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Abstract

In sparse novel view synthesis with few input views and
wide baselines, existing methods often fail due to weak
geometric correspondences and view-dependent color in-
consistencies.  Splatting-based approaches can produce
plausible results near training views, but they frequently
overfit and struggle to maintain smooth, realistic appear-
ance transitions in novel viewpoints. We introduce a
splat-based gradient-domain fusion method that addresses
these limitations. Our approach first establishes reliable
dense geometry via two-view stereo for stable initializa-
tion. We then generate intermediate virtual views by re-
projecting input images, which provide reference gradient
fields for gradient-domain fusion. By blending these gradi-
ents, our method transfers low-frequency, view-dependent
colors to the rendered Gaussians, producing seamless ap-
pearance transitions across views. Extensive experiments
show that our approach consistently outperforms state-of-
the-art sparse Gaussian splatting methods, delivering ro-
bust and perceptually plausible view synthesis. A compre-
hensive user study further confirms that our results are per-
ceptually preferred, with significantly smoother and more
realistic color transitions than existing methods.

1. Introduction

Given a set of multi-view images with their camera poses,
novel view synthesis creates images of the scene from new
viewpoints. To achieve high-quality results, we require
many input images to produce a natural view-dependent ap-
pearance [15, 23]. In sparse settings with few views, many
traditional approaches fail due to overfitting the color and
geometry to the few training images.

One key problem is handling changes in appearance. Be-
yond view-dependent color changes, such as specular re-
flections, factors like lens shading, exposure differences, or
minor illumination variations in outdoor scenes cause addi-
tional frame-dependent color variations across training im-
ages. These variations have a greater impact on reconstruc-
tion in scenarios with sparse input views, leading to overfit-
ting artifacts that make achieving novel view synthesis with
smooth and consistent transitions more challenging.

In sparse settings with limited input information, one
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Figure 1. Alleviating overfitting in sparse settings for 3D Gaus-
sian splatting. Given sparse input, Gaussians are adjusted to match
specific input training views, resulting in unreliable geometry and
inconsistent color appearance through novel view transitions. We
integrates gradient-domain fusion (GF) of reprojected input views
at intermediate virtual poses into the GS rendering framework.
This creates reference gradient fields to regularize the rendered
result, producing a smoother appearance variation during view
transitions. Our method achieves higher-fidelity and perceptually
pleasing view synthesis in sparse scenarios than existing work.

natural choice is to blend adjacent input images, repro-
jected into the novel view, so that the reconstructed frame-
dependent appearance is smooth and less perceptually ob-
jectionable [6, 19, 29]. Some image-based rendering meth-
ods [1, 17] achieve this by blending target views onto known
proxy geometry using Poisson blending [27], a gradient-
domain fusion (GF) technique that smoothly blends source
and target regions by transferring its gradients.

Rather than use Poisson blending to produce the final
image, we present an approach to use gradient-domain fu-
sion within a Gaussian Splatting (GS) optimization as a reg-
ularizer to produce better appearance. This works by re-
projecting and seamlessly fusing the gradients of input im-
ages at intermediate-generated virtual novel views to cre-
ate reference gradient fields (Figure 1 middle). By compar-
ing the image gradients of the rendered image with those of
the reference gradient fields, we can induce smooth frame-



dependent color for the Gaussians and avoid artifacts from
overfitting color in novel view transitions. However, pro-
ducing accurate reference gradient fields requires reproject-
ing input images to virtual novel views, which in turn de-
mands precise scene geometry.

Recent GS-based methods have shown that obtaining
good geometry under sparse input conditions necessitates
a dense and well-initialized point cloud. To this end, they
have used monocular depth priors [25] or multi-view depth
priors [10, 26, 35]. However, monocular priors often suf-
fer from poor multi-view consistency, while multi-view pri-
ors can fail to reconstruct regions that are visible in only
a single training view. Instead, we additionally use dense
geometric correspondence to initialize Gaussians via a hi-
erarchical point cloud reconstruction method based on two-
view stereo [34]. This initialization yields more accurate
geometry, enabling precise depth reprojection and the gen-
eration of high-quality intermediate reference views for GF.

