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Abstract

Numerical inversion of Laplace transform is known to be equivalent to approximat-

ing a shifted version of the Dirac impulse function with a linear combination of complex

exponentials. From this knowledge, we construct a general framework to approximate

that function with concentrated matrix exponential distributions, characterized by low

coefficient of variation. That structure generalizes the method proposed by Horváth,

Talyigás and Telek; and it guarantees numerical inversions without positive or nega-

tive overshoots. Optimization is done for a specific class of inversion methods within

that framwork, with a semi-deterministic algorithm based upon evolution strategy and

gradient descent. This result in approximation errors evolving as O(1/n2). Finally, we

propose an analytical method with error of type O(1/n) to bypass optimization.
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Chapter 1

Introduction

Laplace transform is an integral based transform widely applied in various areas of

science. Within the (complex-valued) Laplace frequency domain, mathematical op-

erations that are expensive in the (real-valued) time domain can become relatively

simple. For example, differentiation involves a simple multiplication operation, inte-

gration a simple division operation and convolution of two functions involves finding

the product of their respective Laplace transforms.

It is often desirable to return to the time domain through the inversion of a Laplace

transform. This is often not possible to do analytically. In this context, numerical

Laplace transform inversion is a useful tool; see for example its use in the response

time analysis of concurrent systems [1]. There are various techniques for numerical

inversion of Laplace transform, e.g. the Euler, Gaver-Stehfest, Talbot methods, but

they all run into stability problems of various kinds, especially when inverting discon-

tinuous functions.

In [2], J. Abate and W. Whitt introduce a unified framework to numerically invert

Laplace transform. The general idea is to approximate the inverse Laplace transform

with a finite linear combination of values of the transform. From a theoretical view-

point, this framework is strictly equivalent to approximating a shifted version of the

Dirac impulse function with a linear combination of complex exponentials. Using this

equivalence, Horváth, Talyigás and Telek propose a numerical inversion method with-

out positive or negative overshoots in [3], unlike the methods mentioned earlier. Their

method consists in approximating the Dirac impulse function with matrix exponential

distributions, characterized by minimal coefficient of variation.
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In this thesis, we propose a natural framework to approximate the Dirac impulse

function with strictly positive and concentrated matrix exponential distributions, as a

generalization of the Horváth-Talyigás-Telek (HTT) method. Thus, inversion methods

derived form that framework are free of positive and negative overshoots. Then a class

of inversion methods with squared coefficient of variation of type O(1/n2) is specif-

ically studied. Significant results include the proposition of an explicit and optimal

approximation of Dirac impulse function with squared coefficient of variation evolving

as O(1/n). Other major result is the reduction of the length of the integral for the

calculation of the moments of the approximation of the shifted Dirac impulse. This

constitute the idea behind the reduced moments triangulation (RMT) and the reduced

moments convergence (RMC). Furthermore, we propose two methods to compute the

coefficients used in the Abate-Whitt framework. The first method takes inspiration in

the integral calculation of Fourier series coefficients. The second and faster method is

based upon recursion. Finally, we design a simple and efficient algorithm, to minimize

the coefficient of variation, based upon a combination of evolution strategy and gra-

dient descent.

Organization

(i) In Chapter 2, Laplace transform is formally defined, followed by an enumeration

of its basic properties which are then illustrated with classical examples.

(ii) The inversion problem is introduced in Chapter 3, followed by an examination of

the Abate-Whitt framework. After that, we review classical inversion methods

and present the HTT method.

(iii) In Chapter 4, we introduce our framework, along with its properties, before

defining approximation classes inherited from function spaces.

(iv) In Chapter 5, the monomials semi-frequencies class is studied in depth. In par-

ticular, we formulate and prove the RMT and the RMC. Then, we derive two

methods to calculate the coefficients for the Abate-Whitt framework. Finally,

we propose an additional measure of concentration and reinterpret the HTT

method.

(v) In Chapter 6, we design an optimal and analytical inversion method for a subclass

the monomials semi-frequency class.

(vi) In chapter 7, we discuss optimization methods to minimize the coefficient of

variation for the monomials class. The results are then evaluated in Chapter 8.
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Chapter 2

Background

2.1 Definition of Laplace transform

The unilateral or one-sided Laplace transform (LT) is an integral operator which maps

real-valued or complex-valued functions, defined on the positive real axis, into complex-

valued functions, defined in a region of the complex plane.

Definition 2.1.1. If the function f : R+ → K is real-valued (K = R) or complex-

valued (K = C), then its Laplace transform is the continuous summation of exponen-

tially weighted values taken on the positive real axis and defined as follows

L{f}(s) =

∫ ∞
0

f(t)e−stdt, s ∈ C

That definition is valid when the integral is convergent. In practice, it depends on

the Laplace domain variable s ∈ C and the asymptotic behavior of the function to be

transformed as the upper-bound of integration is not finite. Yet, a sufficient condition

for convergence of the integral is that s verifies the inequality Real(s) ≥ γ, where γ

is a real number such that f is dominated by a positive multiple of the exponential

function t 7→ eγt, i.e

∃A > 0, | f(t) |≤ A · eγt as t→∞ (2.1)

If f verifies that condition, then it is said to be of exponential type and in such case,

the Laplace transform is well-defined when s belongs to the set {z ∈ C | Real(z) > γ}.
That portion of the complex plane is commonly referred to as the s-plane or the region

of convergence of Laplace transform. It is common to use L{.} to denote the Laplace

transform operator and F (s), f ∗(s) or L{f(t)}(s) to denote L{f}(s).
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Calculation of a Laplace transform

We calculate the expression of the LT for the general power function pn : t 7→ tn,

where n is a positive integer. In this specific case, the convergence condition reduces

to the inequality Real(s) > 0 because limx→∞ x
ne−x = 0. We start by calculating the

transform for the special case when n = 0; which means that p0(t) = 1 for t ∈ R+.

L{1}(s) =

∫ ∞
0

e−stdt =

[
e−st

−s

]∞
0

=
1

s

We carry on by establishing a recursive formula linking L{tn+1} and L{tn}

L{tn+1}(s) =

∫ ∞
0

tn+1 · e−stdt

=

[
tn+1 · e

−st

−s

]∞
0

+
n+ 1

s

∫ ∞
0

tn · e−stdt (integration by parts)

=
n+ 1

s
· L{tn}(s)

Using that relation, we obtain the following results

L{tn}(s) =

(
n

s

)(
n− 1

s

)
· · ·
(

1

s

)
· L{t0}(s) =

n!

sn
· L{1}(s) =

n!

sn+1

Table of common Laplace transforms

Time domain f(t) Laplace domain F (s) s-plane

δ(t) (Dirac impulse) 1 C
u(t) (Heaviside) 1

s
Re(s) > 0

tn, n ∈ N n!
sn+1 Re(s) > 0

t1/n, n ∈ N 1
s1+1/nΓ(1 + 1

n
) Re(s) > 0

e−at 1
s+a

Re(s) > −a
sin(ωt) ω

s2+ω2 Re(s) > 0

cos(ωt) s
s2+ω2 Re(s) > 0

sinh(αt) α
s2−α2 Re(s) >| α |

cosh(αt) s
s2−α2 Re(s) >| α |

ln(t) −1
s

(
ln(s) + γ

)
Re(s) > 0

Remark 1. In this table, Γ(z) is Euler’s Gamma function which verifies the relation

Γ(z + 1) = z · Γ(z) and γ is the Euler–Mascheroni constant.
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Assumptions made in this work

1. f is defined for positive real numbers

2. f is a real-valued function

3. L{f} is well-defined

2.2 Basic properties

We continue with a non-exhaustive enumeration of basic properties of Laplace trans-

form. These properties are often used for the resolution of linear differential equations

and the analysis of the time response of dynamical systems.

Proposition 1. (Linearity) If a and b are complex numbers and the functions f and

g are complex-valued, then the L{.} operator verifies the linearity identity

L{af + bg} = aL{f}+ bL{g}

Proposition 2. (Time differentiation) If f is n times differentiable with derivatives

of exponential type, then the LT of its n-th derivative verifies the identity

L{f (n)}(s) = snF (s)−
n∑
k=1

sn−kf (k−1)(0+)

Proposition 3. (Time integration) If f is continuous on R+, then

L
{∫ t

0

f(τ)dτ

}
(s) =

1

s
· F (s)

With these properties, any linear differential equation can be turned into an alge-

braic equation because differentiation (resp. integration) in the time domain becomes

multiplication (resp. division) by s in Laplace domain.

Proposition 4. Differentiation (resp. integration) in Laplace domain is equivalent to

multiplication (resp. division) of the original function by the time domain variable.

(i) Frequency differentiation: L{tn · f(t)}(s) = (−1)nF (n)(s), n ∈ N

(ii) Frequency integration: L
{
f(t)
t

}
(s) =

∫∞
s
F (z) dz

Proposition 5. The L{.} operator associates shifts or delays with multiplication by

exponential functions and scaling of variables is reversed.
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(i) Time shift: L{f(t− a)}(s) = e−asF (s)

(ii) Frequency shift: L{eat · f(t)}(s) = F (s− a)

(iii) Time scaling: L{f(at)}(s) = 1
a
F
(
s
a

)
, a 6= 0

Proposition 6. (Multiplication) L{f ·g}(s) = 1
2πi

limT→∞
∫ σ+iT

σ−iT F (z)G(s− z) dz with

Real(z) = σ where σ is in the region of convergence of F.

An interpretation of Proposition 6 is that L{f ·g} is a special convolution of F and G,

based upon the imaginary part of Laplace domain variable. As a reminder, if u and

v are defined on the real axis, then their convolution is defined as the parametrized

integral (u ∗ v)(t) =
∫∞
−∞ u(τ)v(t− τ) dτ .

Proposition 7. (Convolution) L{f ∗ g}(s) = F (s) ·G(s)

Proposition 7 mirrors back Proposition 6 as the LT of a convolution is obtained by

multiplying the individual transforms of the functions involved. As a result, the L{.}
operator establishes an equivalence between products and convolutions.

