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ABSTRACT

Deep heteroscedastic regression models the mean and covariance of the target
distribution through neural networks. The challenge arises from heteroscedasticity,
which implies that the covariance is sample dependent and is often unknown. Con-
sequently, recent methods learn the covariance through unsupervised frameworks,
which unfortunately yield a trade-off between computational complexity and ac-
curacy. While this trade-off could be alleviated through supervision, obtaining
labels for the covariance is non-trivial. Here, we study self-supervised covariance
estimation in deep heteroscedastic regression. We address two questions: (1) How
should we supervise the covariance assuming ground truth is available? (2) How
can we obtain pseudo labels in the absence of the ground-truth? We address (1)
by analysing two popular measures: the KL Divergence and the 2-Wasserstein
distance. Subsequently, we derive an upper bound on the 2-Wasserstein distance
between normal distributions with non-commutative covariances that is stable to
optimize. We address (2) through a simple neighborhood based heuristic algorithm
which results in surprisingly effective pseudo labels for the covariance. Our ex-
periments over a wide range of synthetic and real datasets demonstrate that the
proposed 2-Wasserstein bound coupled with pseudo label annotations results in a
computationally cheaper yet accurate deep heteroscedastic regression.

1 INTRODUCTION

Deep heteroscedastic regression leverages neural networks as powerful feature extractors to regress
the mean and covariance of the target distribution. The target distribution is typically used for
downstream tasks such as uncertainty estimation, correlation analysis, and sampling. The key
challenge in deep heteroscedastic regression lies in estimating heteroscedasticity, which implies that
the variance of the target is variable and depends on the input being observed. This challenge is
further compounded by the fact that, unlike the mean, the covariance lacks direct supervision and
needs to be inferred.

The standard approach in the absence of ground-truth covariance relies on optimizing the negative
log-likelihood to jointly learn the mean and covariance (Dorta et al.,|2018)). However, |Skafte et al.
(2019); Seitzer et al.| (2022)) show that in the absence of supervision, the gradients induced by
incorrect variance predictions negatively affect optimization, leading to sub-optimal convergence.
Subsequently, a flurry of recent literature proposes modifications to the negative log-likelihood (Skafte
et al., 2019; Seitzer et al., [2022; Stirn et al.,|2023; Immer et al.,2023) in a bid to dampen the impact
of incorrect covariance estimates. The work of Shukla et al.| (2024) takes a complementary approach
and shows improved optimization when using an alternative parameterization for the covariance
within the negative log-likelihood. However, this improvement in accuracy is achieved at the expense
of increased computational requirements. Moreover, the thematic message underlying these works
is that estimating heteroscedasticity is challenging when annotations for the covariance are not
available. Consequently, we wonder whether having annotations for the covariance would improve
deep heteroscedastic regression. To answer this, we focus on exploring the use of self-supervision to
improve covariance estimation in deep heteroscedastic regression. We study two questions:

(Q1) How should we supervise the learning of the covariance assuming annotations are available?
Since the negative log-likelihood is not formulated for supervising the covariance, we analyse the
KL Divergence and the 2-Wasserstein distance to supervise the learning of the mean and covariance.
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Our analysis shows that despite supervision, the KL divergence underperforms compared to its
2-Wasserstein counterpart, as it shares a susceptibility to residuals similar to that of the negative
log-likelihood. Next, we study the 2-Wasserstein distance between normal distributions with non-
commutative matrices. We specifically note an optimization challenge (PyTorch| [2024)) due to
the eigendecomposition involved. Consequently, we extend the formulation for the 2-Wasserstein
distance between commutative covariance matrices to the general case of non-commutative matrices,
eliminating the need for eigendecomposition. This makes the optimization process stable.

(Q2) How should we obtain pseudo-labels for the covariance when annotations are not available? In
the absence of priors, we propose a neighborhood-based heuristic algorithm to generate pseudo labels
for the covariance. Specifically, for a given sample, the pseudo label corresponds to the covariance
over the targets of all the samples in the neighborhood of the specified sample. The contribution of
the neighboring samples are weighed by their Mahalanobis distance to the specified sample. We show
that this simple strategy provides effective self-supervision for covariance estimation.

We perform extensive experiments across a wide range of synthetic and real world settings and
show that self-supervised learning through the proposed bound coupled with the neighborhood based
pseudo-labels for the covariance is (1) computationally cheaper and (2) retains accuracy with respect
to the state-of-the-art. We will make our code available upon publication.

2 DEEP HETEROSCEDASTIC REGRESSION

Heteroscedastic regression is a probabilistic take on regression where the model not only learns the
mean but also the variance of the target distribution. In contrast to homoscedasticity, heteroscedastic
models allow the variance to vary as a function of the input. Deep heteroscedastic regression provides
a notable advantage over non-parametric methods like Gaussian Processes (Le et al., 2005) because it
can model complex features from inputs such as images. This attribute has made it widely applicable
in fields like active learning (Houlsby et al., |2011} |Gal et al., |2017), uncertainty estimation (Gal &
Ghahramani, [2016; |Kendall & Gal, [2017; |[Lakshminarayanan et al.,[2017; Russell & Reale, |[2021)),
image reconstruction (Dorta et al.| 2018)), human pose estimation (Gundavarapu et al., [2019} |Nakka
& Salzmann| 2023} [Tekin et al., 2017)), and other vision-based tasks (Lu & Koniusz, 2022} [Simpson
et al.l [2022; |Liu et al., 2018} |Bertoni et al., [2019).