Our method demonstrates more robust and higher-
fidelity view synthesis than current state-of-the-art sparse
GS approaches [20, 25, 26, 35], achieving smooth color
transitions with robust reconstruction. We further evaluate
it against alternative strategies replacing the GF loss, con-
sistently showing superior performance, particularly in per-
ceptual metrics like LPIPS [40] and DISTS [9]. While these
metrics are strong indicators, they do not fully capture hu-
man preference. To address this, we conduct a user study
on natural color transitions and perceptual quality evalua-
tion, where our method is consistently preferred over exist-
ing sparse view synthesis methods and other alternatives.

2. Related Work

Gaussian Splatting from sparse images. Existing Gaus-
sian Splatting for sparse view synthesis mainly focuses
on resolving geometry instability caused by limited input
views. DNGaussian [20] uses random points with monocu-
lar depth priors, while CoR-GS [39] and FSGS [42] employ
patch-match MVS [28] and appearance regularization, but
often produce overly smooth geometry and floating artifacts
due to sparse or inaccurate initialization. CoherentGS [25]
improves initialization using monocular depth [37] and op-
tical flow refinement [31], yet still suffers from multi-view
inconsistency and color overfitting. Neural MVS mod-
els like MVPGS [35] and InstantSplat [10], and feature
matching methods like SCGaussian [26], enhance multi-
view consistency but struggle in singly observed regions.
Although these geometry-focused methods improve re-
construction quality, they largely overlook the problem of
color overfitting and frame-dependent appearance varia-
tions, thereby degrading perceptual quality. In contrast, our
work explicitly addresses this under-explored issue by in-
troducing a gradient-domain fusion regularizer that encour-
ages smooth and consistent frame-dependent colors without

compromising fine details. Our method combines this reg-
ularizer with dense geometry initialization from two-view
stereo [34], enabling more robust and smooth novel views.

Virtual view regularization. Recent view synthesis meth-
ods for sparse inputs have proposed various strategies to
regularize unobserved views. FSGS [42] enhances geomet-
ric accuracy by regularizing pseudo views with mono-depth
constraints, while CoR-GS [39] suppresses point and ren-
dering disagreements across two different Gaussian radi-
ance fields. These approaches regularize the geometry of
virtual views rather than the color. Generative models have
also been used. RegNeRF [24] uses a normalizing flow
model to maximize the likelihood of virtual view colors,
achieving smooth geometry and high-likelihood color gen-
eration. In contrast, we generate virtual views by rasterizing
two paired meshes to obtain reference gradient fields, ef-
fectively transferring low-frequency, view-dependent color
gradients to 3D Gaussians.

Gradient-domain fusion. Gradient-domain fusion has
been widely adopted to manipulate image gradients to blend
images, preserving important edge and texture details seam-
lessly in computational photography. Beyond seam re-
moval, this enables the smooth integration of overlapping
regions, and thus applies to image stitching [18], high dy-
namic range imaging [12], and image cloning [27]. Poisson
blending provides a foundation for gradient-domain fusion
by solving the Poisson equation, which preserves source im-
age gradients while adhering to the target image’s boundary
conditions. Gradient shop [3] and image melding [8] use
the screened Poisson equation to enhance data fidelity. This
can be accelerated using Fourier analysis [2], and convo-
lution pyramids [ 1] incorporate multi-grid frameworks to
allow high-resolution image composition. However, these
methods require solving sparse linear systems, making them
slow and challenging to handle complex boundaries, thus
difficult to integrate into Gaussian Splatting. We instead
adopt an efficient approach that directly blends the gradi-
ents of reprojected training views with the rendered images
for seamless fusion under complex boundary conditions.

3. Background

3.1. 3D Gaussian Splatting

Gaussian Splatting optimizes explicit 3D Gaussian primi-
tives for rapid view synthesis by minimizing a photometric
loss between input views and their corresponding rendered
images. Each Gaussian is parameterized by a scaling matrix
S, a rotation matrix R, and a position pg:

Gip)=exp(—i(p—pr) S (P—pr), O

where the covariance matrix is ¥ = RSS TR ". Each Gaus-
sian also has opacity o and SH color components. Gaus-
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Figure 2. Gaussians’ view-dependent color optimization from
sparse views. C(v) denotes the observed color per view, with
the color bar indicating transitions along interpolated view vec-
tors. (a) Results overfitted to sparse inputs can produce abrupt
color changes in intermediate views. (b) We address this by ap-
plying gradient-domain fusion at virtual views C(v"), which reg-
ularizes the view-dependent color functions.

sians are projected onto the image plane using EWA [43],
and color is accumulated by alpha blending.

