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Abstract

Pretrained language models can be effectively001
stimulated by textual prompts or demonstra-002
tions, especially in low-data scenarios. Recent003
works have focused on automatically searching004
discrete or continuous prompts or optimized005
verbalizers, yet studies for the demonstration006
are still limited. Concretely, the demonstra-007
tion examples are crucial for an excellent final008
performance of prompt-tuning. In this paper,009
we propose a novel pluggable, extensible, and010
efficient approach named contrastive demon-011
stration tuning, which is free of demonstration012
sampling. Furthermore, the proposed approach013
can be: (i) Plugged to any previous prompt-014
tuning approaches; (ii) Extended to widespread015
classification tasks with a large number of cat-016
egories. Experimental results on 16 datasets017
illustrate that our method integrated with pre-018
vious approaches LM-BFF and P-tuning can019
yield better performance1.020

1 Introduction021

Pre-trained language models (PLMs) have been ap-022

plied to widespread natural language understanding023

and generation tasks, which are proven to obtain024

significant gains across benchmarks (Devlin et al.,025

2019; Liu et al., 2019; Lewis et al., 2020a; Dong026

et al., 2019; Bao et al., 2020). One paradigm of027

PLMs is the pre-train—fine-tune, which has be-028

come the de facto standard for natural language029

processing (NLP), where task-specific objectives030

and additional parameters are leveraged in the tun-031

ing procedure. Recently, the paradigm of the adap-032

tation of PLMs is shifting. A new fine-tuning033

methodology named prompt-tuning with a natural034

language prompt and a few demonstrations has035

made waves in the NLP community by proving as-036

tounding few-shot capabilities on myriad language037

understanding tasks. Further studies try to mitigate038

the labour-intensive prompt engineering with dis-039

1Code and datasets will be released for reproducibility.
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Figure 1: Comparison among current sampling strate-
gies on demonstration-based learning. Compared to
random and similarity-based sampling, demo-tuning
can obtain better demonstration distributions.

crete prompt searching (Shin et al., 2020) or contin- 040

uous prompt optimization (Liu et al., 2021c; Li and 041

Liang, 2021; Hambardzumyan et al., 2021a; Zhong 042

et al., 2021). However, few studies have focused 043

on the demonstration, which is an indispensable 044

component in prompt-oriented methodologies. 045

In previous studies, demonstrations are sampled 046

examples in the training set. GPT-3’s naive “in- 047

context learning” paradigm picks up to 32 ran- 048

domly sampled instances as demonstrations and 049

directly concatenates them with the input sequence. 050

Since informative demonstrations are crucial for 051

model performance, Gao et al. (2021a) develop a 052

refined strategy via sampling input pairs with sim- 053

ilar examples, thereby providing the model with 054

more discriminative comparisons. However, it is 055

still not guaranteed to prioritize the most infor- 056

mative demonstrations as (1) the similarity-based 057

sampling may obtain degraded demonstrations in 058

different classes but have similar distances to the 059

input; (2) the number of usable demonstrations 060

is still bounded by the model’s maximum input 061

length. For example, as shown in Figure 1, the 062

purple lines refer to the random sampling while the 063

blue lines indicate similarity-based sampling. Note 064

that similarity-based sampling may obtain exam- 065
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ples very similar to the input sequence. However,066

