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ABSTRACT

Recently, Al-generated image detection has gained increasing attention, as the
rapid advancement of image generation technologies has raised serious concerns
about their potential misuse. While existing detection methods have achieved
promising results, their performance often degrades significantly when facing fake
images from unseen, out-of-distribution (OOD) generative models, since they pri-
marily rely on model-specific artifacts and thus overfit to the models used for
training. To address this limitation, we propose a novel representation, namely
Semantic-Aware Reconstruction Error (SARE), that measures the semantic differ-
ence between an image and its caption-guided reconstruction. The key hypoth-
esis behind SARE is that real images, whose captions often fail to fully capture
their complex visual content, may undergo noticeable semantic shifts during the
caption-guided reconstruction process. In contrast, fake images, which closely
align with their captions, show minimal semantic changes. By quantifying these
semantic shifts, SARE provides a robust and discriminative feature for detect-
ing fake images across diverse generative models. Additionally, we introduce
a fusion module that integrates SARE into the backbone detector via a cross-
attention mechanism. Image features attend to semantic representations extracted
from SARE, enabling the model to adaptively leverage semantic information. Ex-
perimental results demonstrate that the proposed method achieves strong general-
ization, outperforming existing baselines on benchmarks including Genlmage and
ForenSynths. We further validate the effectiveness of caption guidance through a
detailed analysis of semantic shifts, confirming its ability to enhance detection
robustness.

1 INTRODUCTION

In recent years, image generation technologies, such as Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014; Zhu et al., 2017; Brock et al.l 2019} |[Karras et al., [2018]) and
Diffusion Models (DMs) (Ho et al., [2020; Song et al., [2021; Rombach et al.l |2022; |[Nichol et al.,
2022), have made remarkable progress, enabling the synthesis of highly realistic images that are
often indistinguishable from real images. This realism has raised growing concerns about poten-
tial misuse, particularly in generating harmful or deceptive content (Ferreira et al., [2020; Juefei-Xu
et al.| 2022). To address these risks, developing reliable methods for detecting Al-generated images
has become increasingly important.

A common approach in existing detection methods is to train a binary classifier using real and fake
images sourced from a finite set of generative models available during training (Bayar & Stamm,
2016; Wang et al., 2020; Liu et al., 2020; |Wang et al.,|2023)). While these detectors typically exhibit
strong performance when test images are generated by the same models used during training, their
performance often drops significantly in real-world scenarios, where they inevitably encounter fake
images from unseen generative models that are not included in the training data (Zhang et al., 2019
Luo et al., [2021; |Yan et al.l 2023)). To ensure robustness in practical deployment, it is essential
to develop detection methods that can generalize effectively to such unseen and out-of-distribution
(OOD) generative models.
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Figure 1: Comparison of caption-guided reconstructions for real and fake images. Real images,
whose captions often fail to fully capture their complex visual content, undergo noticeable semantic
shifts during caption-guided reconstruction. In contrast, fake images, which align closely with their
captions, tend to exhibit minimal semantic changes.

Recent studies have proposed several strategies to address the generalization challenges inherent in
generated image detection. These strategies include training methods such as reconstruction-based
learning (Wang et al., 2023} [Luo et al.l 2024} |Chu et al., |2025) and data augmentation (Chen et al.,
2024), as well as architectural approaches (Ojha et all |2023; Wu et al 2023 [Tan et al., [2025)
that leverage a large pre-trained model like CLIP (Radford et al., |2021). Despite these advances,
the robustness of existing methods remains limited, as they primarily focus on identifying visual
artifacts introduced during the generative process (Frank et al.| [2020; |Wang et al.,|2020; |2023}; |Chen
et al., [2024)). Due to the distinct characteristics of different generative models, such artifacts are
inherently model-specific and fail to generalize across diverse models (Luo et al.|[2021}; Corvi et al.,
2023} |Ojha et al., 2023)). As a result, approaches that rely on these artifacts tend to overfit to the
models used for training, which leads to degraded performance in OOD scenarios.

To overcome these limitations, we explore a fundamental property commonly observed in fake im-
ages. Prior work (Sha et al.,|[2023) has shown that the similarity between fake images and captions
generated by an image-captioning model is typically higher than that of real images. Real images
contain complex, fine-grained details that short captions cannot cover, whereas fake images include
only the elements explicitly specified in the user’s text prompt. Inspired by this observation, we
hypothesize that the relationship between an image and its caption reflects a general characteristic
of fake images, providing a robust signal for detection across diverse generative models.

