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Abstract

This study introduces a novel recommendation system de-
signed for matching markets, such as job placement and on-
line dating, which goes beyond the traditional focus on indi-
vidual user preferences. Traditional Reciprocal Recommen-
dation Systems in these markets often fail to consider the
overall market dynamics, leading to a narrow focus on spe-
cific popular choices and neglecting the diversity of user
needs. To address this, our approach conceptualizes the mar-
ket as a network, utilizing Graph Neural Networks to analyze
the intricate connections within this network. We also incor-
porate Reinforcement Learning to optimize outcomes for the
entire market, not just individual users. Furthermore, to ad-
dress the issue of sparse user-item interactions in matching
markets, our approach incorporates a novel graph data aug-
mentation technique. This method enriches the network by
adding labeled edges, enhancing the market’s representation.
This augmentation facilitates more effective and varied rec-
ommendations, leading to a noticeable increase in successful
matches in various market scenarios, as evidenced by our of-
fline experiments with both synthetic and real-world data.

Introduction
In the contemporary digital landscape, Recommendation
Systems (RSs) are integral, enhancing personalized experi-
ences in areas such as online retail, entertainment, and social
networking(Schafer, Konstan, and Riedl 1999; Sivapalan
et al. 2014; Ben-Shimon et al. 2015; Barragáns-Martı́nez
et al. 2010; Gomez-Uribe and Hunt 2016; Alvarado et al.
2020). A specialized category within these, known as Recip-
rocal Recommendation Systems (RRSs), is gaining promi-
nence in matching markets(Hu et al. 2023; Tomita et al.
2023; Su, Bayoumi, and Joachims 2022; Borisyuk, Zhang,
and Kenthapadi 2017). These markets, such as job place-
ment and online dating, are based on the concept of pairing
individuals or entities with matching requirements and pref-
erences. RRSs play a crucial role here, aligning the prefer-
ences and requirements of both parties to facilitate optimal,
mutually beneficial matches. For example, in job markets,
RRSs not only help applicants find fitting job opportunities
but also ensure that these opportunities align with the quali-
fications and expectations of employers.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Current RRSs are typically designed to match a single
user with a multitude of jobs or items, focusing on finding
the best fit for that particular user. This approach, while ef-
fective for individual needs, often neglects the broader dy-
namics of the market and the diverse needs of other users.In
the realm of job placement, as an example, this can lead
to a disproportionate emphasis on certain popular positions,
thereby limiting the diversity of hiring opportunities. An ap-
proach that considers the market as an integrated entity can
not only connect users to suitable jobs but also enhance the
overall balance and diversity of the market, thereby improv-
ing its health and efficiency.

To improve RRSs in matching markets, this paper in-
troduces an innovative method that transcends traditional
single-user-focused approaches. We conceptualize the mar-
ket as a network, treating users and items as nodes within a
graph. This network is analyzed using Graph Neural Net-
works (GNNs), which are adept at capturing the intricate
interconnections among these nodes. Additionally, we in-
corporate Reinforcement Learning (RL) to optimize market-
wide outcomes over time. Moreover, our study addresses
the common issue of sparse interactions between users and
items in matching markets, particularly in job placements.
To overcome this challenge, we have developed a novel
graph data augmentation (GDA) technique that, unlike tra-
ditional GDA methods that focus on adding only one type of
edge (Ling et al. 2023; Zhao et al. 2022a,b; Mu et al. 2022),
predicts various types of potential interactions between users
and items and adds labeled edges to the graph. The result-
ing augmented graph offers a more detailed representation
of the market, enabling our system to provide more accurate
recommendations. This approach ensures optimal individual
matches in a sparse market while maintaining overall market
equilibrium.

In a nutshell, our contributions are as follows:
• We present an optimized market-wide recommendation

strategy, leveraging GNNs and RL, to improve match-
ing outcomes throughout the market. This strategy ef-
fectively counters popularity bias and fosters market
equilibrium by increasing the long-term success rate of
matches.

• To combat the prevalent issue of sparse interactions in
matching markets, we introduce an innovative GDA tech-
nique. This method enhances the market’s graph repre-



sentation by predicting potential interactions and adding
labeled edges, thereby enriching the recommendation
process.

• Our empirical evaluations, utilizing both synthetic and
real-world data, demonstrate that our approach signifi-
cantly enhances the total number of successful matches
across various market settings.

