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Abstract

Pretrained language models can be effectively
stimulated by textual prompts or demonstra-
tions, especially in low-data scenarios. Recent
works have focused on automatically searching
discrete or continuous prompts or optimized
verbalizers, yet studies for the demonstration
are still limited. Concretely, the demonstra-
tion examples are crucial for an excellent final
performance of prompt-tuning. In this paper,
we propose a novel pluggable, extensible, and
efficient approach named contrastive demon-
stration tuning, which is free of demonstration
sampling. Furthermore, the proposed approach
can be: (i) Plugged to any previous prompt-
tuning approaches; (ii) Extended to widespread
classification tasks with a large number of cat-
egories. Experimental results on 16 datasets
illustrate that our method integrated with pre-
vious approaches LM-BFF and P-tuning can
yield better performance’.

1 Introduction

Pre-trained language models (PLMs) have been ap-
plied to widespread natural language understanding
and generation tasks, which are proven to obtain
significant gains across benchmarks (Devlin et al.,
2019; Liu et al., 2019; Lewis et al., 2020a; Dong
et al., 2019; Bao et al., 2020). One paradigm of
PLMs is the pre-train—fine-tune, which has be-
come the de facto standard for natural language
processing (NLP), where task-specific objectives
and additional parameters are leveraged in the tun-
ing procedure. Recently, the paradigm of the adap-
tation of PLMs is shifting. A new fine-tuning
methodology named prompt-tuning with a natural
language prompt and a few demonstrations has
made waves in the NLP community by proving as-
tounding few-shot capabilities on myriad language
understanding tasks. Further studies try to mitigate
the labour-intensive prompt engineering with dis-
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Figure 1: Comparison among current sampling strate-
gies on demonstration-based learning. Compared to
random and similarity-based sampling, demo-tuning
can obtain better demonstration distributions.

crete prompt searching (Shin et al., 2020) or contin-
uous prompt optimization (Liu et al., 2021c; Li and
Liang, 2021; Hambardzumyan et al., 2021a; Zhong
et al., 2021). However, few studies have focused
on the demonstration, which is an indispensable
component in prompt-oriented methodologies.

In previous studies, demonstrations are sampled
examples in the training set. GPT-3’s naive “in-
context learning” paradigm picks up to 32 ran-
domly sampled instances as demonstrations and
directly concatenates them with the input sequence.
Since informative demonstrations are crucial for
model performance, Gao et al. (2021a) develop a
refined strategy via sampling input pairs with sim-
ilar examples, thereby providing the model with
more discriminative comparisons. However, it is
still not guaranteed to prioritize the most infor-
mative demonstrations as (1) the similarity-based
sampling may obtain degraded demonstrations in
different classes but have similar distances to the
input; (2) the number of usable demonstrations
is still bounded by the model’s maximum input
length. For example, as shown in Figure 1, the
purple lines refer to the random sampling while the
blue lines indicate similarity-based sampling. Note
that similarity-based sampling may obtain exam-



ples very similar to the input sequence. However,
those sampled examples with different labels may
tend to have a similar representation and thus con-
fuse the discriminability of the model. Moreover,
for datasets with many classes, it is still non-trivial
to concatenate all sampled demonstrations. Those
above-mentioned challenges hinder the applicabil-
ity of demonstration in prompt-tuning.

To address those issues, in this paper, we pro-
pose contrastive DEMOnstration Tuning (Demo-
tuning) for pre-trained language models. Specif-
ically, we leverage learnable continuous embed-
dings (e.g., one or two learnable tokens) as virtual
demonstrations to relax the maximum number of
categories. We concatenate those virtual demon-
strations to the input sequence; thus, our approach
can be extended to a wide variety of classification
tasks with many categories. To optimize those
continuous embeddings, we explore a simple con-
trastive framework without negative pairs (Grill
et al., 2020) since it is difficult to find an appropri-
ate negative pair in semantic space for NLP. In each
training batch, we randomly sample a real example
and regard the virtual and real examples as positive
pairs. With contrastive learning, we can obtain in-
formative, optimized virtual demonstrations with
more discriminative comparisons.