those sampled examples with different labels may067

tend to have a similar representation and thus con-068

fuse the discriminability of the model. Moreover,069

for datasets with many classes, it is still non-trivial070

to concatenate all sampled demonstrations. Those071

above-mentioned challenges hinder the applicabil-072

ity of demonstration in prompt-tuning.073

To address those issues, in this paper, we pro-074

pose contrastive DEMOnstration Tuning (Demo-075

tuning) for pre-trained language models. Specif-076

ically, we leverage learnable continuous embed-077

dings (e.g., one or two learnable tokens) as virtual078

demonstrations to relax the maximum number of079

categories. We concatenate those virtual demon-080

strations to the input sequence; thus, our approach081

can be extended to a wide variety of classification082

tasks with many categories. To optimize those083

continuous embeddings, we explore a simple con-084

trastive framework without negative pairs (Grill085

et al., 2020) since it is difficult to find an appropri-086

ate negative pair in semantic space for NLP. In each087

training batch, we randomly sample a real example088

and regard the virtual and real examples as positive089

pairs. With contrastive learning, we can obtain in-090

formative, optimized virtual demonstrations with091

more discriminative comparisons.092

We conduct extensive experiments on 16 NLP093

datasets. Our contrastive demonstration tuning can094

yield better performance when integrated with pre-095

vious prompt-based methods (e.g., LM-BFF (Gao096

et al., 2021a), P-tuning (Liu et al., 2021c)). More-097

over, our approach can be applied to datasets with098

many categories and outperform baselines. Note099

that our approach is model-agnostic and can be100

plugged into lots of prompt-based methods without101

the effort to select suitable demonstrations. The102

main contributions of this study are as follows:103

• We propose a pluggable, extensible, and effi-104

cient approach of contrastive demonstration105

tuning for pre-trained language models. To106

the best of our knowledge, optimizing demon-107

stration is also a new branch of research that108

has not been explored in language model109

prompting.110

• We propose virtual demonstration and lever-111

age contrastive learning to obtain informative112

demonstrations and also relax the maximum113

number of categories in classification tasks.114

• A systematic evaluation of 16 NLP datasets115

shows that the proposed simple-yet-effective 116

approach contributes towards improvements 117

across all these tasks. 118

2 Related Work 119

2.1 Prompt-tuning 120

With the prevalence of GPT-3 (Brown et al., 2020), 121

prompting PLMs for few-shot learning has become 122

a new, popular learning paradigm in natural lan- 123

guage processing (Schick and Schütze, 2021; Tam 124

et al., 2021; Liu et al., 2021a) and appealed to 125

researchers. Recently, prompt-tuning has been ap- 126

plied to various of tasks including named entity 127

recognition (Cui et al., 2021; Chen et al., 2021a; 128

Zhou et al., 2021; Ma et al., 2021), entity typing 129

(Ding et al., 2021), relation extraction (Han et al., 130

2021), event extraction (Hsu et al., 2021; Ye et al., 131

2021), machine translation (Tan et al., 2021), se- 132

mantic parsing (Schucher et al., 2021), language 133

generation (Schick and Schütze, 2020), and com- 134

puter visual tasks (Tsimpoukelli et al., 2021; Yao 135

et al., 2021). Schick and Schütze (2021, 2020) pro- 136

pose the PET, which reformulates the NLP tasks as 137

cloze-style questions and yields satisfactory perfor- 138

mance. Tam et al. (2021) further propose a denser 139

supervision object during fine-tuning to improve 140

the PET. 141

Note that handcrafting a best-performing prompt 142

is like finding a needle in a haystack, which fa- 143

cilitates the labor-intensive prompt engineering, 144

Thus, recent studies (Qin and Eisner, 2021; Ham- 145

bardzumyan et al., 2021b; Chen et al., 2021b) con- 146

ducted in this field have been focused on automati- 147

cally searching the prompts. Shin et al. (2020) pro- 148

pose AUTOPROMPT, which is a gradient-based 149

method to acquire templates and label words for 150

prompt-tuning. Wang et al. (2021) propose EFL, 151

which reformulates the NLP task as an entailment 152

one and turns small LMs into better few-shot learn- 153

ers. Han et al. (2021) propose PTR which injects 154

logic rules into prompt-tuning with sub-prompts 155

for many-class text classification. Hu et al. (2021) 156

try to incorporate external knowledge graph into 157

the verbalizer with calibration. Additionally, Gao 158

et al. (2020) propose LM-BFF—better few-shot 159

fine-tuning of language models, which utilizes a 160

generation model to obtain templates and a refined 161

strategy for dynamically and selectively incorpo- 162

rating demonstrations into each context. However, 163

it is sub-optimal for the discrete prompt searching 164

due to the continuous nature of neural networks. 165
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To overcome these limitations, Liu et al.166