In this paper, we propose Semantic-Aware Reconstruction Error (SARE), a novel representation
for detecting Al-generated images that measures the semantic difference between an image and its
reconstruction. Specifically, we introduce a caption-guided reconstruction pipeline to effectively
leverage the relationship between an image and its caption in the detection process. The key idea
is that real images, which often exhibit low similarity to their captions, may undergo noticeable se-
mantic shifts during caption-guided reconstruction. In contrast, fake images, whose content is well
captured by their captions, show minimal semantic shifts. As shown in Figure[T] the real image is
reconstructed into a noticeably different dog since the caption provides only a coarse description
(e.g., “a dog running in the snow”’) without capturing fine details such as the dog’s breed, pose, or
background. Conversely, the fake image of a golf ball remains largely unchanged after reconstruc-
tion, as its content can be sufficiently described by a simple caption. By capturing these fundamental
differences between real and fake images, SARE provides a discriminative and generalizable feature
for detecting fake images across diverse generative models. Additionally, we design a fusion mod-
ule that integrates SARE into the backbone detector via a cross-attention mechanism. The original
image features attend to the semantic representations extracted from SARE, allowing the model to
adaptively incorporate semantic information.

We validate the effectiveness of SARE through extensive experiments on the Genlmage (Zhu et al.|
2023)) and ForenSynths (Wang et al.,|2020)) datasets. The proposed framework significantly improves
the performance of the backbone model across both seen and unseen generators, achieving the best
average results compared to existing detection methods. The results demonstrate the robustness of
SARE in OOD scenarios, confirming its strong generalization to fake images from diverse generative
models.
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2 RELATED WORK

2.1 DETECTION BASED ON IMAGE CAPTION

Caption-based detection methods explore the use of image captions as a cue for detecting generated
images. DE-FAKE (Sha et al., 2023) finds that generated images tend to align more closely with
their captions compared to real images. Based on the observation, it adopts separate encoders for im-
age and caption to exploit the relationship between them. Following this direction, C2P-CLIP (Tan
et al.l 2025) proposes a method that injects category-level prompts to enhance detection perfor-
mance. LASTED (Wu et al.| [2023) introduces a language-guided contrastive learning framework
that leverages textual labels to improve generalization.

2.2 DETECTION BASED ON IMAGE RECONSTRUCTION

Reconstruction-based detection methods utilize a pre-trained diffusion model to reconstruct the in-
put image and analyze the differences between the original and reconstructed images. DIRE (Wang
et al.,[2023)) introduces reconstruction error as the discriminative feature for detection, based on the
assumption that fake images can be reconstructed more accurately than real images. To improve
efficiency, LaRE (Luo et al., [2024) computes this reconstruction error in the latent space using a
single-step denoising process, substantially reducing computational cost while preserving detection
performance. DRCT (Chen et al.| |2024), rather than relying on reconstruction error, treats recon-
structed images as hard samples and adopts a contrastive learning framework to facilitate discrimi-
native feature learning. Fakelnversion (Cazenavette et al., 2024)) not only exploits the reconstructed
images but also incorporates additional feature maps derived from caption-conditioned DDIM in-
version (Song et al., [2021)), where captions are mainly employed to stabilize the inversion and re-
construction process. In contrast, our method SARE explicitly leverages the relationship between
an image and its caption. Motivated by the observation that fake images tend to exhibit higher simi-
larity to their captions than real images, SARE quantifies the semantic difference between the image
and its caption-guided reconstruction. This semantic-aware discrepancy serves as a robust detection
signal, enabling SARE to generalize effectively across diverse generative models.

3 PROPOSED METHOD
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Figure 3: Overview of the SARE framework. Our method reconstructs the input image conditioned
on its caption using the Stable Diffusion model with classifier-free guidance. SARE is computed
as the difference between the input and reconstructed image, and is incorporated into the detection
process through a cross-attention module that leverages image features as queries and SARE features
as keys and values. The pixel values of the SARE are scaled by 2 for clearer visualization.

including the reconstruction model and unseen generators, exhibit distinctive characteristics and
traces. From this observation, we suggest that methods relying on visual artifacts from a specific
generation process may struggle to generalize in OOD scenarios. This limitation highlights the need
for more generalizable detection cues that can perform reliably across diverse generative models.

3.2 SEMANTIC-AWARE RECONSTRUCTION ERROR

We propose Semantic-Aware Reconstruction Error (SARE), a novel detection feature designed to
enhance generalization in Al-generated image detection. The hypothesis of SARE is that the re-
lationship between an image and its caption may reflect fundamental differences between real and
fake images, and thus serve as a generalizable detection cue. SARE aims to effectively leverage
this property by introducing a caption-guided reconstruction framework. The framework consists
of three main steps: (1) image captioning, (2) caption-guided image reconstruction, and (3) SARE
extraction.

Image Captioning For a given image x, we utilize a pre-trained image captioning model to gen-
erate a descriptive caption C. This caption C is used as the text condition for the subsequent recon-
struction process.

Caption-guided Image Reconstruction Given the caption C, we reconstruct the input image x by
using a pre-trained text-conditional diffusion model. Specifically, we leverage the Stable Diffusion
model (Rombach et al., |2022)) with classifier-free guidance (Ho & Salimans, 2021). The input
image x is first encoded into a latent representation zy using the Variational Autoencoder (VAE)
encoder (Kingma & Welling, 2014)). The forward process then adds Gaussian noise to zo following
a predefined noise schedule. The noisy latent at a given timestep ¢ is computed as:

2t = VQgzo + V1 — aue, (D

I), and a; = [[_, os. The strength parameter determines the amount of noise
| strength X Tynax |»

where € ~ N (0,
added during reconstruction. The number of forward diffusion steps is setto 7' =
where Th,.« is the total number of diffusion steps.