We conduct extensive experiments on 16 NLP
datasets. Our contrastive demonstration tuning can
yield better performance when integrated with pre-
vious prompt-based methods (e.g., LM-BFF (Gao
et al., 2021a), P-tuning (Liu et al., 2021c)). More-
over, our approach can be applied to datasets with
many categories and outperform baselines. Note
that our approach is model-agnostic and can be
plugged into lots of prompt-based methods without
the effort to select suitable demonstrations. The
main contributions of this study are as follows:

* We propose a pluggable, extensible, and effi-
cient approach of contrastive demonstration
tuning for pre-trained language models. To
the best of our knowledge, optimizing demon-
stration is also a new branch of research that
has not been explored in language model
prompting.

* We propose virtual demonstration and lever-
age contrastive learning to obtain informative
demonstrations and also relax the maximum
number of categories in classification tasks.

* A systematic evaluation of 16 NLP datasets

shows that the proposed simple-yet-effective
approach contributes towards improvements
across all these tasks.

2 Related Work

2.1 Prompt-tuning

With the prevalence of GPT-3 (Brown et al., 2020),
prompting PLMs for few-shot learning has become
a new, popular learning paradigm in natural lan-
guage processing (Schick and Schiitze, 2021; Tam
et al., 2021; Liu et al., 2021a) and appealed to
researchers. Recently, prompt-tuning has been ap-
plied to various of tasks including named entity
recognition (Cui et al., 2021; Chen et al., 2021a;
Zhou et al., 2021; Ma et al., 2021), entity typing
(Ding et al., 2021), relation extraction (Han et al.,
2021), event extraction (Hsu et al., 2021; Ye et al.,
2021), machine translation (Tan et al., 2021), se-
mantic parsing (Schucher et al., 2021), language
generation (Schick and Schiitze, 2020), and com-
puter visual tasks (Tsimpoukelli et al., 2021; Yao
et al., 2021). Schick and Schiitze (2021, 2020) pro-
pose the PET, which reformulates the NLP tasks as
cloze-style questions and yields satisfactory perfor-
mance. Tam et al. (2021) further propose a denser
supervision object during fine-tuning to improve
the PET.

Note that handcrafting a best-performing prompt
is like finding a needle in a haystack, which fa-
cilitates the labor-intensive prompt engineering,
Thus, recent studies (Qin and Eisner, 2021; Ham-
bardzumyan et al., 2021b; Chen et al., 2021b) con-
ducted in this field have been focused on automati-
cally searching the prompts. Shin et al. (2020) pro-
pose AUTOPROMPT, which is a gradient-based
method to acquire templates and label words for
prompt-tuning. Wang et al. (2021) propose EFL,
which reformulates the NLP task as an entailment
one and turns small LMs into better few-shot learn-
ers. Han et al. (2021) propose PTR which injects
logic rules into prompt-tuning with sub-prompts
for many-class text classification. Hu et al. (2021)
try to incorporate external knowledge graph into
the verbalizer with calibration. Additionally, Gao
et al. (2020) propose LM-BFF—better few-shot
fine-tuning of language models, which utilizes a
generation model to obtain templates and a refined
strategy for dynamically and selectively incorpo-
rating demonstrations into each context. However,
it is sub-optimal for the discrete prompt searching
due to the continuous nature of neural networks.



To overcome these limitations, Liu et al.
(2021c¢,b) propose P-tuning to to automatically
search prompts in the continuous space. Li and
Liang (2021) propose prefix-tuning, which opti-
mizes a sequence of continuous task-specific vec-
tors and keeps language model parameters frozen.
Lester et al. (2021a) leverage a mechanism to learn
“soft prompts” to condition frozen language models.
Zhang et al. (2021) propose a differentiable prompt
learning method for few-shot NLP with optimized
prompt templates as well as labels. Vu et al. (2021)
propose SPoT, which learns a prompt on one or
more source tasks and then uses it to initialize the
prompt for a target task to boost the performance
across many tasks. More related works including
WARP (Hambardzumyan et al., 2021a) and OP-
TIPROMPT (Zhong et al., 2021) also propose to
leverage continuous templates, which is more ef-
fective than discrete prompt search. To conclude,
most of the existing works try to obtain optimized
prompts for widespread NLP tasks; however, few
studies have focused on the demonstration, which
is an indispensable component in prompt-oriented
learning.