Proposition 8. (Periodic function) If f is a periodic function of period T, then L{f}
has the reduced expression

L{f}(s) =
1

1− e−Ts

∫ T

0

e−stf(t) dt

Theorem 1. (Initial value Theorem)

lim
t→0+

f(t) = lim
s→∞

sF (s)

Theorem 2. (Final value Theorem) If all the poles (zeros of the denominator) of

sF (s) have strictly negative real parts, then

lim
t→+∞

f(t) = lim
s→0

sF (s)

2.3 Examples

In this section, we illustrate some properties of Laplace transform with classical exam-

ples. We begin with the resolution of a linear differential equation, before evaluating

Dirichlet’s integral.
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Resolution of a linear differential equation

The aim of this example is to illustrate Proposition 1 and Proposition 2 with the first

order differential equation : y′ + 5y = 0 and y(0) = 1.

L{y′ + 5y} = L{0}

L{y′}+ 5L{y} = 0 (linearity){
s · Y (s)− y(0)

}
+ 5Y (s) = 0 (time diffrentiation)

(s+ 5) · Y (s)− 1 = 0

Y (s) =
1

s+ 5

The inverse transform of Y(s) is calculated, either with the time shift property or the

table. Which gives the solution

y(t) = L−1{Y }(t) = L−1

{
1

s+ 5

}
(t) = e−5t

This solution is strictly identical to the one that we would obtain with the classical

technique involving the characteristic polynomial of the differential equation.

Evaluation of the Dirichlet integral

We now evaluate the integral of the cardinal sine function sinc : t 7→ sin(t)
t

on the

positive real axis i.e ∫ ∞
0

sin(t)

t
dt

The first step consists in applying Proposition 4 to f : t 7→ sin(t) as follows

L
{
f(t)

t

}
(s) =

∫ ∞
s

F (z) dz =

∫ ∞
s

1

z2 + 1
dz =

π

2
− arctan(s)

An alternative expression for the leftmost term is obtained with the original definition

of Laplace transform

L
{
f(t)

t

}
(s) = L

{
sin(t)

t

}
(s) =

∫ ∞
0

sin(t)

t
e−stdt

Finally, we take the limit of these expressions as the Laplace domain variable ap-

proaches zero; which gives the value of the Dirichlet integral∫ ∞
0

sin(t)

t
dt =

π

2

6



Chapter 3

Inversion problem

As mentioned in Section 2.2, Laplace transform facilitates the analysis of dynamical

systems; specially with Proposition 1, Proposition 2, Theorem 1 and Theorem 2.

However, some transforms must be inverted in order to recover all the information

contained in the time domain signal. For instance, the resolution of the first order

differential equation in Section 2.1 required to inverse a Laplace transform. That

inversion problem can be formally stated as follows

Problem 1. Given a function s 7→ F (s) in the Laplace domain, evaluate the inverse

Laplace transform t 7→ L−1
{
F
}

(t) for any real argument t ≥ 0.

Except for the special cases where F corresponds to the transform of a known function,

there is not general closed form expression for the inverse transform. As discussed in

[4, Chapter 3], various inversion techniques rely on expansions or approximation of F

with power series or orthogonal polynomials for which the inverse Laplace transforms

are easier to determine. Although no explicit expression for the inverse transform is

known, there exists two analytical inversion formulas to calculate L−1
{
F
}

. The first

one uses a complex integral known as Bromwich integral, Fourier-Mellin integral or

Mellin’s inverse formula and the second one relies on the calculation of a limit known

as Post-Widder formula.

Theorem 3. (Bromwich integral)

f(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
F (s)estds

γ is a real number such that the contour path of integration is in the region of conver-

gence of F.
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Theorem 4. (Post-Widder formula)

f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1

F (n)
(n
t

)
Formal proofs for these inversion formulas can be found in [4, Section 2.2, Section 2.3].

Even though these formulas constitute systematic ways to calculate the inverse LT

of a function, their effective use often requires heavy calculations which can rarely

be performed by hand on a reasonable amount of time. For that reason, practical

applications of these techniques are numerical. However, the complexity of hand-made

calculations is turned into numerical precision and stability problems.

3.1 Abate-Whitt framework

Multiple approaches used to estimate the inverse LT were examined by J. Abate,

W.Whitt et al. They notably introduced a unified framework to construct numerical

LT inversion methods in [2]. As discussed in Section 3.3, classical inversion methods

(Euler, Gaver-Stehfest, Talbot) can be rewritten in this framework.

Definition 3.1.1. (Abate-Whitt framework) The inverse transform L−1{F} or f is

approximated by a finite linear combination of values of F as follows

f(t) ≈ fn(t) =
1

t

n∑
k=1

ηkF

(
βk
t

)
, t ≥ 0

The nodes βk and the weights ηk are complex numbers which depend neither on the

transform F nor on the time argument t but only on the order of approximation n.

The independence of the weights and nodes, or simply Abate-Whitt coefficients, from

both the time argument and the transform is a key requirement in order for this

framework to be applicable to multiple functions at various time points. If the inverse

transform is real-valued, then it is approximated by the real part of that sum, i.e

Real{f(t)} ≈ Real{fn(t)} =
1

t

n∑
k=1

Real

{
ηkF

(
βk
t

)}
(3.1)

Proposition 9. (Integral interpretation) When the nodes verify Real{βk} ≥ 0, the

Abate-Whitt framework is equivalent to approximating of the shifted-scaled Dirac im-

pulse δ(x/t− 1) with a finite linear combination of exponential functions i.e

δ(x/t− 1) ≈ δn(x/t− 1) =
1

t

n∑
k=1

ηke
−βk xt

8



Remark 2. The weights ηk and the nodes βk are identical to those in Definition 3.1.1

Remark 3. To simplify the notations, the approximation of the shifted-scaled Dirac

impulse δn(x/t− 1) is also noted δtn(x)

Proof.

f(t) ≈ fn(t) =
1

t

n∑
k=1

ηkF

(
βk
t

)

=
1

t

n∑
k=1

ηk

{∫ ∞
0

f(x) · e−
βk
t
xdx

}

=

∫ ∞
0

f(x)

{
1

t

n∑
k=1

ηke
−βk

t
x

}
dx

=

∫ ∞
0

f(x) · δtn(x)dx

The inversion is perfect when x 7→ δtn(x) is exactly the Dirac impulse function about

time t. But as stated in [3, Section 3], the accuracy of this approximation depends

on the order n and the Abate-Whitt coefficients. Generally, the exactness of the

approximation gets better when the order increases. Finally, we can remark that

δtn(x) verifies a scaling relation which is similar to that of Proposition 5

δtn(x) =
1

t
· δ1

n

(
x

t

)
(3.2)

and which leads to a simplified interpretation of the Abate-Whitt framework.

Theorem 5. The Abate-Whitt framework is equivalent to approximating of the shifted

Dirac impulse about the point t=1 with a finite linear combination of exponentials i.e

δ1
n(x) =

n∑
k=1

ηke
−βkx

3.2 Background on probability distributions

Originally defined in [5, p.58], Dirac impulse function (equally known as Dirac distri-

bution, delta distribution or δ-distribution) represents the space density of a particle

as a function which is null everywhere except for the argument zero and with inte-

gral over the real numbers equal to one. In principle, that distribution is similar to

probability density functions (pdf).
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Definition 3.2.1. In probability theory, a function f defined in a given set I is a

probability density function if it satisfies the conditions

(i) ∀t ∈ I 0 ≤ f(t) ≤ 1

(ii)
∫
t∈I f(t)dt = 1

That proximity between Dirac distribution and pdf is legitimized by the fact that

x 7→ δ(x) is the limit of various density functions. For instance, the uniform distribu-

tion U
(
[0; 1/n]

)
converges toward Dirac distribution as n grows larger. Similarly, the

normal distribution N (0, σ2) converges toward Dirac distribution as gets smaller.

Dispersion metrics

We now move on to discuss some measures used in Statistics and Probability Theory

in order to study a data set or the behavior of a random variable. These metrics are

averaged quantities over all the distribution and called moments.

Definition 3.2.2. The n-th order moment about the point c ∈ I
X

for a random variable

X with a probability density function f
X

is defined as the following integral

E[(X − c)n] =

∫
t∈I

X

(t− c)nf
X

(t)dt

The moments can be given a physical interpretation when f
X

represents the repartition

of mass within a body. In particular, the 0th order moment represents the total

mass, the 1st order moment represents the center of mass and the 2nd order moment

represents the moment of inertia around an axis. The 1st order moment E[X] is known

as the average or mean value of the distribution. In the special cases when c = E[X],

the n-th order moment is called central moment and serves as a dispersion measure.

The 2nd order central moment, called variance, measures how far a set of random

numbers are from their average value. The 3rd order central moment, known as the

skewness, measures how evenly spread is a set of random numbers around their average

value. Finally, the 4th order central moment, referred to as the kurtosis, measures the

sharpness of the distribution in the vicinity of the average value.

Definition 3.2.3. The variance of a random variable is defined as

var(X) = E
[
(X − µ)2

]
=

∫
t∈I

X

(t− µ)2f
X

(t)dt

10



where µ = E[X] is the average value of the distribution. The standard deviation σ is

then defined as the square root of the variance i.e σ =
√
var(X)

Definition 3.2.4. The squared coefficient of variation scv(X) or scv(f
X

) of a random

variable X is defined as the variance normalized by the average value

scv(X) = E

[(
X − µ
µ

)2
]

Definition 3.2.5. Pearson’s moment coefficient of skewness γ(X) or γ(f
X

) is defined

as the 3rd central moment normalized by the standard deviation

γ(X) = E

[(
X − µ
σ

)3
]

Definition 3.2.6. The kurtosis Kurt(X) or Kurt(f
X

) is defined as the 4th central

moment normalized by the standard deviation

Kurt[X] = E

[(
X − µ
σ

)4
]

The normalization process corresponds to nondimensionalization; such that those mea-

sures can be compared for two random variables with different units. Moving forward,

we can mention another commonly used dispersion metric, the differential entropy.

Definition 3.2.7. The differential entropy h(X) or h(f
X

) is defined as follows

h(X) = −
∫
t∈I

X

f
X

(t) log f
X

(t) dt.