In real-world datasets, object colors vary across frames
due to illumination, exposure, and view-dependent effects.
With sparse and inconsistent inputs, we expect the col-
ors in training images to project well onto the Gaussians’
spherical harmonics, resulting in angularly smooth, view-
dependent functions for seamless transitions. However,
the rendered color in GS results from a complex blend of
many Gaussians’ view-dependent functions rather than a
single one. Thus, when optimized only on a few training
views, these functions often overfit to the observed direc-
tions, causing seams, floaters, and unnatural transitions in
unseen views. To mitigate this, we regularize Gaussians
at unobserved views by encouraging the rendered colors to
reflect a smooth blending of adjacent input images. This re-
sults in spatially and perceptually coherent colors, improv-
ing transition quality across novel viewpoints (Figure 2).

3.2. Poisson Blending

We aim to seamlessly blend adjacent input images into
novel views without visible boundaries and seams. To this
end, we adopt the core principle of Poisson blending, which
formulates a minimization problem enforcing the gradients
V= (%7 a%) of the result image f within the overlap re-
gion {2 to match a reference gradient field w, blended from
the source and target images f*. At the stitching bound-
ary 0f), pixel values from the target image are fixed as a
Dirichlet boundary condition. This can be written as:

min [ V5 =wl® with flon = Flon. @

Taking the first variation of Energy function (2) and ap-
plying the divergence theorem yields the Euler—Lagrange
equation that reduces to the Poisson equation Af = V -
w over , with f|aq = f*|sq, where A = 86—; + g—; is the
Laplacian operator. Solving this Poisson equation produces
a blended image that matches the reference gradient field
within the overlap region, resulting in a large, sparse linear
system that can be solved using direct or iterative methods.

Laplacian pyramid blending Poisson blending
Figure 3. Image-domain fusion vs. gradient-domain fusion.
Gradient-domain fusion, such as Poisson blending, yields more
seamless and natural blending results compared to Laplacian pyra-
mid blending, a representative image-domain fusion method.

However, solving large linear systems is computationally
expensive, and Poisson blending—being purely 2D-ignores
3D consistency and tends to suppress high-frequency de-
tails. Thus, using Poisson blending directly within the GS
framework leads to splotchy and blurry results, as shown
in Figure 10 (e). Instead of relying on Poisson blending,
we draw inspiration from the ability of gradient-domain fu-
sion (GF) to blend gradients and incorporate it into the GS
framework. This achieves seamless novel view synthesis
with smoother transitions across various viewpoints.

4. Method
4.1. Initialization of Gaussians

To achieve effective blending, precise depth reprojection is
essential; thus, we begin by improving geometry initializa-
tion. Following prior multiview methods [5, 35], we use
a point cloud from MVSFormer [5], but it is incomplete in
single-observed regions and insufficient for stable initializa-
tion. To improve coverage and ensure accurate depth repro-
jection, we augment it with a dense two-view stereo point
cloud from GMStereo [34] and combine both. Each image
is paired with its nearest neighbor along the z-axis, result-
ing in NV — 1 stereo pairs from N images. For each pair
(Cn, C,n), we use rectified images to estimate forward and
backward disparities (D', D®) via the TVS network. Al-
though TVS performs well in overlap regions, it struggles
with occluded or single-observed areas. Thus, relying on
the full depth map risks including unreliable points. To mit-
igate this, we hierarchically select high-confidence depth
points to build a globally consistent point cloud (Figure 4).
Hierarchical point cloud reconstruction. We divide the
forward and backward valid masks (R¢, Rp) of the stereo
pair into three confidence-based subsets, denoted as R¢, R°,
and R*. The first subset R comprises the most confident
depth, where pixel matching along the pair is consistent.
The second subset R° represents the occluded regions that
‘R cannot cover. The third subset R® corresponds to glob-
ally single-observed regions, where depth is predicted with-
out the use of stereo priors.

