 7 may give a worse result.

* In IQL the value function is estimating the optimal policy instead of the behavior policy, how does
IQL handle the distributional shift issue?

* Why should the policy be extracted by advantage-weighted regression, does this technique guarantee
the same optimal policy as the one implied in the learned optimal ()-function?

4 OFFLINE RL WITH IMPLICIT VALUE REGULARIZATION

In this section, we introduce a framework where a general form of value regularization can be
implicitly applied. We begin with a special MDP where a behavior regularizer is added to the reward,
we conduct a full mathematical analysis of this regularized MDP and give the solution of it under
certain assumptions, which results in a complete in-sample learning paradigm. We then instantiate a
practical algorithm from this framework and give a thorough analysis and discussion of it.

4.1 BEHAVIOR-REGULARIZED MDPs

Like entropy-regularized RL adds a entropy regularizer to the reward (Haarnoja et al., 2018)), in this
paper we consider imposing a general behavior regularization term to objective (1)) and solve the
following behavior-regularized MDP problem

o E{gyt(mt,at) —a- g(Tldy)), @

(aclst)

where f(-) is a regularization function. It is known that in entropy-regularized RL the regularization
gives smoothness of the Bellman operator (Ahmed et al.l 2019} |Chow et al.| 2018)), e.g., from greedy
max to softmax over the whole action space when the regularization is Shannon entropy. While in
our new learning objective (@), we find that the smoothness will transfer the greedy max from policy
7 to a softened max (depending on f) over behavior policy p, this enables an in-sample learning
scheme, which is appealing in the offline RL setting.

In the behavior-regularized MDP, we have a modified policy evaluation operator 7" given by

(TF)Q(s,a) :==r(s,a) + VEy|sq [V ()]
where

V($) = Banr [Q<s,a> - af(ZEZ:zg)]-

The policy learning objective can also be expressed as max, Esp [V (s)]. Compared with the origin
policy evaluation operator 7™, 7/ is actually applying a value regularization to the Q-function.
However, the regularization term is hard to compute because the behavior policy p is unknown.
Although we can use Fenchel-duality (Boyd et al.| 2004) to get a sampled-based estimation if f
belongs to the f-divergence (Wu et al[2019), this unnecessarily brings a min-max optimization
problem, which is hard to solve and results in a poor performance in practice (Nachum et al., 2019).
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4.2 ASSUMPTIONS AND SOLUTIONS

We now show that we can get the optimal value function @Q* and V* without knowing p. First, in
order to make the learning problems (@) analyzable, two basic assumptions are required as follows:

Assumption 1. Assume w(a|s) > 0= u(a|s) > 0 so that 7/ is well-defined.

Assumption 2. Assume the function f(x) satisfies the following conditions on (0,00) : (1) f(1) = 0;
(2) hy(x) = x f(x) is strictly convex; (3) f(x) is differentiable.

The assumptions of f(1) = 0 and z f(x) strictly convex make the regularization term be positive
due to the Jensen’s inequality as E,, [ﬁ f (%)] > 1f(1) = 0. This guarantees that the regularization
term is minimized only when 7 = p. Because hy () is strictly convex, its derivative, h'y(z) =
f(@) + xf'(x) is a strictly increasing function and thus (h’f)*1 (z) exists. For simplicity, we denote
gr(z) = (h’f)_1 (x). The assumption of differentiability facilitates theoretic analysis and benefits
practical implementation due to the widely used automatic derivation in deep learning.

Under these two assumptions, we can get the following two theorems:

Theorem 1. In the behavior-regularized MDP, any optimal policy 7 and its optimal value function
Q* and V'* satisfy the following optimality condition for all states and actions:

Q*(S> (l) = T(S, a) + VES’Is,a [V* (S/)]

R S
V*(s) = U*(s) + aFqny, [(7:&[3)2 f/(f&l:}))} o

where U*(s) is a normalization term so that ) . , 7*(als) = 1.

The proof is provided in Appendix [7.1] The proof depends on the KKT condition where the derivative
of a Lagrangian objective function with respect to policy 7w (a|s) becomes zero at the optimal solution.
Note that the resulting formulation of Q* and V* only involves U* and action samples from p. U*(s)
can be uniquely solved from the equation obtained by plugging Eq. into ), m*(als) = 1,
which also only uses actions sampled from w. In other words, now the learning of Q* and V* can be
realized in an in-sample manner.