This quantity measures equipartition in the distribution. On one side, the uniform

distribution is known to be the probability distribution with maximum entropy; which

is due to the fact that its pdf is constant on I
X

. On the other side, Dirac distribution is

an example of distributions that minimize the differential entropy; which evaluates to

−∞ in this case. This result is explained by the concentration of all the information at

a single point; to such extent that uncertainty about the state of the random variable

vanishes. A standard dispersion coefficient based upon the differential entropy and

similar to the squared coefficient of variation is discussed in [6].
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3.3 Classical methods

3.3.1 Euler method

The Euler method is based upon the transformation of the Bromwich integral into a

Fourier transform, thereafter approximated by a series via trapezoidal discretization.

The Euler summation is then applied to accelerate the convergence of that series. The

complete procedure produces an approximation of the inverted transform as follows

f(t) ≈ eA/2

2t
·Real

{
F

(
A

2t

)}
+
eA/2

2t
·

n∑
k=1

(−1)kReal

{
F

(
A+ 2ikπ

2t

)}

The derivation of the above formula is fully developed in [7] and the general expres-

sions for the Abate-Whitt coefficients are given in [2, p.16]. We recall them here

(Nodes and weights for odd n)

βk =
n− 1

6
· ln(10) + iπ(k − 1) 1 ≤ k ≤ n

ηk = (−1)k · 10(n−1)/6 · ξk 1 ≤ k ≤ n

where ξ1 =
1

2

ξn = 2−(n−1)/2

ξk = 1 1 ≤ k ≤ (n+ 1)/2

ξn−k = ξn−k+1 + ξn ·
(

(n− 1)/2

2

)
1 ≤ k ≤ (n− 1)/2

3.3.2 Gaver-Stehfest method

The original Gaver method [8] relies on a sampling of the transform about the real axis

and an approximation of the exponential function in the Bromwich integral by a ratio-

nal function. Cauchy integral formula then gives the inverse transform in the Abate-

Whitt framework. Stehfest proposed an acceleration of that method with Salzer’s

accelerating scheme for infinite series. The Abate-Whitt coefficients are rewritten here

(Nodes and weights for even n)

βk = k · ln(2), 1 ≤ k ≤ n

12



ηk = ln(2) · (−1)n/2+k

min(k,n/2)∑
j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j

j

)(
j

k − j

)
1 ≤ k ≤ n

3.3.3 Talbot method

The Talbot method is based upon a deformation of the Bromwich contour into an

open contour on the negative real axis side. The expressions for the Abate-Whitt

coefficients are given in [2, p.17] and recalled immediately

(Nodes and weights for all n)

β1 =
2n

5

βk = β1θk

(
cot(θk) + i

)
, 2 ≤ k ≤ n

η1 =
1

5
eβ1

ηk =
2

5

[
1 + iθk

(
1 + cot(θk)

2

)
− i cot(θk)

]
eβk , 1 ≤ k ≤ n

θk =
(k − 1)π

n

Numerical approximations of the shifted Dirac impulse function

(a) n=11 (b) n=25

Figure 3.1: Approximation of the shifted Dirac impulse with the Euler method
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(a) n=12 (b) n=20

Figure 3.2: Approximation of the shifted Dirac impulse with the Gaver-Stehfest
method

Figures (3.1) and (3.2) illustrate the approximation of the shifted Dirac impulse with

Euler and Gaver-Stehfest methods. Those approximations take negative values while

Dirac impulse is strictly positive. As a consequence, positive and negative overshoots

can be expected on the inverse Laplace transforms which use those methods. Fur-

thermore, the factorials and the binomial coefficients in the expression of the weights

can cause numerical instability for high orders. This problem is avoidable for the Eu-

ler method by using the inversion formula in Section 3.3.1. For the Gaver-Stehfest

method, stability can be enhanced with the log Γ or GammaLn function which verifies

∀x ∈ R x! = Γ(x+ 1) = eGammaLn(x+1)

An ultimate solution to stabilize these methods consists in numerically increasing the

floating-point precision in the calculations of the factorials and the binomial coeffi-

cients; which can be done with a multi-precision software.

3.4 Horváth-Talyigás-Telek (HTT) method

In [3], Horváth, Talyigás and Telek propose a method to numerically invert Laplace

Transform without positive or negative overshoots. That method approximates the

shifted Dirac impulse function by means of concentrated matrix exponential (ME)

distributions which can be expressed as linear combination of complex exponentials.

14



3.4.1 Background on matrix exponential distributions

Definition 3.4.1. In probability theory, matrix exponential distributions have proba-

bility density functions of the form

f
ME

(t) = −αAetA1, t ≥ 0

where α ∈ R1×n, A ∈ Rn×n and 1 ∈ Rn×1 is a column vector with one as coefficients.

A random variable with pdf of that form is said to be ME(α, A)-distributed; and as

discussed in e.g [9, Section 2.1], a given ME distribution can be represented by multiple

pairs, e.g (α1, A1) and (α2, A2) where A1 and A2 have different size.

Definition 3.4.2. The class ME(n) contains matrix exponential distributions which

have a representation of order at most n.

Definition 3.4.3. If a random variable X is ME(α, A)-distributed, such that α and

A satisfy the following assumptions

1. αi ≥ 0

2. Ai,i ≤ 0

3. Ai,j ≥ 0 for i 6= j

4. All the components of the vector A1 are negative

then X is said to be phase type (PH) distributed or PH(α, A)-distributed.

Proposition 10. The probability density function of ME(α, A) distributions have the

following Jordan decomposition

f
ME

(t) =
k∑
i=1

mult(λi)−1∑
j=0

ci,jt
jeλit

where λ1, · · · , λk with k ≤ n are the eigenvalues of A, mult(λi) is the multiplicity of

λi and ci,j are complex numbers.

If any eigenvalue of A has multiplicity equal to one, then the Jordan decomposi-

tion transforms f
ME

into a linear combination of complex exponential function; which

means that concentrated matrix exponential distributions can be used for numerical

inversion of Laplace transform. The most commonly used measure for concentration

is the squared coefficient of variation. The minimum scv is known analytically for

phase-type distributions with the following result, proven by Aldous and Shepp in

[10].

15



Theorem 6.

min
X∈PH(N)

scv(X) =
1

N

and the equality is obtained for the Erlang distribution of parameter (N, λ) with λ > 0.

3.4.2 ME based inversion method

Back to the inversion problem, Horváth, Talyigás and Telek [3] propose to approximate

the shifted Dirac impulse with matrix exponential distributions as follows

δ
ME

(t) = c · e−λt
(N−1)/2∏
i=1

cos2(ωt− φi) = η1e
−β1t + 2

n∑
k=2

Real

{
ηke
−βkt

}
(3.3)

where N is an integer and c, λ, ω φ1, φ2, · · · , φ(n−1)/2 are real numbers, optimized to

minimize the squared coefficient of variation. The optimization is done with a standard

heuristic search algorithm [11, Section 2.8]. Further details about that optimization

process and a list of optimized coefficients are given in [12, Section 3.3] and [13, Section

3]. In this method, the nodes βk for k = 1, · · · , n share the same real part λ but have

(a) HTT n=10 (b) HTT n=24

Figure 3.3: Approximation of Dirac distribution with the HHT method

different imaginary parts, forming an arithmetic sequence. Figure (3.3) depicts the

resulting distribution and unlike those of the Euler and the Gaver-Stehfest methods,

this function only takes positive values; which prevents positive or negative overshoots

in the inverted transform. Further numerical optimization carried in [13, Section 3.4]

suggests that the convergence of the squared coefficient of variation is quadratic and

follows the asymptotic law

scv(X) ∼ 2

N2
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Chapter 4

General matrix exponential inversion

method

4.1 Principle

We now introduce a general framwork to approximate the shifted Dirac impulse about

the abscissa t = 1 with matrix exponential distributions; as a generalization of the

Horváth-Talyigás-Telek method. Our work is focused on matrix exponential distribu-

tions expressed as products of trigonometric functions.

Definition 4.1.1. (π-form) The product form or π-form of the distribution function

is defined as follows

δ
N

(t) = e−λt
N∏
k=1

cos2α
(
wkt+ φk

)
where N and α are positive integers; the decay coefficient λ and the modal frequencies

w1, w2, . . . , wN are positive real numbers and the modal phases φ1, φ2, . . . , φN are real

numbers. The terms cos(wkt+ φk) in the product are referred to as the π-modes.

The π-form can be interpreted as a product-wise superposition of trigonometric func-

tions. The global exponent 2α is intended to make the resulting function positive, as

for the HTT method. We carry on by noticing that this product can be transformed

into a sum of other trigonometric functions. To illustrate that property, we examine

a classic trigonometric formula which relates a product and a sum of cosine functions

2 · cos(x) · cos(y) = cos(x+ y) + cos(x− y) (4.1)

Such transformation remains feasible when the product includes powers of trigono-

metric functions cos2(x), cos3(x), . . . , cosn(x) n ∈ N since we can apply Equation (4.1)

repeatedly to reconstruct the individual powers before considering the global product.
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4.2 Linearization of the product form

A consequence of Equation (4.1) is that the π-form can be rewritten as a sum of

trigonometric functions. We choose to express this alternative form for δ
N

as a linear

combination of complex exponentials in order to remain within the boundaries of the

Abate-Whitt framework. The linearization process is summarized immediately.

Theorem 7. (Euler’s identity) Let x ∈ R and i such that i2 = −1

cos(x) =
eix + e−ix

2

Theorem 8. (Binomial theorem) Let n ≥ 0 be a integer and (x, y) ∈ C2.