Preliminary
Understanding Job Recommendation Systems
Job recommendation systems, a specialized segment within
the broader domain of recommendation systems, play a piv-
otal role in the labor market by bridging the gap between
job seekers (users) and employment opportunities (items).
These systems are designed to recommend jobs to job seek-
ers based on various criteria such as skills, experience,
and preferences. The process begins with the system rec-
ommending jobs to job seekers. When a job aligns with
a job seeker’s interests and qualifications, they may apply
for it. This action is analogous to making a purchase in e-
commerce or selecting a movie in streaming services. How-
ever, a distinctive feature in the job market is the subsequent
phase where the employer assesses the candidate’s appli-
cation. They evaluate the applicant’s fit for the role based
on their aptitude and skills, determining whether to proceed
with the hiring process.

The primary objective of a job recommendation system is
to maximize successful employment matches (hires), paral-
leling the goal in e-commerce systems, which is to maximize
purchases and sales. This goal underlines the need for a sys-
tem that accurately understands and aligns the preferences
and qualifications of job seekers with the requirements and
cultures of employers, thereby facilitating optimal job place-
ments.

In the following, unless misunderstood, job seekers are
simply referred to as users, employment opportunities as
jobs, and being hired for a job as a match.

Two-Tower Models for Recommendation Systems
Two-tower models, widely used in RSs (Tomita et al. 2023;
Rendle et al. 2020), process users, denoted as u, and items,
denoted as i, independently through their respective en-
coders, fθu and fθi . The user and item embeddings are then
computed as eu = fθu(u) and ei = fθi(i). These embed-
dings are placed in a common vector space. The learning
objective of these models is to align the embeddings such
that their inner product or cosine similarity corresponds to
the likelihood of user interaction with the item, like clicking
or purchasing. By achieving this, the systems can effectively
recommend items that align with the users’ interests.

Advanced Embedding Representations with Graph
Neural Networks
Two-tower models encode user and item embeddings in-
dependently, so they cannot capture complex relationships
between users and items. Therefore, GNNs can be applied
to bipartite graphs of users and items, or knowledge graphs
with item attributes and external knowledge, to obtain richer

embedding representations. In particular, Relational Graph
Convolutional Networks (R-GCNs) (Schlichtkrull et al.
2018) can calculate the embeddings of vertices considering
multiple edge types. Specifically, for a graph G = (V, E ,R)
defined by vertices vi ∈ V , edge types r ∈ R, and edges
(vi, r, vj) ∈ E , the hidden state of the node vi in the l + 1th
layer of the neural network is calculated as follows:
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where g is an activation function, N r
i is the set of neigh-

bor indices of node vi under relation r ∈ R, ci,r is the nor-
malization constant, W (l)

r and W
(l)
0 are trainable variables.

Finally, the embeddings of the vertex vi are obtained by con-
catenating the hidden states up to layer L:

ei = h
(0)
i ∥ h(1)

i ∥ · · · ∥ h(L)
i . (2)

Reinforcement Learning for Recommendation
Systems

To achieve effective RSs, it is important to consider not only
short-term metrics, but also long-term metrics. For example,
when a new item is added to the market, there may be little
data about the item initially, so it may be more effective to
recommend other well-known items from a short-term per-
spective. However, in the long term, as more data about the
new item is accumulated, recommending it may be a more
valuable choice for users. Thus, it is important to strike a
balance between short-term results and long-term strategies
in building high-quality RSs.

Reinforcement learning is particularly useful for focusing
on these long-term metrics. In RL, a ’learning agent’ – in
our case, the RS – interacts with an environment made up
of users and employers. The RS learns from the feedback it
receives after making recommendations. The main goal here
is to learn strategies that ensure long-term success, not just
immediate rewards.

To apply RL, the environment must be formulated as
a Markov Decision Process (MDP) consisting of four el-
ements (S,A, T,R) (Bellman 1957). Here, S is the state
space, A is the action space, T is the state transition func-
tion, and R is the reward function. In RL given an MDP,
the agent learns a policy π(at | st) that maximizes the dis-
counted reward sum defined as

∑∞
t=0 γ

trt, where rt is the
reward at time t, and γ ∈ [0, 1] is the discount rate.