Preliminaries. Our goal is to learn the target distribution P(Y'|X), where X € R™ is the input and
Y € R™ is the target variable. While P(Y'|X) is unknown, it is assumed to be normally distributed:

P(Y|X) = N(uy(X), Sy (X)). Our estimate of the target is P(Y|X) = N (fiy (X), Sy (X)),
where the mean fiy (X) = fy(X) and covariance Yy (X) = go(X) are parameterized by neural
networks. The standard approach in literature to learn the target distribution is to minimize the

negative log-likelihood, —Ep X7y)P(§Af\X ). Specifically, the mean and covariance networks are
trained (Nix & Weigend, [1994; Sluijterman et al., 2024} Kendall & Gal,|2017) to minimize

£rua(6,0) = Epcr) | log [Br (30| + (v = v (X)) 00 (0 = v (x|

Challenges. The lack of supervision for the covariance results in an optimization challenge which is
formalized in Skafte et al.| (2019); [Seitzer et al.| (2022)). The works observed that an underestimated
variance can increase the effective learning rate and disrupt optimization (Skafte et al.,|2019), whereas
an overestimated variance can decrease the effective learning rate and stop optimization (Seitzer et al.|
2022). A number of recent approaches modify the negative log-likelihood to reduce the effect of
the predicted covariance during optimization. S-NLL (Seitzer et al., 2022) scales the negative log-
likelihood (Eq. |1) by the predicted variance resulting in the objective: Lz_nLL = 16(9)%7| x LaLL.
However, since 3-NLL does not originate from a valid distribution, the optimized values do not
estimate the true variance. |Stirn et al.| (2023) decouples the estimation of the mean and variance
by scaling the gradient of the mean estimator with the covariance, thereby eliminating the effect of
the predicted covariance on the mean. This leads to conflicting assumptions: the mean estimator
assumes that the multivariate residual is uncorrelated while the covariance estimator is expected
to identify correlations. Immer et al.| (2023) proposed the use of natural parameterization of the
univariate normal distribution: n; = % and ny = 2_712 for regression. While principled, the method
assumes a diagonal covariance matrix, similar to |Seitzer et al.| (2022). TIC-TAC (Shukla et al.,
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2024), in contrast to previous works, retains the negative log-likelihood and formulates the predicted
covariance through the gradient and curvature of the mean. However, the improvement in accuracy
comes at the expense of increased computational requirements. A parallel line of works studies the
impact of training dynamics in deep heteroscedastic regression. [Wong-Toi et al.| (2024) provide a
theoretical study linking the training of heteroscedastic regression to phase transitions, however the
experimental evaluation is limited to univariate outputs. |Sluijterman et al.| (2024) experimentally
show that decoupling the mean and variance networks can lead to improved performance, similar to
Stirn et al.[(2023). However, while the authors suggested a warm-up schedule, we observed that this
may not necessarily improve performance.

An overview of the related works reveals a shared theme: estimating heteroscedasticity is difficult
without annotations. Further, existing works trade-off accuracy for lower computational requirements.
This trade-off could be mitigated with supervision; however, acquiring labels for the covariance is
challenging, which restricts further analysis. Moreover, the negative log-likelihood is not formulated
to supervise the covariance, requiring a new approach to supervision. Therefore, we investigate two
key aspects of the problem: (1) How can we supervise the covariance when negative log-likelihood is
not specifically designed for this task? and (2) How can we generate pseudo labels for the covariance
in the absence of ground truth?

3 ANALYSIS

When it comes to supervising the covariance, we analyze the KL Divergence and the 2-Wasserstein
distance, two widely used metrics for comparing and optimizing distributions. Our analysis focuses
on multivariate normal distributions, which is in line with a common assumption in machine learning
that the residuals are normally distributed. We support our analysis by studying Problem 1, which
lets us visualize the convergence process of various methods using bivariate normal distributions. We
then seek to answer which metric is better suited for deep heteroscedastic regression.

Problem 1. (Bivariate Normal Distribution) We consider the task of learn-

ing a bivariate normal distribution. We initialize the target and predicted

distributions to have different means. While the predicted distribution »

is initialized with an identity covariance matrix, the covariance for the

target distribution is initialized randomly and such that it exhibits a high

degree of correlation (> 0.5). Given samples y € R? from the target /
distribution, the goal is to compare different methods in optimizing the

predicted distribution to match the target one. ’ = (:rrg;:;;:um

3.1 KL DIVERGENCE

The KL Divergence quantifies the dissimilarity between two distributions. The forward KL Diver-
gence between two multivariate normal distributions is defined (Zhang et al., 2024; |[Sochl [2020)
as

1 det X
Di(plla) =5 {Tr(quﬁpH(uqup)Tqu(uqup)k+1n< : q)} L@

where p corresponds to the target distribution and ¢ corresponds to the predicted distribution which we
are optimizing. While the KL Divergence has been well studied (Goodfellow et al.,[2016; |Arjovsky
et al.| [2017) from a statistical viewpoint, we show that the KL Divergence may need calibration
depending upon its formulation.

Formulation. The KL Divergence is defined in terms of the means and covariances of two distri-
butions (Eq. . However, while the mean and covariance of the predicted distribution P (Y|X ) are
known, they are unknown for the target distribution P(Y|.X). A potential approach to remedy this
would be to assume that each label is a distribution which is centered around itself with an assumed
covariance. Specifically, if ;, y; is a sample from the dataset, then the pseudo target distribution can

be set to N (y;, E()Erior)(X )) for a given x;. Let us simplify this further and assume that we know the
covariance of the target distribution, i.e., we have Z({;“m) (X) = Xy (X). We therefore ask, what is
the optimal solution the neural networks learn for P(Y'|X') when minimizing its KL Divergence to
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Figure 1: Sub-optimal convergence due to residuals (Section: . In addition to feature granularity
(Seitzer et al.| 2022), subpar convergence may occur due to the sensitvity of the negative log-likelihood
and the KL-Divergence to residuals. While we show that the KL-Divergence can act as a regularizer
over the learnt covariance, the gradients for both the methods are dominated by the residual term,
slowing down convergence.

N (yi, Sy (X))? Perhaps surprisingly, Lemma 1| shows that the optimal solution learnt is not £y (X),
but 2 ¥y (X), which motivates the need for calibration.

Lemma 1 (Calibrating the KL Divergence for regression). Let P(Y|X) = N (uy (X), Xy (X)) be
the unknown target distribution, and {x,y;} | be a set of samples drawn from P(Y |X) for a given

. To learn the predicted distribution P(Y|X) = N (fiy (X), Sy (X)) through the KL Divergence,
we assume that the labels y; can be written as a distribution N (y;, ©2"”(X)). Then, the optimal
solution using the KL Divergence for the predicted covariance is Sy (X) = Sy (X) + P77 (X).
Consequently, if the target covariance is known and set as the prior, we have EA]y (X) =23y (X).