Theorem [T] also shows how the behavior regularization influences the optimality condition. If we
choose f such that there exists some z that g;(x) < 0, then it can be shown from Eq. that the
optimal policy 7* will be sparse by assigning zero probability to the actions whose @Q)-values Q* (s, a)
are below the threshold U*(s) + ozh’f(O) and assigns positive probability to near optimal actions in

proportion to their )-values (since g (z) is increasing). Note that 7* could also have no sparsity, for
example, if we choose f = log(x), then gy = exp(x) will give all elements non-zero values.

Theorem 2. Define T/ the case where 7 in ‘T|" is the optimal policy ©*, then T} is a y-contraction.

The proof is provided in Appendix This theorem means that by applying Q**! = T;Q*
repeatedly, then sequence Q" will converge to the (Q-value of the optimal policy 7* when k — oo.

4.3  SPARSE Q-LEARNING

After giving the closed-form solution of the optimal value function. We now aim to instantiate a
practical algorithm. In offline RL, in order to completely avoid out-of-distribution actions, we want
a zero-forcing support constraint, i.e., (a|s) = 0 = m(a|s) = 0. This reminds us of the class of
a-divergence (Boyd et al.|[2004), which is a subset of f-divergence and takes the following form

(a € R\{0,1}): . B
e (O]

a-divergence is known to be mode-seeking if one chooses o < 0. Note that the Reverse KL
divergence is the limit of D,, (i, 7) when o — 0. We can also obtain Helinger distance and Neyman



Under review as a conference paper at ICLR 2023

x>2-divergence as « = 1/2 and o = —1, respectively. One interesting property of a-divergence is
that D, (14, 7) = D1—_q (7, 11).

Note that CQL (Kumar et al.,[2020) applies the following conservative policy evaluation operator to
learn the Q)-function (according to Appendix C, equation 9):

7(als)
Q(s,a) =T"Q(s,a) — ﬁ[ - 1] ,
p(als)
which is the same as a = —1. Hence, CQL is implicitly doing value regularization by applying the

Neyman y2-divergence.

In this work, we consider the same behavior regularizer, which means f(z) = x — 1 and g¢(z) =
%x + % Plug them into Eq. and Eq.@ in Theorem |1} we get the following formulation:

Q" (s,a) =7(s,a) + YEy 50 [V ()] O

ey 1 Q(s,a) =U"(s)
7 (als) = u(als) Inax{2 + 2% ,0 8)
V() = U7 0) + oy | ()] ©

"I\ ulals) /]

where U*(s) needs to satisfy the following equation to make 7* integrate to 1:

1 Q(s,a) —U"(s) _

EaNu{max{2+2a,0} =1 (10)

It is usually intractable to get the closed-form solution of U*(s) from Eq.(10), however, here we make
a mathematical transformation and show its equivalence to solving a convex optimization problem.

Lemma 1. We can get U*(s) by solving the following optimization problem:
. 1 Q*(s,a) = U(s) 1 Q% (s,a) —U(s)\?] |, Uls)
i Bary {1(2 * 2a - O) (§ + 20 ) * a

(11)

The proof can be easily got if we set the derivative of the objective to O with respect to U*(s), which
is exactly Eq.(I0). Now we obtain a learning scheme to get Q*, U* and V* by iteratively updating @,
U and V following Eq.(9), objective and Eq.(7), respectively. We refer to this learning scheme
as SQL-U, however, SQL-U needs to train three networks, which is a bit computationally expensive.

u(als) n(als)
become mode-seeking, for actions sampled from 7%, its probability 7*(a|s) should be close to the
probability under the behavior policy, p*(als). Note that for actions sampled from p, 7*(a|s) and
1*(als) may have a large difference because 7* (a|s) may be 0.