First, we identify reliable depth pixels based on forward-
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Figure 4. Hierarchical point cloud reconstruction. The first row
shows paired rectified images with confidence-based segmenta-
tion: red (R°) for pairwise consistent areas, green (R°) for overlap
regions with occlusion or mismatching, and blue (R?®) for single-
view areas. The second row shows the sequential point cloud re-
construction for initialization. The notation follows the main text.

backward consistency [22]. The forward disparity set is
c f b f 2
Rs = {ul [D'(w) + Da+ DW)|* < 7}, 3

where 7t = a1 (||Df(0) |2 + [|P°(u+ D' (u))|?) + az, with
a1 and o as constants. The backward mask is similarly
defined. We use them to form a pairwise consistent point
cloud Q° by back-projecting the depth to world space.

Next, we address the depth that is not represented by Q°
using stereo pair overlap regions. Overlap regions are de-
fined as pixels in one stereo pair for which a match must fall
within the rectified image bounds of the other pair: O =
{ueR¢|v=u+D(u),veRy}. The areas without
projected Q° within the overlap regions are designated as
the second confidence subset R° = {u € O | u ¢ I1(Q°)},
where II() refers to the projection of Q° to the rectified im-
ages. Using both the first and second confidence subsets, we
reconstruct an overlap depth point cloud Q°, and project it
onto the single-view coverage areas of each stereo pair.

We define single-view coverage S = {u € R |u ¢ O}
as regions within the paired rectified image that have no
overlap, where R refers to valid rectified regions. In these
areas, we define the subset R® = {ue S |u¢II(Q°)},
where the projected overlap points are absent over the
single-view coverage, similar to the overlap region.

By hierarchically back-projecting pixelsu € R° UR° U
R*, we construct the point cloud Q. We leverage three con-
fidence subsets to effectively minimize multi-view incon-
sistency while constructing a dense point cloud from TVS
depth pairs. This point cloud Q is used to initialize the
Gaussians, providing a stable and accurate starting point.

4.2. Virtual View Creation

We select camera pairs (P, P,,) (as in Section 4.1) and
render their depths D,, and D,, using GS depth rendering.
We then construct meshes for each view by depth back-
projection as shown in Figure 5. However, naive back-
projection connects all regions indiscriminately, resulting in
large, incorrect triangles that fill occluded areas. To handle
occlusions more accurately, we detect depth edges and ex-
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(a) Depth back-projection

(b) Mesh triangulation
Figure 5. Mesh triangulation. To render a virtual view, we convert
input images into vertex-colored meshes, where the long graph
edges that correspond to depth edges are cut.

(a) Mesh generation

(b) Rasterized mesh (c) Valid mesh mask

Figure 6. Virtual view creation. We generate meshes using the
rendered depth from the nearest training image pair (P, Pr,) (a).
We rasterize them onto the virtual view P" to obtain the projected
images C), and €}, as shown in (b). Valid masks M, and M}, in
(c), indicating regions without occlusion, are created by compar-
ing the rendered depth with the mesh depth buffer.

clude them from the triangulation process. Please refer to
the supplementary document for details.

We create a virtual camera PV by interpolating a given
camera pair (P,,, P,,), using spherical linear interpolation
for rotations and linear interpolation for translations. Next,
we rasterize the meshes into the virtual camera PY, gener-
ating images C), and CY, (Figure 6). To enhance viewpoint
diversity, we uniformly sample K = 20 virtual cameras
{P}}£ | over the interpolation range from —0.5 to 1.5.

Validity masks M and M}, identify non-occluded re-
gions by comparing the rendered depth lA);’n at the virtual
viewpoint P¥ with the mesh depth buffers D), and DY,. We
compute the 0.2 quantile of the rendered depth values, de-
noted as f)g_g, and define valid masks as:

;= {u || 0w - Diw)| <7 Dia}. @)

where 74 = 0.1, and k € {n, m}. Gradient-domain fusion
is performed using the rasterized mesh images and masks.

4.3. Virtual View Regularization

We regularize the Gaussians via a screen-space loss, com-
puted from the rasterized reference image pair C¥ =
{C¥,CY.} and their corresponding masks M' =
{My, My}, which define the reference gradient fields.