Starting from the noisy latent zr, the reverse process aims to obtain Zy through an iterative denois-
ing process conditioned on the caption C. At each denoising step, the noise prediction network
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€g(zt, 1, ¢) estimates the noise €, where ¢ = 1)(C') denotes the caption embedding obtained from the
CLIP text encoder (Radford et al., 2021). We adopt classifier-free guidance, which combines the
conditional and unconditional noise predictions as follows:

eg(zt,t, ¢, D) = weg(ze,t,¢) + (1 — w)eg(zs, t, ), 2)

where w is the guidance scale and @ = (“”) denotes the null text embedding. The denoising
process using DDIM sampling (Song et al., 2021)) can be represented by:

zt — 1 —azep(ze,t, ¢,
Zo1 = 1~ \/toT( t ) + V1 — a6, 3)
t

where a;_1 = % and € ~ N(0,1), fort =T, ..., 1. After T denoising steps, the final latent 2y is
obtained and decoded by the VAE decoder to produce the reconstructed image 2.

SARE Extraction Once we obtain the original image x and the reconstructed image &, we com-
pute the SARE by measuring the difference between the two images. SARE is defined as follows:

SARE(z, %) = |z — 2, 4)

where | - | denotes the absolute value. SARE quantifies the semantic changes introduced during the
caption-guided reconstruction process. Since real images often contain complex visual details that
cannot be fully reflected in their captions, their reconstructions result in noticeable semantic shifts.
In contrast, fake images typically align closely with their captions and therefore tend to undergo
minimal semantic changes. By capturing these differences between real and fake images, SARE can
serve as a discriminative feature for robust detection across diverse generative models.

3.3 FuUSION MODULE

We propose a fusion module to effectively integrate SARE into the detection process. Given an input
image x and its corresponding SARE s, we extract the image feature f, and the semantic feature f,
using the image encoder E, and the semantic encoder E, respectively:

fI:E$($), fs:Es(S)- (5)

To obtain the fused feature fy,scq4, we employ a cross-attention mechanism by leveraging f, for
query and f; for key and value as follows:

Qm = meQv K, = fsWK, Vs = fsW\/v

6
ffused = C?"OSSAttTL(Qw, Ksa ‘/s)a ( )

where Wq, Wik, and Wy, are the linear projections for the query, key, and value, respectively. This
fused representation allows the model to incorporate semantic information as an additional cue.
Subsequently, ffuseq is passed through a fully connected layer that serves as the classification head,
and the model is trained using binary cross-entropy loss.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics We evaluated the performance of detection models using the
Genlmage (Zhu et al., |2023) dataset, which is divided into 8 subsets. Each subset consists of
real images from ImageNet [Deng et al.| (2009) and fake images synthesized by a single genera-
tive model. The generative models are Midjourney (MJ) (Mid, [2022), Stable Diffusion v1.4&v1.5
(SDv1.4&v1.5) (Rombach et al., [2022), ADM (Dhariwal & Nichol, [2021)), GLIDE (Nichol et al.,
2022), Wukong (Wukl 2022)), VQDM (Gu et al.,[2022), and BigGAN (Brock et al.|[2019). We used
the training split from the SDv1.4 subset for training, and the test splits from all subsets for evalu-
ation. For cross-dataset evaluation, we trained the models on the SDv1.4 subset of Genlmage and
evaluated them on the ForenSynths (Wang et al., 2020) test set. The ForenSynths test set contains
11 subsets, where each subset comprises real images from the training data of a specific generative
model and fake images produced by that model. The generative models in ForenSynths include
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Method MJ SDvl.4  SDvl.5 ADM GLIDE Wukong VQDM BigGAN Avg ACC.(%)
GramNet 73.32 96.73 96.55 51.73 58.85 91.19 57.05 48.63 71.76
Conv-B 84.59 100.00 99.91 52.86 57.14 99.88 58.77 50.01 75.40
UnivFD 89.56 96.94 96.56 57.20 71.12 95.03 68.67 57.83 79.11
DIRE 51.03 99.96 99.91 51.78 59.26 99.79 50.18 50.88 70.35
DE-FAKE 85.55 97.93 97.82 53.53 65.28 91.57 55.98 49.16 74.60
DRCT 90.89 94.75 94.28 78.54 87.52 94.58 90.12 79.76 88.81
SARE (ours) 90.32 97.21 97.04 84.47 93.55 97.05 93.66 92.05 93.17

Table 1: Accuracy (ACC, %) comparisons of different detectors on the Genlmage dataset (Zhu et al.}
2023)). All methods are trained on the SDv1.4 subset and evaluated across 8 subsets. The best and
second-best results are indicated in bold and underlined, respectively.