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

Step 1 : Each π-mode is transformed into a sum of conjugated complex exponentials

via Euler’s identity

δ
N

(t) = e−λt
N∏
p=1

(
ei(wpt+φp) + e−i(wpt+φp)

2

)2α

(4.2)

Step 2 : The Binomial Theorem is then applied to each π-mode

δ
N

(t) =
e−λt

4αN

N∏
p=1

[
2α∑
kp=0

(
2α

kp

)
e2i(kp−α)(wpt+φp)

]
(4.3)

Step 3 : The product is expanded and the binomial coefficients are separated from

the complex exponentials

δ
N

(t) =
e−λt

4αN

2α∑
k1,k2,...,kN=0

[
N∏
p=1

(
2α

kp

)][ N∏
p=1

e2i(kp−α)(wpt+φp)

]
(4.4)

Step 4 : The product of complex exponentials is transformed into a single complex

exponential, then the modal frequencies and the modal phases are separated

δ
N

(t) =
e−λt

4αN

2α∑
k1,k2,...,kN=0

[
N∏
p=1

(
2α

kp

)]
e

2i

[
t
∑N
p=1(kp−α)wp+

∑N
p=1(kp−α)φp

]
(4.5)
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Equation (4.5) depicts the expected linear combination of complex exponentials that

we now simplify by introducing the following quantities

(a) The combinatorial set: Kα = {0, 1, . . . , 2α}N

(b) The combinatorial vector : k = (k1, k2, . . . , kN)ᵀ ∈ Kα

(c) The combinatorial factor:

[
2α

k

]
= 1

4αN

∏N
p=1

(
2α
kp

)
(d) The semi-frequency: W (k) =

∑N
p=1(kp − α)wp

(e) The semi-phase: Φ(k) =
∑N

p=1(kp − α)φp

The linearized π-form is then given a more compact expression that we call: sum form.

Definition 4.2.1. (σ-form I) The first sum form or σ-form I of the distribution

function is defined as follows

δN(t) = e−λt
∑
k∈Kα

[
2α

k

]
e2i
(
t·W (k)+Φ(k)

)
The derivation of the σ-form I proves that the π-form can be rewritten in a form

which is compatible the Abate-Whitt framework and constitutes the starting point

for further analysis. We can remark that the nodes are entirely determined by the

decay coefficient and the semi-frequencies, while the weights are determined by the

combinatorial factors and the semi-phases.

4.3 Semi-frequency classes

In virtue of Proposition 10, semi-frequencies constitute the imaginary parts of the

eigenvalues of the matrix associated to these ME-distributions. Then as indicated by

their definition, the semi-frequencies are completely determined by the modal frequen-

cies w1, w2, . . . , wN . Theoretically, there are infinitely many expressions for the modal

frequencies; therefore, we consider the general case when the terms wp for p = 1, . . . , N

are generated by a function that we call: modal frequency generator.

Definition 4.3.1. The modal frequency generator is defined as follows

ψ0 : N→ R

p 7→ wp

19



With that function defined, we now introduce a class which extends the concept of

semi-frequencies W (k) =
∑N

p=1(kp − α)wp and constitutes a starting point for the

analysis of the properties that they inherit from modal frequencies.

Definition 4.3.2. Semi-frequency class (SFC)

Ω(N,α) =

{
N∑
p=1

(kp − α)ψ0(p) | ψ0 ∈ F(N,R), k ∈ {0, 1, . . . , 2α}N
}

4.3.1 Polynomials semi-frequency class

We can further observe that standtard functions can be approximated by polynomials;

either with Taylor’s theorem for differentiable functions or with Lagrange polynomial

interpolation theorem.

Theorem 9. (Taylor’s theorem) Let n ≥ 1 be an integer and let the function

f : R → R be n times differentiable at the point a ∈ R, then there exists a function

hn : R→ R such that

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k + hn(x) · (x− a)n

Theorem 10. (Lagrange polynomial interpolation theorem)

Let (x1, y1), (x2, y2), · · · , (xn, yn) be data points such that no two xj are identical. Then

the polynomial

P(x) =
n∑
k=1

yk

[
n∏

j=1,j 6=k

x− xj
xk − xj

]
is the unique polynomial of degree n that satisfies P(xk) = yk for k = 1, 2, . . . , n

Taylor’s theorem is essential for MacLaurin Series and power series. It is particu-

larly efficient for functions which have simple expressions for their derivatives; such

as exponential functions {Dkeαx = αkeαx}, power functions {Dkxn = n!
(n−k)!

xn−k} or

trigonometric functions {Dkcos(x) = cos(x + kπ
2

)}. However, not every function is

differentiable or has simple derivatives; so the Lagrange polynomial interpolation the-

orem provides an alternative to Taylor’s theorem since it only requires values of the

function. Although applicable for any function, the interpolation can diverge when not

enough values of the function are given. These theorems give rise to the introduction

of the subclass of SFC in which the modal frequency generator is a polynomial.
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Definition 4.3.3. Polynomials semi-frequency class (P-SFC)

Θ(N,α)
r =

{
N∑
p=1

(kp − α)ψ0(p) | ψ0(X) ∈ Rr[X], k ∈ {0, 1, . . . , 2α}N
}

In this definition for the polynomials semi-frequency class (or simply polynomials class),

α, N and the class index r are positive integers. Furthermore, Rr[X] stands for the

set of polynomials of degree at most r and with real coefficients; which implies that

ψ0(x) = arx
r + ar−1x

r−1 + · · ·+ a1x + a0 where (a0, a1, . . . , ar) ∈ R1×(r+1). This class

is by construction a subclass of Ω(N,α) since Rr[X] is a subset of F(N,R). Moreover,

the sets of polynomials Rr[X] form an increasing family of sets because any polyno-

mial of degree r can be seen as polynomial of degree r + 1 with zero as the coefficient

of Xr+1. The polynomials semi-frequency class inherits that property, which can be

summarized with the following inclusions

Θ
(N,α)
0 ⊂ Θ

(N,α)
1 ⊂ Θ

(N,α)
2 ⊂ · · · ⊂ Θ(N,α)

∞

4.3.2 Monomials semi-frequency class

The polynomials semi-frequency class can be further reduced by observating that any

polynomial is a linear combination of monomials. As a result, we can define the

subclass of Θ
(N,α)
r in which the modal frequency generator is a monomial.

Definition 4.3.4. Monomials semi-frequency class (M-SFC)

θ(N,α)
r =

{
ω

N∑
p=1

(kp − α)pr | ω ∈ R, k ∈ {0, 1, . . . , 2α}N
}

Again by construction, the monomials semi-frequency class (or simply monomials class)

verifies the inclusion θ
(N,α)
r ⊂ Θ

(N,α)
r and constitutes the main area of investigation in

the next chapters. It is already remarkable that the HTT method is in this particular

class when r = 0. A complete reinterpretation of that method is done in Section 5.7.
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Chapter 5

Monomials class

This chapter focuses on the properties of distribution functions in the monomials semi-

frequency class. First, we discuss main properties of that family of matrix exponential

distributions. Then, we propose a general method to calculate the Abate-Whitt coef-

ficients. Finally, we give a new interpretation of the HTT method. In the general case

of the monomials class, the π-form has the expression

δ
N

(t) = ce−λt
N∏
k=1

cos2α
(
ωkrt+ φk

)
(5.1)

where N and α are positive integers, r ∈ N is the class index, λ ∈ R+ is the decay

coefficient, ω ∈ R+∗ is the main frequency and (φ1, φ2, . . . , φN) ∈ RN are the modal

phases and c ∈ R+∗ is a normalization constant.

5.1 Properties of the semi-frequencies

In order to study their properties, we introduce a function which generates the semi-

frequencies in the complex exponentials of the σ-form corresponding to the π-form

from Equation (5.1). That function is defined on Kα = {0, 1, . . . , 2α}N and referred

to as the semi-frequency generator.

Definition 5.1.1. The semi-frequency generator is defined as follows

ψ1 : {0, 1, . . . , 2α}N → R

k 7→ ω
N∑
p=1

(kp − α)pr

Remark 4. From now on, r, α and ω are considered to be fixed parameters.
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Proposition 11. The semi-frequency generator can be rewritten as the inner product

ψ1(k) = ω
〈
k − α1,pr

〉
where k is a vector in the combinational set Kα, pr = (1, 2r, . . . , N r)ᵀ and 1 are vectors

in RN×1, and 〈·, ·〉 is the canonical inner product of RN×1.

This result is straightforward and is due to linearity of sums. A particular consequence

of that alternative form is that ψ1(α1) = 0. Such identity means that α1 is mapped

into the zero semi-frequency, which accounts for a constant term in the σ-form. That

constant corresponds the mean value of δ
N

as shown in Section 5.5.1.

Proposition 12. (Anti-reflection) The semi-frequency generator verifies the identity

ψ1(2α1− k) = −ψ1(k)

Proof. It is a direct consequence of properties of the inner product

ψ1(2α1− k) = ω
〈

2α1− k − α1,pr
〉

= ω
〈
α1− k,pr

〉
= −ω

〈
k − α1,pr

〉
= −ψ1(k)

The anti-reflection implies that any positive semi-frequency has a negative counterpart;

which is due to the expansion of the π-modes into complex exponentials via Euler’s

identity. Furthermore, symmetries in Pascal’s triangle give the following result[
2α

2α1− k

]
=

1

4αN

N∏
p=1

(
2α

2α− kp

)
=

1

4αN

N∏
p=1

(
2α

kp

)
=

[
2α

k

]

So Proposition 11 and the symmetry of combinatorial factors guarantee that the re-

sulting distribution function is real-valued because conjugate complex exponentials are

grouped together to reform a cosine function.

Proposition 13. (Jensen’s equality) If β is a real number on the interval [0;1], u and

v two vectors in Kα, then

ψ1

(
βu+ (1− β)v

)
= β · ψ1(u) + (1− β) · ψ1(v)
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Proof. The demonstration is based upon the linearity of the inner product 〈·, ·〉 and

the trivial vector equality α1 = βα1 + (1− β)α1.

ψ1

(
βu+ (1− β)v

)
= ω

〈
βu+ (1− β)v − α1,pr

〉
= ω

〈
β(u− α1) + (1− β)(v − α1),pr

〉
= ωβ

〈
u− α1,pr

〉
+ ω(1− β)

〈
v − α1,pr

〉
= β · ψ1(u) + (1− β) · ψ1(v)

Jensen’s equality implies that any semi-frequency belongs to a segment whose end-

points are the minimum and the maximum value of ψ1 . Accordingly, they can be

calculated via linear combinations of those extrema. Then in order to determine the

minimum and the maximum of ψ1 , the contribution of the components of the input

vectors must be examined; which leads to the next proposition.