We refer the reader to the appendix, section (A.2)) for the proof.

Discussion. In perhaps what is an unintuitive result, the optimal solution learnt by neural networks for

iy (X)) is twice the target covariance. This is addressed by a simple calibration of the KL Divergence
which is achieved by dividing the trace and residual terms in Eq. [2]by two. As a result, not only is

the estimate of ¥y (X)) the target covariance, more interestingly in the general scenario where the
true covariance is not known, the KL Divergence estimates the average of the prior and the target
covariance. This introduces a notion of regularization on the predicted covariance which is anchored
to the prior covariance. Moreover, this average also makes the predicted covariance robust to outliers.

Impact of residuals. In general, the solution in Lemmal|[I]is reached only when the mean estimator
has converged to the true mean and when we observe multiple targets y; for the same observation .
This may not hold true in practical settings because: (1) samples in a batch are i.i.d, implying that the
same observation x is unlikely to be repeated, and (2) the mean estimator may not have converged.

In practice, for each sample in the batch, we take a noisy gradient step towards Sy (X ) = $87(X)+
(Iy (X) — )iy (X) — y)T (appendix/eq. If the residual term (iiy (X) — y) is large, the
gradient step due to the residual dominates over the prior covariance, moving us closer to Sy (X) ~
(y (X) — y)(jiy (X) — y)T. This residual matrix can be interpreted as a ‘covariance’ matrix
aligned along the line segment joining y and fiy (X) (Eq. 3; OLS estimate of the slope, [Soch
(2021))). However, this residual matrix desensitizes the mean estimator to variations along y and
1ty (X), slowing down optimization. This is because the ‘variance’ induced by the residual matrix
is large along y and [iy (X), and the gradient of the mean estimator is proportional to the inverse
of the covariance (appendix/eq[IT)). This is pictorially depicted in appendix/Fig. [7] We study this
phenomenon through Problem 1 in Fig. [l We observe that after a few iterations, the predicted
covariance is aligned along the means of the target and predicted distribution. This observation is a
result of the residual term appearing in the optimal solution. Moreover, while the KL Divergence
incorporates our prior knowledge of the covariance, the prior term is dwarfed in magnitude when
compared to the residual term. We also note increased optimization instability at higher learning rates
(appendix/fig. [8). While the KL Divergence leverages the prior covariance as a regularizer, it shares
drawbacks pertaining to the residual with the negative log-likelihood, motivating our analysis of the
2-Wasserstein distance.
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Figure 2: Visualizing convergence in bivariate regression (Section: . We observe that the
KL-Divergence and likelihood based methods: vanilla negative log-likelihood and Faithful (Stirn
et al., [2023)) result in unstable convergence due to the sensitivity of the methods to the residuals. In
comparison, the 2-Wasserstein based methods are more stable and accurate. This observation can
also be replicated when the predicted mean is initialized at the same location as the true mean, shown
in appendix/Fig@ (b) (Note: metrics NLL/ KL and 2-W are plotted in log-scale)

3.2 2-WASSERSTEIN DISTANCE

The Wasserstein distance is a metric for quantifying the distance between two probability distributions.
It defines the minimum “cost” required to morph one distribution into another. The 2-Wasserstein
distance measures the cost in proportion to the squared Euclidean distance. It is widely used in
optimal transport theory and generative modeling (Arjovsky et al., 2017; |L1 et al.,[2024), as it captures
both the shape and spread of distributions while penalizing long-distance transport more heavily.
Let Vi (p1,31), Na(pz, X2) be two multivariate normal distributions. The 2-Wasserstein distance
between them is given by

i1 — pal[? + Te[E) + X5 — 2(55/°5,55/%)1/2] 3)
This formulation, however, requires computing the root of a matrix, which typically involves eigen-
decomposition. Unfortunately, the eigendecomposition in popular deep learning frameworks can
potentially lead to unstable gradients (PyTorch,2024). If 3J; and X5 are commutative (implying ;35

=¥1,%;), then the 2-Wasserstein distance is reduced to W (N7, Na) = ||p1—pa >+ 512 =5/ 2 (2.
However, for two covariance matrices to be commutative, they need to share the same eigenbasis,
implying that the matrices differ only in the variance of the individual random variables. Fortunately,
Theorem [T]allows us to expand this formulation to non-commutative covariance matrices by linking
it to an upper bound on the true 2-Wasserstein distance.

Theorem 1 (2-Wasserstein bound for non-commutative covariances). Let N7 (u1, 1), Nao(pz2, X2)
be two multivariate normal distributions, where ¥1 and Yo are non-commutative matrices. Then, the
2-Wasserstein distance between the two distributions has an upper bound of

1/2 1/2
Wa(N1,N2) < [l — pol 3+ 115172 = 2312

where ||(.)|| represents the Frobenius norm of a matrix.

We refer the reader to the appendix, section (A.)) for the proof.

Significance. Deriving this bound allows us to extend the simplification for the 2-Wassertstein dis-
tance between two commutative covariance matrices to the more general scenario of non-commutative
matrices. The simplification allows us to directly supervise the covariance without the use of eigende-
composition, making optimization inherently more stable.
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Algorithm 1: Covariance Pseudo-Label
More

Input: € RM: Given observation @ important
Input: X’: All observations; ): All targets

Output: iy: Covariance pseudo-label for y

y1 = 2.95 ys = 3.05
// Mahalanobis distance @
Y = Cov(X)
// d(z,X,X).shape = #samples 51 @ . 1
du (2, X,5) = (X —2)S (X — )T v Yo=3 Yo
// k = Nearest neighbours @ @
dist, idx = bot tom—k (dus (z, X, ¥), k)

y3 = 3.1 ys =29
// 'Probabilistic’ interpret
dist = softmax (dist) ® Less
// y's for nearest neighbours yr = 1.24 important
y-nbr = Y [idx]
// 'Expected’ mean Figure 3: Pseudo-Label (Section Given x,
fiy = (dist * mean) . sum (dim=0) its pseudo label is the variance in the targets y
// 'Expected’ covariance corresponding to samples which are the nearest
¥, = dist * (y_nbr — fiy,)(ynbr — fig,)7 neighbors of xy. Samples closer to x are given
. more importance than samples further away.