Note that the term E, ., [(m)z] in Eq.@) is equal to Eg [m} , as * is optimized to

Hence in SQL we make an approximation by assuming E, .+ [’:((aal‘ss))] = 1, this removes one

network as U* = V* — a. Replacing U* with V*, we get the following learning scheme that only
needs to learn V' and () iteratively to get V* and Q*:

mvin E(s.a)~D {]l (1 + W > 0) (1 + Q(s,aéa— V(s)>2 N Vés)] (12)

min B, q,0~p | (r(s.0) + 7V () = Q(s.0))’] (13)

After getting V and @, following the formulation of 7* in Eq.(I4), we can get the learning objective
of policy 7 by minimizing the KL-divergence between 7 and 7* (Haarnoja et al., [2018):

mﬂin E(s,a)~D []l (1 + %;V(s) > 0) (1 + W) log 7r(a|s)]. (14)

Our final algorithm, SQL, consists of three supervised stages: learning V, learning (), and learning 7.
We use target networks for Q)-functions and use clipped double Q-learning (take the minimum of two
Q-functions) for V and 7 updates. We summarize the training procedure of SQL in Algorithm|[I]
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Figure 1: Left: The loss with respect to the residual () — V') in the learning objective of V' in SQL with
different . Center: An example of estimating state conditional extrema of a two-dimensional random variable
(generated by adding random noise to samples from y = sin(x)). Each  corresponds to a distribution over y.
The loss fits the extrema more with o becoming smaller. Right: The comparison of the derivative of loss of
SQL and IQL. In SQL, the derivative keeps unchanged when the residual is below a threshold.

4.4 DISCUSSIONS

A statistical view of why SQL work Inspired by the analysis in IQL, we give another view of why
SQL could learn the optimal policy. Consider estimating a parameter m,, for a random variable X
using samples from a dataset D, we show that m,, could fit the extrema of X by using the learning
objective of V-function in SQL:

_ _ 2
argmin E,p []l (1 + J;Zﬂ > 0) (1 + w) + ma}
o

Ma 2« (0%

In Figure[T] we give an example of estimating the state conditional extrema of a two-dimensional
random variable, as shown, @ — 0 approximates the maximum operator over in-support values of
y given . This phenomenon can be justified in our IVR framework as the value function becomes
more optimal with less value regularization. However, less value regularization also brings more
distributional shift, so we need a proper « to trade-off optimality with distributional shift.

Connections to prior works SQL establishes the - -
connection with several prior works such as CQL (KuJ Algorithm 1 Sparse Q-Learning (SQL)
mar et al.l [2020), IQL (Kostrikov et al., 2021b) and Require: D, a.
OptiDICE (Lee et al.|[2021). 1: Initialize Qg, Qg Vip, To

2: fort=1,2,--- ;N do
Like CQL pushes down policy @-values and pushes 3. Sample transitions (s, a, 7, s') ~ D
up dataset Q-values, in SQL, the first term in Eq.(I2) 4:  Update Vi, by Eq.% using Vi, Qg

4
pushes up V-values if ) — V' > 0 while the second term  5: Update Q, by Eq using Vi, Qg
pushes down V-values, and « trades these two terms  6: Update Qg4 by ¢' < Ap + (1 — \)¢’
off. SQL incorporates the same inherent conservatism  7:  Update 7g by Eq.(T4) using Vi, Qr
as CQL by adding the y2-divergence to the policy evalu- _S: end for

ation operator. However, SQL learns the value function

using only dataset samples while CQL needs to sample actions from the policy. In this sense, SQL is
an "implicit" version of CQL that avoids any out-of-distribution action.

Like IQL, SQL learns both V-function and @)-function. However, IQL seems to be a heuristic
approach and the learning objective of V' -function in IQL has a drawback. We compute the derivative
of the V-function learning objective with respect to the residual (@ — V') in SQL and IQL, it can be
seen in Figure[T|right that SQL keeps the derivative unchanged when the residual is below a threshold,
while IQL doesn’t. In IQL, the derivative keeps decreasing as the residual becomes more negative,
hence, the V' -function will be over-underestimated by those bad actions whose Q-value is extremely
small. Note that SQL will assign a zero probability mass to those bad actions according to Eq.(T4),
the sparsity is incorporated due to the mode-seeking behavior of x2-divergence.

