

000 001 002 003 004 005 006 007 008 009 010 011 012 SARE: SEMANTIC-AWARE RECONSTRUCTION ERROR FOR GENERALIZABLE AI-GENERATED IMAGE DETEC- TION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
Anonymous authors

Paper under double-blind review

038 039 040 041 042 043 044 045 ABSTRACT

046
047
048
049
050
051
052
053
Recently, AI-generated image detection has gained increasing attention, as the rapid advancement of image generation technologies has raised serious concerns about their potential misuse. While existing detection methods have achieved promising results, their performance often degrades significantly when facing fake images from unseen, out-of-distribution (OOD) generative models, since they primarily rely on model-specific artifacts and thus overfit to the models used for training. To address this limitation, we propose a novel representation, namely Semantic-Aware Reconstruction Error (SARE), that measures the semantic difference between an image and its caption-guided reconstruction. The key hypothesis behind SARE is that real images, whose captions often fail to fully capture their complex visual content, may undergo noticeable semantic shifts during the caption-guided reconstruction process. In contrast, fake images, which closely align with their captions, show minimal semantic changes. By quantifying these semantic shifts, SARE provides a robust and discriminative feature for detecting fake images across diverse generative models. Additionally, we introduce a fusion module that integrates SARE into the backbone detector via a cross-attention mechanism. Image features attend to semantic representations extracted from SARE, enabling the model to adaptively leverage semantic information. Experimental results demonstrate that the proposed method achieves strong generalization, outperforming existing baselines on benchmarks including GenImage and ForenSynths. We further validate the effectiveness of caption guidance through a detailed analysis of semantic shifts, confirming its ability to enhance detection robustness.

1 INTRODUCTION

In recent years, image generation technologies, such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Zhu et al., 2017; Brock et al., 2019; Karras et al., 2018) and Diffusion Models (DMs) (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022; Nichol et al., 2022), have made remarkable progress, enabling the synthesis of highly realistic images that are often indistinguishable from real images. This realism has raised growing concerns about potential misuse, particularly in generating harmful or deceptive content (Ferreira et al., 2020; Juefei-Xu et al., 2022). To address these risks, developing reliable methods for detecting AI-generated images has become increasingly important.

A common approach in existing detection methods is to train a binary classifier using real and fake images sourced from a finite set of generative models available during training (Bayar & Stamm, 2016; Wang et al., 2020; Liu et al., 2020; Wang et al., 2023). While these detectors typically exhibit strong performance when test images are generated by the same models used during training, their performance often drops significantly in real-world scenarios, where they inevitably encounter fake images from unseen generative models that are not included in the training data (Zhang et al., 2019; Luo et al., 2021; Yan et al., 2023). To ensure robustness in practical deployment, it is essential to develop detection methods that can generalize effectively to such unseen and out-of-distribution (OOD) generative models.

Figure 1: Comparison of caption-guided reconstructions for real and fake images. Real images, whose captions often fail to fully capture their complex visual content, undergo noticeable semantic shifts during caption-guided reconstruction. In contrast, fake images, which align closely with their captions, tend to exhibit minimal semantic changes.

Recent studies have proposed several strategies to address the generalization challenges inherent in generated image detection. These strategies include training methods such as reconstruction-based learning (Wang et al., 2023; Luo et al., 2024; Chu et al., 2025) and data augmentation (Chen et al., 2024), as well as architectural approaches (Ojha et al., 2023; Wu et al., 2023; Tan et al., 2025) that leverage a large pre-trained model like CLIP (Radford et al., 2021). Despite these advances, the robustness of existing methods remains limited, as they primarily focus on identifying visual artifacts introduced during the generative process (Frank et al., 2020; Wang et al., 2020; 2023; Chen et al., 2024). Due to the distinct characteristics of different generative models, such artifacts are inherently model-specific and fail to generalize across diverse models (Luo et al., 2021; Corvi et al., 2023; Ojha et al., 2023). As a result, approaches that rely on these artifacts tend to overfit to the models used for training, which leads to degraded performance in OOD scenarios.

To overcome these limitations, we explore a fundamental property commonly observed in fake images. Prior work (Sha et al., 2023) has shown that the similarity between fake images and captions generated by an image-captioning model is typically higher than that of real images. Real images contain complex, fine-grained details that short captions cannot cover, whereas fake images include only the elements explicitly specified in the user’s text prompt. Inspired by this observation, we hypothesize that the relationship between an image and its caption reflects a general characteristic of fake images, providing a robust signal for detection across diverse generative models.