Method MJ  SDvl4 SDvlS ADM GLIDE Wukong VQDM BigGAN Avg AUC.(%)
GramNet 91.54  99.56 9949  69.87  83.52  98.10 7840  39.36 82.48
Conv-B 99.54  100.00 9994  90.10 9672  100.00 9382  86.61 95.84
UnivFD 9754 9957 9951  73.09 8946 9899 8753  79.19 90.61
DIRE 7865 10000  99.94 7145 9042  99.99 6249  61.12 83.01
DE-FAKE  97.13  99.81 9980 7095  89.26 9852 7848  57.60 86.44
DRCT 9691  99.64 9952 8847 9461 9942 9644  90.30 95.66
SARE (ours)  96.83  99.94  99.93 9487  98.00  99.83 9831  97.51 98.15

Table 2: AUC (%) comparisons of different detectors on the Genlmage dataset (Zhu et al., [2023)).
All methods are trained on the SDv1.4 subset and evaluated across 8 subsets. The best and second-
best results are indicated in bold and underlined, respectively.

ProGAN (Karras et al.| 2018)), StyleGAN (Karras et al., 2019), BigGAN (Brock et al.,[2019), Cy-
cleGAN (Zhu et al., 2017}, StarGAN (Choi1 et al., [2018), GauGAN (Park et al., [2019), CRN (Chen
& Koltun, 2017), IMLE (L1 et al.| 2019), SITD (Chen et al., [2018), SAN (Dai et al., 2019), and
Deepfake (Rossler et al.,[2019). For evaluation metrics, we employed accuracy (ACC) and the Area
Under the ROC curve (AUC). Accuracy was computed with a fixed threshold of 0.5, following the
baseline settings Wang et al.| (2023)); \Chen et al.| (2024)).

Implementation Details To obtain reconstructed images for SARE and for the baseline models
DIRE (Wang et al.l [2023) and DRCT (Chen et al.l 2024), we used SDvl as the reconstruction
model. For SARE, captions were generated using a pre-trained BLIP model (Li et al., [2022)). Each
caption was used to guide the reconstruction process, where we set the strength parameter to 0.5, the
guidance scale to 7.5, and the maximum number of diffusion steps to 50. We adopted DRCT as the
backbone detector, which utilizes CLIP:ViT-L/14 (Radford et al., 2021) as the image encoder. For
the semantic encoder, we employed a ResNet50 model (He et al., 2016)). During training, we applied
random cropping and several augmentations, including horizontal flipping, Gaussian noise injection,
Gaussian blurring, random rotation, JPEG compression with random quality, random scaling, grid
dropout, and brightness and contrast adjustments. At test time, images were center-cropped. All
models were designed to take input images of size 224 x 224. For SARE extraction, images were
resized to 512 on the longer side before reconstruction, and the resulting SARE representations
were fed into the encoder at a size of 224 x 224. We trained our proposed model for 17 epochs
with a batch size of 512 and used the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial
learning rate of 1 x 1074,

4.2 COMPARISONS TO EXISTING DETECTORS

Tables[I] and [2] report the accuracies and AUC scores of different detection methods on the GenIm-
age dataset. We compared our method with several detectors, including GramNet |Liu et al.| (2020),
Conv-B (Liu et al. 2022), UnivFD (Ojha et al., [2023), DIRE, DE-FAKE (Sha et al., 2023), and
DRCT. All models were trained on the SDv1.4 subset. For DE-FAKE, we used BLIP for caption-
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Pro- Style- Big- Cycle- Star- Gau- Deep- Av,

Method GAN GyAN GAgN GyAN GAN Gan CRN IMLE SITD  SAN Fak[; ACC.%%)
GramNet 4920 4857 4973 4891 4905 4870 4759 4750 6556 5799 5802  51.89
Conv-B 5466 5047 5250 5003 4947 5019 4994 5250  62.5 6644 8019 5626
UnivED 6797 5392 6847 6773 7994 5621 3804 5464 6389 6553  60.56  61.54

DIRE 5006 5003  49.88 4994  50.05 49.97 4944 4959 5389 7329 5258  52.61
DEFAKE 5120 4839 5288 5149 63.81 49.02 4946 4731 5389 6530 5177  53.14
DRCT 7459 6741 83.10 9240 6223 78.89 4167 5186 6611 7945 5578  68.50

SARE (ours)  84.44 7632 83.17 90.24 59.58  81.28 46.6 6094 6139 8516 5154 70.97

Table 3: Accuracy (ACC, %) comparisons of different detectors under cross-dataset evaluation. All
detectors are trained on the SDv1.4 subset of the Genlmage dataset (Zhu et al.|[2023) and evaluated
on the ForenSynths test set (Wang et al., 2020). The best and second-best results are indicated in
bold and underlined, respectively.