Also, IQL needs two hyperparameters (7 and o) while SQL only needs one («). The two hyperpa-
rameters in IQL may not align well because they represent two different regularizations. If we set
f(z) = log(x) in our IVR framework, we will find objective (3)) is extracting the optimal policy that
uses the Reverse KL divergence as the value regularization. However, the corresponding optimal



Under review as a conference paper at ICLR 2023

Table 1: Averaged normalized scores of SQL against other baselines. The scores are taken over the final 10
evaluations with 10 seeds. SQL achieved the highest scores in 12 out of 14 tasks.

Dataset BC 10%BC BCQ DT One-step TD3+BC CQL IQL | SQL (ours)
halfcheetah-m 42.6 425 470 426 48.4 48.3 440 474 48.3 +0.2
hopper-m 52.9 569 567 67.6 59.6 59.3 58.5 66.3 735 £1.4
walker2d-m 75.3 75.0 726 740 81.8 83.7 72.5 78.3 84.2 +0.6
halfcheetah-m 36.6 40.6 404  36.6 38.1 446 455 442 44.8+0.7
hopper-m-r 18.1 759 533 82.7 97.5 60.9 95.0 947 96.7 +5.3
walker2d-m 26.0 62.5 52.1 66.6 49.5 81.8 772 739 77.2+14.8
halfcheetah-m-e 55.2 92.9 89.1 86.8 934 90.7 91.6  86.7 94.0 +0.4
hopper-m-e 52.5 110.9 81.8 107.6 103.3 98.0 1054 91.5 | 111.8 +0.2
walker2d-m-e 107.5 109.0 109.0 108.1 113.0 110.1 108.8 109.6 110.0+0.8
MuJoCo mean 51.9 740 669 748 76.1 75.2 776 769 823 +2.7
antmaze-u 54.6 62.8 789 592 64.3 78.6 84.8 87.5 922 +3.4
antmaze-u-d 45.6 50.2  55.0 53.0 60.7 71.4 434 622 78.0 £2.3
antmaze-m-p 0 54 0 0.0 0.3 10.6 652 712 74.7 +4.7
antmaze-m-d 0 9.8 0 0.0 0.0 3.0 540 700 75.0 £4.2
antmaze-1-p 0 0.0 6.7 0.0 0.0 0.2 384  39.6 43.8 £5.8
antmaze-1-d 0 6.0 2.2 0.0 0.0 0.0 31.6 475 49.8 +7.7
antmaze mean 16.7 21.3 23.8 18.7 20.9 27.3 61.9 63.0 68.9 +4.7
kitchen-c 33.8 - - - - - 438 614 76.4 +8.7
kitchen-p 33.9 - - - - - 49.8  46.1 65.5 +9.4
kitchen-m 47.5 - - - - - 51.0 5238 61.4 +54
kitchen mean 38.4 - - - - 48.2 534 67.7 +7.8

V-function learning objective is not objective (2). This reveals that the policy extraction part in IQL
gets a different policy from the one implied in the optimal Q)-function.

Like OptiDICE (Lee et al.} 2021)), SQL derives the solution by solving a regularized optimization
problem. However, OptiDICE solves an upper bound of the learning objective while SQL solves the
exact one. Additionally, OptiDICE solves for the state visitation distribution of the optimal policy, d*,
rather than 7%, this resutls a residual learning scheme, which is known to have slower convergence
than fitted TD-learning (Baird, [1995).

5 EXPERIMENTS

We present empirical evaluations of SQL in this section. We first evaluate SQL against other baseline
algorithms on D4RL (Fu et al.l [2020) benchmark datasets. We then show the benefits of sparsity
introduced in SQL by comparing SQL with IQL in noisy data regimes. We finally show the robustness
of SQL by comparing SQL with CQL in small data regimes.

5.1 D4RL BENCHMARK DATASETS

We first evaluate our approach on D4RL MuJoCo, AntMaze, and Kitchen datasets (Fu et al.,2020). It
is worth mentioning that Antmaze and Kitchen datasets include few or no near-optimal trajectories,
and highly require learning a value function to obtain effective policies via "stitching".