return X,

We return to Problem 1 and visually compare the 2-Wasserstein distance with variants of the log-
likelihood (vanilla negative log-likelihood, Faithful (Stirn et al.| 2023))) and KL-Divergence. In Fig.[2]
we observe that in comparison to the likelihood based methods, the 2-Wasserstein is significantly
more stable since the covariance does not depend on the residual and the convergence of the mean
estimator. We also study the impact of warm-up (Sluijterman et al.,|2024), where the mean estimator
is allowed to converge before training the covariance estimator. To do so, we directly initialize the
mean of the predicted distribution to the target mean, and the covariance to identity. However, our
results in appendix/Fig[9](b) (appendix) show that these methods are still susceptible to instability
due to residuals. In contrast, the learning of the covariance in 2-Wasserstein does not depend upon
the residual, leading to stable convergence.

3.3 GENERATING PSEUDO-LABELS FOR THE COVARIANCE

In the absence of labels for the covariance, existing approaches rely on the residual of the mean
estimator as a signal to optimize the covariance. However, optimizing in this manner trades-off
accuracy with computational complexity. While having labels would allow us to directly optimize
the covariance estimator, obtaining annotations for the covariance is non-trivial. Therefore, we take a
step in this direction and explore the possibility of self-supervision for the covariance. To this end,
we propose a simple heuristic, which when combined with the 2-Wasserstein distance, is surprisingly
effective in supervising the covariance.

Intuition. The neighborhood of a sample has been widely used in uncertainty quantification
(Van Amersfoort et al., 2020; [Skafte et al.l [2019) and kernel methods (Hofmann et al., [2008]).
The key idea is to infer properties of a sample based on its neighborhood. TIC (Shukla et al., [2024)

learns the covariance through a learnt e—neighborhood of the input, COV(Y\X + €). We extend upon
this idea to obtain pseudo labels for the covariance. Specifically, we use two concepts:

1. The target y has a high (co-)variance if it exhibits large variations in a small vicinity of x.
2. The closer x; is to x;, the likelier it is that y; is a potential label for x;.

We quantify these concepts through the use of (a) the Mahalanobis distance, to measure the degree of
closeness between samples x; and x;; and (b) a probabilistic interpretation of this distance to weight
different targets y; as being a potential label for x;.

The Mahalanobis distance between two points u, v with respect to a covariance matrix 3 is

dar(u,v: %) = /(0 — V)T L(u - v). @)
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Figure 4: We sample from the ground truth sinusoidal y = |z| sin (27z) with o(x) = || and train
our networks using different objectives. The 2-Wasserstein distance trained using pseudo-labels is
able to converge to the accurate mean and variance faster since it does not depend upon residuals or
convergence of the mean estimator to learn the variance.

Unlike the Euclidean distance, the Mahalanobis distance accounts for the spread of the samples.
This is crucial since not only does the distance scale according to the alignment of u, v w.r.t. the
covariance, but it also scales based on the spatial extent of the samples.

Therefore, we define ¥ = Cov(X) to quantify the alignment and scale of all the samples X. We
compute the pairwise Mahalanobis distance between the given sample and all other samples, choosing
the fop-k nearest neighbors and their associated distances. This also includes the given sample itself.
Next, we compute the softmax over these distances, giving them a probabilistic interpretation: the
closer the sample, the higher the likeliness of it being the true mean. The pseudo label covariance uses
this probabilistic interpretation to compute the expected mean and covariance over the neighboring
targets. A concise description of these steps is available in Algorithm [T}

4 EXPERIMENTS

How effective are the 2-Wasserstein bound and pseudo-labels in deep heteroscedastic regression?
We study this question through a series of synthetic and real world datasets for regression. We
use the same experimental setup as |[Shukla et al.| (2024)) which studies the predicted mean and
covariance on univariate sinusoidals, synthetic multivariate data, UCI Machine Learning repository
(Markelle Kelly) and 2D human pose estimation (Andriluka et al.,|2014; Johnson & Everingham,
2010;2011) datasets. We provide a detailed description of the experimental setup and implementation
details in the appendix (B]. For all our experiments, we set the nearest neighbors hyperparameter for
the pseudo label algorithm to ten times the dimensionality of the target. We compare our approach
with popular and state-of-the-art methods in deep heteroscedastic regression, which happen to be
different variants of the negative log-likelihood. The methods consist of the vanilla negative log-
likelihood, —NLL (Seitzer et al., [2022), Faithful heteroscedastic regression (Stirn et al.l [2023]),
Empirical-Bayes (Immer et al.,2023) and the Taylor Induced Covariance (Shukla et al.| [2024). In
addition to using the mean square error and the negative log-likelihood as metrics, we introduce
the KL-Divergence and the 2-Wasserstein distance as measures when the ground truth covariance
is known. We also use the Task Agnostic Correlations metric introduced in (Shukla et al., 2024) to
evaluate the covariance through its learnt correlations. Finally, we also report the additional memory
consumed and the time required for each method to run for different experiments.

4.1 SYNTHETIC DATA

Univariate. Given samples from a varying amplitude sinusoidal, the methods are compared on
their ability to learn the underlying mean and heteroscedastic variance. We specifically compare
the negative log-likelihood and faithful heteroscedastic regression. In Fig. il we observe that the
predicted covariance is overestimated because of the lack of synergy between the mean and variance
estimator. While the mean estimator assumes homoscedastic unit variance, the variance estimator
models heteroscedasticity. Although the TIC formulation stabilizes convergence, unfortunately,
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Figure 5: (Multivariate: Metrics.) We simulate multivariate data with heteroscedastic covariance
of increasing dimensionality (top row: 8, bottom row: 24). The metrics reflect that modelling
heteroscedasticity is challenging without annotations, with some popular approaches diverging away
from the true distribution. Our results highlight the potential of the 2-Wasserstein bound trained with
pseudo labels for improved convergence.