(2021c,b) propose P-tuning to to automatically167

search prompts in the continuous space. Li and168

Liang (2021) propose prefix-tuning, which opti-169

mizes a sequence of continuous task-specific vec-170

tors and keeps language model parameters frozen.171

Lester et al. (2021a) leverage a mechanism to learn172

“soft prompts” to condition frozen language models.173

Zhang et al. (2021) propose a differentiable prompt174

learning method for few-shot NLP with optimized175

prompt templates as well as labels. Vu et al. (2021)176

propose SPoT, which learns a prompt on one or177

more source tasks and then uses it to initialize the178

prompt for a target task to boost the performance179

across many tasks. More related works including180

WARP (Hambardzumyan et al., 2021a) and OP-181

TIPROMPT (Zhong et al., 2021) also propose to182

leverage continuous templates, which is more ef-183

fective than discrete prompt search. To conclude,184

most of the existing works try to obtain optimized185

prompts for widespread NLP tasks; however, few186

studies have focused on the demonstration, which187

is an indispensable component in prompt-oriented188

learning.189

Our work is orthogonal to previous prompt-190

tuning approaches which are aimed at optimizing191

prompts. The major differences between virtual192

demonstration and continuous prompts are that: 1)193

they have a wholly different training strategy since194

continuous prompts are optimized via backpropaga-195

tion with a training set while our approach utilizes196

contrastive learning. 2) our approach requires no197

external architecture (e.g., LSTM in P-tuning), thus,198

making it efficient and pluggable to any prompt-199

tuning approaches. To date, Lee et al. (2021) is200

the only approach that studies the demonstration201

and presents a simple demonstration-based learning202

method for named entity recognition. Apart from203

Lee et al. (2021), our approach focus on general204

NLP classification tasks. Moreover, we propose205

virtual demonstrations with contrastive learning206

strategies, which can obtain better demonstrations207

and also relax the maximum number of categories208

in datasets.209

2.2 Contrastive Learning210

Contrastive learning has been long considered ef-211

fective in learning meaningful representations. In212

the early stage, Mikolov et al. (2013) propose to213

learn word embeddings by regarding words nearby214

a target word as a positive instance while others215

as negative. Logeswaran and Lee (2018) further 216

generalize this approach to learn sentence repre- 217

sentations. Recently, Kim et al. (2021) propose a 218

contrastive learning method that makes use of a 219

self-guidance mechanism. Yan et al. (2021) pro- 220

pose ConSERT, a contrastive framework for self- 221

supervised sentence representation transfer. Giorgi 222

et al. (2021) propose DeCLUTR: Deep Contrastive 223

Learning for Unsupervised Textual Representa- 224

tions. Gao et al. (2021b) leverage dropout as mim- 225

imal data augmentation and propose SimCSE, a 226

simple contrastive learning framework that greatly 227

advances the state-of-the-art sentence embeddings. 228

On the other hand, contrastive learning has been 229

also appealed to the computer vision community 230

(Jaiswal et al., 2020; Liu et al., 2020). Chen et al. 231

(2020) propose SimCLR: a simple framework for 232

contrastive learning of visual representations with- 233

out requiring specialized architectures or a mem- 234

ory bank. Chen and He (2021) observe that simple 235

siamese networks can learn meaningful representa- 236

tions even using none of the negative sample pairs, 237

large batches, and momentum encoders. 238

Our work is related to Grill et al. (2020), a 239

non-contrastive self-supervised learning approach, 240

which relies on two neural networks, referred to as 241

online and target networks, that interact and learn 242

from each other. However, as opposed to this ap- 243

proach, we utilize the encoder in the same state 244

while Grill et al. (2020) leverage two networks in 245

the different states. Moreover, we focus on demon- 246

stration optimization in prompt-tuning for NLP, 247

including learning informative demonstrations and 248

acquiring prompt temples and label tokens. 249

3 Preliminaries 250

In this work, we focus on classification tasks 251

in the few-shot setting, including text classifica- 252

tion and natural language understanding, where 253

the input xin is either a sentence xin = x1 or a 254

pair of sentences xin = (x1, x2). Here, we let 255

Dtrain = {(xi, yi)}K×|Y|
i denote the training set 256

of a downstream task composed of only K train- 257

ing examples per class, where Y is label space 258

of the task. Given a pre-trained language model 259

comprised of two stages: an encoder f(·) and a 260

classifier g(·) 2, we encode the input xin to a se- 261

quence of hidden vectors {hk ∈ Rd} and take 262

2In standard fine-tuning, the classifier is a set of randomly
initialized parameters Wo ∈ R|Y|×d with softmax function.
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   terrible (label: negative) 
   great (label: postive)    Encoder

Label word 

[CLS] The movie has lots of fabulous music. It is  [MASK] . [SEP] The story is uninteresting. It is terrible. [SEP] Funny and ultimately sobering film. It is great. [SEP]

Input Template Demonstration for label: terrible Demonstration for label: great 

(a) Prompt-tuning with demonstrations

[CLS] A playful comedy. It is  [MASK] . [SEP] [ ] [ ] ... [ ] [ ] [ ] ... [ ]

[CLS] A playful comedy. It is  [MASK] . [SEP] The story is uninteresting. It is terrible. [ ] [ ] ... [ ]

Demonstration for label: terrible Virtual Demo 

Virtual Demo Virtual Demo 

MLM head     (label: negative) 
    (label: postive) 

Gold label 

Supervised loss

Training contrastive instance

Encoder

    (label: negative) 
    (label: postive) 

Gold label 

MLM head

(b) Demonstration-tuning (ours)

Contrastive loss Supervised loss

   terrible (label: negative) 
   great (label: postive)    

Label word 

Training final loss

Figure 2: An illustration of (a) prompt-tuning with demonstrations, and (b) our proposed contrastive demonstration
tuning (demo-tuning). Note that we regard the input with virtual demonstration and a random sampled real
demonstrations as positive pairs for contrastive learning.