Gradient-domain fusion. Gradient-domain fusion aims
to minimize the difference between the gradients of the
blended output and the reference images within overlapping



regions, satisfying given boundary conditions, as formu-
lated in Energy function (2). Rather than explicitly solving
the Poisson equation, we perform implicit GF during Gaus-
sian optimization. A virtual view C" rendered at the virtual
camera PY using Gaussian Splatting is supervised by align-
ing its gradients to those of the two reference images C!,
and CY, via an L1 loss:

L= M -||VC -vE

. (5)

We supervise gradients not only in the overlapping valid
regions M) N M}, but also across each reference image’s
entire valid mask. This naturally induces a soft constraint
analogous to the Neumann boundary condition in Poisson
blending, which aligns the results’ image gradients with the
reference images at the stitching boundary. Using an L1
loss, instead of the L2 loss in function (2), avoids bias to-
ward a single reference and encourages soft blending of gra-
dients from both images. By minimizing the gradient differ-
ences in screen-space, we achieve a similar effect to Poisson
blending and force the smooth color variations captured in
the input images to be preserved in the virtual views.
Occlusion handling. For regions invisible in both neigh-
boring training pairs, we lack reliable cues—no overlapping
pixels for gradient fields and no exclusive areas for bound-
ary constraints. We instead use the surrounding context to
smoothly complete the occluded areas. We define the union
of valid masks as M}, = M, U M}, and apply L1 total
variation (TV) regularization to the rendered view:

Lo=3(1-M},)- Hvév

This loss encourages piecewise smoothness in regions
where geometry cannot be reconstructed, thereby improv-
ing the visual continuity of novel view results.

. (6)

4.4. Optimization

We randomly sample 1/10 of the point cloud Q from
Section 4.1 to initialize the Gaussian primitives, optimiz-
ing with color loss £; and D-SSIM loss Lpgsspv from
3DGS [15]. We also use depth loss from the initial point
cloud, along with depth TV regularization. To address the
depth inconsistency across rendered depth and initial stereo
depth, we supervise rendered depth D using the projected
multi-view depth map D® derived from the initial point
cloud Q:

LQ=ZMQ-HD—DQ

. (M

where MQ is the valid mask for the projected depth
map. Additionally, L2 depth TV regularization Lqrv =
S ||V D||; ensures consistent variations between depth val-
ues. Ultimately, the depth regularizer is defined as:

L4 = AqLq + AarvLarv.- (8

The total loss function for optimization is defined as:
ﬁ = (1 - A)El + )\ED—SSIM + )\gfﬁgf + )\OEO + £d7 (9)

where A = 0.2, A\, = 0.003, Aq = 0.01 and Aqrv = 0.04.
We vary Agr based on the interpolation ratio of the virtual
views. Specifically, when the virtual view is interpolated
between input views, we set A\gs = 10, while for extrapo-
lated views, we use Ags = 1. We construct meshes and ras-
terize images for reference gradients once at 3K iterations,
when the Gaussian geometry has stabilized; further mesh
updates bring negligible improvement and are thus skipped.
The reference images are kept fixed throughout optimiza-
tion to prevent contamination from rendered Gaussians.

S. Experiments

Datasets and metrics. We use two real-world datasets
with diverse indoor and outdoor scenes that exhibit view-
dependent color: Tanks and Temples (8 scenes) [16] and
DL3DV-10K (11 scenes) [21]. All images are downsam-
pled to 1/4 resolution, with 17 sparsely selected images per
scene having sufficient overlap. We use the first, middle,
and last images for training, and the rest for evaluation. We
measure standard metrics such as PSNR and SSIM [33], and
perceptual metrics including LPIPS [40] and DISTS [9] to
better capture perceptual artifacts like seams.

Comparison. We compare our method against a range
of view synthesis techniques for sparse input, including
NeRF-based methods (FreeNeRF [36], FlipNeRF [30], and
SparseNeRF [32]), 3DGS-based methods using monocu-
lar depth priors (DNGaussian [20] and CoherentGS [25]),
as well as approaches using MVS neural networks
(MVPGS [35] and SCGaussian [26]). In addition, we evalu-
ate against MVSplat [7] and TranSplat [38], a generalizable
model designed for view synthesis from sparse input. We
also evaluate alternative regularizers replacing our GF loss
to test their effectiveness in improving plausibility of view-
dependent functions, using both screen-space virtual views
and world-space strategies that directly target Gaussians.
Implementation details. We use an AMD Ryzen 9 7950X
processor and one NVIDIA RTX 4090 GPU. Gaussians are
optimized for 5K iterations and densified every 100 itera-
tions from the 500—4,000th iteration. We use Open3D [41]
for mesh rendering, and training takes five minutes per
scene; refer to the supplementary material for more details.