Proposition 14. The semi-frequency generator admits a minimum (resp. a maxi-

mum) in Kα for the input vector 0 (resp. 2α1).

(i) min{ψ1} = ψ1(0) = −ωα〈1,pr〉

(ii) max{ψ1} = ψ1(2α1) = −ψ1(0) = ωα〈1,pr〉

Proof. The minimum value of ψ1 is obtained when all the individual contributions

kp − α are minimal. That situation occurs when k = 0. In such case, ψ1 has the

value ψ1(0) = ω〈0 − α1,pr〉 = −ωα〈1,pr〉. Then Proposition 12 i.e anti-reflection

guarantees that the maximum is ψ1(2α1− 0) = −ψ1(0)

Proposition 15. The semi-frequencies are all multiples of ω in the closed interval

defined my the extrema of the semi-frequency generator i.e

∀k ∈ Kα,∃m ∈ N | mω ∈
[
ψ1(0);−ψ1(0)

]
and ψ1(k) = mω

Proof. The Jensen equality implies that all semi-frequencies are in an closed inter-

val, bounded by the extrema of ψ1 . In virtue of Proposition 14, that interval is[
ψ1(0);−ψ1(0)

]
. Furthermore, the sum in Definition 5.1.1 involves only subtractions

and multiplications of integers; therefore, any output of ψ1 is a multiple of ω.
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We continue with the development of a potential parametrization of the semi-frequencies

with the real number β from Proposition 13. The idea is to seek for a general form for

a vector k which generates a given semi-frequency mω. First of all, we use Jensen’s

equality to parametrize k in the form kβ = 2βα1 + (1 − β)0; which leads to the

semi-frequency ψ1(kβ) = (1 − 2β)ψ1(0). Then, we apply Proposition 5.1 to write

ψ1(kβ) = mω for some integer m ∈
[
0;α〈1,pr〉

]
. From these two expressions for the

semi-frequency, we can deduce the equality

2β = 1− mω

ψ1(0)

The original input vector is then given by the relation kβ = α

(
1 + m

α〈1,pr〉

)
1

Although this parametrization gives a general form for the input vectors, it is only

valid for m = 0 and m = ±α〈1,pr〉. This is explained by the fact that those vectors

are not in {0, 1, . . . , 2α}N . However, if we ignore that infringement and consider the

special case α = 1, then the N -th root of the combinatorial factor becomes[
2

k

]1/N

=
1

4

[
2(

1 + m
〈1,pr〉

)
1

]1/N

=
1/2(

1 + m
〈1,pr〉

)
!

(
1− m

〈1,pr〉

)
!

If x = m
〈1,pr〉 and the factorials are replaced with their definitions with the gamma

function; followed by the application of Euler’s reflective formula, then the expression

for the N -th root of the combinatorial factor can be simplified as follows[
2

k

]1/N

=
1/2

(1 + x)x(1− x)Γ(x)Γ(1− x)
=

1/2

(1 + x)(1− x)
· sin(xπ)

xπ
(5.2)

Theorem 11. (Euler’s reflective formula)

Γ(z) · Γ(1− z) =
π

sin(zπ)
z 6∈ Z

The singularities of Equation (5.2) correspond to the cases where kβ is the single vector

which generates mω i.e for m = 0 and m = ±〈1,pr〉. In practice, that expression is not

applicable because ψ1 is not an injective function. Besides, finding all the antecedents

of a given semi-frequency is equivalent to solving a non trivial combinatorial problem,

see Section 5.5.
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5.2 Pseudo-periodicity

As mentioned in Proposition 15, all semi-frequencies are multiples of the main fre-

quency. Subsequently, they share a common period that we now determine. To start

with, we can notice that any integer m ∈
[
0;α〈1,pr〉

]
is associated to the semi-

frequencies ±mω. The corresponding period is given by the relation

Tm =
2π

2mω
=

π

mω

We can inject this expression in the π-modes to determine the optimal value of m

cos2α
(
ωkr(t+ Tm) + φk

)
= cos2α

(
ωkrt+ ωkrTm + φk

)
= cos2α

(
ωkrt+ π

kr

m
+ φk

)
Since the trigonometric function x 7→ cos2(x) has period π, the optimal value of m is

such that kr/m is an integer for k = 1, · · · , N ; which is only possible for m = 1.

Definition 5.2.1. (Pseudo-period) The π-modes share a common period, referred to

as the pseudo-period and defined as

T =
π

ω

Proposition 16. (Auto-similarity) If t ≥ 0 is a real number then the distribution

function verifies the relation

δ
N

(t+ T ) = e−λT · δ
N

(t)

Proof. To prove this result, we apply the property of the pseudo-period to calculate

the image of the input t+ T with the distribution function.

δ
N

(t+ T ) = e−λ(t+T )

N∏
k=1

cos2α
(
ωkr(t+ T ) + φk

)
= e−λ(t+T )

N∏
k=1

cos2α
(
ωkrt+ φk

)
= e−λT · δ

N
(t)

The auto-similarity indicates that the oscillations of the π-modes are periodically

damped with a logarithmic decrement λT . So in order to concentrate the distribution
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at the point t = 1, that decrement ought to be large enough such that oscillations

after the first period are negligible. For instance, λ can be chosen such that in the

second period, the amplitudes are 103 or 106 smaller than in the first one.

5.3 Reduced moments

As discussed in the previous section, the auto-similarity reduces the analysis of the

distribution function to the first period when the decay coefficient λ is large enough.

Intuitively, we can expect the integral in the definition of the moments to be reduced

to the first period only. This conjecture is formally proven with Theorem 13.

Definition 5.3.1. (Complete moments) The n-th order complete moment of δ
N

is

defined as follows

mn =

∫ ∞
0

tn · δ
N

(t)dt

Definition 5.3.2. (Reduced moments) If T is the pseudo period then the n-th order

restricted moment of δ
N

is defined as follows

µn =

∫ T

0

tn · δ
N

(t)dt

Proposition 17. The Laplace transform of δ
N

verifies the relation

∆
N

(s) =
1

1− e−(s+λ)T

∫ T

0

e−st · δ
N

(t)dt, Real(s) > −λ

Proof. The Laplace transform of δ
N

can be directly obtained with Property 8 and the

frequency shift property. Nonetheless, we outline the elements of proof below.

∆
N

(s) =

∫ ∞
0

e−st · δ
N

(t)dt

=
∞∑
k=0

∫ (k+1)T

kT

e−st · δ
N

(t)dt (Chasles relation)

=
∞∑
k=0

∫ (k+1)T

kT

e−s(u+kT ) · δ
N

(u+ kT ))du (Substitution t=u+kT)

=
∞∑
k=0

e−k(s+λ)T

∫ T

0

e−suδ
N

(u)du (Auto-similarity)

=
1

1− e−(s+λ)T

∫ T

0

e−suδ
N

(u)du (Geometric series)
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5.3.1 Reduced moments theorems

Theorem 12. Reduced Moments Triangulation (RMT)

If n is a positive integer, then the n-th order complete moment of δN is a linear

combination of reduced moments of orders at most n. More precisely,

∀n ∈ N,mn =
n∑
k=0

an,k · µk with an,k = (−1)n−k
(
n

k

)
dn−k

dsn−k

{
1

1− e−(s+λ)T

}
s=0

Proof. To prove this result, we use the Laplace transform as a generator of the

complete moments of a random variable. Then we apply the General Leibniz rule,

which expresses the derivatives of a product of two functions as linear combination of

products of their individual derivatives.

mn = (−1)n
dn

dsn

{
∆N(s)

}
s=0

= (−1)n
dn

dsn

{
1

1− e−(s+λ)T

∫ T

0

e−st · δ
N

(t)dt

}
s=0

= (−1)n
n∑
k=0

(
n

k

)
dn−k

dsn−k

{
1

1− e−(s+λ)T

}
s=0

· d
k

dsk

{∫ T

0

e−st · δ
N

(t)dt

}
s=0

The rightmost derivatives simply as follows

dk

dsk

{∫ T

0

e−st · δ
N

(t)dt

}
s=0

=

∫ T

0

(−t)k · δ
N

(t)dt = (−1)k · µk

The RMT transforms the improper integral in the definition of complete moments into

a sum of finite integrals. However, such reduction is compensated by the fact that the

coefficients an,k for k = 0, · · · , n are derivatives of a composition of functions. Yet

without explicit differentiation, we can note that an,n is independent of n as follows

an,n =
1

1− e−λT

The remaining coefficients can be calculated recursively in the order an,n−1, an,n−2, · · · , an,0.

Corollary 1. If n is a positive integer, m = (m0,m1, , · · · ,mn)ᵀ and µ = (µ0, µ1, , · · · , µn)ᵀ,

then exists an n× n lower triangular matrix Tmµ such that

m = Tmµ · µ
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Proof. In virtue of the RMT, the coefficient of Tmµ are defined as follows

T i,jmµ =

ai,j if j ≤ i.

0 otherwise.

As mentioned earlier, the information contained in the distribution ought to be con-

centrated into the first period when the decay coefficient increases. Without further

calculations, it is straightforward that an,n approaches 1 for λ → ∞. Therefore, to

show that the complete moments converge toward the reduced moments, we have to

prove that any coefficient outside the principal diagonal of Tmµ approaches zero when

λ gets larger. To that end, we can apply Faà di Bruno’s formula; which generalizes

the chain rule to higher derivatives for a composition of functions.

Theorem 13. (Faà di Bruno’s formula)

(f ◦ g)(n)(x) =
∑ n!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn
f (m1+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

)mj
,

Where m1,m2, · · · ,mn are positive numbers such that 1m1+2m2+3m3+· · ·+nmn = n

In Faà di Bruno’s formula, f and g are considered to be differentiable enough such

that their k-th derivative for 0 ≤ k ≤ n are well-defined. Then, the n-th derivative of

f ◦ g is expressed in terms of sums of products of derivatives of f and g.