Our work is orthogonal to previous prompt-
tuning approaches which are aimed at optimizing
prompts. The major differences between virtual
demonstration and continuous prompts are that: 1)
they have a wholly different training strategy since
continuous prompts are optimized via backpropaga-
tion with a training set while our approach utilizes
contrastive learning. 2) our approach requires no
external architecture (e.g., LSTM in P-tuning), thus,
making it efficient and pluggable to any prompt-
tuning approaches. To date, Lee et al. (2021) is
the only approach that studies the demonstration
and presents a simple demonstration-based learning
method for named entity recognition. Apart from
Lee et al. (2021), our approach focus on general
NLP classification tasks. Moreover, we propose
virtual demonstrations with contrastive learning
strategies, which can obtain better demonstrations
and also relax the maximum number of categories
in datasets.

2.2 Contrastive Learning

Contrastive learning has been long considered ef-
fective in learning meaningful representations. In
the early stage, Mikolov et al. (2013) propose to
learn word embeddings by regarding words nearby
a target word as a positive instance while others

as negative. Logeswaran and Lee (2018) further
generalize this approach to learn sentence repre-
sentations. Recently, Kim et al. (2021) propose a
contrastive learning method that makes use of a
self-guidance mechanism. Yan et al. (2021) pro-
pose ConSERT, a contrastive framework for self-
supervised sentence representation transfer. Giorgi
et al. (2021) propose DeCLUTR: Deep Contrastive
Learning for Unsupervised Textual Representa-
tions. Gao et al. (2021b) leverage dropout as mim-
imal data augmentation and propose SimCSE, a
simple contrastive learning framework that greatly
advances the state-of-the-art sentence embeddings.

On the other hand, contrastive learning has been
also appealed to the computer vision community
(Jaiswal et al., 2020; Liu et al., 2020). Chen et al.
(2020) propose SimCLR: a simple framework for
contrastive learning of visual representations with-
out requiring specialized architectures or a mem-
ory bank. Chen and He (2021) observe that simple
siamese networks can learn meaningful representa-
tions even using none of the negative sample pairs,
large batches, and momentum encoders.

Our work is related to Grill et al. (2020), a
non-contrastive self-supervised learning approach,
which relies on two neural networks, referred to as
online and target networks, that interact and learn
from each other. However, as opposed to this ap-
proach, we utilize the encoder in the same state
while Grill et al. (2020) leverage two networks in
the different states. Moreover, we focus on demon-
stration optimization in prompt-tuning for NLP,
including learning informative demonstrations and
acquiring prompt temples and label tokens.

3 Preliminaries

In this work, we focus on classification tasks
in the few-shot setting, including text classifica-
tion and natural language understanding, where
the input zj, is either a sentence xj, = 1 or a
pair of sentences xj, = (x1,x2). Here, we let
Dirain = {(:ci,yi)}f(x‘y‘ denote the training set
of a downstream task composed of only K train-
ing examples per class, where ) is label space
of the task. Given a pre-trained language model
comprised of two stages: an encoder f(-) and a
classifier g(-) 2, we encode the input i, to a se-
quence of hidden vectors {h;, € R?} and take

%In standard fine-tuning, the classifier is a set of randomly
initialized parameters W, € RP1*4 with softmax function.
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Figure 2: An illustration of (a) prompt-tuning with demonstrations, and (b) our proposed contrastive demonstration
tuning (demo-tuning). Note that we regard the input with virtual demonstration and a random sampled real

demonstrations as positive pairs for contrastive learning.

the hidden vector hcps; = f(zi) of [CLS] 3
through classifier to obtain the probability distribu-

tionp(y | z) =g (hicrsy) overy € V.

Prompt-based Fine-tuning Prompt-based fine-
tuning (Schick and Schiitze, 2021; Gao et al.,
2021a) is an efficient work by designing cloze-style
template 7 and verbalizer M: ) — V mapping
task labels to individual words from vocabulary
V of pre-trained language model to fill the gap
between masked LM objective of pre-trained lan-
guage model and downstream fine-tuning objec-
tive.