Table 1: (Multivariate: Computational Costs). While TIC is able to accurately model the covariance
in comparison to other likelihood based approaches, it has a significantly increased computational
cost. The 2-Wasserstein (bound) has a significantly lower cost without sacrificing accuracy.

(a) Compute time (in milliseconds)

Dimensions — 4 8 12 16 20 24 28 32
Beta-NLL, Diagonal 2.88 3.15 2.17 2.06 1.83 1.74 2.00 2.04
Faithful, NLL 4.56 4.74 3.94 3.69 3.76 3.66 4.08 4.85
NLL: TIC 56.60 56.81 59.28 9554 197.58 44858 943.79 1961.08
KL-Divergence 4.79 5.06 4.05 4.05 4.10 3.94 4.81 5.24
2-Wasserstein 5.10 5.43 4.47 4.38 431 4.14 4.88 5.20

2-Wasserstein (Bound)  4.59 4.79 3.72 3.73 3.64 3.56 391 4.72

(b) Compute memory (in megabytes)

Dimensions — 4 8 12 16 20 24 28 32
NLL: TIC 11.68 120.84 52322 1543.77 3625.51 7333.84 13313.31 22398.00

2-Wasserstein (Bound) 5 45 g0y 710 2951 5451 11173 201.51 339.55
+6 other methods

convergence itself is slow. The KL Divergence and vanilla negative log-likelihood suffer from large
residuals which prevents further optimisation. In comparison, the 2-Wasserstein distance combined
with the pseudo-labels is able to converge faster while being accurate. An additional study comparing
the methods on different variations of the sinusoidal is presented in the appendix (Fig: [T0).

Multivariate. Unlike in our real world experiments, synthetic datasets allow us to define the ground
truth covariance to evaluate different approaches. We use the same setup as previous work, which
defines the multivariate target N ( Hy|x, Xy x T2z x ) as a function of the input with heteroscedastic
variance. X and Y are jointly distributed following the normal distribution, with Z being a variable
conditionally independent of Y and a function of X. In addition to evaluating different methods
through optimization metrics, we also compare them through their computational requirements
(memory and time). We vary the dimensionality of our targets ranging from 4 to 32, and report
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Table 2: UCI Regression. The 2-Wasserstein distance using pseudo labels for supervision accurately
estimates the mean and covariance while having low compute requirements. In contrast, the negative
log-likelihood and KL Divergence sub-optimally converge due to large residual errors. While methods
such as Faithful encourage convergence by using the mean squared error, the mean and covariance
inconsistently model the residual leading to sub-optimal covariance estimates. While TIC accurately
models the covariance, it has high computational costs and lags in mean estimation.

(a) Mean Square Error (MSE)

Method Abalone  Air  Appliances Concrete Electrical Energy Gas  Naval Parkinson Power Red Wine White Wine
NLL 3.74 17.92 53.49 4.57 9.28 420 1098 10.34 5451 9.09 8.94 9.40
KL-Divergence 1.90 14.70 90.90 3.84 15.57 420 10.16 12.39 59.39 9.97 7.26 8.17
Beta-NLL 0.35 1.58 3.69 2.02 3.62 1.87 1.50  0.72 8.11 3.06 2.15 343
NLL: Diagonal 1.32 8.90 3791 4.28 6.58 3.99 573 9.60 27.35 6.52 5.75 6.01
Faithful 0.16 0.33 0.20 0.72 0.89 0.41 045  0.06 0.29 0.61 0.70 0.78
NLL: TIC 0.21 0.82 4.45 0.96 0.91 0.61 0.67 136 8.89 0.66 0.97 0.92
2-W (Bound) 0.16 0.34 0.20 0.72 0.90 0.41 045 0.07 0.30 0.61 0.71 0.79

(b) Negative Log-Likelihood (NLL)

Method Abalone  Air  Appliances Concrete Electrical Energy  Gas  Naval Parkinson Power Red Wine White Wine
NLL 3589  56.98 245.99 28.50 63.15 29.85 41.03 3818 262.59 49.37 46.58 58.06
KL-Divergence 1827  83.18 413.96 38.23 73.87 2850 3438 4924  257.36 45.49 61.96 48.66
Beta-NLL 9.80 29.38 60.30 20.45 35.44 20.15 2026 20.81 59.98 27.64 34.05 30.95
NLL: Diagonal 18.61 80.86 369.67 46.82 65.73 36.09 47.06 7747 238.71 51.60 77.98 67.21
Faithful 11.86  33.31 65.15 17.42 3473 1941 2247 2770 57.04 24.08 2434 26.01
NLL: TIC 4.71 16.46 30.41 11.36 14.97 1206 996 14.99 42,52 9.31 14.66 12.33
2-W (Bound) 6.32 13.58 22.72 8.96 15.57 8.85 1049 11.44 21.48 1131 11.65 12.12

(c) Compute time (in milliseconds)

Method Abalone  Air  Appliances Concrete Electrical Energy  Gas  Naval Parkinson Power Red Wine White Wine
NLL 528 5.45 5.85 5.70 7.53 5.84 523 644 7.31 5.53 5.95 5.88
Beta-NLL 4.71 4.58 4.98 4.35 5.20 4.41 462 5.8l 6.70 4.81 6.83 4.41
Faithful 5.28 5.35 5.62 5.73 6.02 5.03 503  7.02 6.47 5.81 7.40 5.05
NLL: Diagonal 4.50 4.49 4.84 4.67 5.13 4.32 438 5.84 4.98 4.61 5.77 4.36
NLL: TIC 45.61 5322 68.55 47.46 49.37 47.57 45.09 56.04 59.25 49.74 65.25 45.23
KL-Divergence 5.30 6.65 6.08 5.47 8.09 5.16 5.14 685 9.15 5.36 6.93 5.23
2-W (Bound) 4.51 5.83 517 4.51 5.36 4.50 438 523 7.16 4.51 5.28 4.48