When the policy is represented as a function of param-
eters θ, the optimal policy can be learned by updating the
parameters based on the gradient of the expected discounted
reward sum with respect to θ, as shown in Equation (3). In
addition, a method called actor-critic (Konda and Tsitsiklis
1999) approximates the gradient efficiently by approximat-



ing it as shown in Equation (4):

J (θ) = ∇θE

[ ∞∑
t=0

γtrt | πθi

]
(3)

≃
∞∑
t=0

∇θ log πθi(at | st) (rt + γVω(st+1)− Vω(st))

(4)

where Vω(st) is the state-value function, and Vω(st) is
learned to approach rt + γVω(st+1).

Proposed Method
Reinforcement Learning-Based Recommendation
System Utilizing Graph Neural Networks
In this study, we introduce a recommendation system en-
hanced by RL and GNNs. This system models its policy
using GNNs, allowing it to account for the interactions be-
tween users and items. We build a bipartite graph, with users
and items as nodes, and use GNNs to generate their embed-
dings. The system then ranks recommendations based on
the inner product of user and job embeddings, denoted as
⟨eu, ei⟩. The recommendation system receives various feed-
back from the environment, such as job applications and ac-
ceptances, as well as disparities in job popularity. By design-
ing rewards based on these feedbacks, we can realize the de-
sired recommendation system. We design rewards consider-
ing both short-term and long-term gains; short-term rewards
are given for job applications, and long-term rewards are as-
signed upon successful job matches. Our strategy aims to
balance personalization with market needs, recommending
jobs that not only attract immediate interest but also con-
tribute to maximizing successful matches in the market over
time.

Furthermore, in our Actor-Critic model, we employ a
Multilayer Perceptron (MLP) for the state-value function.
This MLP computes the state value by taking the average
embedding vectors of both user and item nodes, represented
as eu and ei, respectively. The state value calculation for the
entire graph is as follows:

Vω(st) = MLPω (eu ∥ ei) . (5)

Here, eu ∥ ei represents the concatenation of the average
embedding vectors of user and item nodes.

Graph Data Augmentation Technique for labeled
edges
In RSs, the scarcity of interactions between users and items
often poses a problem. For instance, in a job recommenda-
tion scenario, applications and hirings might be less frequent
compared to views or clicks in an online retail setting, exac-
erbating the challenge of data sparsity. In GNNs, the embed-
ding of a vertex is calculated based on the hidden states of
connected vertices; thus, pronounced sparsity can degrade
the quality of embeddings. To mitigate this, we propose a
GDA technique that adds edges between users and jobs. By
adding these edges, we enhance the embeddings for both
users and jobs. This GDA technique allows us to alleviate

sparsity issues. Specifically, for a user vertex u and an item
vertex i, we concatenate the embeddings eu and ei from
the learned Two-Tower models and a one-hot vector er rep-
resenting the edge type between vertices u and i, and pass
them through an MLP and a sigmoid function σ to calculate
the probability pui of adding an edge

pui = σ (MLPA (eu ∥ ei ∥ er)) . (6)

The decision to include or exclude an edge is determined by
sampling from a Bernoulli distribution, based on the proba-
bility pui. By increasing the output dimension of the MLP,
it is possible to add multiple types of edges. That is, the u, i
components of the adjacency matrix for edge type r are as
follows:

A
(r)
ui ∼ Bernoulli

(
p
(r)
ui

)
. (7)

Here, we utilize the Gumbel-Softmax reparameterization
trick (Jang, Gu, and Poole 2017; Maddison, Mnih, and Teh
2017; Ling et al. 2023; Maddison, Tarlow, and Minka 2014),
a method for sampling from categorical distributions, to en-
sure differentiability in our model.

See Figure 1 for an overview of our proposed method.

Experiments
This section introduces real-world datasets, synthetic data
generation procedures, and baselines we used for compari-
son.

Experimental Settings
Description of Datasets Our offline experiments utilized
two datasets.

The first dataset, referred to as the SMS dataset, was pro-
vided by SMS Co., Ltd., a company operating a nursing care
recruiting site in Japan. This dataset, which is a proprietary
dataset not publicly available, includes 1,250,581 users and
96,465 jobs, along with both application and match histories.
Using Two-Tower models, we trained MLPs to estimate ap-
plication and match probabilities, considering probabilities
above 0.5 as positive indications.