Template In prompt-based fine-tuning paradigm,
template 7 is mainly comprised of inputs xi, and
a prompt P = [P;]7, where the prompt could be
a series of discrete tokens (Schick and Schiitze,
2021) or continual pseudo tokens (Liu et al., 2021c¢).
For instance, in the sentiment analysis task (see
Figure 2), a template with handcraft prompt may be:
T (x) = [CLS]1x1, It was [MASK].[SEP] where
"Itwas ... ." is prompt and [MASK] is target which
cast classification task as a language modeling task.

Verbalizer A verbalizer M defines a mapping
of label tokens from label space of a specific
task. In Figure 2a, the verbalizer maps "nega-
tive/postive" to "terrible/great". In this way, we
could re-use the output weight W, € RV ref-
ered MLM head used in pre-training and model
the probability of predicting token M (y) € V as

3For simplicity we will denote the hidden vector h crs; of
certain input x; through encoder using h;.

p(y | x) = g (himask; ) on hidden vector h yasx; -

Demonstration Let Dy, be the subset of all ex-

amples of class c. We sample demonstrations d. =
(ﬂni(lf),y(c)) € D§,;, and convert it to T(:Ui(lf),y(c))
in which [MASK] is replaced by M(y(?)). We
then combine the original template 7 with tem-
plates above in all classes to form 7 (zi,), which
will be used as a template during prompt-based

tuning and inference (See Figure 2).

4 Contrastive Demonstration Tuning

In this work, we focus on how to learn a com-
pact and differentiable virtual demonstration to
serve as prompt augmentation instead of design-
ing specific sampling strategies for demonstration-
based learning. We propose a learning framework
based on a contrastive learning approach that can
be compatible with the current prompt-based learn-
ing paradigm. This section introduces the concepts
of contrastive demonstration tuning (Demo-tuning)
and provides details of this approach.

Virtual Demonstration Let [D{“)]7 refer to the
virtual demonstration of the ¢ class where 7 is a
hyper-parameter to set the length of virtual demon-
stration, which is far less than the length of real
demonstration. For instance, given a template of

binary classification task (see Figure 2) as:
T(2)=T(@@) e DYoo D] 1)

where & denotes concatenation of input sequences.
[DM] and [D®)] respectively denote the virtual



demonstrations of two classes. Virtual demonstra-
tions could be so flexible that can be integrated to
wide variety of prompt learning approaches (Liu
et al., 2021c; Lester et al., 2021Db).

Next, we study how to obtain the optimal virtual
demonstrations, which are initialized as a series of
pseudo tokens at the start of fine-tuning. To ad-
dress this challenging problem, we propose to use
contrastive learning, which aims to obtain effec-
tive representation by pulling semantically close
neighbors together. Intuitively, we believe the opti-
mal virtual demonstrations may be analogous with
“prototype” (Snell et al., 2017), the representative
for corresponding class, and we will discuss in §6.

Positive Instances A key element of contrastive
learning is how to construct reasonable (zin, z;")

pairs. Here, we design a new template 71 (z)
based on template 7 (z) by randomly replacing one
of virtual demonstrations [D(®)] with real demon-
stration d. as shown in the Figure 2b:

THa) = T(@) @ T, yV) & [D?] @

where [D(1] is replaced with a demonstration d; of
class “terrible”. Using this template, we could con-

vert input zj, to corresponding positive example

tie, (T(xin), %*(:Uin)> is a positive training

instance. In this way, aligning virtual demonstra-
tion [D()] with d., the only difference between
Zin and x$, and pulling representations (hjp, h1+n)
closer in semantic space could effectively alleviate
the problem that the existing of terrible or irrelevant
demonstration by previous sampling strategies.

X

Optimization Similar to Chen et al. (2020),

we can randomly sample a minibatch of NV ex-

amples from D,y to construct positive pairs

{(xi,2])} | and take a cross-entropy objective

with in-batch negatives for (z;, z;"):

l = —log ;Xp(sim(.hi, h)/7) 3)
SV exp(sim(hy, hi)/7)

where 7 denotes a temperature parameter and
T

: . . . .. hTh
sim(h;, h;) is the cosine similarity Ty - The
i j

negative pairs are composed of two different exam-
ple with same demonstration in a minibatch.