Pro- Style- Big- Cycle- Star- Gau- Deep- Av
GAN GAN GAN GAN GAN Gan CRN IMLE  SITD  SAN R AUC.%%)
GramNet  49.08 4559 5076 5573 4846 3439 4990 3923 7514 70.14 6388 5294
Comv-B 7566 7459 7746 5358 3818 6223 4421 8555 8654 9862 87.58  71.29
UnivED 8138 6479 8446 9363 8931 8003 2951 5722 7475 7507 6796 7256
DIRE 5564 5237 4525 4764 5194 4538 4386 6273 9395 9844 8434 6196
DEFAKE 5574 4653 7009 7611 7115 4310 5176 4621 5193 7738 5111 5828
DRCT 8935 7573 9274 9828 9593 8823 2935 6855 7946 8876 8001  79.67
SARE (ours) 9345  87.05 9210 9583 9480 9043 4773 7910 7770 9252  77.68  84.40

Method

Table 4: AUC (%) comparisons of different detectors under cross-dataset evaluation. All detectors
are trained on the SDv1.4 subset of the Genlmage dataset (Zhu et al., 2023)) and evaluated on the
ForenSynths test set (Wang et al., [2020). The best and second-best results are indicated in bold and
underlined, respectively.

ing, following the configuration described in the original paper. The results show that compared
to DRCT, our method improves the average accuracy by 4.36%, and the average AUC by 2.49%,
which indicates that integrating SARE effectively enhances the detection performance. Notably,
our method achieves the highest average accuracy of 93.17% and AUC of 98.15%, outperform-
ing all other detection approaches. While all the detectors show strong performance on SDv1.4,
SDv1.5, and Wukong subsets, their performance tends to degrade significantly on other subsets like
ADM, GLIDE, VQDM, and the non-diffusion model BigGAN. Our method maintains consistently
high performance across all subsets, demonstrating robust generalization to diverse OOD generative
models. Moreover, the proposed method outperforms DE-FAKE, suggesting that SARE leverages
the relationship between an image and its caption more effectively than directly comparing image
and caption embeddings obtained from CLIP.

4.3 CROSS-DATASET EVALUATION

To further assess the generalization ability of the detection methods, we conducted a cross-dataset
evaluation. All detectors were trained on the SDv1.4 subset of the Genlmage dataset and evaluated
on the ForenSynths test set. Table [3|and Table [d]report the accuracy and AUC score of each method
on this test set. Our method shows strong performance across diverse generative models, yielding
an average accuracy of 70.97% and an average AUC of 84.40%, which are the highest among all
detectors. These results highlight the effectiveness of our method in OOD scenarios, demonstrating
its robust generalization to fake images from unseen generative models.

4.4 SEMANTIC SHIFT ANALYSIS

Quantitative Results To validate the core assumption that real images undergo larger semantic
shifts than fake images, we measured the perceptual distance between an image = and its recon-
struction & using the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)) met-
ric. Figure fa] summarizes the average LPIPS scores for real and fake images in each subset of
the Genlmage dataset under two conditions: (1) reconstruction without caption guidance, and (2)
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(b) A values measuring the LPIPS score gap between real and fake images.

Figure 4: Semantic shift analysis based on LPIPS scores (Zhang et al.}[2018). Higher scores indicate
lower similarity between the original and reconstructed images. Images are reconstructed under two
conditions: with and without caption guidance.
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Figure 5: Real and fake images from the GenImage dataset (Zhu et al., [2023)) with their captions
generated by a pre-trained BLIP (Li et al., 2022), the corresponding reconstructions, and SAREs.

reconstruction with caption guidance. While real images consistently exhibit higher LPIPS scores
than fake images in both settings, the gap between real and fake images is substantially larger when
caption guidance is applied. To quantify this gap, we define A as follows:

A =E,p,_, [LPIPS(z,#)] — Eyup,. [LPIPS(z, #)]. ©)

real
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] . Figure 6: Real images from the Genlmage dataset (Zhu,
Table 6: Ablation study on the guid- 2023) with captions from BLIP (Li et al), 2022)
ance scale w conducted on the Genlm- and LLaVA-NeXT (Liu et al] [2024), and their recon-
age dataset 2023). structions.

As shown in Figure Fb] A is relatively small without caption guidance, but increases significantly
in all subsets when caption guidance is used. These results suggest that the semantic difference
between an image and its caption-guided reconstruction may serve as a more discriminative feature
for detection, thereby leading to improved performance across diverse generative models.

Qualitative Results and Visualizations Figure [5 presents qualitative examples of real and fake
images from the Genlmage dataset and their caption-guided reconstructions, where captions were
generated using a pre-trained BLIP. In GenImage, real images are sourced from ImageNet, while
fake images are synthesized by generative models using ImageNet class labels as text prompts. For
a fair comparison, we visualize real and fake images from the same ImageNet class label along with
their reconstructions. The results show that real images tend to undergo larger semantic shifts than
fake images during the caption-guided reconstruction process.