The second, the CareerBuilder2012 dataset1, was sourced
from the CareerBuilder 2012 Job Recommendation Chal-
lenge (Ben Hamner and Krupa 2012) hosted on Kaggle. It
comprises 389,708 users, 1,091,923 jobs, and 1,603,111 ap-
plication histories. However, this dataset lacks match (em-
ployment) history data. To address this, we trained a MLP
using the Two-Tower models, estimating application prob-
abilities from the application history. Applications were
considered made if the probability exceeded 0.5, and em-
ployments were assumed if the probability exceeded 0.8.
This threshold value of 0.8 was set so that the Maximum
#Matches value of the first private dataset was close. Maxi-
mum #Matches is the maximum number of matches that can
actually be observed.

1https://kaggle.com/competitions/job-recommendation



Figure 1: An overview of our framework.

SMS CareerBuilder2012 Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Synthetic 5

ApplyPredictor 0.00± 0.00 0.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
MatchPredictor 0.00± 0.00 0.00± 0.00 0.33± 0.47 0.33± 0.47 0.00± 0.00 0.00± 0.00 5.00± 0.00

LiJAR 1.33± 0.47 0.00± 0.00 5.00± 0.00 5.00± 0.00 8.00± 0.00 16.67± 0.47 20.33± 0.94
StableMatching 18.00± 2.94 4.33± 1.25 3.33± 1.25 9.00± 0.00 11.33± 4.11 16.33± 1.70 20.67± 3.86

Ours w/o GNNs 1.00± 0.00 5.33± 1.89 4.33± 1.89 15.67± 0.47 26.00± 0.00 28.67± 0.47 55.33± 1.25
Ours w/o GDA 19.33± 1.70 6.00± 0.00 13.00± 1.41 18.33± 3.68 31.33± 3.40 37.67± 0.47 64.00± 1.41

Ours 23.00± 3.56 10.00± 2.94 23.33± 2.87 31.67± 4.99 50.67± 1.89 62.33± 3.09 71.67± 1.70

Table 1: Comparisons between our method and baselines on the final total number of matches obtained in the test environment
simulations. The best results are shown in bold.

Synthetic Data To complement our real-world data and
test our model in various scenarios, we generated synthetic
data. User features were sampled from a uniform distribu-
tion Ud(0, 1), and item features from Ud(0, b(i)). We intro-
duced popularity bias in items by varying the upper limit b(i)
for each item. The details of the function b that determines
the popularity bias and other experimental settings are writ-
ten in Appendix. Five different b were used to generate syn-
thetic data with various popular characteristics. Summaries
for each environment are also in the Appendix.

Baseline Methods To evaluate the performance of the pro-
posed method, several methods were chosen as baselines.
In existing research, various innovations have been made
to improve accuracy, such as the use of Bayesian estima-
tion (Borisyuk, Zhang, and Kenthapadi 2017) and multitask
learning(Hu et al. 2023). However, to measure the effect of
using RL and GNNs, the models in the comparative meth-
ods were designed to be relatively simple, using MLPs and
trained through supervised learning.

• ApplyPredictor: Predicts application probability among
user-item pairs, akin to general RSs in e-commerce.

• MatchPredictor: Forecasts the matching probability be-
tween user-item pairs, commonly used in RRSs.

• LiJAR: Estimates application probability, implementing
penalties or bonuses to ensure equitable application dis-
tribution (Borisyuk, Zhang, and Kenthapadi 2017).

• StableMatching: Predicts both application and matching
probabilities, applying the Gale-Shapley algorithm (Gale
and Shapley 1962) to find stable matching(Bills and Ng
2021).

Experimental Results

Table 1 presents the final total number of matches obtained
in the test environment simulations. The results demonstrate
our method’s superiority over baselines in all datasets and
synthetic environments. In our experiments, we compare
different configurations of our model. ’Ours w/o GNNs’
and ’Ours w/o GDA’ represent our model without GNNs
and GDA, respectively. A comparison between ’Ours w/o
GNNs’ and MatchPredictor reveals a significant improve-
ment in the total number of matches, averaging 24.06 times
higher, which highlights the importance of considering long-
term rewards. Additionally, comparing ’Ours w/o GNNs’
with ’Ours w/o GDA’, there’s an average improvement of
1.75 times in the total number of matches, while a com-
parison between Ours and ’Ours w/o GDA’ shows an av-
erage improvement of 1.14 times. These results underscore
the importance of using GNNs and GDA to consider the
overall market information. Moreover, comparing the pro-
posed method with LiJAR and StableMatching, the models
applying only RL performed poorly in several environments,
while the introduction of GNNs outperformed them in all
environments.