In this work, we also explore a simple contrastive
framework without negative pairs* similar to re-
cent non-contrastive self-supervised learning (Grill

“This is the default contrastive learning method in all ex-
periments.

et al., 2020). Regarding the difficulty to find a ap-
propriate negative pair in semantic space for NLP,
specially in few-shot setting, we only construct pos-
itive pairs and define the following mean squared
error between h; and hj with ¢5-normalization,

hlh;

¢; = ||h; — hj "2_2_2'm

“)

where h; and h; are obtained through encoder f(-)
in the same state different from Grill et al. (2020)
which encodes x; and x;" through two networks
in the different states (online network and target
network).

When supervised examples Dyin are available,
pre-trained language model could be fine-tuned to
minimize the joint objective comprised of cross-
entropy and contrastive objective of Eq. (4). In
this way, during inference, we can concatenate the
input xm~with trained virtual demonstrations in
template 7 (z), which does not need to sample real
demonstrations. Besides, we provide empirical
analysis and discussion of negative sampling in
§5.4.

5 Experiments

5.1 Datasets

To evaluate Demo-tuning, we conduct experiments
on 6 tasks from GLUE leaderboard (Wang et al.,
2019) and 10 other popular classification tasks, in-
cluding natural language inference (SNLI, MNLI,
QNLI, RTE), sentiment classification (SST-2, SST-
5, MR, CR, MPQA), paraphrase and similarity
(MRPC, QQP) and sentence classification (DBpe-
dia, Subj, TREC, Yahoo! Answers). The detailed
statistics are in Appendix A.

5.2 Settings

Evaluation During training, we follow the eval-
uation protocol adopted in Gao et al. (2021a) and
assume a development set Dy, for model selection
and hyper-parameter tuning, where the size is same
with Dygain, 1.€., |Ddev| = |Dirain|- For every exper-
iment, we measure average performance across 5
different randomly sampled Dy,in and Dyey splits
using a fixed set of seeds.

Hyperparameter Selection We implement our
framework and reproduce P-tuning by ourselevs
using PyTorch (Paszke et al., 2019) and Hugging-
Face (Wolf et al., 2020). The main results of LM-
BFF in Table 1 are from Gao et al. (2021a). We use



SST-2 SST-5 MR CR MPQA Subj TREC
(acc) (acc) (acc) (acc) (acc) (acc) (acc)
“GPT-3” in-context learning 84.8 (1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 26.2(2.4)
Fine-tuning 81.4(33.8) 4392.00 769059 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1)
LM-BFF (w/ Demo) 92.6(0.5) 50.6(1.4) 86.6(2.2) 90.2(1.2) 87.0(1.1) 92.3(0.8) 87.5(3.2)
P-tuning 91.5(1.7) 485(1.1) 858(124) 91.0(1.3) 83.6(2.6) 90.5(2.5) 87.0(29)
Demo-tuning (LM-BFF) 93.2(04) 50.1(04) 87.9(0.6) 91.5(0.6) 859 (1.5 92.3(0.6) 90.1(2.7)
Demo-tuning (P-tuning) 92.7(0.6) 48.7(12.0) 86.4(1.1) 91.4(0.8) 86.0(1.6) 92.0(0.6) 90.7 (4.5)
MNLI  MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)
“GPT-3” in-context learning 52.0 (0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 60.4(1.4) 457(6.0) 36.1(5.2)
Fine-tuning 458 (6.4) 47.8(6.8) 48.4(4.8) 60.2(6.5) 54.439) 76.62.5) 60.74.3)
LM-BFF (w/ Demo) 70.7(1.3) 720(1.2) 79.7(1.5) 69.2(1.9) 68.7(2.3) 77.8(2.0) 69.8(1.8)
P-tuning 673(1.0) 689(1.2) 755(1.7) 67444 663(49) 7T63(45) 655(2.6)
Demo-tuning (LM-BFF) 71.020) 728(1.5) 78.7(19) 73.1(1.8) 70.03.4) 78.4(2.3) 70.2(.7)
Demo-tuning (P-tuning) 71.3(1.3) 731(19) 764(1.7) 71.63.0) 69.8(4.6) 784(4.4) 689229

Table 1: Comparison of performance of our approach with several baselines across 14 text classification tasks in
few-shot setting. We report mean (and standard deviation) results of 5 random seeds. LM-BFF (w/ Demo): LM-BFF
using demonstration in context with manual template used in Gao et al. (2021a). Demo-tuning (LM-BFF) and
Demo-tuning (P-tuning): Our proposed approach respectively based on LM-BFF and P-tuning.