the hidden vector h[CLS] = f(xin) of [CLS] 3263

through classifier to obtain the probability distribu-264

tion p (y | x) = g (h[CLS]) over y ∈ Y .265

Prompt-based Fine-tuning Prompt-based fine-266

tuning (Schick and Schütze, 2021; Gao et al.,267

2021a) is an efficient work by designing cloze-style268

template T and verbalizer M : Y → V mapping269

task labels to individual words from vocabulary270

V of pre-trained language model to fill the gap271

between masked LM objective of pre-trained lan-272

guage model and downstream fine-tuning objec-273

tive.274

Template In prompt-based fine-tuning paradigm,275

template T is mainly comprised of inputs xin and276

a prompt P = [Pi]
m
i , where the prompt could be277

a series of discrete tokens (Schick and Schütze,278

2021) or continual pseudo tokens (Liu et al., 2021c).279

For instance, in the sentiment analysis task (see280

Figure 2), a template with handcraft prompt may be:281

T (x) = [CLS]x1, It was[MASK].[SEP] where282

"It was ... ." is prompt and [MASK] is target which283

cast classification task as a language modeling task.284

Verbalizer A verbalizer M defines a mapping285

of label tokens from label space of a specific286

task. In Figure 2a, the verbalizer maps "nega-287

tive/postive" to "terrible/great". In this way, we288

could re-use the output weight Wv ∈ Rd×|V| ref-289

ered MLM head used in pre-training and model290

the probability of predicting token M (y) ∈ V as291

3For simplicity we will denote the hidden vector h[CLS] of
certain input xi through encoder using hi.

p (y | x) = g (h[MASK]) on hidden vector h[MASK]. 292

Demonstration Let Dc
train be the subset of all ex- 293

amples of class c. We sample demonstrations dc = 294

(x
(c)
in , y(c)) ∈ Dc

train and convert it to T (x
(c)
in , y(c)) 295

in which [MASK] is replaced by M(y(c)). We 296

then combine the original template T with tem- 297

plates above in all classes to form T ∗(xin), which 298

will be used as a template during prompt-based 299

tuning and inference (See Figure 2). 300

4 Contrastive Demonstration Tuning 301

In this work, we focus on how to learn a com- 302

pact and differentiable virtual demonstration to 303

serve as prompt augmentation instead of design- 304

ing specific sampling strategies for demonstration- 305

based learning. We propose a learning framework 306

based on a contrastive learning approach that can 307

be compatible with the current prompt-based learn- 308

ing paradigm. This section introduces the concepts 309

of contrastive demonstration tuning (Demo-tuning) 310

and provides details of this approach. 311

Virtual Demonstration Let [D(c)
i ]ni refer to the 312

virtual demonstration of the cth class where n is a 313

hyper-parameter to set the length of virtual demon- 314

stration, which is far less than the length of real 315

demonstration. For instance, given a template of 316

binary classification task (see Figure 2) as: 317

T̃ (x) = T (x)⊕ [D(1)]⊕ [D(2)] (1) 318

where ⊕ denotes concatenation of input sequences. 319

[D(1)] and [D(2)] respectively denote the virtual 320
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demonstrations of two classes. Virtual demonstra-321

tions could be so flexible that can be integrated to322

wide variety of prompt learning approaches (Liu323

et al., 2021c; Lester et al., 2021b).324

Next, we study how to obtain the optimal virtual325

demonstrations, which are initialized as a series of326

pseudo tokens at the start of fine-tuning. To ad-327

dress this challenging problem, we propose to use328

contrastive learning, which aims to obtain effec-329

tive representation by pulling semantically close330

neighbors together. Intuitively, we believe the opti-331

mal virtual demonstrations may be analogous with332

“prototype” (Snell et al., 2017), the representative333

for corresponding class, and we will discuss in §6.334

Positive Instances A key element of contrastive335

learning is how to construct reasonable
(
xin, x

+
in

)
336

pairs. Here, we design a new template T̃ +(x)337

based on template T̃ (x) by randomly replacing one338

of virtual demonstrations [D(c)] with real demon-339

stration dc as shown in the Figure 2b:340

T̃ +(x) = T (x)⊕ T (x
(1)
in , y(1))⊕ [D(2)] (2)341

where [D(1)] is replaced with a demonstration d1 of342

class “terrible”. Using this template, we could con-343

vert input xin to corresponding positive example344

x+in , i.e.,
(
T̃ (xin), T̃ +(xin)

)
is a positive training345

instance. In this way, aligning virtual demonstra-346

tion [D(c)] with dc, the only difference between347

xin and x+in , and pulling representations (hin,h
+
in)348

closer in semantic space could effectively alleviate349

the problem that the existing of terrible or irrelevant350

demonstration by previous sampling strategies.351

Optimization Similar to Chen et al. (2020),352

we can randomly sample a minibatch of N ex-353

amples from Dtrain to construct positive pairs354

{(xi, x+i )}Ni=1 and take a cross-entropy objective355

with in-batch negatives for (xi, x+i ):356

ℓi = − log
exp(sim(hi,h

+
i )/τ)∑N

j=1 exp(sim(hi,h
+
j )/τ)