Conclusion
In this study, we proposed a recommendation system for
matching markets that considers information from the entire
market. Our approach involved a model combining graph
neural networks and graph data augmentation methods to
add labeled edges, which was trained using reinforcement
learning to optimize long-term market-wide evaluation met-
rics. Experiments conducted in various environments us-
ing real-world datasets and synthetic data achieved state-
of-the-art performance in all settings. This research demon-
strates that considering the entire market’s information us-
ing graph neural networks and reinforcement learning can
significantly improve performance, especially in tasks like
matching markets that require long-term and holistic opti-
mization. Additionally, our work addresses the issue of data
sparsity commonly faced in recommendation tasks, showing
that our Graph Data Augmentation method can mitigate this
sparsity. The combination of more sophisticated reinforce-
ment learning methods and graph neural networks models
holds the potential for further improvements in recommen-
dation systems, presenting a valuable future direction for the
research community.
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Detailed Experimental Settings
Popularity Bias Function Used in Synthetic Data
Generation
The b (ik) for item ik is set using two parameters, imbW
and imbLen, as follows:

b (ik) = exp

(
imbW · max {0, imbLen− k}

imbLen

)
. (8)

These parameters control the popularity gap and the
length of the distribution tail. Applications and employments

were determined based on the sigmoid function of the inner
product of user and item features.

For user features u and item features i generated from
each uniform distribution, an application was considered
made if the sigmoid function of their inner product σ (⟨u, i⟩)
exceeded 0.8, and an employment was assumed if it ex-
ceeded 0.9.

MDP Experimental Settings
For MDP experiments, users and items were divided into
disjoint sets of 300 each for training, evaluation, and test-
ing. Users to recommend at each timestep were randomly
selected, with the simulation ending at 100 timesteps.

Other Experimental Settings
The policy adopted an epsilon-greedy approach, where a
random item is recommended with a probability that decays
with each episode. In the training environment, simulations
were run for 100 timesteps, and based on this data, the pa-
rameters for the policy and the state-value function were up-
dated. Subsequently, in the evaluation environment, simu-
lations were conducted for 100 timesteps three times. The
model with the highest average reward sum across the three
simulations was then tested in the test environment for 100
timesteps, three times. The average total number of matches
obtained in these simulations was considered the final eval-
uation value.

Experiment Summary
In Table 2, the values of imbW and imbLen used for gen-
erating synthetic data, as well as statistical values for all
test environments including real data, are presented. For
example, the test environment created from the Career-
Builder2012 dataset has 300 users and 300 jobs each. Fur-
thermore, out of the total 90,000 pairs between users and
jobs, 25,873 pairs are in an application relationship, and
3,776 are in a matching relationship. However, since the
number of recruitments per job is set to one, the maximum
number of matches that can actually be observed is 101. In
the experiment, recommendations are made to one user at
each time step, and the simulation is conducted for only 100
time steps, so the maximum number of matches that can be
obtained as an experimental indicator is 100 in the best-case
scenario. Additionally, when calculating the Gini coefficient
for the disparity in popularity among jobs, the Gini coef-
ficient at the time of application is 0.27, whereas the Gini
coefficient for matches is 0.74, indicating that considering
matches, the environment has a large disparity in popularity.

Evaluation on Other Metrics
While our study’s primary objective is to maximize the final
total number of matches, indicating a successful matchmak-
ing process, we also examine secondary metrics. It’s crucial
to understand that these metrics, while informative, involve
trade-offs and may not directly contribute to our primary
goal.