RoBERTa; srgE (Liu et al., 2019) as pretrained
language model and set K = 16. We employ
AdamW as the optimizer and set same learning
rate as le — 5 and batch size as 8 to all tasks. For
the length n of virtual demonstration per class, we
select it from candidate set {1, 2, 3,5}. Detailed
template and verbalizer setting for all tasks is pro-
vided in Appendix B.

5.3 Main Results

We apply our method to two popular prompt-based
tuning techniques, LM-BFF and P-tuning, and com-
pare to a number of baselines, namely: (1) standard
fine-tuning in the few-shot setting; (2) "GPT-3" in-
context learning: zero-shot prediction, which con-
catenates prompt (e.g., randomly sampled demon-
strations); (3) P-tuning with differentiable prompt,
where we do not specifically search the optimal
length of prompt and fixed the length m to 4 in all
tasks; (4) LM-BFF using demonstration in context
with a manual template.

In Table 1, we report the performance of the
baseline approaches and our two variants. First,
in-context learning could achieve comparable or
even higher performance to the standard fine-
tuning method. Specifically, we notice that in-
context learning has better performance in some
simple NLU tasks defined in (e.g., SST-2, MR, CR,
MNLI), but for some tasks involved in complex in-

DBpedia  Yahoo!
Fine-tuning 98.2(0.1) 66.4(1.0)
LM-BFF 98.1(0.2) 66.2(1.0)
LM-BFF (w/ Demo) - -
P-tuning 98.2 (0.2) 67.0(0.8)
Demo-tuning (LM-BFF) 98.3 (0.1) 67.9 (0.8)
Demo-tuning (P-tuning) 98.3 (0.1) 68.4 (1.1)

Table 2: Performance on multi-class sentence classifi-
cation, DBpedia and Yahoo!. The size of label space
|| are respectively 14 and 10. Due to sequence length
limitation in pretrained language model, LM-BFF with
demonstration-based learning can not be applied here.

ference or parsing (e.g., Subj, TREC, QQP, MRPC),
zero-shot prediction method perform poorly.
Second, our approach based on two prompt-
based tuning techniques could consistently outper-
form the vanilla methods. In detail, Demo-tuning
based LM-BFF improves the average score by 0.5,
compared with LM-BFF with the demonstration in
an input context. More importantly, Demo-tuning
is flexible and orthogonal to most fine-tuning meth-
ods. Here, for evaluating the compatibility, we
combine Demo-tuning with P-tuning (Liu et al.,
2021c), which could lead to a 2.3 average score
improvement in total. In this work, we do not spe-
cially design template for P-tuning >. Although

We simply construct template 7 (x) for P-tuning



SST-2 TREC SNLI MRPC
LM-BFF 92.7 84.8 77.2 74.5

Random 923 85.6 78.8 70.9
Filter-based (RoBERTa)  92.7 83.4 79.5 76.6
Filter-based (SBERT) 92.6 87.5 79.7 71.8

Virtual demonstration 93.2 90.7 78.7 78.4

Table 3: Impact of demonstration sampling strategies.
Random: uniform sampling from each class. Filter-
based: filtered sampling strategy proposed in Gao et al.
(2021a) respectively based on ROBERTa and SBERT
(Reimers and Gurevych, 2019). Virtual demonstration
is free of sampling during training and inference.

templates for P-tuning and prompt length are sub-
optimal, we find that Demo-tuning with P-tuning
leads to consistent gains in a majority of tasks.

Third, an advantage of our proposed virtual
demonstration is that it could be well applied for
multi-class sentence classification tasks. Table 2
gives the results of Demo-tuning compared to stan-
dard fine-tuning and prompt-based tuning. Due
to the limitation of the model’s input length, in-
context learning and LM-BFF with demonstration
could not be applied in this scenario. We notice
that while the performance of LM-BFF is worse
than fine-tuning, Demo-tuning based on LM-BFF
improves the score by 1.7 and achieves a better
score compared to fine-tuning.

5.4 Analysis of Virtual Demonstration

The selection of demonstration is crucial for
demonstration-based learning (e.g., in-context
learning and LM-BFF with demonstration). Next,
we compare and discuss our proposed virtual
demonstration with current approaches.