(d) Compute memory (in megabytes)

Method Abalone  Air  Appliances Concrete Electrical Energy  Gas Naval  Parkinson Power Red Wine White Wine
NLL: TIC 11.22  90.20 820.85 1.09 71.35 24.13 3399 108.59 637.74 41.57 40.94 41.57
2-W (Bound) 3.10 9.02 25.30 1.09 7.75 4.63 5.56 9.02 23.05 5.56 5.56 5.56

+6 other methods

our results in Fig. [} [TT] (appendix), and Table[T] We observe that while TIC facilitated improved
covariance estimation, this resulted in slower convergence of the mean estimator. This trend is evident
as the dimensionality increases. Moreover, TIC requires significantly more computational resources.
In contrast, the 2-Wasserstein bound is significantly cheaper to compute while maintaining accurate
convergence of both, the mean and covariance estimator.

4.2 REAL DATASETS

UCI Regression. We evaluate mean and covariance predictions by performing the same study
as [Shukla et al.| (2024) on regression datasets from the UCI Machine Learning repository. We
standardize each dataset to have zero mean and unit variance. We randomly choose 25% of the
features as observations and the remaining 75% as the targets, adding considerable heteroscedasticity
in the data. We conduct five trials and report the mean, highlighting top-performing methods which are
statistically indistinguishable. We evaluate different methods not only using performance on various
metrics (Table 2] appendix/Table[3) but also through computational costs. While TIC outperforms
other likelihood based baselines significantly in our TAC and NLL evaluation, this comes at the cost
of significantly higher computational requirements. Although compute efficient methods such as
Faithful leverage the mean squared error to accurately converge to the mean, it does not accurately
converge on the optimal covariance. In contrast, the 2-Wasserstein bound accurately converges in
both, the mean and covariance without additional computation overhead. Moreover, the vanilla
2-Wasserstein formulation exhibited significant training instabilities on certain datasets such as
superconductivity, motivating the use of the proposed bound which is stable to train.
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Figure 6: (Human Pose: Improving state-of-the-art heteroscedastic pose estimation) We explore a
hybrid training strategy by combining the 2-Wasserstein bound with the negative log-likelihood. We
train ViTPose for the first 20 epochs using the bound and then switch to negative log-likelihood. We
observe that the hybrid approach retains best of both the worlds: improved mean and covariance
estimates, as measured by the mean square error and the log-likelihood. (Different learning rates are

explored in Fig. [I3)

We also study the impact of warmup (Sluijterman et al., 2024) in the training process, where we train
the mean estimator for half the number of epochs, and jointly train the mean and covariance for the
remaining half. We share our results in appendix/Fig. [I2] Noticeably, the training diverges due to
the effect of residuals coupled with incorrect covariance estimates, effectively nullifying the use of
warm-up.

Human Pose Estimation. We perform experiments on 2D human pose estimation using the same
setup as previous work. We use the ViTPose (Xu et al.,2022) architecture as our base model, which
is a popular vision transformer model for human pose estimation. Since we are introducing the
covariance in the training process, this also requires us to modify the covariance in response to
image and keypoint augmentations. Popular augmentations use affine transformations, which linearly
transform the keypoints. Let Y = RY represent the transformed keypoints using the matrix R. The

new covariance underlying Y is £y (X) = RSy (X) RT.

With our experiments on human pose, we introduce a hybrid training regime using the 2-Wasserstein
bound and the negative log-likelihood. This is because our pseudo-labels, which are computed based
on a low-dimensional representation of the input images, may not necessarily be accurate. We show
that combining the bound with the negative log-likelihood results in improved convergence. We
show our results in Fig. [6|and Fig. [I3] (appendix), where we improve the negative log-likelihood
performance through the hybrid training strategy. We use the TIC parameterization and train our
models using the pseudo label based 2-Wasserstein bound for the first 20 epochs, essentially similar
to pre-training. After this, we switch to the negative log-likelihood which provides more freedom to
explore the optimal covariance. Our results show that the hybrid approach outperforms its individual
components and retains both: a low mean square error and low likelihood.

5 CONCLUSION

We study deep heteroscedastic regression, noting the optimization challenges present due to the
lack of annotations for the covariance. Therefore, we study methods for self-supervision, which
requires us to define (1) a framework for supervision, and (2) a method to obtain pseudo-labels for
the covariance. We critically study the KL-Divergence, highlighting the need for calibration and
noting its susceptibility to residuals. Next, we study the 2-Wasserstein distance, proposing a bound
on the latter that is stable to optimize. Finally, we propose a simple neighborhood based heuristic
which is effective in providing pseudo-labels for the covariance. Our experiments show that, unlike
existing approaches, the use of the 2-Wasserstein bound and pseudo labels yields accurate mean and
covariance estimation while remaining computationally inexpensive. Our experiments on human pose
show the potential for a hybrid approach, where combining the 2-Wasserstein and NLL frameworks
enables superior performance compared to using either method alone.

10
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REPRODUCIBILITY STATEMENT

We will make the code publicly available upon acceptance and before the conference. The code will
come complete with a docker image and documentation for reproducibility. We have taken sufficient
care to perform multiple trials and report the mean and standard deviation.
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A APPENDIX

A.1 PROOF OF THEOREMIII

Proof. We begin with the definition of the 2-Wasserstein distance (Definition @ First, we focus on
rewriting X7 + X9 by adding (and subtracting) new terms to get

DIFIRED YN 3LV SIVRID 3T DUAED DY) DTN yilie yivi
The advantage of introducing new terms is to write >; + Yo as
By = (512 SR ST sl

Substituting this in the definition of the 2-Wasserstein distance, we get
Wa(Ni, Na) = [l — a2 + Tr | (512 = 232 (212 = 5577 + 31255/
NED YA VA 10 Y0 Y1 y Al RV I