Theorem 14. Reduced Moments Convergence (RMC)

The complete moments converge toward the reduced moments as the decay coefficient

λ grows larger. Which is summarized with the following points

(i) limλ→∞ an,n = 1

(ii) limλ→∞ an,p = 0 for 0 ≤ p < n

(iii) ∀n ∈ N, limλ→∞mn = µn

Proof. The first results (i) has already been discussed. For the other cases, the func-

tions of interest for Faà di Bruno’s formula are f : x 7→ 1
1−x and g : x 7→ e−Tx. Those

functions are both infinitely differentiable and their k-th derivatives are defined by the

equalities

f (k)(x) =
k!

(1− x)k+1
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g(k)(x) = (−T )ke−Tx

The application of Faà di Bruno’s formula gives the following result

(f◦g)(n)(x) =
∑ n!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn
·

[
(m1 + · · ·+mn)!

(1− e−Tx)m1+···+mn+1

]
(−T )n·e−x·T (m1+···+mn)

Given their definition with the RMT, the terms outside the principal diagonal of Tmµ
correspond to n 6= 0 in Faà Di Bruno’s formula. The exponential term enforces the

convergence to zero as x grows larger, hence (ii). The last point (iii) is simply the

applications of (i) and (ii) to the RMT.

We continue with an illustration of the RMT and the RMC on a practical example.

To that end, we have calculated the first three moments of δN . If a = e−λT , b = 1− a
and c = a

b
then we can write the matrix equalitym0

m1

m2

 =
1

b

 1 0 0

Tc 1 0

T 2(c+ 2c2) Tc 1


µ0

µ1

µ2


It important to notice that this equality is homogeneous from a physical viewpoint.

In fact, if the period T has the dimension of t, then the product Tµ0 has the same

dimension as µ1. Which entails that m1 is homogeneous to time, as we could expect.

The same analysis is applicable to the other moments. Finally, it is straightforward

that a→ 0, b→ 1 and c→ 0 when λ→∞. Therefore, we obtain the expected result.

lim
λ→∞

m0

m1

m2

 =

1 0 0

0 1 0

0 0 1


µ0

µ1

µ2

 =

µ0

µ1

µ2


With the RMC, the complexity of computations involving the moments of the distri-

bution can be tremendously reduced if λ is large enough. In practice, it is the case

because all the information about the distribution must concentrated into the first

period, precisely at the point t = 1.

5.4 Nodes

We continue the analysis of δN with a simplification of the σ-form I, in virtue of the

properties of the semi-frequency generator. The first elements to consider is anti-

reflection and symmetry of combinatorial factors which guarantee that δN is real-

valued. In fact, any positive semi-frequency has a negative counterpart that can be
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grouped together with Euler’s identity, as mentioned in Section 5.1.

Proposition 18. (Order of approximation) The order of approximation for the Dirac

impulse function corresponds to the number of pairs of positive-negative semi-frequencies.

The general expression for the order is given by the following relation

Order(r, α,N) = 1 + α〈1,pr〉

Proof. This result is a consequence of the fact that any semi-frequency is a multiple of

ω in the interval
[
ψ1(0);−ψ1(0)

]
. And as mentioned before, pairs of negative-positive

semi-frequencies are grouped together to form a cosine function, in virtue of Euler’s

identity. The extra term ”1” accounts for the pair of semi-frequencies (−0,+0).

Knowing the exact order of approximation of the shifted Dirac impulse, we can move

forward by proposing a new expression for the σ-form, explicitly in the Abate-Whitt

framework.

Definition 5.4.1. (σ-form II) The sum form has the alternative form

δ
N

(t) = e−λt
α〈1,pr〉∑
k=0

(
ηke

2iωkt + η̄ke
−2iωkt

)
where ηk for k = 1, · · · , α〈1,pr〉 are complex numbers which account for the combina-

torial factors and the semi-phases; η̄k are their complex conjugate numbers.

Proposition 19. (σ-form III) The sum form has the third alternative form

δ
N

(t) = 2e−λt ·Real

(
α〈1,pr〉∑
k=0

ηke
2iωkt

)

The σ-form III is obtained with the application of the identity z + z̄ = 2 · real(z).

The factor ”2” in the arguments of the exponentials originates from the fact that any

frequency is twice a given semi-frequency. Subsequently, we can deduce a close form

expression for the nodes in the Abate-Whitt framework.

Proposition 20. (Nodes) The node of δN have the same real part and imaginary

parts forming an arithmetic sequence with common difference factor 2ω.

βk = λ− 2iωk

This result was proven recursively in [13, Appendix], for the case r = 0.
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5.5 Calculation of the weights

We now focus on the remaining unknowns, the weights ηk. As mentioned in Section

5.1, their calculation requires to solve a combinatorial problem because the nodes are

defined as follows

ηp =
∑

k∈Kα|ψ1 (k)=pω

1

4αN

[
2α

k

]
e2iΦ(k)

It is difficult and impractical to apply this definition for large values of N. That is the

reason why we propose two methods to bypass that shortcoming.

5.5.1 An integral based method

A first method is based upon the orthogonality of complex exponentials such that the

weights are calculated in the same way as the coefficients of a Fourier series.

Definition 5.5.1. (Projection integral) If k and p are positive integers on the interval

[0;α〈1,pr〉] then the projection integral is defined as

I(k, p) =

∫ T

0

(
ηke

2iωkt + η̄ke
−2iωkt

)
e−2iωptdt T =

π

ω

Proposition 21. The integral projector I(·, ·) is derived from an hermitian inner

product and verifies the following relations

(i) I(0, 0) = (η0 + η̄0) · T

(ii) I(p, p) = ηp · T

(iii) I(k, p) = 0 if k 6= p

Proof. Let us assume that k 6= p, then the projection integral becomes

I(k, p) =

∫ T

0

(
ηke

2iωkt + η̄ke
−2iωkt

)
e−2iωptdt

= ηk ·

[
e2iω(k−p)t

2iω(k − p)

]T
0

+ η̄k ·

[
e−2iω(k+p)t

−2iω(k + p)

]T
0

= ηk ·
e2i(k−p)π − 1

2iω(k − p)
+ η̄k ·

e−2i(k+p)π − 1

−2iω(k + p)

= 0

Hence the result (iii). The result (i) is trivial since the exponential terms vanish under

the integral sign and the result (ii) follows the same principle as (iii).
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Proposition 22. (Weights) The weights of δ
N

in the Abate-Whitt framework are

given by the relations

η0 = η̄0 =
1

2T

∫ T

0

(
N∏
k=1

cos2α(ωkrt+ φk)

)
dt

ηp =
1

T

∫ T

0

(
e−2iωpt

N∏
k=1

cos2α(ωkrt+ φk)

)
dt

Proof. The first step is to equate the π-form and the σ-form II.

e−λt
N∏
k=1

cos2α(ωkrt+ φk) = e−λt
α〈1,pr〉∑
k=0

(
ηke

2iωkt + η̄ke
−2iωkt

)
Then one replaces e−λt by e−2iωpt , integrates over the first period and gets

∫ T

0

(
e−2iωpt

N∏
k=1

cos2α(ωkrt+ φk)

)
dt =

α〈1,pr〉∑
k=0

I(k, p)

Using the previous results on the values of I(k, p), we can obtain the expression of each

individual weight. We choose the zero-frequency weights η0 and η̄0 to be real numbers.

In fact, their imaginary parts cancel each other, leaving only the real part.

5.5.2 Recursive method

Despite being simple to implement, the integral based method requires heavy calcula-

tions when N grows larger. The precision required is ever increasing as the complex

exponentials have high oscillation frequencies. So a more stable method is needed in

order to reduce the cost of computations and to preserve accuracy in the results. We

summarize, a recursive method for α = 1 in the next 4 steps.

Step 1 : For a given integer N , the π-forms of δ
N+1

and δ
N

verify the relation

δ
N+1

(t) = cos2

(
ω(N + 1)rt+ φ

N+1

)
· δ

N
(t)

Step 2 : The π-form of δ
N

is expanded into the σ-form II

δ
N

(t) = e−λt
α〈1,pr〉∑
k=0

(
ηke

2iωkt + η̄ke
−2iωkt

)
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Step 3 : The cosine term is transformed into its complex exponential form. For

clarity, we use φ to designate φ
N+1

cos2

(
ω(N + 1)rt+ φ

)
=

1

4

(
e2i(ω(N+1)rt+φ) + 2 + e−2i(ω(N+1)rt+φ)

)

Step 4 : The product of these forms yields

δ
N+1

(t) =
1

2
· δ

N
(t)

+
e−λt

4
· e2i(ω(N+1)rt+φ) ·

α〈1,pr〉∑
k=0

(
ηke

2iωkt + η̄ke
−2iωkt

)
+
e−λt

4
· e−2i(ω(N+1)rt+φ) ·

α〈1,pr〉∑
k=0

(
ηke

2iωkt + η̄ke
−2iωkt

)

The weights of δ
N+1

can then be explicitly calculated from those of δ
N

. In application,

only the terms with positive frequencies are relevant since the coefficients for negative

frequencies can be obtained with complex conjugation. In the light of this observation,

only the products ηk · e2iφ for (N + 1)r + k ≥ 0 and η̄k · e2iφ for (N + 1)r − k ≥ 0 are

relevant in the first sum; whereas the products ηk · e−2iφ for k − (N + 1)r ≥ 0 are of

interest in the second sum.

5.6 Width of the distribution function

The approximation of the shifted Dirac impulse function about the point t = 1 is

imperfect since the distribution function has a non negligible width, resulting from the

superposition of the π-modes as shown in Figure (5.1). In this section, we determine

an upper bound for that additional measure for concentration by analyzing the π-form.

Definition 5.6.1. The width ε
N

of the distribution function is defined the greatest

difference between two consecutive zeros of δ
N

in the vicinity of the point t = 1.

Proposition 23. The width of the distribution function verifies the inequalities

0 < ε
N
≤ π

ωN r

34



(a) π-modes (b) Superposition

Figure 5.1: Superposition of π-modes in a normalized scale k = 1, · · · , 10 for r = 0,
ω = 2.7233. The phases are φk are optimized to reduce scv

Proof. The mode with the highest frequency in the π-form is cos
(
ω ·N rt+ φn

)
. This

mode has the smallest period, thus also has the most zeros within a period. These

zeros can be parametrized as follows

zp =
1

ω ·N r

((
p+

1

2

)
π − φN

)
, p ∈ N

The relation between two consecutive zeros is given as the arithmetic sequence

zp+1 = zp +
π

ω ·N r

Hence the expression for the upper-bound of the width.