4.5 ABLATION STUDY

Influence of Image Captioning models To evaluate the impact of different image captioning
models on detection performance, we conducted an ablation study using captions generated by pre-
trained BLIP and LLaVA-NeXT-8B on the Genlmage dataset. As shown in Ta-
ble[5] SARE demonstrates strong performance with both captioning models, but BLIP consistently
achieves higher accuracy and AUC. To further examine this difference, Figure[6] visualizes real im-
ages from Genlmage and their reconstructions guided by captions from the two models. BLIP tends
to generate concise captions such as “a butchery”, which do not fully capture fine details like “a man
in a white shirt” or “hanging meat”. As a result, the reconstructed images differ significantly from
the original, leading to noticeable semantic shifts. In contrast, LLaVA-NeXT provides more detailed
descriptions that include such elements, yielding reconstructions that remain relatively close to the
input image and thus exhibit smaller semantic changes. These observations suggest that BLIP’s
coarse captions induce larger semantic shifts in real images, thereby enhancing the effectiveness of
SARE in distinguishing real from fake images. A more detailed analysis of captioning models is
presented in Appendix [A]

Influence of Guidance Scale We investigated the impact of the guidance scale w on detection
performance within the caption-guided reconstruction framework. Table [f] presents the accuracy
and AUC results on the Genlmage dataset for different guidance scale values. The results show that
incorporating SARE consistently improves the performance over the baseline across all settings.
Notably, the best accuracy is achieved at w = 7.5 (93.17%), whereas the highest AUC is observed
atw = 2.5 (98.24%).
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5 CONCLUSION

In this paper, we introduced a novel representation for Al-generated image detection, termed
Semantic-Aware Reconstruction Error (SARE), that quantifies the semantic difference between an
image and its caption-guided reconstruction. By effectively leveraging the relationship between an
image and its caption, SARE provided a discriminative and generalizable feature for detecting fake
images across diverse generative models. Our experimental results demonstrated that SARE signifi-
cantly improved detection performance in both ID and OOD settings, surpassing existing baselines.
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APPENDIX

A MORE ANALYSIS OF CAPTIONING MODELS

In Section[.5] we analyzed the impact of different captioning models on detection performance. To
further examine the differences between BLIP (Li et al., [2022) and LLaVA-NeXT (Liu et al.l2024),
we present additional analysis based on LPIPS scores (Zhang et al.,|2018) and visualizations.

LPIPS-Based Semantic Shift Analysis We measured the LPIPS scores between original images
and their caption-guided reconstructions. Figure [7a] shows the average LPIPS scores of real and
fake images in each subset of the Genlmage dataset (Zhu et al), |2023) under two conditions: (1)
using captions generated by BLIP, and (2) using captions generated by LLaVA-NeXT. In both cases,
real images consistently yield higher LPIPS scores than fake images, suggesting that caption-guided
reconstruction serves as a reliable cue for detection. However, as shown in Table the LPIPS
score gap between real and fake images, denoted as A in Eq.[7] is smaller with LLaVA-NeXT than
with BLIP, which explains the slightly lower performance reported in Table 5]

Real w/ BLIP caption Fake w/ BLIP caption I Real w/ LLaVA-NeXT caption I Fake w/ LLaVA-NeXT caption
e}
- ' . I ' i i . U
(=%
—
00 Spvia SDVL5 ADM BigGAN GLIDE MJ VQDM Wukong
(a) Average LPIPS scores between original images and their reconstructions.
A SDvl.4 SDvl.5 ADM BigGAN GLIDE MJ VQDM  Wukong
w/ BLIP caption 0.091 0.098  0.065 0.091 0.147  0.105  0.082 0.076

w/ LLaVA-NeXT caption | 0.090 0.096  0.062 0.088 0.144  0.103  0.080 0.073

(b) A values measuring the LPIPS score gap between real and fake images.

Figure 7: Semantic shift analysis based on LPIPS scores (Zhang et al.|[2018). Higher scores indicate
lower similarity between the original and reconstructed images. Images are reconstructed under two
conditions: (1) using captions generated by BLIP (Li et al.l2022), and (2) using captions generated
by LLaVA-NeXT (Liu et al., |2024))
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Method JPEG (QF=90) JPEG (QF=80) JPEG (QF=70) Scale (0.75) Scale (1.25)
GramNet (Liu et al., [2020) 71.22 71.02 71.22 69.89 66.31
Conv-B (L1u et al.||2022) 71.91 71.57 71.42 75.30 75.28
UnivFD (Ojha et al., [2023) 73.24 70.42 69.75 75.96 73.99
DIRE (Wang et al., 2023) 52.79 50.65 50.34 51.94 53.77
DE-FAKE (Sha et al.| 2023)) 71.00 70.88 70.44 72.33 71.88
NPR (Tan et al.; [2024) 69.44 70.94 70.77 71.27 71.20
AIDE (Yan et al.| [2025) 57.22 58.50 60.45 83.13 83.79
DRCT (Chen et al.| [2024) 80.97 78.06 76.18 79.51 74.75
SARE (ours) 85.64 82.72 79.14 87.60 82.74

Table 7: Accuracy (ACC, %) performance of robustness evaluation on the Genlmage (Zhu et al.,
2023)) dataset. QF denotes JPEG quality factor. For NPR (Tan et al., [2024) and AIDE (Yan et al.,
2025), the publicly released checkpoints are used.