Demonstration Sampling Table 3 provides the
impact of demonstration sampling strategies. Dur-
ing inference, our proposed virtual demonstration
obtained by contrastive learning during training
could be as an alternative to real demonstrations,
which could be viewed as an implicit sampling
strategy. We compare our method with previous
sampling strategies based on LM-BFF.

While the performance of uniform demonstra-
tion sampling from each class is better than the
vanilla LM-BFF in TREC and SNLI, we notice that
on the MRPC task, this method causes severe accu-
racy loss, which is up to 3.6. We think that random
mROMPT] [MASK] [SEP] in single-sentence

tasks and [CLS]x1, [MASK]? z2 [PROMPT] [SEP] in sen-
tence pair tasks, where [PROMPT] denotes continual prompt.
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Figure 3: Ablation study on virtual demonstration opti-
mization w/ Vs. w/o negative sampling. Demo-tuning
(w/ neg): using conventional contrastive learning with
negative samples to optimize virtual demonstration.
Demo-tuning (w/o neg): Demo-tuning using our simpli-
fied optimization method without negative samples.

sampling is prone to generate irrelevant informa-
tion in demonstrations. To address the above is-
sue, Gao et al. (2021a) utilize RoOBERTa or SBERT
(Reimers and Gurevych, 2019) to select relevant
demonstrations to examples. The filter-based sam-
pling strategy could achieve consistent gains in the
majority of tasks, which yields the highest improve-
ment with 3.6 on the TREC task. We consider that
this KNN-style method, which concatenates exam-
ples and demonstration that semantically close to
example, could promote language model to deci-
pher meaningful patterns.

Virtual demonstration, an alternative of the real
demonstration during inference, i.e., avoid complex
sampling step, could achieve gains in the majority
of tasks. The only exception is SNLI, which score
only is comparable with random sampling. We
hypothesize that this is caused by some confusion
issues, which may exist in filter-based strategy re-
garding semantically closeness among contrastive
demonstrations.

Optimization w/ Vs. w/o Negative Samples Fig-
ure 3 gives the results of comparison between vir-
tual demonstration optimization with negative sam-
pling and without negative sampling. We conduct
experiments with different optimization strategies
on 3 tasks. We find that optimizing objective of
Eq.3, i.e., conventional contrastive learning with
negative samples, causes dramatically performance
degradation, which average score is even lower
than LM-BFF’s. We think there are two possible
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Figure 4: Ablation study on length n of virtual demon-
stration per class. Demo-tuning (w/o CL): Demo-tuning
without contrastive learning (CL), i.e., virtual demon-
stration will degrade into continual prompt.

reasons: (1) In NLP tasks, finding a semantically
reasonable negative pair is difficult, especially in
the few-shot setting; (2) Negative pairs may be-
come example-demonstrations pairs without spe-
cific limitation, which will cause a certain confu-
sion to model. Moreover, our goal is to obtain opti-
mal virtual demonstrations for downstream tasks.
Using contrastive optimization without negative
sampling may be a more suitable solution.

Demonstration Length Figure 4 shows the ab-
lation study on length n of virtual demonstration
per class. We compare Demo-tuning with its vari-
ant without contrastive learning in different set-
tings about length n. It is noteworthy that without
contrastive learning, a virtual demonstration will
degrade into a continual prompt. We find that a
relatively shorter length (e.g., 2 or 3) could gain
stable improvement of performance in QNLI and
MR. Oppositely, a larger length (e.g., 20) may de-
crease the performance. We consider that as the
length of virtual demonstration increases, it will
introduce more parameters into the model, mak-
ing it challenging to learn from a small amount of
annotated data. Demo-tuning could achieve con-
sistent improvement in different lengths compared
to its variant. Hence, we can conclude that virtual
demonstration optimized by simple contrastive
framework plays a different role from continu-
ous prompt.

6 Discussion

We will discuss several favorable properties of con-
trastive demonstration tuning and present some
open problems:

Possible Supplement for Parameter-efficient
Fine-tuning. Previous studies (Liu et al., 2021c;
Li and Liang, 2021) have demonstrate the ef-

fectiveness of prompt-tuning (e.g., P-tuning,
Prefix-tuning) as an parameter-efficient fine-tuning
methodology for huge PLMs. Our approach can
serve as a supplement or parameter-efficient fine-
tuning via only tuning demonstration with PLM
fixed. We leave this for future works.