In this paper, we propose Semantic-Aware Reconstruction Error (SARE), a novel representation for detecting AI-generated images that measures the semantic difference between an image and its reconstruction. Specifically, we introduce a caption-guided reconstruction pipeline to effectively leverage the relationship between an image and its caption in the detection process. The key idea is that real images, which often exhibit low similarity to their captions, may undergo noticeable semantic shifts during caption-guided reconstruction. In contrast, fake images, whose content is well captured by their captions, show minimal semantic shifts. As shown in Figure 1, the real image is reconstructed into a noticeably different dog since the caption provides only a coarse description (e.g., “a dog running in the snow”) without capturing fine details such as the dog’s breed, pose, or background. Conversely, the fake image of a golf ball remains largely unchanged after reconstruction, as its content can be sufficiently described by a simple caption. By capturing these fundamental differences between real and fake images, SARE provides a discriminative and generalizable feature for detecting fake images across diverse generative models. Additionally, we design a fusion module that integrates SARE into the backbone detector via a cross-attention mechanism. The original image features attend to the semantic representations extracted from SARE, allowing the model to adaptively incorporate semantic information.

We validate the effectiveness of SARE through extensive experiments on the GenImage (Zhu et al., 2023) and ForenSynths (Wang et al., 2020) datasets. The proposed framework significantly improves the performance of the backbone model across both seen and unseen generators, achieving the best average results compared to existing detection methods. The results demonstrate the robustness of SARE in OOD scenarios, confirming its strong generalization to fake images from diverse generative models.

108
109

2 RELATED WORK

110
111

2.1 DETECTION BASED ON IMAGE CAPTION

112
113
Caption-based detection methods explore the use of image captions as a cue for detecting generated
114 images. DE-FAKE (Sha et al., 2023) finds that generated images tend to align more closely with
115 their captions compared to real images. Based on the observation, it adopts separate encoders for im-
116 age and caption to exploit the relationship between them. Following this direction, C2P-CLIP (Tan
117 et al., 2025) proposes a method that injects category-level prompts to enhance detection per-
118 formance. LASTED (Wu et al., 2023) introduces a language-guided contrastive learning framework
119 that leverages textual labels to improve generalization.120
121

2.2 DETECTION BASED ON IMAGE RECONSTRUCTION

122
123
Reconstruction-based detection methods utilize a pre-trained diffusion model to reconstruct the in-
124 put image and analyze the differences between the original and reconstructed images. DIRE (Wang
125 et al., 2023) introduces reconstruction error as the discriminative feature for detection, based on the
126 assumption that fake images can be reconstructed more accurately than real images. To improve
127 efficiency, LaRE (Luo et al., 2024) computes this reconstruction error in the latent space using a
128 single-step denoising process, substantially reducing computational cost while preserving detection
129 performance. DRCT (Chen et al., 2024), rather than relying on reconstruction error, treats recon-
130 structed images as hard samples and adopts a contrastive learning framework to facilitate discrimi-
131 native feature learning. FakeInversion (Cazenavette et al., 2024) not only exploits the reconstructed
132 images but also incorporates additional feature maps derived from caption-conditioned DDIM in-
133 version (Song et al., 2021), where captions are mainly employed to stabilize the inversion and re-
134 construction process. In contrast, our method SARE explicitly leverages the relationship between
135 an image and its caption. Motivated by the observation that fake images tend to exhibit higher simi-
136 larity to their captions than real images, SARE quantifies the semantic difference between the image
137 and its caption-guided reconstruction. This semantic-aware discrepancy serves as a robust detection
138 signal, enabling SARE to generalize effectively across diverse generative models.139
140