We used the total number of applications and the entropy
of the number of applications between jobs to evaluate the



SMS CareerBuilder2012 Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Synthetic 5

imbW - - 0.1 1.0 1.0 1.0 2.0
imbLen - - 100 50 100 150 100
#Users 300 300 300 300 300 300 300
#Jobs 300 300 300 300 300 300 300
#Applications 36, 746 25, 873 34, 697 39, 176 44, 894 51, 017 49, 694
#Matchings 14, 784 3, 776 4, 359 8, 682 13, 623 19, 004 22, 119
Maximum #Matchings 126 101 115 134 126 184 173
Apply Gini Coefficient 0.23 0.27 0.41 0.40 0.36 0.31 0.35
Match Gini Coefficient 0.70 0.74 0.79 0.80 0.75 0.68 0.71

Table 2: Summary of statistics for environments.

results. The performance is better when both the total num-
ber of applications and the entropy are larger; a larger total
number of applications means that the user is able to recom-
mend jobs of interest, which indicates the performance of
individual optimization. Also, the larger the entropy, the bet-
ter the system is able to recommend a variety of jobs, which
is the performance of market equilibrium and fairness of the
recommendation system.

Table 3 shows the results for the total number of appli-
cations and Table 4 shows the results for entropy. Compar-
ing the results in terms of the total number of applications,
the proposed method recorded the highest values in three
environments, LiJAR in one environment, and ApplyPredic-
tor in four environments. Therefore, from the standpoint of
individual optimization, ApplyPredictor has the best perfor-
mance, followed by the proposed method. In terms of en-
tropy, the proposed method and Stable matching recorded
the highest entropy values in three and four environments,
respectively. Therefore, in terms of market equilibrium, Sta-
ble matching has the best performance, followed by the pro-
posed method.

These results indicate that the proposed method is able to
maximize the final total number of matches by successfully
balancing the trade-off relationship between individual opti-
mization and market equilibrium.



SMS CareerBuilder2012 Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Synthetic 5

ApplyPredictor 25.33± 3.09 12.33± 2.49 68.00± 2.16 99.00± 0.82 99.00± 0.82 99.00± 0.82 100.00± 0.00
MatchPredictor 33.33± 5.19 7.67± 1.70 12.00± 2.94 35.67± 6.55 5.00± 0.82 24.67± 4.50 97.00± 0.82

LiJAR 23.00± 4.08 17.33± 6.55 44.67± 0.47 96.67± 1.25 97.33± 0.47 98.00± 0.82 100.00± 0.00
StableMatching 40.33± 1.70 25.33± 4.19 30.67± 2.87 36.67± 3.68 38.00± 2.94 48.00± 2.83 47.33± 3.68

Ours w/o GNNs 34.33± 3.40 26.67± 1.25 47.67± 4.99 54.00± 0.82 49.33± 8.01 64.00± 5.89 82.67± 0.47
Ours w/o GDA 30.00± 4.32 20.00± 2.94 65.67± 3.30 66.33± 4.50 71.67± 3.86 78.00± 3.74 88.00± 1.63

Ours 43.67± 4.99 14.00± 2.45 78.67± 2.36 84.67± 3.40 87.67± 0.47 90.33± 2.05 93.33± 0.47

Table 3: Comparisons between our method and baselines on the final total number of applications obtained in the test environ-
ment simulations. Results that indicate the highest values are shown in bold.

SMS CareerBuilder2012 Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4 Synthetic 5

ApplyPredictor 2.11± 0.10 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
MatchPredictor 1.17± 0.12 0.00± 0.00 0.69± 0.24 0.00± 0.00 0.22± 0.31 0.18± 0.13 1.18± 0.16

LiJAR 3.68± 0.28 3.28± 0.73 3.47± 0.05 2.06± 0.01 2.43± 0.02 3.01± 0.03 3.38± 0.02
StableMatching 5.19± 0.08 4.57± 0.22 4.76± 0.15 5.07± 0.20 5.10± 0.16 5.42± 0.04 5.44± 0.11

Ours w/o GNNs 1.22± 0.15 2.70± 0.44 2.07± 0.38 3.00± 0.09 4.38± 0.31 4.33± 0.04 5.41± 0.02
Ours w/o GDA 3.87± 0.21 2.66± 0.18 3.33± 0.15 3.53± 0.58 4.52± 0.24 4.64± 0.18 6.18± 0.05

Ours 3.50± 0.37 3.20± 0.41 4.36± 0.19 4.41± 0.36 5.35± 0.07 5.71± 0.12 6.01± 0.05

Table 4: Comparisons between our method and baselines on the entropy of the number of applications between jobs obtained
in the test environment simulations. Results that indicate the highest values are shown in bold.