We proceed by noting that the Trace operator is linear; implying Tr(A + B) = Tr(A) + Tr(B),
allowing us to analyse the terms separately. Next, we note that the Frobenius norm of a matrix is
related to its trace by: ||A||% = Tr(AAT). Therefore,

1/2 1/2 xa1/2 1/2 1/2 1/2
Tr[(2)7 - 2217 - 5T = 1227 - 51 (©)
Since the Trace operator is cyclic; implying Tr(AB) = Tr(BA), we have
Tr(S)/25)? + £3/251/?) = 2Tr()/25)/?) )

Substituting Egs. [f|and[7]into Eq. [5] we have

Wa(N1,N2) = |l — ol ? + |[51% = 22212 4+ 2Tr (212582 — (222,58 3)12| ()

We note that in the trivial case where > and X5 are commutative, the trace is reduced to zero.
However, what happens in the general case when the covariance matrices are not commutative? We
address this through proposition [T} which shows that

Te[(25°8, 25/ %)1/?] > Tr(2/°%)?).
Therefore, on substitution the trace terms cancel out, leading to a familiar expression wrapped in an
inequality:
WaN1,N2) < [l — pal P+ 1122 = 25} ©)
O

Proposition 1. Let A, B be any two positive definite matrices not necessarily commutative. Then,
Tr[(A1/2BA1/2)1/2] > Tr(Al/QBl/2)

Proof. Let X = A'/2B'/2, consequently we need to prove that Tr[(XX7)¥/?] > Tr(X). Let
X = PU be the polar decomposition of X where P is a positive definite matrix and U is a orthogonal
matrix since X is a real matrix. On substitution, we have Tr[((PU) (PU)T)l/Q] > Tr(PU). Since P

by definition is symmetric and U is orthogonal, we need to show that Tr [P] > Tr(PU).

Let P = QAQT be the eigendecomposition of P where () is the orthonormal basis and A is
the diagonal matrix consisting of the eigenvalues ;. Since the trace is the sum of eigenvalues
of a matrix, we need to show that Zl A > Tr(QAQTU ). Since the trace is cyclic, we have
YA > Tr(AQTUQ) = Tr(AK), where K = QTUQ is an orthogonal matrix by virtue of being
a product of orthogonal matrices. Since A is a diagonal matrix, Tr(AK) = >, A\iKC;;. Moreover,
as IC is an orthogonal matrix, K;; <= 1. As a consequence, >, \; > >, \;KCj;, concluding our
proof. O
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Figure 7: Residuals and sub-optimal convergence (Section: [3.1)). The residual can be treated as
a vector which approximately points along the line segment joining the predicted mean and the
target mean. However, if the residual is large, we observe that it influences the predicted covariance
significantly. Consequently, the inverse covariance is aligned orthogonal to the residual vector. Since
the gradient of the mean estimator is directly proportional to the inverse (Eq. [T1), the gradient as a
whole is desensitised to move towards the target. In fact, the inverse magnifies gradient updates in
the direction orthogonal to the residual vector, potentially leading to oscillations.

A.2 PROOF OF LEMMA[T]

Proof. The optimal solution for Ly (X) involves minimizing
N
> DN (s, ZP7 (0) [| N (v (X), By (X)),
i=1
Using the definition of the KL Divergence (Eq. [2) and dropping the non-parametric terms, we get

N S [ SR OB (0) + (i (X) — 90 S5 (X) i (X) — )~ S5 (X)) 10)

Setting the derivative w.r.t the predicted mean fiy (X) to 0, we get

1 Lo R
7 2 S )@y (X) — ) =0 (11)
i=1
N
iy (X) =) v (12)
=1

This is indeed the same solution as minimizing the negative log-likelihood, and therefore fiy (X)
predicts the correct mean. However, setting the derivative w.r¢ the predicted precision E;l (X) gives

us three terms of the form (1) Tr(AB), (2) bT Aband (3) In | A|, where A is the shorthand for precision
and B represented different terms. The derivative of the form Tr(AB) w.r.t A is BT (Eq. 100 in

(Petersen & Pedersen, 2012)). Here, B is the prior term Eg‘}rior)(X ). Since the prior is symmetric,
the derivative of term 1 is "°”(X). The derivative of the form bT Ab is bb” (Eq. 72 in (Petersen &
Pedersen, 2012)). Therefore, the derivative of term 2 is (fiy (X) — v;)(1y (X) — y;)”. Finally, the

derivative of the form In |A| is Tr(A~!). Therefore, the derivate of term 3 is ¥y (X). By combining
the three terms, the derivative of Eq. @is

N
37 [0 4 (i (X) — 90 (X) — 90)" — Sy (X)] =0
i=1

N
- rior 1 ~ ~
Sy (X) =P )(X)‘FNZ(MY(X)—yi)(MY(X)—yi)T (13)
=1
Sy (X) = P(X) + By (X) (14)
O

Note: In comparison, the optimal value of the covariance using the negative log-likelihood is
S N o~ ~
Sy (X) = 5 Xl (Ay (X) — 90) (Ay (X) — 9:)"
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B EXPERIMENT DETAILS

We use separate networks to estimate the mean and covariance, with no overlapping parameters,
following the results of Stirn et al.|(2023). This is also advocated for by |Sluijterman et al.[(2024). The
architectures of these network are described in the different subsections. The mean and covariance
have the same architecture with the exception of the final layer. Unless specified, we do not use warm-
up in our experiments. All our methods are trained using the AdamW optimizer, which implicitly
imposes a weight decay of 0.01 on the parameters.