3 PROPOSED METHOD

141
142

3.1 MOTIVATION

143
144
Existing methods (Frank et al., 2020; Wang et al.,
145 2020; 2023; Chen et al., 2024) for detecting fake
146 images primarily rely on visual artifacts or traces
147 left by the generative models. A representative ex-
148 ample is DIRE (Wang et al., 2023), which recon-
149 structs the input image with a pre-trained diffusion
150 model and leverages the pixel-wise reconstruction
151 error as a discriminative feature for classification. It
152 is based on the assumption that fake images exhibit
153 smaller reconstruction errors than real images, as
154 both the original and reconstructed images belong to
155 the same generative distribution and thus share simi-
156 lar visual patterns. However, our empirical obser-
157 vation suggests that this assumption often does not
158 hold in OOD scenarios, where fake images are syn-
159 thesized by unseen generators that were not avail-
160 able during training. As shown in Figure 2, when
161 Stable Diffusion v1.4 (Rombach et al., 2022) is used
for reconstruction, fake images from unseen models
such as ADM (Dhariwal & Nichol, 2021) or Big-
GAN (Brock et al., 2019) produce much larger re-
construction errors, even exceeding those of real im-
ages. This implies that diverse generative models,174
175
Figure 2: Examples from the GenImage
176 dataset (Zhu et al., 2023) and their cor-
177 responding DIREs (Wang et al., 2023),
178 SAREs, and LPIPS scores. Images are re-
179 constructed using Stable Diffusion v1.4, and
180 the pixel values of the DIREs and SAREs are
181 scaled by 2 for clearer visualization.

Figure 3: Overview of the SARE framework. Our method reconstructs the input image conditioned on its caption using the Stable Diffusion model with classifier-free guidance. SARE is computed as the difference between the input and reconstructed image, and is incorporated into the detection process through a cross-attention module that leverages image features as queries and SARE features as keys and values. The pixel values of the SARE are scaled by 2 for clearer visualization.

including the reconstruction model and unseen generators, exhibit distinctive characteristics and traces. From this observation, we suggest that methods relying on visual artifacts from a specific generation process may struggle to generalize in OOD scenarios. This limitation highlights the need for more generalizable detection cues that can perform reliably across diverse generative models.

3.2 SEMANTIC-AWARE RECONSTRUCTION ERROR

We propose Semantic-Aware Reconstruction Error (SARE), a novel detection feature designed to enhance generalization in AI-generated image detection. The hypothesis of SARE is that the relationship between an image and its caption may reflect fundamental differences between real and fake images, and thus serve as a generalizable detection cue. SARE aims to effectively leverage this property by introducing a caption-guided reconstruction framework. The framework consists of three main steps: (1) image captioning, (2) caption-guided image reconstruction, and (3) SARE extraction.

Image Captioning For a given image x , we utilize a pre-trained image captioning model to generate a descriptive caption C . This caption C is used as the text condition for the subsequent reconstruction process.

Caption-guided Image Reconstruction Given the caption C , we reconstruct the input image x by using a pre-trained text-conditional diffusion model. Specifically, we leverage the Stable Diffusion model (Rombach et al., 2022) with classifier-free guidance (Ho & Salimans, 2021). The input image x is first encoded into a latent representation z_0 using the Variational Autoencoder (VAE) encoder (Kingma & Welling, 2014). The forward process then adds Gaussian noise to z_0 following a predefined noise schedule. The noisy latent at a given timestep t is computed as:

$$z_t = \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad (1)$$

where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$. The *strength* parameter determines the amount of noise added during reconstruction. The number of forward diffusion steps is set to $T = \lfloor \text{strength} \times T_{\max} \rfloor$, where T_{\max} is the total number of diffusion steps.

Starting from the noisy latent z_T , the reverse process aims to obtain \hat{z}_0 through an iterative denoising process conditioned on the caption C . At each denoising step, the noise prediction network

$\epsilon_\theta(z_t, t, c)$ estimates the noise ϵ , where $c = \psi(C)$ denotes the caption embedding obtained from the CLIP text encoder (Radford et al., 2021). We adopt classifier-free guidance, which combines the conditional and unconditional noise predictions as follows:

$$\epsilon_\theta(z_t, t, c, \emptyset) = w\epsilon_\theta(z_t, t, c) + (1 - w)\epsilon_\theta(z_t, t, \emptyset), \quad (2)$$

where w is the guidance scale and $\emptyset = \psi("")$ denotes the null text embedding. The denoising process using DDIM sampling (Song et al., 2021) can be represented by:

$$z_{t-1} = \sqrt{\alpha_{t-1}} \frac{z_t - \sqrt{1 - \alpha_t} \epsilon_\theta(z_t, t, c, \emptyset)}{\sqrt{\alpha_t}} + \sqrt{1 - \alpha_{t-1}} \epsilon_t, \quad (3)$$

where $\alpha_{t-1} = \frac{\bar{\alpha}_{t-1}}{\bar{\alpha}_t}$ and $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, for $t = T, \dots, 1$. After T denoising steps, the final latent \hat{z}_0 is obtained and decoded by the VAE decoder to produce the reconstructed image \hat{x} .