We compare SQL with prior state-of-the-art offline RL methods, including BC (Sammut, 2010),
10%BC (Chen et al., [2021)), BCQ (Fujimoto et al.,|2018)), DT(Chen et al.,[2021]), TD3+BC (Fujimoto
& Gu, [2021), One-step RL (Brandfonbrener et al., [2021), CQL (Kumar et al., [2020), and IQL
(Kostrikov et al., 2021a). The aggregated results are displayed in Table|l] In MuJoCo locomotion
tasks, where performance is already saturated, SQL shows competitive results to the best performance
of prior methods. While in more challenging AntMaze and kitchen tasks, SQL outperforms all other
baselines by a large margin. This shows the effectiveness of value learning in SQL. Moreover, SQL
convergences much faster than all prior methods, e.g., 0.2 million training steps for most tasks. Full
experimental details and learning curves can be found in Appendix
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5.2 NoOISY DATA REGIME

Walker2d Halfcheetah
. SQL QL

120 100

In this section, we try to validate our
hypothesis that the sparsity term SQL
introduced in learning the value func-
tion will benefit when the datasets con-
tain a large portion of noisy transi-
tions. To do so, we make a "mixed"
dataset by combining the random
dataset and the expert dataset with dif-

30% 20% 10% 5% 1% 30% 20% 10% 5% 1%
ferent expert ratios. We test the perfor- Expert ratio Expert ratio
mance of SQL and IQL under differ-
ent mixing ratios, as shown in Fig.[2]

Normalized return
Normalized return

Figure 2: The performance of SQL vs IQL in noisy data regimes.

It is shown that SQL consistently outperforms IQL under all different expert ratios. The performance
of IQL is vulnerable to the expert ratio, it has a sharp decrease from 30% to 1% while SQL could still
remain the expert performance. For example, in walker2d, SQL reaches near 100 performance when
the expert ratio is only 5%; in halfcheetah, IQL is affected even with a high expert ratio (30%).

5.3 SMALL DATA REGIME

In this section, we try to explore the benefits of  Taple 2: The normalized return (NR) and Bellman error
in-sample learning over out-of-sample learning. (BR) of SQL vs CQL in small data regimes.
We are interested to see whether in-sample learn-

ing brings more robustness than out-of-sample coL SQL
learning when the dataset size is small or the Dataset (Antmaze) NR  BE | NR_ BE
dataset diversity of some states is small, which Vanilla 65.2 13.1 | 700 16
are challenges one might encounter when using Medium MEZ?Y ﬁ‘i }i'g i§§ ;Z
. . edium . . . .
offline RL algorithms on real-world data. Hard 03 644 | 242 1o
. Vanill 384 135 | 498 14
To do so, we make custom datasets by discard- é‘;‘zya %1 128 | 405 s
ing some transitions in the AntMaze datasets. Large 0 dium 63 306 | 367 13
For each transition, the closer it is to the tar- Hard 0 3005 | 342 26

get location, the higher probability it will be
discarded from the dataset. This simulates the
situation where the dataset is fewer and has limited state coverage near the target location because
the data generation policies maybe not be satisfied and are more determined when they get closer to
the target location (Kumar et al.,[2022). We use a hyperparameter to control the discarding ratio and
build three new tasks: Easy, Medium and Hard, with dataset becomes smaller. For details please
refer to Appendix [8] We compare SQL with CQL as they use the same inherent value regularization
but SQL uses in-sample learning while CQL uses out-of-sample learning.

We demonstrate the final normalized return (NR) during evaluation and the mean squared Bellman
error (BE) during training in Table [2] It is shown that CQL has a significant performance drop
when the difficulty of tasks increases, the Bellman error also exponentially grows up, indicating that
the value extrapolation error becomes large in small data regimes. SQL remains a stable yet good
performance under all difficulties, the Bellman error of SQL is much smaller than that of CQL. This
justifies the benefits of in-sample learning, i.e., it avoids erroneous value estimation by using only
dataset samples while still allows in-sample generalization to obtain a good performance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a general Implicit Value Regularization framework, which builds the
bridge between behavior regularized and in-sample learning methods in offline RL. Based on this
framework, we propose a practical algorithm, which uses the same value regularization as CQL, but
in a complete in-sample manner. We verify the effectiveness of SQL on D4RL datasets. We also
show the robustness of SQL in noisy and small data regimes by comparing it with different baselines.
One future work is to use other choices of f, for example log(x), this brings a different algorithm that
no longer introduces sparsity. Another future work is, instead of only constraining action distribution,
constraining the state-action distribution between d™ and d” as considered in Nachum et al.[(2019).
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7 PROOFS