(3)357

where τ denotes a temperature parameter and358

sim(hi,hj) is the cosine similarity hT
i hj

∥hi∥·∥hj∥ . The359

negative pairs are composed of two different exam-360

ple with same demonstration in a minibatch.361

In this work, we also explore a simple contrastive362

framework without negative pairs4 similar to re-363

cent non-contrastive self-supervised learning (Grill364

4This is the default contrastive learning method in all ex-
periments.

et al., 2020). Regarding the difficulty to find a ap- 365

propriate negative pair in semantic space for NLP, 366

specially in few-shot setting, we only construct pos- 367

itive pairs and define the following mean squared 368

error between hi and h+
i with ℓ2-normalization, 369

ℓi = ∥hi − h+
i ∥

2

2 = 2− 2 ·
hT
i h

+
i

∥hi∥2 · ∥h+
i ∥2

(4) 370

where hi and h+
i are obtained through encoder f(·) 371

in the same state different from Grill et al. (2020) 372

which encodes xi and x+i through two networks 373

in the different states (online network and target 374

network). 375

When supervised examples Dtrain are available, 376

pre-trained language model could be fine-tuned to 377

minimize the joint objective comprised of cross- 378

entropy and contrastive objective of Eq. (4). In 379

this way, during inference, we can concatenate the 380

input xin with trained virtual demonstrations in 381

template T̃ (x), which does not need to sample real 382

demonstrations. Besides, we provide empirical 383

analysis and discussion of negative sampling in 384

§5.4. 385

5 Experiments 386

5.1 Datasets 387

To evaluate Demo-tuning, we conduct experiments 388

on 6 tasks from GLUE leaderboard (Wang et al., 389

2019) and 10 other popular classification tasks, in- 390

cluding natural language inference (SNLI, MNLI, 391

QNLI, RTE), sentiment classification (SST-2, SST- 392

5, MR, CR, MPQA), paraphrase and similarity 393

(MRPC, QQP) and sentence classification (DBpe- 394

dia, Subj, TREC, Yahoo! Answers). The detailed 395

statistics are in Appendix A. 396

5.2 Settings 397

Evaluation During training, we follow the eval- 398

uation protocol adopted in Gao et al. (2021a) and 399

assume a development set Ddev for model selection 400

and hyper-parameter tuning, where the size is same 401

with Dtrain, i.e., |Ddev| = |Dtrain|. For every exper- 402

iment, we measure average performance across 5 403

different randomly sampled Dtrain and Ddev splits 404

using a fixed set of seeds. 405

Hyperparameter Selection We implement our 406

framework and reproduce P-tuning by ourselevs 407

using PyTorch (Paszke et al., 2019) and Hugging- 408

Face (Wolf et al., 2020). The main results of LM- 409

BFF in Table 1 are from Gao et al. (2021a). We use 410
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SST-2 SST-5 MR CR MPQA Subj TREC
(acc) (acc) (acc) (acc) (acc) (acc) (acc)

“GPT-3” in-context learning 84.8 (1.3) 30.6 (0.9) 80.5 (1.7) 87.4 (0.8) 63.8 (2.1) 53.6 (1.0) 26.2 (2.4)
Fine-tuning 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1)
LM-BFF (w/ Demo) 92.6 (0.5) 50.6 (1.4) 86.6 (2.2) 90.2 (1.2) 87.0 (1.1) 92.3 (0.8) 87.5 (3.2)
P-tuning 91.5 (1.7) 48.5 (1.1) 85.8 (2.4) 91.0 (1.3) 83.6 (2.6) 90.5 (2.5) 87.0 (2.9)

Demo-tuning (LM-BFF) 93.2 (0.4) 50.1 (0.4) 87.9 (0.6) 91.5 (0.6) 85.9 (1.5) 92.3 (0.6) 90.1 (2.7)
Demo-tuning (P-tuning) 92.7 (0.6) 48.7 (2.0) 86.4 (1.1) 91.4 (0.8) 86.0 (1.6) 92.0 (0.6) 90.7 (4.5)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

“GPT-3” in-context learning 52.0 (0.7) 53.4 (0.6) 47.1 (0.6) 53.8 (0.4) 60.4 (1.4) 45.7 (6.0) 36.1 (5.2)
Fine-tuning 45.8 (6.4) 47.8 (6.8) 48.4 (4.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3)
LM-BFF (w/ Demo) 70.7 (1.3) 72.0 (1.2) 79.7 (1.5) 69.2 (1.9) 68.7 (2.3) 77.8 (2.0) 69.8 (1.8)
P-tuning 67.3 (1.0) 68.9 (1.2) 75.5 (1.7) 67.4 (4.4) 66.3 (4.9) 76.3 (4.5) 65.5 (2.6)