SARE Extraction Once we obtain the original image x and the reconstructed image \hat{x} , we compute the SARE by measuring the difference between the two images. SARE is defined as follows:

$$\text{SARE}(x, \hat{x}) = |x - \hat{x}|, \quad (4)$$

where $|\cdot|$ denotes the absolute value. SARE quantifies the semantic changes introduced during the caption-guided reconstruction process. Since real images often contain complex visual details that cannot be fully reflected in their captions, their reconstructions result in noticeable semantic shifts. In contrast, fake images typically align closely with their captions and therefore tend to undergo minimal semantic changes. By capturing these differences between real and fake images, SARE can serve as a discriminative feature for robust detection across diverse generative models.

3.3 FUSION MODULE

We propose a fusion module to effectively integrate SARE into the detection process. Given an input image x and its corresponding SARE s , we extract the image feature f_x and the semantic feature f_s using the image encoder E_x and the semantic encoder E_s , respectively:

$$f_x = E_x(x), f_s = E_s(s). \quad (5)$$

To obtain the fused feature f_{fused} , we employ a cross-attention mechanism by leveraging f_x for query and f_s for key and value as follows:

$$\begin{aligned} Q_x &= f_x W_Q, \quad K_s = f_s W_K, \quad V_s = f_s W_V, \\ f_{\text{fused}} &= \text{CrossAttn}(Q_x, K_s, V_s), \end{aligned} \quad (6)$$

where W_Q , W_K , and W_V are the linear projections for the query, key, and value, respectively. This fused representation allows the model to incorporate semantic information as an additional cue. Subsequently, f_{fused} is passed through a fully connected layer that serves as the classification head, and the model is trained using binary cross-entropy loss.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics We evaluated the performance of detection models using the GenImage (Zhu et al., 2023) dataset, which is divided into 8 subsets. Each subset consists of real images from ImageNet Deng et al. (2009) and fake images synthesized by a single generative model. The generative models are Midjourney (MJ) (Mid, 2022), Stable Diffusion v1.4&v1.5 (SDv1.4&v1.5) (Rombach et al., 2022), ADM (Dhariwal & Nichol, 2021), GLIDE (Nichol et al., 2022), Wukong (Wuk, 2022), VQDM (Gu et al., 2022), and BigGAN (Brock et al., 2019). We used the training split from the SDv1.4 subset for training, and the test splits from all subsets for evaluation. For cross-dataset evaluation, we trained the models on the SDv1.4 subset of GenImage and evaluated them on the ForenSynths (Wang et al., 2020) test set. The ForenSynths test set contains 11 subsets, where each subset comprises real images from the training data of a specific generative model and fake images produced by that model. The generative models in ForenSynths include

Method	MJ	SDv1.4	SDv1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	Avg ACC. (%)
GramNet	73.32	96.73	96.55	51.73	58.85	91.19	57.05	48.63	71.76
Conv-B	84.59	100.00	99.91	52.86	57.14	99.88	58.77	50.01	75.40
UnivFD	89.56	96.94	96.56	57.20	71.12	95.03	68.67	57.83	79.11
DIRE	51.03	<u>99.96</u>	99.91	51.78	59.26	<u>99.79</u>	50.18	50.88	70.35
DE-FAKE	85.55	97.93	97.82	53.53	65.28	91.57	55.98	49.16	74.60
DRCT	90.89	94.75	94.28	<u>78.54</u>	<u>87.52</u>	94.58	<u>90.12</u>	<u>79.76</u>	<u>88.81</u>
SARE (ours)	<u>90.32</u>	97.21	97.04	84.47	93.55	97.05	93.66	92.05	93.17

Table 1: Accuracy (ACC, %) comparisons of different detectors on the GenImage dataset (Zhu et al., 2023). All methods are trained on the SDv1.4 subset and evaluated across 8 subsets. The best and second-best results are indicated in **bold** and underlined, respectively.