7.1 PROOF OF THEOREM/[I]

In this section, we give the detailed proof for Theorem|[I] which states the optimality condition of the
behavior regularized MDP. The proof follows from the Karush-Kuhn-Tucker (KKT) conditions where
the derivative of a Lagrangian objective function with respect to policy 7(a|s) is set zero. Hence, our
main theory is necessary and sufficient.

Proof. The Lagrangian function of (#) obtained by the optimal policy is written as follows

5,10 = 3 (o) 3ol (@(s.0) oy (21

p(als)

— Y dx(s) [U(S) (ZF(GIS) - 1) +Zl3(a|8)7f(a8)] :

where d; is the stationary state distribution of the policy 7, p and 3 are Lagrangian multipliers for
the equality and inequality constraints respectively.

Let hy(x) = . f(x). Then the KKT condition of (4 are as follows, for all states and actions we have

0 <m7(als) <1land Zﬂ'(a\s) =1 (15)
0 < B(als) (16)
Blals)m(als) =0 (17)
Q*(s,a) — ah'y <Z§ZI3> —u(s)+ Blals) =0 (18)

where (T3) is the feasibility of the primal problem, (T6) is the feasibility of the dual problem,
results from the complementary slackness and is the stationarity condition. We eliminate d (s)
since we assume all policies induce an irreducible Markov chain.

From (I8), we can resolve 7(a|s) as
Lo
wlals) = k) 07 (£ (@ (50) — ) + 8l )
Fix a state s. For any positive action, its corresponding Lagrangian multiplier 5(a|s) is zero due to
the complementary slackness and Q*(s, @) > u(s) + ah’;(0) must hold. For any zero-probability
action, its Lagrangian multiplier 5(a|s) will be set such that 7(a|s) = 0. Note that 3(als) > 0,

thus Q*(s,a) < u(s) + ah’;(0) must hold in this case. From these observations, 7(a|s) can be
reformulated as

atals) = max g7 (1 (@ (5.0 u(en)) o] (19)

Next we aim to obtain the optimal state value V'*. It follows that
V*(s) =T;V*(s)
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The first equality follows from the definition of the optimal state value. The second equality holds
because 7* maximizes 7/ V*(s). The third equality results from plugging .

To summarize, we obtain the optimality condition of the behavior regularized MDP as follows

Q*(S’ a) = (s, a) + VES’IS,a [V* (S/)]
m*(als) = p(als) - max {gf (Q*(s,a)a—u*(s))’o}
V(o) = o) + ey | (T ) ()

p(als) als)

7.2 PROOF OF THEOREM[Z]

Proof. For any two state value functions V7 and V5 , let 7; be the policy that maximizes 7}*Vi,
i € 1,2. Then it follows that for any state s in S,

(T7 V1) () = (T7 V) (s)

= Smtals) [ 0B 15 0] s (TG ) | e ol B v ) (

p(als)

< Zm(a|s) {7’ +9Ey [V (s')] — af (S(a s)

By symmetry, it follows that for any state s in S,
(T7 V1) (5) = (TfV2) (s) < v [V = Vall

Therefore, it follows that
177V = Ti Vel <7 IVi = Vall,

8 EXPERIMENTAL DETAILS

D4RL experimental details Our implementation of 10%BC is as follows, we first filter the top
10 % trajectories in terms of the trajectory return, and then run behaviour cloning on those filtered
data. We re-run CQL on Antmaze datasets as we find the performance can be improved by carefully
sweeping the hyperparameter min-g-weight, using the PyTorch-version 1mplementat10rﬂ Other
baseline results are taken directly from their corresponding papers. For the results of IQL on Kitchen
tasks, we follow the author’s instructions and re-run the author-provided implementatiorﬂ

For MuJoCo locomotion and Kitchen tasks, we average mean returns over 10 evaluations every 5000
training steps, over 10 random seeds. For AntMaze tasks, we average over 100 evaluations every
0.1M training steps, over 10 random seeds. Followed by IQL, we standardize the rewards by dividing
the difference in returns of the best and worst trajectories in MuJoCo and kitchen tasks, we subtract 1
to rewards in Antmaze tasks.