Method JPEG (QF=90) JPEG (QF=80) JPEG (QF=70) Scale (0.75) Scale (1.25)
GramNet (Liu et al.,[2020) 80.12 81.71 81.15 69.47 69.32
Conv-B (Liu et al.| [2022) 90.53 90.17 90.43 94.15 96.90
UnivFD (Ojha et al., [2023) 85.31 82.53 81.08 85.48 82.05
DIRE (Wang et al.} 2023) 70.83 63.44 59.23 78.92 80.61
DE-FAKE (Sha et al.| 2023)) 79.89 79.02 77.96 81.09 78.10
NPR (Tan et al., [2024) 75.23 76.54 77.09 90.87 92.12
AIDE (Yan et al.||2025) 75.23 78.12 80.66 96.28 96.00
DRCT (Chen et al.| [2024)) 88.89 86.18 84.05 89.29 87.93
SARE (ours) 94.33 93.10 89.68 94.97 92.77

Table 8: AUC (%) performance of robustness evaluation on the Genlmage (Zhu et al., 2023) dataset.
QF denotes JPEG quality factor. For NPR (Tan et al.|[2024) and AIDE (Yan et al.,[2025), the publicly
released checkpoints are used.

Additional Visualizations Figures present real and fake images from the GenImage dataset
and their reconstructions guided by captions from BLIP and LLaVA-NeXT. To ensure a fair com-
parison, real and fake images are selected from the same ImageNet class label. The visualizations
show that real images typically undergo larger semantic shifts than fake images during caption-
guided reconstruction with both captioning models. In some real image cases, however, the detailed
descriptions provided by LLaVA-NeXT yield reconstructions that remain relatively closer to the
original input, whereas the concise captions generated by BLIP tend to produce larger shifts.

B ADDITIONAL ABLATION STUDY

Influence of Strength Parameter To evaluate the in-
fluence of the strength parameter on detection perfor- g
mance, we conducted an ablation study on the Genlmage s —— awc
dataset by varying the strength value from 0.3 to 0.9. Fig- 5% A

ure [§]shows the accuracy and AUC performance for each "
M
strength value. The results demonstrate that the model ”

. . . 0.3 0.4 0.5 0.6 0.7 0.8 0.9
maintains stable performance across all values. In partic- Strengih
ular, the highest accuracy is obtained at strength = 0.5,
while the best AUC is achieved at strength = 0.7. Figure 8: Ablation study on the strength

parameter conducted on the Genlmage

dataset (Zhu et al.| [2023)).
C LLM USAGE (o )

Large language models (LLMs) were used solely for polishing the writing of this paper.
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Figure 9: Real images from the GenImage dataset (

202) and LLaVA-NeXT 2024). o

scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed

description within 80 words.”

“a basket
full of bread”

“A basket filled
with bread rolls
under a yellow tent.”

“A woven basket filled
with freshly baked bread
rolls, displayed under a
yellow tent. The bread
rolls are golden brown
and appear soft. A price
sign is attached to the
basket, indicating
\"1.00\". The basket is
placed on a tiled floor,
and the tent provides
shade, suggesting an
outdoor market setting.”
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| The grass beneath their
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“a group of people
standing in a circle”

“A group of football
players huddled
together on a field.”

“A group of football
players huddled together
on a field, wearing
helmets and jerseys. They
are surrounded by a
blurred background of
trees and a fence. A coach
stands to the side,
observing the team. The
image is a digital art
piece with a red and blue
color filter, giving it a
vibrant and dynamic
appearance.”

with captions from BLIP

heir corresponding reconstructions, and LPIPS
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appearing to be fishing
vessels. The water is a
light blue-green, and
the sky is a clear blue
with a few scattered
clouds. The beach is
sandy, and there are no
people visible in the
image. The overall
atmosphere is peaceful
and calm.”

in its husk, with the
corn kernels visible in
various shades of
yellow and orange. The
cob's texture and the
corn's natural patterns
are clearly visible,
indicating the corn is
fresh and ready for
harvest.”

collar and tag, sitting
on a bed with a bag of
cheese crackers. The
dog has a curious
expression and is
looking directly at the
camera.”

Figure 10: Real images from the Genlmage dataset (Zhu et al.l [2023) with captions from BLIP
2022) and LLaVA-NeXT 2024), their corresponding reconstructions, and LPIPS

scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed
description within 80 words.”
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eyes are wide open, and
it appears to be looking
directly at the camera.
The panda's paws are
visible, with claws and
pads clearly visible. The
background is a lush
green, suggesting a
dense forest or bamboo
grove, which is typical
of panda habitats.”

bread with a golden
crust, sitting on a white
surface. The bread has a
hole in the center,
revealing a soft, airy
interior.”

pattern of spots that
vary in size. Its ears are
large and pointed, and
its eyes are a striking
shade of blue. The
hyena's nose is black,
and its mouth is slightly
open, revealing its teeth.
The background is
blurred, but it appears
to be a natural, outdoor
setting.”