We can note that the upper-bound of the width ignores the modal phases φk because

they only serve to shift the position of the zeros of the π-modes on the real axis. So

an optimal parametrization of those phases leads to a reduction of the width and a

significant increase in the concentration at t = 1, i.e δ
N

(1) is maximized.

5.7 Reinterpretation of the HTT method

We now reinterpret the HTT method within this framework. The original distribution

function in Equation (3.3) can be rewritten is the standard π-form

δ
ME

(t) = c · e−λt
M∏
k=1

cos2(ωt+ φk), M = (N − 1)/2 (5.3)
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from which we deduce that the HTT method uses matrix exponential distributions in

the monomials class θ
(M,1)
r with index r = 0, general exponent α = 1 and M = N−1

2
.

The order of approximation of the shifted Dirac impulse function is given by the

relations

Order(r, α,M) = 1 + α〈1,pr〉 = 1 + 〈1,1〉 = 1 +M =
N + 1

2

This result for the order is strictly identical to the order which is given in [3, Section

4.4] and the σ-form III simplifies to

δM(t) = 2e−λt

N−1
2∑

k=0

Real
(
ηke

2iωkt
)

The main frequency ω and the modal phases φ1, . . . , φM are obtained via optimization

in oder to minimize the squared coefficient of variation.
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Chapter 6

Unimodal method

In this chapter, we propose an inversion method without positive or negative over-

shoots and with explicit expressions for the Abate-Whitt coefficients. The shifted

Dirac distribution is approximated as follows

Definition 6.0.1. (unimodal π-form)

δ
N

(t) = ce−λt · cos2N

(
ωt+ φ

)
The coefficient α in the general formula for the π-form from Chapter 2 is not relevant

anymore, since it only changes the overall power from 2N to 2αN .

6.1 Weights and nodes

The π-form can be expanded into the σ-form directly with Euler’s identity and the

Binomial theorem. Which leads to the following propositions

Proposition 24. (unimodal σ-form)

δ
N

(t) =
c

4N

(
2N

N

)
e−λt +

c

4N

N−1∑
k=0

(
2N

k

){
e2i(N−k)(ωt+φ) + e−2i(N−k)(ωt+φ)

}
e−λt

Proposition 25. (order) The order of approximation of the Dirac impulse function

the in the unimodal class is linear a given by the expression Order(N) = 1 +N

Proposition 26. (weights and nodes) The σ-form for the unimodal distribution func-

tion has the alternative form

δ
N

(t) = 2 ·Real

(
N∑
k=0

ηke
−βkt

)
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where the nodes are given by the expressions

βk = λ− 2iω(N − k) 0 ≤ k ≤ N

η
k

=
c

4N

(
2N

k

)
e2i(N−k)φ 0 ≤ k ≤ N − 1

η
N

=
1

2
· c

4N

(
2N

N

)

Remark 5. To improve numerical stability, the weights may be calculated via the

recursive method proposed in section 5.5

Remark 6. The normalization coefficient c correspond to the inverse of the 0th order

moment of density function i.e 1/c = m0 =
∫∞

0
δN(t)dt =

∑N
k=0

η
k

βk

6.2 Optimal parameters

We continue by deriving the optimal expressions for the main frequency, the decay

and the phase. The ideas is to look for δ
N

as a sine function in order to take advan-

tage of the results limx→0 sin(x) = 0, sin(π/2) = 1 and sin(π) = 0. A preliminary

parametrization for the unimodal π-form is as follows

δ
N

(t) = ce−λt · cos2N

(
ω(t− 1) + ξ

)
, ω =

π

2

The phase coefficient then becomes φ = −π/2+ ξ and we can then notice that if ξ = 0

then δ
N

(0) = 0, δ
N

(1) = ce−λ and δ
N

(2) = 0. In practice, the decay coefficient shifts

the argument of the maximum to a value t 6= 1. To offset this shift, we use the extra

term in the phase coefficient to cancel the derivative of the density function at t = 1,

dδ
N

dt
=

(
− λ− 2Nω tan

(
ω(t− 1) + ξ

))
δ
N

(t)

which yields ξ = − arctan

(
λ

2Nω

)
. Therefore, the optimal phase coefficient is

φ = −π
2
− arctan

(
λ

2Nω

)
The decay coefficient λ is chosen such that the amplitudes in the second period are 10r

times smaller than those in the first period. This is equivalent to solving the equation
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δN(T ) = 10−r · δN(0) or e−λT = 10−r; which yields

λ =
rω log(10)

π
, r ∈ N∗

Figures 6.1a to 6.1b depict the resulting distribution function.

(a) order 10 (b) order 24

Figure 6.1: Comparison of the shifted Dirac impulse function with the HTT method
and the unimodal method

The convergence of the unimodal distribution toward the shifted-scaled Dirac impulse

function is slower than that of the HTT method. This behavior accounts for the use of

a single mode, which has a constant width given by the expression εN = π
ω

= 2. The

width is a constant as there is exactly one zero per period. The squared coefficient of

variation has been computed numerically up to N=4000 and follows the asymptotic

law

scv(X) ∼ 0.2

N

Figure 6.2: Squared coefficient of variation as a function of the order in loglog scale
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Chapter 7

Optimization for the monomials class

As mentioned in Section 3.4, the parameters of δ
N

must be optimized in order to

reduce the squared coefficient of variation. Those parameters are represented by x =[
λ, ω, φ1, · · · , φN

]
∈ RN+2, and the distribution function can be written more explicitly

as δ
N

(t,x). Therefore, any quantity derived form it is also a function of x.

7.1 Squared coefficient of variation

We move on to deriving another expression for scv as function of x. To that end,

we first recall that δ
N

is a matrix exponential distribution; thus must be normalized.

That normalization is equivalent to dividing all the moments by m0(x); which give

the new expression for the n-th order moment,

m̃n(x) =
mn(x)

m0(x)

from which we can derive the new expression for the squared coefficient of variation

scv(x) =
m0(x)m2(x)

m1(x)2
− 1

7.2 Time derivatives of the distribution function

We now determine conditions of the derivative of δ
N

at t = 1, by analogy with the

standard normal distribution N (0, 1) of density function g : t 7→ 1√
2π
e−t

2
. This func-

tion, also called gaussian, verifies that g(4k) has global maximum g(4k)(0) and g(4k+2)

has global minimum g(4k+2)(0) for k ∈ N. These results can be proven by induction

and are illustrated in Figure (7.1) for k = 0.
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Figure 7.1: Derivative of a gaussian

Similarly, the parameters of δ
N

have to be optimized such that δ(4k)
N

has global maxi-

mum δ(4k)
N

(1,x) and δ(4k+2)
N

has global minimum δ(4k+2)
N

(1,x). For simplicity and as a

follow up to the argument given for the reduction of the width of the density function

in Section 5.6, we can seek maximize δ
N

(1,x).

7.3 Optimization strategy

In order to find the optimal parameters we need to solve an optimization problem. In

practice, if f : RN+2 → R is an objective function, then we have ot find x∗ ∈ RN+2

such that f(x∗) ≤ f(x) for all x ∈ RN+2.

7.3.1 Gradient descent

When f is differentiable, we can apply the gradient descent algorithm; which produces

successive candidates xk for k ∈ N∗ such that f(x0) > f(x1) > · · · > f(xn). The ini-

tial guess x0 is arbitrarily close to an optimum which may not be the global optimum

if f is not convex. In order to update the candidates, this algorithm uses the gradient

of f to find the direction of steepest descent. For that reason, it is categorized as a

first-order optimization algorithm.

The procedure is summarized in Algorithm 1. In the version presented, the step

size γ is a constant but this coefficient can be updated at each iteration in order to
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avoid overshoots or divergence from the optimal solution.

Algorithm 1

1: procedure GradientDescent(n, ε, γ, f,x0)
2: x = x0

3: for i← 1, n do
4: if ‖∇f(x)‖ < ε then
5: return x . Optimal solution found
6: else
7: x = x− γ∇f(x)
8: end if
9: end for

10: return x . Maximum iteration reached
11: end procedure

7.3.2 Gradient of the squared coefficient of variation

In order to apply the gradient descent to scv, we have to calculate its partial derivatives

with respect to the parameters. For the general case, if xi is a component of x, then

by logarithmic differentiation we have

∂scv

∂xi
=

(
1

m0

∂m0

∂xi
− 2

m1

∂m1

∂xi
+

1

m2

∂m2

∂xi

)
scv

∂mp

∂xi
=

∫ ∞
0

tp · ∂δN
∂xi
· dt =

∫ ∞
0

tp · ∂ log{δ
N
}

∂xi
· δ

N
· dt

The logarithm of δ
N

has the expression log{δ
N
} = −λt+ 2

∑N
k=1 log

{
cos
(
ωkrt+φk

)}
from which we can calculate the partial derivatives with respect to the parameters

∂ log{δ
N
}

∂λ
= −t (7.1)

∂ log{δ
N
}

∂φk
= −2 tan

(
ωkrt+ φk

)
(7.2)

∂ log{δ
N
}

∂ω
= −2t

N∑
k=1

kr tan
(
ωkrt+ φk

)
(7.3)

Remark 7. Given that t 7→ cos2(t) has period π, the modal phases can be restricted

to the interval [0; π[ ; which is done with the modulo function.
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Remark 8. For the first guess x0, we can choose λ = 1 and randomly select ω ∈ [0, 2π[

and φk ∈ [0, π[ for k = 1, . . . , N .

The gradient descent algorithm applied to the squared coefficient of variation generally

finds a satisfying set of parameters. However, it requires heavy calculations because

any partial derivative of a moment involves an integral. Although they can be reduced

with Theorem 14 by choosing a large enough value for λ, this method remains expen-

sive for large N .