In SQL, we use 2-layer MLP with 256 hidden units, we use Adam optimizer |Kingma & Ba|(2015)
with a learning rate of 3 - 10~* for all neural networks. Following Mnih et al|(2013); Lillicrap et al.
(2016), we introduce a target critic network with soft update weight 5 - 10~3. We implement our
method in the framework of JAX |Bradbury et al.|(2018)). For the only hyperparameter o, we sweep it

https://github.com/young—geng/COL
*https://github.com/ikostrikov/implicit_g_learning
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from [0.2,0.5, 1,2, 5, 10] for all tasks and choose the best one as our reported scores, as well as in
other experimental settings.

Nosiy data regime experimental details In this experiment setting, we introduce the noisy
dataset by mixing the expert and random dataset with different expert using MuJoCo locomotion
datasets. The number of total transitions of the noisy dataset is 100, 000. We provide details in Table
We report the score of IQL by choosing the best score from 7 in [0.5,0.6,0.7,0.8,0.9].

Table 3: Noisy dataset of MuJoCo locomotion tasks with different expert ratios.

Env Expert ratio  Total transitions  Expert transitions Random transitions

1% 100,000 1,000 99,000

5% 100,000 5,000 95,000

Walker2d 10% 100,000 10,000 90,000
20% 100,000 20,000 80,000

30% 100,000 30,000 70,000

1% 100,000 1,000 99,000

5% 100,000 5,000 95,000

Halfcheetah 10% 100,000 10,000 90,000
20% 100,000 20,000 80,000

Small data regime experimental details We generate the small dataset using the following
psedocodeT] its hardness level can be found at Table ] We report the score of CQL by choosing the
best score from min-g-weight in [0.5,1,2,5,10].

Listing 1: The sketch of generation procedure of small data regimes with different hard levels. Given an
Antmaze environment and a hardness level, we discard some transitions by following the rule in the Coding List.
Intuitively, the closer the transition is to the GOAL, the higher the probability that it will be discarded.

# hardness = {’easy’: easy, ’'medium’: medium, ’'hard’: hard}

obs = dataset [’ observations’]

length = dataset[’observations’].shape[0]

POSITIONS = env.get_position (obs)

GOAL = env.get_goal ()

MINIMAL_POSITION = env.get_minimal_position()

# get maximal Euclidean distance

MAX_EU_DIS = (GOAL - MINIMAL_POSITION) x%x2

DIS = ((POSITIONS MINIMAL_POSITION)xx2) / MAX_EU_DIS

save_idx = np.random.random(size=length) > (DIS +
hardness [’ LEVEL_OF_HARD’ ])

small_data = collections.defaultdict ()

for key in dataset.keys():
small_datalkey] = dataset[key] [save_idx]

Table 4: Details of small data regimes with different task difficulties.

Dataset (AntMaze) Hardness Total transitions Reward signals
Vanilla NA 100, 000 10,000

medium-play Easy’ 0 56,000 800
Medium 0.07 48,000 150

Hard 0.1 45,000 10

Vanilla NA 100,000 12500

Easy 0 72,000 5,000

large-play Medium 0.3 42,000 1,000
Medium 0.35 37,000 500

Hard 0.38 35,000 100
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Figure 3: Learning curves of SQL on MuJoCo locomotion datasets.
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Figure 4: Learning curves of SQL on AntMaze datasets.
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Figure 5: Learning curves of SQL on Kitchen datasets.



	Introduction
	Related Work
	Preliminaries
	Offline RL with Implicit Value Regularization
	Behavior-regularized MDPs
	Assumptions and Solutions
	Sparse Q-Learning
	Discussions

	Experiments
	D4RL Benchmark Datasets
	Noisy Data Regime
	Small Data Regime

	Conclusions and Future Work
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Experimental Details