Demo-tuning (LM-BFF) 71.0 (2.0) 72.8 (1.5) 78.7 (1.9) 73.1 (1.8) 70.0 (3.4) 78.4 (2.3) 70.2 (1.7)
Demo-tuning (P-tuning) 71.3 (1.3) 73.1 (1.9) 76.4 (1.7) 71.6 (3.0) 69.8 (4.6) 78.4 (4.4) 68.9 (2.9)

Table 1: Comparison of performance of our approach with several baselines across 14 text classification tasks in
few-shot setting. We report mean (and standard deviation) results of 5 random seeds. LM-BFF (w/ Demo): LM-BFF
using demonstration in context with manual template used in Gao et al. (2021a). Demo-tuning (LM-BFF) and
Demo-tuning (P-tuning): Our proposed approach respectively based on LM-BFF and P-tuning.

RoBERTaLARGE (Liu et al., 2019) as pretrained411

language model and set K = 16. We employ412

AdamW as the optimizer and set same learning413

rate as 1e − 5 and batch size as 8 to all tasks. For414

the length n of virtual demonstration per class, we415

select it from candidate set {1, 2, 3, 5}. Detailed416

template and verbalizer setting for all tasks is pro-417

vided in Appendix B.418

5.3 Main Results419

We apply our method to two popular prompt-based420

tuning techniques, LM-BFF and P-tuning, and com-421

pare to a number of baselines, namely: (1) standard422

fine-tuning in the few-shot setting; (2) "GPT-3" in-423

context learning: zero-shot prediction, which con-424

catenates prompt (e.g., randomly sampled demon-425

strations); (3) P-tuning with differentiable prompt,426

where we do not specifically search the optimal427

length of prompt and fixed the length m to 4 in all428

tasks; (4) LM-BFF using demonstration in context429

with a manual template.430

In Table 1, we report the performance of the431

baseline approaches and our two variants. First,432

in-context learning could achieve comparable or433

even higher performance to the standard fine-434

tuning method. Specifically, we notice that in-435

context learning has better performance in some436

simple NLU tasks defined in (e.g., SST-2, MR, CR,437

MNLI), but for some tasks involved in complex in-438

DBpedia Yahoo!

Fine-tuning 98.2 (0.1) 66.4 (1.0)
LM-BFF 98.1 (0.2) 66.2 (1.0)
LM-BFF (w/ Demo) - -
P-tuning 98.2 (0.2) 67.0 (0.8)

Demo-tuning (LM-BFF) 98.3 (0.1) 67.9 (0.8)
Demo-tuning (P-tuning) 98.3 (0.1) 68.4 (1.1)

Table 2: Performance on multi-class sentence classifi-
cation, DBpedia and Yahoo!. The size of label space
|Y| are respectively 14 and 10. Due to sequence length
limitation in pretrained language model, LM-BFF with
demonstration-based learning can not be applied here.

ference or parsing (e.g., Subj, TREC, QQP, MRPC), 439

zero-shot prediction method perform poorly. 440

Second, our approach based on two prompt- 441

based tuning techniques could consistently outper- 442

form the vanilla methods. In detail, Demo-tuning 443

based LM-BFF improves the average score by 0.5, 444

compared with LM-BFF with the demonstration in 445

an input context. More importantly, Demo-tuning 446

is flexible and orthogonal to most fine-tuning meth- 447

ods. Here, for evaluating the compatibility, we 448

combine Demo-tuning with P-tuning (Liu et al., 449

2021c), which could lead to a 2.3 average score 450

improvement in total. In this work, we do not spe- 451

cially design template for P-tuning 5. Although 452

5We simply construct template T (x) for P-tuning
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SST-2 TREC SNLI MRPC

LM-BFF 92.7 84.8 77.2 74.5

Random 92.3 85.6 78.8 70.9
Filter-based (RoBERTa) 92.7 83.4 79.5 76.6
Filter-based (SBERT) 92.6 87.5 79.7 77.8

Virtual demonstration 93.2 90.7 78.7 78.4

Table 3: Impact of demonstration sampling strategies.
Random: uniform sampling from each class. Filter-
based: filtered sampling strategy proposed in Gao et al.
(2021a) respectively based on RoBERTa and SBERT
(Reimers and Gurevych, 2019). Virtual demonstration
is free of sampling during training and inference.