5.1. View Synthesis Comparisons

Quantitative evaluation. NeRF-based methods interpo-
late unobserved or ambiguous information smoothly, re-
porting lower metrics (Table 1). Generalizable models such
as MVSplat prioritize generalization capabilities but sac-
rifice quality. GS-based methods are sensitive to initial-
ization: DNGaussian and SCGaussian suffer from sparse



Table 1. Quantitative comparison on Tanks and Temples and DL3DV-10K datasets. Our method achieves competitive results across all
metrics and particularly excels in perceptual metrics such as LPIPS and DISTS.

Method Tanks and Temples DL3DV-10K Average

PSNRT SSIM?tT LPIPS| DISTS| | PSNRT SSIM{T LPIPS| DISTS| | PSNRT SSIM{1 LPIPS| DISTS |
FreeNeRF [36] 20.50  0.6504  0.3927  0.1882 22.16  0.7094  0.3640  0.1917 2146  0.6846  0.3761 0.1902
FlipNeRF [30] 21.30  0.6825 03550  0.1758 2176 0.7129 03470  0.1804 21.57  0.7001  0.3504  0.1785
SparseNeRF [32] | 21.67 0.6682 03869  0.2029 21.90 0.6870 0.3919  0.2293 21.80  0.6791  0.3898 0.2182
MVSplat [7] 1488  0.3558 05136  0.2198 14.40  0.3724  0.5253 0.2326 14.60  0.3654  0.5204  0.2272
TranSplat [38] 15.09 03766  0.5063 0.2226 1448 03859 0.5239  0.2390 1474 03820 0.5165 0.2321

DNGaussian [20] | 20.19 0.6404  0.4225 0.1830 19.82
CoherentGS [25] 19.18 0.6941  0.2829 0.1272 20.74
SCGaussian [26] 17.07 0.4827  0.5260 0.2462 19.16
MVPGS [35] 23.12 0.8086  0.1984 0.0804 24.28

0.6476  0.3963 0.1653 19.98 0.6446  0.4073 0.1728
0.7237  0.2707 0.0973 20.08 0.7112  0.2758  0.1099
0.6114  0.4359 0.2003 18.28 0.5572  0.4738 0.2196
0.8231  0.2033 0.0767 23.79 0.8170  0.2012 0.0783

Ours 23.92  0.8207 0.1698 0.0627 24.33

0.8223  0.1820 0.0548 2416  0.8216  0.1769 0.0581

Ground truth SparseNeRF CoherentGS MVPGS Ours
Figure 7. Qualitative comparisons on the Tanks and Temples dataset. Novel views are reconstructed using three input images. Our method
better handles color variations across views, enabling perceptually plausible view synthesis with better visual quality.

Ours Ground truth SparseNeRF

d
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Figure 8. Qualitative comparisons on the DL3DV-10K dataset. Novel views are reconstructed using three input images. Our method
demonstrates robust performance even in scenes with large depth ranges or complex geometries, maintaining fine details.

or random point clouds, while CoherentGS struggles with
unstable monocular depth. MVPGS enhances robustness
with MVS-based initialization but exhibits color overfit-
ting, resulting in visible seams and a lower perceptual score.
Our method uses TVS depth priors and produces smooth

view-dependent colors, achieving higher perceptual metrics
(LPIPS, DISTS) with competitive PSNR and SSIM values.