7\
N\

The helmet is resting on a
surface that looks like a
wooden table or floor. The
logo consists of a stylized
letter 'A" in blue, which is a
common emblem for
American football teams.
The helmet has a clear visor
and the padding around the
face is visible. The overall
condition of the helmet
suggests it has been used and
possibly subjected to impact
during a game.”

Figure 11: Fake images from the Genlmage dataset (Zhu et al.,2023) with captions from BLIP
2022) and LLaVA-NeXT 2024), their corresponding reconstructions, and LPIPS

scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed
description within 80 words.”
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open, allowing a view of the
interior, and the cart
appears to be stationary.
The background is a plain,
light color, providing a clear
contrast to the dark color of
the cart. There are no visible
texts or distinctive markings
on the cart. The style of the
image is a straightforward,
unembellished photograph
with no filters or artistic
effects applied.”

'\

1

|

.

 ma
~

sky. Its wooden structure is
supported by sturdy
concrete pillars that extend
into the water, creating a
sense of connection between
the land and the sea. The
water below mirrors the
bridge, adding a reflection
that enhances the beauty of
the scene. The overall
composition of the image
suggests a peaceful
coexistence between man-

________ -

1
I
|

de structures and nature.” » \

contrasts with the bright
color of the corn. The
kernels are tightly packed
and appear to be in good
condition, suggesting the
corn is fresh. The cob is
slightly curved and has a
smooth texture. The image is
a photograph with a shallow
depth of field, focusing
sharply on the corn while
the background is blurred.”

~

suggesting alertness. The
dog's eyes are open and
looking directly at the
camera, and it has a collar
around its neck. The collar
has a bone-shaped tag,
which is common for pet
identification. The dog's
expression is neutral, and
there are no visible texts or
distinctive markings on the
image.”

Figure 12: Fake images from the Genlmage dataset (Zhu et al.| ) with captions from BLIP
2022) and LLaVA-NeXT 2024), their corresponding reconstructions, and LPIPS

scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed
description within 80 words.”
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Figure 13: Single object real images from the Genlmage dataset (Zhu et al., [2023)) with captions
from BLIP 2022)) and their reconstructions.
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Figure 14: Real and fake images from the Genlmage (Zhu et al., 2023)) dataset under different levels
of JPEG compression (QF = 90, 80, 70), along with their captions generated by BLIP (Li et al.|
2022)) and caption-guided reconstructions.
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Figure 15: Real and fake images from the Genlmage (Zhu et al., 2023)) dataset under different levels
of scaling (0.75, 1.25), along with their captions generated by BLIP 2022) and caption-
guided reconstructions.

21



Under review as a conference paper at ICLR 2026

Real Images

No perturbation

7 W Ac

| |
99 9 2l
grass | grass | grass

Recon.

Fake Images

No perturbation

Original

1 1 1

% I( “a dog running in the | I( “a dog running in the | I{ “a dog running in the |

o grass” 1 grass” 1] grass” 1
'

c

Q

(8]

[3)

14

L

14

<

%)

Figure 16: Real and fake images from the Genlmage (Zhu et al., 2023) dataset under flip perturba-

tions (3 or 6 regions per image), along with their captions generated by BLIP 2022) and
caption-guided reconstructions.
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Figure 18: Fake images containing artifacts and distortions from the Genlmage (Zhu et al .|

“a pink bracelet with
flowers on it”
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“A close-up of a colorful,
patterned fabric with a red and
pink design, possibly a piece of

clothing or textile.”
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“The image shows a close-up
of a fabric item with a pattern
that includes a mix of pink,
red, and green colors. The
pattern features a
combination of floral and
abstract designs. There is a
prominent red and green
section that resembles a
stylized flower or leaf, and the
fabric appears to have a soft
texture. The background is a
plain, light color, which
contrasts with the vibrant
colors of the fabric. The style
of the image is a
straightforward product
photograph with a focus on
the item’s design and colors.”

“a newspaper on a
table”

“A close-up of a newspaper
with water damage, showing
discoloration and holes in the

paper.”

-
7 «The image shows a close-up N

of a textured surface with a
pattern that appears to be a
grid or a series of lines. The
texture is somewhat irregular,
with some areas appearing
more densely packed than
others. There are also circular
marks or holes scattered
throughout the pattern, which
are more concentrated in the
center and decrease in
frequency towards the edges.
The surface is set against a
backdrop that looks like a wall
or asimilar vertical surface,
but the focus is on the
patterned surface itself. The
image is taken in natural light,
which casts a soft shadow on
the surface, indicating that the

1 light source is to the left of the

frame.”

dataset and their caption-guided reconstructions.
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“a dog with a crown on

it's head”

“Two white dogs with black
noses and eyes, one with its
mouth open.”

“The image shows a close-up
of two Shih Tzu dogs. They
have long, fluffy white fur
with darker fur around their
eyes and ears. Their eyes are
open and alert, and their
mouths are slightly open,
giving them a friendly and
curious expression. The dogs
are positioned side by side,
and their fur appears to be
well-groomed. The
background is out of focus,
emphasizing the dogs in the
foreground.”
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