templates for P-tuning and prompt length are sub-453

optimal, we find that Demo-tuning with P-tuning454

leads to consistent gains in a majority of tasks.455

Third, an advantage of our proposed virtual456

demonstration is that it could be well applied for457

multi-class sentence classification tasks. Table 2458

gives the results of Demo-tuning compared to stan-459

dard fine-tuning and prompt-based tuning. Due460

to the limitation of the model’s input length, in-461

context learning and LM-BFF with demonstration462

could not be applied in this scenario. We notice463

that while the performance of LM-BFF is worse464

than fine-tuning, Demo-tuning based on LM-BFF465

improves the score by 1.7 and achieves a better466

score compared to fine-tuning.467

5.4 Analysis of Virtual Demonstration468

The selection of demonstration is crucial for469

demonstration-based learning (e.g., in-context470

learning and LM-BFF with demonstration). Next,471

we compare and discuss our proposed virtual472

demonstration with current approaches.473

Demonstration Sampling Table 3 provides the474

impact of demonstration sampling strategies. Dur-475

ing inference, our proposed virtual demonstration476

obtained by contrastive learning during training477

could be as an alternative to real demonstrations,478

which could be viewed as an implicit sampling479

strategy. We compare our method with previous480

sampling strategies based on LM-BFF.481

While the performance of uniform demonstra-482

tion sampling from each class is better than the483

vanilla LM-BFF in TREC and SNLI, we notice that484

on the MRPC task, this method causes severe accu-485

racy loss, which is up to 3.6. We think that random486

as [CLS]x1[PROMPT][MASK][SEP] in single-sentence
tasks and [CLS]x1,[MASK]? x2[PROMPT][SEP] in sen-
tence pair tasks, where [PROMPT] denotes continual prompt.

QQP SNLI Subj
Different dataset for evaluation
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LM-BFF
Demo-Tuning (w/ neg)
Demo-Tuning (w/o neg)

Figure 3: Ablation study on virtual demonstration opti-
mization w/ Vs. w/o negative sampling. Demo-tuning
(w/ neg): using conventional contrastive learning with
negative samples to optimize virtual demonstration.
Demo-tuning (w/o neg): Demo-tuning using our simpli-
fied optimization method without negative samples.

sampling is prone to generate irrelevant informa- 487

tion in demonstrations. To address the above is- 488

sue, Gao et al. (2021a) utilize RoBERTa or SBERT 489

(Reimers and Gurevych, 2019) to select relevant 490

demonstrations to examples. The filter-based sam- 491

pling strategy could achieve consistent gains in the 492

majority of tasks, which yields the highest improve- 493

ment with 3.6 on the TREC task. We consider that 494

this KNN-style method, which concatenates exam- 495

ples and demonstration that semantically close to 496

example, could promote language model to deci- 497

pher meaningful patterns. 498

Virtual demonstration, an alternative of the real 499

demonstration during inference, i.e., avoid complex 500

sampling step, could achieve gains in the majority 501

of tasks. The only exception is SNLI, which score 502

only is comparable with random sampling. We 503

hypothesize that this is caused by some confusion 504

issues, which may exist in filter-based strategy re- 505

garding semantically closeness among contrastive 506

demonstrations. 507

Optimization w/ Vs. w/o Negative Samples Fig- 508

ure 3 gives the results of comparison between vir- 509

tual demonstration optimization with negative sam- 510

pling and without negative sampling. We conduct 511

experiments with different optimization strategies 512

on 3 tasks. We find that optimizing objective of 513

Eq.3, i.e., conventional contrastive learning with 514

negative samples, causes dramatically performance 515

degradation, which average score is even lower 516

than LM-BFF’s. We think there are two possible 517
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Figure 4: Ablation study on length n of virtual demon-
stration per class. Demo-tuning (w/o CL): Demo-tuning
without contrastive learning (CL), i.e., virtual demon-
stration will degrade into continual prompt.