Qualitative evaluation. Figures 7 and 8 present qualita-
tive comparisons on the Tanks and Temples dataset and the
DL3DV-10K dataset, respectively. NeRF-based approaches



Ground truth w/o occlusion loss w/ occlusion loss
Figure 9. Qualitative ablation of gradient-domain fusion and oc-
clusion loss. Our GF loss smooths view-dependent functions and
enhances perceptual plausibility in novel views, while the occlu-
sion loss encourages smooth inpainting of occluded regions, both

contributing to visually more coherent synthesis.

like SparseNeRF, relying on MLPs, often overly smooth un-
observed views, resulting in a noticeable reduction in over-
all image quality. CoherentGS often produces distorted ge-
ometries due to a shortage of multi-view constraints. More-
over, its direct use of pixel colors frequently results in seam
artifacts, because of the overfitting to the regions with sig-
nificant color differences (third and fourth rows of Fig-
ure 7 and third row of Figure 8). SCGaussian, which relies
on matched features for initialization, effectively captures
overall image trends but struggles to preserve fine details.
MVPGS, while effective in many scenarios, exhibits arti-
facts and blurred colors in regions with high color variance
due to its limited handling of view-dependent colors. Our
approach of transferring the gradient of the Poisson-blended
image to the gradient of the virtual view more successfully
preserves fine details with smoother color reproduction.

5.2. Ablation Studies

We initialize 3D Gaussians from dense point clouds gener-
ated by TVS, enabling stable view synthesis under sparse
inputs. To reduce color overfitting to training views—often
causing unnatural color shifts during view transitions—we
use GF loss at virtual views to smooth the view-dependent
functions. We further introduce an occlusion loss that pro-
motes smooth completion of globally occluded regions by
referencing nearby visible areas. Table 2 and Figure 9 show
the ablation results for each component. Our initialization
enhances multi-view consistency, resulting in stronger over-
all metrics. GF loss improves perceptual quality, as re-
flected in LPIPS and DISTS, by promoting smoother and
more coherent view-dependent color at the test view. Oc-
clusion loss yields marginal quantitative gains but better vi-
sual plausibility in occluded areas (Figure 9, second row).

Table 2. Ablation study of initialization, gradient-domain fusion
loss, and occlusion loss on the Tanks and Temples dataset.

Our init.  Grad. fusion Occl. | PSNR1 SSIM{ LPIPS| DISTS |
- - 20.28 0.7416  0.2592 0.0967

4 - - 23.51 0.8124  0.1771 0.0708
4 v - 23.75 0.8193  0.1702 0.0641
v 4 4 23.92 0.8207  0.1698 0.0627

Table 3. Comparisons of gradient-domain fusion loss on the Tanks
and Temples dataset.

Gradient-domain fusion comparisons | PSNR1 SSIM1 LPIPS| DISTS |
(a) Sparse point cloud init. 23.95 0.8176  0.1907 0.0734
(b) k-NN color consistency 23.80 0.8116 0.1932 0.0809
(c) Color TV on virtual views 21.79 0.7396 0.2667 0.1668
(d) L1 loss on virtual views 23.72 0.8105  0.1992 0.0929
(e) Poisson-blended virtual views. 23.75 0.8089 0.2019 0.0976
(f) Gradient-domain fusion (ours) 23.92 0.8207  0.1698 0.0627

5.3. Gradient-domain Fusion Loss Comparisons

To ensure smooth view transitions, we explore alternatives
to our virtual-view-based GF, replacing only that loss while
keeping others unchanged. Table 3 and Figure 10 show re-
sults; implementation details are in the supplementary ma-
terial. (a) and (b) operate in world-space by manipulating
Gaussians directly, while (c)—(f) apply screen-space regu-
larization with virtual views, as in ours.

(a) Samples 1% of the point cloud to reduce Gaussians
and smooth view-dependent functions, and (b) applies L2
regularization via k-NN (50 neighbors) to align Gaussian
colors; both yield good metrics but degrade unseen-view
quality with occlusion artifacts and abrupt shifts. (c) L1 to-
tal variation on virtual views smooths seams but removes
fine details. (d) Replaces GF with L1 photometric supervi-
sion on virtual views, worsening color overfitting. (e) Pois-
son blends two virtual reference images to produce pseudo-
GT; while partially reducing seams, blending inconsisten-
cies cause uneven smoothing, and blurriness propagates to
test views. (f) Ours preserves sharpness and achieves seam-
less synthesis, showing the effectiveness of GF loss.