B.1 SYNTHETIC DATA

Univariate. We draw 50,000 samples for each of the three different sinusoidal distributions: (1) y =
|| sin (27z) (2) y = (5 — |z]) sin (27x) (3) y = 5 sin (27z), all of them with heteroscedastic noise
o(z) = |z| (2). We train a fully connected feed-forward neural network with batch normalization
(loffe & Szegedyl 2015) and tanh() activation to learn the mean and variance. Specifically, we use
four hidden layers with a latent dimension of fifty. Every alternate layer is followed by the batch
normalization layers. The full results are shown in Fig. [I0]

Multivariate. The dimensionality of the input and target, « and g is varied from 4 to 32 in steps of 4,
and the mean and standard deviation are reported over ten trials for each dimension. Depending on
the dimensionality, between 4000 and 20000 samples are drawn. Similar to our univariate setup, we
train a fully connected feed-forward neural network with batch normalization but ELU() activation to
learn the mean and covariance. Specifically, we use ten hidden layers with a latent dimension of that
is the dimensionality of the input squared. The idea is that the size of the network increases as the
dimensionality of the network increases to account for increasing complexity. Every alternate layer is
followed by the batch normalization layers. The full results are shown in Figure[TT] We report the
computational requirements in Table[T}

B.2 UCI REGRESSION

We follow the experimental setup in|Shukla et al.|(2024). For each of the twelve datasets, 25% of the
features are randomly selected as inputs, with the remaining 75% used as multivariate targets during
run-time. Although some of the resulting input-target pairings may yield sub-optimal performance
in prediction, this presents a valuable test for the covariance estimator, which needs to identify
correlations even in challenging scenarios. Moreover, the random assignment of features guarantees
that our experiments are unbiased, as the selection process is not manipulated. All datasets are
standardized to a mean of zero and a variance of one. We reuse our neural network architecture from
the multivariate experiments. We perform five trials for each dataset and report the mean and standard
deviation in Table 3l

B.3 2D HUMAN POSE ESTIMATION

ViTPose (Xu et al.,|[2022) is a recent state-of-the-art model that adapts vision transformers (Dosovit{
skiy et al.| [2021)) for the task of human pose estimation. We use the base version (ViTPose-B) for our
task Additionally, we use soft-argmax (L1 et al.,|2021bza) which is applied to reduce the heatmap,
initially a tensor of shape N x 64 x 64, to a 1D vector of length 2V, where /N is the number of joints
in the human pose. To obtain the input for the covariance estimator, we use residual connections
which involves downscaling and upscaling of the 1-D features predicted by the backbone network.
The output of the downscaling is used to predict the covariance.

We perform our experiments on single-person datasets like MPII (Andriluka et al.| [2014)) and
LSP/LSPET (Johnson & Everingham, 2010;|2011), with the latter focusing on poses related to sports.
The analysis is performed by merging the MPII and LSP-LSPET datasets to increase the sample size.
The pose estimator is trained using the Adam optimizer with a "'ReduceLROnPlateau’ learning rate
scheduler for 100 epochs, with the learning rate set to 1e-3. Two augmentations, Shift+Scale+Rotate
and horizontal flip, are applied. For details on the specific implementation, readers are referred to the
code.
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C COMPILATION OF RESULTS
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(a) We observe that the KL Divergence can act as a regularizer over the learnt covariance, thereby stabilizing
optimization. However, the covariance for both the methods is dominated by the residual term, slowing down

convergence.
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(b) At a higher learning rates (le-1), both the Negative Log-Likelihood and the KL Divergence oscillate around
the true distribution resulting in unstable optimization.

Figure 8: Bivariate Normal Distribution (A) Impact of residuals in optimization (Section: . In
addition to feature granularity (Seitzer et al.,[2022), we show that a source for subpar convergence
arises from the susceptibility of the negative log-likelihood and KL-Divergence to residuals in

optimization.
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(a) We observe that the KL-Divergence and likelihood based methods: vanilla negative log-likelihood and
faithful result in unstable convergence. In comparison, the 2-Wasserstein based methods are
much more stable and accurate since they are not affected by residuals nor is the covariance affected by the
convergence of the mean estimator.
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(b) If we initialize the predicted mean to the true mean, we still observe unstable convergence for the divergence
and likelihood based methods due to perturbations caused by residuals (Section: @

Figure 9: Bivariate Normal Distribution (B) Visualizing convergence in bivariate regression
(Section: [3.2). We perform analysis on two settings (a) the mean and covariance of the predicted
distribution are initialized away from the target (b) the mean of the predicted distribution is initialized

at the mean of the target.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

—— 2-Wasserstein

f(x)

f(x)

— Natural Laplace

f(x)

—— Natural Laplace |

Figure 10: Univariate. We define the ground truth sinusoidals as (Top) y = |z| sin (27z) with
o(x) = |z| Middle) y = (5 — |z|) sin (27z) and o(z) = |z| (Bottom) y = 5 sin (27x) and
o(z) = |z|. Given samples from the ground truth, the networks are trained to learn the underlying
distribution using different objectives.
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Figure 11: (Multivariate). We simulate multivariate data with increasing dimensionality (top row:
12, bottom row: 32, middle rows: increment of four ). An increase in dimensionality causes the mean
estimator to converge slow (or diverge) for likelihood and KL-Divergence. The 2-Wasserstein bound

is succesfully able to learn the mean and covariance across all dimensions.
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Figure 12: (Warm-up, UCI) We explore training deep heteroscedastic regression models using
warm-up as proposed in Sluijterman et al.| (2024). We train only the mean estimator for half the
training epochs, and jointly train the mean and covariance estimator for the remaining half. We
observe a trend across datasets that the training is unstable and momentarily diverges for the negative
log-likelihood and KL-Divergence which are especially sensitive to residuals and incorrect covariance
estimates. This trend is similar to our observations for the two methods on our bivariate normal
distribution experiments (Fig. [0). While we plot for six datasets here, this trend is representative of
all datasets.
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Figure 13: Human Pose. (Improving state-of-the-art heteroscedastic pose estimation) (Top row:
learning rate: le-2, Middle row: learning rate: le-3, Bottom row: learning rate: 1e-4) We explore a
hybrid training strategy by combining the 2-Wasserstein bound with the negative log-likelihood. We
train ViTPose for the first 20 epochs using the bound, and then switch to negative log-likelihood. We
use the TIC parameterization for the covariance which when trained with the negative log-likelihood,
showed state-of-the-art performance in heteroscedastic pose estimation. We observe that using the
hybrid approach retains the competitiveness of the 2-Wasserstein bound on the mean square error,
and the competitiveness of the negative log-likelihood on the negative log-likelihood metric.
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