reasons: (1) In NLP tasks, finding a semantically518

reasonable negative pair is difficult, especially in519

the few-shot setting; (2) Negative pairs may be-520

come example-demonstrations pairs without spe-521

cific limitation, which will cause a certain confu-522

sion to model. Moreover, our goal is to obtain opti-523

mal virtual demonstrations for downstream tasks.524

Using contrastive optimization without negative525

sampling may be a more suitable solution.526

Demonstration Length Figure 4 shows the ab-527

lation study on length n of virtual demonstration528

per class. We compare Demo-tuning with its vari-529

ant without contrastive learning in different set-530

tings about length n. It is noteworthy that without531

contrastive learning, a virtual demonstration will532

degrade into a continual prompt. We find that a533

relatively shorter length (e.g., 2 or 3) could gain534

stable improvement of performance in QNLI and535

MR. Oppositely, a larger length (e.g., 20) may de-536

crease the performance. We consider that as the537

length of virtual demonstration increases, it will538

introduce more parameters into the model, mak-539

ing it challenging to learn from a small amount of540

annotated data. Demo-tuning could achieve con-541

sistent improvement in different lengths compared542

to its variant. Hence, we can conclude that virtual543

demonstration optimized by simple contrastive544

framework plays a different role from continu-545

ous prompt.546

6 Discussion547

We will discuss several favorable properties of con-548

trastive demonstration tuning and present some549

open problems:550

Possible Supplement for Parameter-efficient551

Fine-tuning. Previous studies (Liu et al., 2021c;552

Li and Liang, 2021) have demonstrate the ef-553

fectiveness of prompt-tuning (e.g., P-tuning, 554

Prefix-tuning) as an parameter-efficient fine-tuning 555

methodology for huge PLMs. Our approach can 556

serve as a supplement or parameter-efficient fine- 557

tuning via only tuning demonstration with PLM 558

fixed. We leave this for future works. 559

Relation to Prototype Learning. In §4, we have 560

notice that the optimal virtual demonstrations may 561

be analogous with “prototype” (Snell et al., 2017), 562

representative for corresponding class. Our ap- 563

proach may have connections to prototype learn- 564

ing, and further empirical and theoretical analysis 565

should be conducted. 566

Demonstration as External Knowledge. Recall 567

that those concatenated demonstrations are simi- 568

lar to previous studies such as RAG (Lewis et al., 569

2020b), REALM (Guu et al., 2020) which retrieve 570

and concatenate relevant texts as external knowl- 571

edge. We think that it is also interesting to inves- 572

tigate novel knowledge injection approaches via 573

demonstration. 574

We further discuss a few weaknesses of our 575

method in its current form and look into some pos- 576

sible avenues for future work. On the one hand, 577

our work still suffers from biased/long-tailed label 578

distribution. Note that we obtain optimized vir- 579

tual demonstration via contrastive learning; thus, 580

those virtual demonstrations of classes with many 581

samples may dominate the training stage.This lim- 582

itation might be ameliorated with weighted sam- 583

pling strategies. On the other hand, our approach 584

cannot directly handle structure prediction tasks. 585

Integrating demonstration with prefix-tuning-based 586

methods may help to mitigate such limitations. 587

7 Conclusion and Future Work 588

In this work, we propose contrastive demonstration 589

tuning, a simple model-agnostic approach for pre- 590

trained language models, which improves state- 591

of-the-art prompt-tuning performance without the 592

necessity of demonstration selection. 593

In the future, we plan to explore the following 594

directions: 1) studying the connection between vir- 595

tual demonstration and prototypes and theoretically 596

analyzing the optimal solution of demonstration for 597

prompt-tuning. 2) applying our work to more NLP 598

tasks and trying to adapt to structure prediction and 599

natural language generation. 3) extending our work 600

to multimodal settings and investigating demonstra- 601

tions across visual and language. 602
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A Datasets957

Table 4 provides the dataset evaluated in this work.958

Dataset |Y| #Train #Test Type
SST-2 2 6,920 872 sentiment
SST-5 5 8,544 2,210 sentiment
MR 2 8,662 2,000 sentiment
CR 2 1,775 2,000 sentiment
MPQA 2 8,606 2,000 opinion polarity
Subj 2 8,000 2,000 subjectivity
TREC 6 5,452 500 question cls.
DBpedia 14 560,000 70,000 sentence cls.
Yahoo! Answers 10 1,400,000 60,000 sentence cls.

MNLI 3 392,702 9,815 NLI
SNLI 3 549,367 9,842 NLI
QNLI 2 104,743 5,463 NLI
RTE 2 2,490 277 NLI
MRPC 2 3,668 408 paraphrase
QQP 2 363,846 40,431 paraphrase

Table 4: The datasets evaluated in this work. |Y|: the
number of classes for classification tasks. Notes that we
only sample Dtrain and Ddev of K × |Y| examples from
the original training data set in our few-shot setting.

B Template settings959

Table 5 and Table 6 provides manual templates and960

verbalizer similar with Gao et al. (2021a). We set961

the template of demonstration same with example.962

Template Tasks

[CLS]x1, It was[MASK].[SEP] SST-2, SST-5, MR, CR, MPQA,
DBpedia, Yahoo! Answers

[CLS]x1, This is[MASK].[SEP] Subj
[CLS][MASK]: x1[SEP] TREC

[CLS]x1?[MASK],x2[SEP] MNLI, SNLI, QNLI, RTE
[CLS]x1[MASK],x2[SEP] MRPC, QQP

Table 5: Templates for all tasks evaluated in our work.

Task Verbalizer

SST-2 incorrect/correct
SST-5 terrible/bad/okay/good/great
MR terrible/great
CR terrible/great

MPQA terrible/great
Subj subjective/objective

TREC Description/Entity/Expression/
Human/Location/Number

DBpedia company/institution/artist/athlete/
office/holder/transportation/building/
place/village/animal/plant/album/film/
written/work

Yahoo! society/science/health/education/
internet/sports/business/entertainment/
family/politics

Table 6: Verbalizer for all tasks evaluated in our work.
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