5.4. User Study

To assess the perceptually plausible color transitions (Q1)
and overall quality (Q2), we conduct two user studies: (A)
Comparison among FreeNeRF, CoherentGS, MVPGS, and
ours, and (B) Comparison of alternatives replacing only the
GF in Section 5.3 (a), (b), (d), (e), including ours. Each
study involves 18 participants using 8-second, 20 fps novel-
view videos from Tanks and Temples on a 46-inch FHD
monitor. In each trial, participants view two videos side
by side and answer the following questions using a two-
alternative forced-choice (2AFC) paradigm. We evaluate all
method—scene combinations in random order with left/right
positions also randomized to avoid biased evaluation. Refer
to the supplemental document for more details.

We report pairwise win rates against competitors in Ta-
ble 4. High win rates with sufficient trials lead to extremely
small paired t-test p-values (p < 0.0001), omitted in the ta-
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Figure 10. Qualitative comparisons of gradient-domain fusion loss with alternative strategies. Our GF loss produces smooth and percep-

tually non-objectionable color transitions without sacrificing fine details.

Table 4. Pairwise win rates of our method against baselines and
gradient fusion alternatives. The p-values are omitted since all
comparisons yield extremely low values (p < 0.0001).

(A) Baselines Q1. Win (%) Q2. Win (%)
vs. FreeNeRF [36] 98.6 100.0
vs. CoherentGS [25] 88.2 91.0
vs. MVPGS [35] 87.5 89.6
(B) Gradient-domain fusion alternatives | Q1. Win (%) Q2. Win (%)
vs. (a) Sparse point cloud init. 88.9 88.9
vs. (b) k-NN color consistency 924 87.5
vs. (d) L1 loss on virtual views 90.3 91.0
vs. (e) Poisson-blended virtual views 89.6 92.4

ble, indicating that our superiority is highly unlikely due to
chance. Our method outperforms both prior approaches and
GF alternatives. Results for natural color transitions (Q1)
and overall quality (Q2) show similar trends, yet method-
specific differences appear. For example, the k-NN-based
3D regularizer (b) has little effect on color plausibility (Q1)
but improves thin-structure coherence, boosting the overall
quality (Q2). This result shows that our approach excels
in natural color transitions and can be further enhanced by
complementary regularization.

While t-tests confirm pairwise differences, they are less
intuitive for overall ranking. Thus, we apply a Bayesian
Bradley-Terry model [4] with MCMC to estimate skill
scores and credible intervals (Figure 11). Our method
ranks highest with nearly non-overlapping intervals, show-
ing clear superiority over GF alternatives and other base-
lines. These results indicate that seamless color transitions
strongly correlate with human preference, even when dif-
ferences in PSNR and SSIM are small, highlighting the per-
ceptual benefits of our method.

6. Discussion and Conclusion

We have presented a view synthesis method that enables
seamless transitions while preserving fine details from
sparse inputs. Our approach initializes robust Gaussian
primitives using two-view stereo with confidence-based ag-
gregation and integrates gradient-domain fusion into Gaus-
sian Splatting via virtual view regularization with depth
back-projection. We compare against existing sparse view
synthesis techniques and alternatives replacing gradient-

Skill scores from user study (A)

| o | —— QI (Nauwral Color)
FreeNeRF — Q2 (Overall Quality)
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- |
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—
4 0 0 3 )

Skill scores from user study (B)

.. [ e | —— QI (Natural Color)
Sparse init. R * R Q2 (Overall Quality)
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[ |
. C—
Poisson . —
-2 -1 0 1 2 3
Figure 11.  Skill scores from user studies (A) and (B). The

Bayesian Bradley—Terry model estimates median skill scores (cir-
cles) with 50% (thick bars) and 95% (thin bars) highest-density
credible intervals. Higher scores indicate greater user preference

domain fusion. User studies demonstrate that seamless
color transitions strongly correlate with overall quality,
with our method being clearly preferred in both t-tests and
Bradley-Terry analysis. Ultimately, we show that gradient-
domain fusion facilitates effective and seamless view syn-
thesis, even in 3D reconstruction scenarios.

While our method improves perceptual quality and vi-
sual plausibility, it depends on accurate Gaussian Splatting
depth; errors can degrade blending. Future work may in-
corporate geometry enhancements from methods such as
2DGS [14] or SuGaR [13], and address globally unseen re-
gions with pretrained inpainting models. Moreover, smooth
color transitions do not always reflect true appearance:
highly specular materials exhibit sharp BRDF lobes that are
difficult to recover from sparse views. Addressing this re-
mains a promising direction for future work.
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