7.3.3 Gradient of the peak of the distribution

An alternative method to reduce the cost of computation is to optimize x in order to

minimize −δ
N

(1,x). That quantity has the less expensive partial derivatives

∂
{
− δ

N
(1,x)

}
∂λ

= δ
N

(1,x) (7.4)

∂
{
− δ

N
(1,x)

}
∂φk

= 2 tan(ωkr + φk) · δN (1,x) (7.5)

∂
{
− δ

N
(1,x)

}
∂ω

= 2
N∑
k=1

kr tan(ωkr + φk) · δN (1,x) (7.6)

This second method is a cheaper and faster than that with the coefficient of variation

as it does not involve any integral. As mentioned earlier, we only use δ
N

(1,x) but

higher time-derivatives of δ
N

(t,x) can also be used. A strategy for the first guess is

as follows : if u = [λ∗, ω∗, φ∗1, · · · , φ∗N ] ∈ RN+2 is the optimal solution for N , then the

first guess for N + 1 is as follows x0 = [1, ω∗, φ∗1, · · · , φ∗N , ξ] with ξ ∼ π · N (0, 1).

7.3.4 Hybridization of (1+1)-ES and gradient descent

We now examine a hybrid optimization algorithm which mixes gradient descent and

standard evolution strategy [11, Section 2.8]. The idea is to replace the generation

of candidates via perturbations via a normal distribution sampling by the gradient

descent based upon −δ
N

(1,x). Those candidates are then evaluated with the squared

coefficient of variation and the one with lowest scv is selected as the best solution.

To ease the notations, we redefine the objective functions as f0(x) = scv(x) and

f1(x) = −δ
N

(1,x). It p is the maximum number of candidates, ε the targeted precision,

n the maximum number of iterations per candidate, γ the step size and u the optimal

solution for δ
N−1

, then we can define Algorithm 2 and Algorithm 3 as follows
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Algorithm 2

1: procedure InitialGuessGenerator(u)
2: Assert u = [λ∗, ω∗, φ∗1, · · · , φ∗N−1] ∈ RN+1 . General form for u
3: Sample ξ ∼ π · N (0, 1)
4: x = [1, ω∗, φ∗1, · · · , φ∗N−1, ξ]
5: return x
6: end procedure

Algorithm 3

1: procedure ES-GD(p, n, ε, γ, f0, f1,u)
2: Initialize x∗ = 0 ∈ RN+2

3: Initialize µ∗ =∞
4: for i← 1, p do
5: x0 = InitialGuessGenerator(u)
6: c = GradientDescent(n, ε, γ, f1,x0)
7: µc = f0(c)
8: if µc < µ∗ then
9: x∗ = c . Better candidate found

10: µ∗ = µc
11: end if
12: end for
13: return x∗ . Best candidate returned
14: end procedure

For the general case, that algorithm produces better solutions than single gradient

applied to f1(x). That is explained by the fact that it takes advantage of the increase

in speed with the replacement of ∇f0(x) by ∇f1(x) and the natural selection enforced

by f0(x).

Remark 9. The differential entropy is can also serve as a second selection function,

along with the squared coefficient of variation. But practical computation of the entropy

requires special attention because the π-modes cancel at several time points; which can

introduce numerical instability with log{δ
N
}.
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Chapter 8

Numerical results

The hybrid optimization method discussed in the previous chapter has been applied to

the monomials class of indices r = 0 and r = 1 when α = 1. In this section, we present

the global performances obtained with these methods in terms of concentration of the

resulting distributions and accuracy on the inverted transforms.

Coefficient of variation: numerical results confirm the asymptotic law unveil in

[13]. As shown in Figure 8.1, the squared coefficient of variation decrease linearly in

a logarithmic scale as the order increases. A general conjecture for that asymptotic

Figure 8.1: Squared coefficient of variation for the monomials class (r = 0 and r = 1)
and the unimodal class
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behavior in the monomials class can be summarized as follows

scv

{
θ(N,1)
r

}
∼ ar
n2

From numerical optimizations carried in this work, we have, a0 ≈ 1.9901 and a1 ≈ 2.

Differential entropy : we have calculated the differential entropy over the first pe-

riod. Figure 8.2 depicts the expected behavior i.e a decreasing entropy as the order

gets larger because all the information about the distribution is getting concentrated

at the time point t = 1.

Figure 8.2: Entropy for the monomials class with indices r = 0 and r = 1

Overall, these two measures tend to confirm that the optimization determines optimal

parameters for the approximation of Dirac impulse function. However, we have yet to

find out if the functions used numerical optimizations exhibit convex behaviors that

the solution that we get are global optimums.
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Inversion of Laplace transform of the unit step function

(a) n=21

(b) n=201

Figure 8.3: Inversion of the step function f(t) = u(t) with the optimized monomials
methods, the Euler method and the unimodal method for orders n = 21 and n = 201.
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Inversion of Laplace transform of a delayed exponential function

(a) n=21

(b) n=201

Figure 8.4: Inversion of the delayed step function f(t) = u(t−1)·e−t with the optimized
monomials methods, the Euler method and the unimodal method for orders n = 21
and n = 201.
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Inversion of Laplace transform of the floor function

(a) n=100

(b) number of significant digits

Figure 8.5: Inversion of the floor function f(t) = btc with the optimized monomials
methods, order n = 100.
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Chapter 9

Conclusion

Summary

In this dissertation, we have constructed a general framework to approximate the

shifted-scaled Dirac distribution in order to numerically inverse Laplace transform

without positive or negative overshoots. This framework has been constructed around

matrix exponential distributions with low coefficient of variation, as a generalization

of the inversion method proposed by Horváth, Talyigás and Telek. We have notably

studied the specific class of monomials semi-frequencies. The results of this study

include the design of two algorithms to calculate the weights and nodes of the distri-

bution functions in the Abate-Whitt framework; the reduction of the complexity in the

calculation of the moments of the distribution with the reduced moments triangulation

(RMT) and the reduced moments convergence (RMC). Essentially, the initial integral

of the positive real axis has been reduced to an finite integral, over one period of the

distribution function. Numerical optimization suggests an asymptotic squared coeffi-

cient of variation evolving as O(1/n2). Finally, we have proposed an explicit method to

approximate the shifted Dirac impulse function, with an asymptotic squared coefficient

of variation behaving like O(1/n), as an attempt to avoid numerical optimization.

Future work

Possible extensions of this work can include in depth examinations of the following

areas:

1. The coefficients of variation for the monomials and unimodals classes have been

computed numerically but a formal proof for their asymptotic behaviors is still

missing.

2. There is no guarantee that the parameters obtained from optimization are the
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best candidates. This uncertainty could be cleared by determining if the coeffi-

cient of variations is a convex function with respect to these parameters for the

density functions.

3. The semi-frequency class of polynomials could be studied by using the fact that

any polynomial is a linear combination of monomials; thus that class may inherit

some properties of the monomials class.

4. The framework that we have proposed for the approximation of the shifted Dirac

distribution can be further extended with the following broader formulation

δ
N

(t) = e−λt
N∏
k=1

(
ak + e−λktcos

(
wkt+ φk

))2αk
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Appendix

Ethics summary

As mentioned in Chapter 1, Laplace transform is first and foremost a mathematical

tool which can find applications in various fields of science; especially in Statistics,

Probability Theory and study of Dynamical Systems. According to the Oxford dic-

tionary, science is an ”intellectual and practical activity encompassing the systematic

study of the structure and behavior of the physical and natural world through ob-

servation and experiment”; which means that science is intrinsically neutral. And as

a mathematical tool, the Laplace transform is also neutral and has no inherent ties

to biology, leaving beings, personal data, environment, legislation, etc. However, an

individual who studies one or multiple sciences may have intentions which lead him to

use science for specific purposes. This point is often a concern for theories with poten-

tially controversial interpretations or questionable applications rather than a concern

for tools. So overall, Laplace transform and Laplace transform inversion is neutral as

for ethics.

Ethics checklist

Yes No

Section 1: HUMAN EMBRYOS/FOETUSES

Does your project involve Human Embryonic Stem Cells? X

Does your project involve the use of human embryos? X

Does your project involve the use of human foetal tissues / cells? X

Section 2: HUMANS

Does your project involve human participants? X

Section 3: HUMAN CELLS / TISSUES
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Does your project involve human cells or tissues? (Other than from “Hu-

man Embryos/Foetuses” i.e. Section 1)?

X

Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or processing? X

Does it involve the collection and/or processing of sensitive personal data

(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philo-

sophical conviction)?

X

Does it involve processing of genetic information? X

Does it involve tracking or observation of participants? It should be noted

that this issue is not limited to surveillance or localization data. It also

applies to Wan data such as IP address, MACs, cookies etc.

X

Does your project involve further processing of previously collected per-

sonal data (secondary use)? For example Does your project involve merg-

ing existing data sets?

X

Section 5: ANIMALS

Does your project involve animals? X

Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries? X

If your project involves low and/or lower-middle income countries, are any

benefit-sharing actions planned?

X

Could the situation in the country put the individuals taking part in the

project at risk?

X

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to the

environment, animals or plants?

X

Does your project deal with endangered fauna and/or flora /protected

areas?

X

Does your project involve the use of elements that may cause harm to

humans, including project staff?

X
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Does your project involve other harmful materials or equipment, e.g. high-

powered laser systems?

X

Section 8: DUAL USE

Does your project have the potential for military applications? X

Does your project have an exclusive civilian application focus? X

Will your project use or produce goods or information that will require

export licenses in accordance with legislation on dual use items?

X

Does your project affect current standards in military ethics – e.g., global

ban on weapons of mass destruction, issues of proportionality, discrimina-

tion of combatants and accountability in drone and autonomous robotics

developments, incendiary or laser weapons?

X

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist

abuse?

X

Does your project involve information on/or the use of biological-,

chemical-, nuclear/radiological-security sensitive materials and explosives,

and means of their delivery?

X

Does your project involve the development of technologies or the creation

of information that could have severe negative impacts on human rights

standards (e.g. privacy, stigmatization, discrimination), if misapplied?

X

Does your project have the potential for terrorist or criminal abuse e.g.

infrastructural vulnerability studies, cybersecurity related project?

X

Section 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright

licensing implications?

X

Will your project use or produce goods or information for which there are

data protection, or other legal implications?

X

Section 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration? X
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