Relation to Prototype Learning. In §4, we have
notice that the optimal virtual demonstrations may
be analogous with “prototype” (Snell et al., 2017),
representative for corresponding class. Our ap-
proach may have connections to prototype learn-
ing, and further empirical and theoretical analysis
should be conducted.

Demonstration as External Knowledge. Recall
that those concatenated demonstrations are simi-
lar to previous studies such as RAG (Lewis et al.,
2020b), REALM (Guu et al., 2020) which retrieve
and concatenate relevant texts as external knowl-
edge. We think that it is also interesting to inves-
tigate novel knowledge injection approaches via
demonstration.

We further discuss a few weaknesses of our
method in its current form and look into some pos-
sible avenues for future work. On the one hand,
our work still suffers from biased/long-tailed label
distribution. Note that we obtain optimized vir-
tual demonstration via contrastive learning; thus,
those virtual demonstrations of classes with many
samples may dominate the training stage.This lim-
itation might be ameliorated with weighted sam-
pling strategies. On the other hand, our approach
cannot directly handle structure prediction tasks.
Integrating demonstration with prefix-tuning-based
methods may help to mitigate such limitations.

7 Conclusion and Future Work

In this work, we propose contrastive demonstration
tuning, a simple model-agnostic approach for pre-
trained language models, which improves state-
of-the-art prompt-tuning performance without the
necessity of demonstration selection.

In the future, we plan to explore the following
directions: 1) studying the connection between vir-
tual demonstration and prototypes and theoretically
analyzing the optimal solution of demonstration for
prompt-tuning. 2) applying our work to more NLP
tasks and trying to adapt to structure prediction and
natural language generation. 3) extending our work
to multimodal settings and investigating demonstra-
tions across visual and language.
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A Datasets

Table 4 provides the dataset evaluated in this work.

Dataset Y] #Train  #Test Type
SST-2 2 6,920 872 sentiment
SST-5 5 8,544 2,210 sentiment
MR 2 8,662 2,000 sentiment
CR 2 1,775 2,000 sentiment
MPQA 2 8,606 2,000 opinion polarity
Subj 2 8,000 2,000 subjectivity
TREC 6 5,452 500 question cls.
DBpedia 14 560,000 70,000 sentence cls.
Yahoo! Answers 10 1,400,000 60,000 sentence cls.
MNLI 3 392,702 9,815 NLI
SNLI 3 549,367 9,842 NLI
QNLI 2 104,743 5,463 NLI
RTE 2 2,490 277 NLI
MRPC 2 3,668 408 paraphrase
QQP 2 363,846 40,431 paraphrase

Table 4: The datasets evaluated in this work. |)|: the
number of classes for classification tasks. Notes that we
only sample Dy, and Dgey of K X |)| examples from
the original training data set in our few-shot setting.

B Template settings

Table 5 and Table 6 provides manual templates and
verbalizer similar with Gao et al. (2021a). We set
the template of demonstration same with example.
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Template Tasks

[CLS]xy, It was [MASK].[SEP]  SST-2, SST-5, MR, CR, MPQA,

DBpedia, Yahoo! Answers

[CLS]xy, This is[MASK].[SEP]  Subj

[CLS] [MASK]: x1 [SEP] TREC

[CLS]z1? [MASK], 29 [SEP] MNLI, SNLI, QNLI, RTE
[CLS]x [MASK],zy [SEP] MRPC, QQP

Table 5: Templates for all tasks evaluated in our work.

Task Verbalizer
SST-2  incorrect/correct
SST-5  terrible/bad/okay/good/great
MR terrible/great
CR terrible/great
MPQA terrible/great
Subj subjective/objective
TREC  Description/Entity/Expression/
Human/Location/Number
DBpedia company/institution/artist/athlete/
office/holder/transportation/building/
place/village/animal/plant/album/film/
written/work
Yahoo! society/science/health/education/

internet/sports/business/entertainment/
family/politics

Table 6: Verbalizer for all tasks evaluated in our work.
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