Method	MJ	SDv1.4	SDv1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	Avg AUC. (%)
GramNet	91.54	99.56	99.49	69.87	83.52	98.10	78.40	39.36	82.48
Conv-B	99.54	100.00	99.94	<u>90.10</u>	<u>96.72</u>	100.00	93.82	86.61	<u>95.84</u>
UnivFD	<u>97.54</u>	99.57	99.51	73.09	89.46	98.99	87.53	79.19	90.61
DIRE	78.65	100.00	99.94	71.45	90.42	<u>99.99</u>	62.49	61.12	83.01
DE-FAKE	97.13	99.81	99.80	70.95	89.26	98.52	78.48	57.60	86.44
DRCT	96.91	99.64	99.52	88.47	94.61	99.42	<u>96.44</u>	<u>90.30</u>	95.66
SARE (ours)	96.83	99.94	99.93	94.87	98.00	99.83	98.31	97.51	98.15

Table 2: AUC (%) comparisons of different detectors on the GenImage dataset (Zhu et al., 2023). All methods are trained on the SDv1.4 subset and evaluated across 8 subsets. The best and second-best results are indicated in **bold** and underlined, respectively.

ProGAN (Karras et al., 2018), StyleGAN (Karras et al., 2019), BigGAN (Brock et al., 2019), CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018), GauGAN (Park et al., 2019), CRN (Chen & Koltun, 2017), IMLE (Li et al., 2019), SITD (Chen et al., 2018), SAN (Dai et al., 2019), and Deepfake (Rossler et al., 2019). For evaluation metrics, we employed accuracy (ACC) and the Area Under the ROC curve (AUC). Accuracy was computed with a fixed threshold of 0.5, following the baseline settings Wang et al. (2023); Chen et al. (2024).

Implementation Details To obtain reconstructed images for SARE and for the baseline models DIRE (Wang et al., 2023) and DRCT (Chen et al., 2024), we used SDv1 as the reconstruction model. For SARE, captions were generated using a pre-trained BLIP model (Li et al., 2022). Each caption was used to guide the reconstruction process, where we set the strength parameter to 0.5, the guidance scale to 7.5, and the maximum number of diffusion steps to 50. We adopted DRCT as the backbone detector, which utilizes CLIP:ViT-L/14 (Radford et al., 2021) as the image encoder. For the semantic encoder, we employed a ResNet50 model (He et al., 2016). During training, we applied random cropping and several augmentations, including horizontal flipping, Gaussian noise injection, Gaussian blurring, random rotation, **JPEG compression with random quality, random scaling, grid dropout, and brightness and contrast adjustments**. At test time, images were center-cropped. All models were designed to take input images of size 224×224 . For SARE extraction, images were resized to 512 on the longer side before reconstruction, and the resulting SARE representations were fed into the encoder at a size of 224×224 . We trained our proposed model for 17 epochs with a batch size of 512 and used the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial learning rate of 1×10^{-4} .

4.2 COMPARISONS TO EXISTING DETECTORS

Tables 1 and 2 report the accuracies and AUC scores of different detection methods on the GenImage dataset. We compared our method with several detectors, including GramNet Liu et al. (2020), Conv-B (Liu et al., 2022), UnivFD (Ojha et al., 2023), DIRE, DE-FAKE (Sha et al., 2023), and DRCT. All models were trained on the SDv1.4 subset. For DE-FAKE, we used BLIP for caption-

Method	Pro-GAN	Style-GAN	Big-GAN	Cycle-GAN	Star-GAN	Gau-GAN	CRN	IMLE	SITD	SAN	Deep-Fake	Avg ACC. (%)
GramNet	49.20	48.57	49.73	48.91	49.05	48.70	47.59	47.50	<u>65.56</u>	57.99	58.02	51.89
Conv-B	54.66	50.47	52.50	50.03	49.47	50.19	49.94	52.50	62.5	66.44	80.19	56.26
UnivFD	67.97	53.92	68.47	67.73	79.94	56.21	38.04	<u>54.64</u>	63.89	65.53	60.56	61.54
DIRE	50.06	50.03	49.88	49.94	50.05	49.97	49.44	49.59	53.89	73.29	52.58	52.61
DE-FAKE	51.20	48.39	52.88	51.49	<u>63.81</u>	49.02	<u>49.46</u>	47.31	53.89	65.30	51.77	53.14
DRCT	<u>74.59</u>	<u>67.41</u>	<u>83.10</u>	92.40	62.23	<u>78.89</u>	41.67	51.86	66.11	<u>79.45</u>	55.78	<u>68.50</u>
SARE (ours)	84.44	76.32	83.17	<u>90.24</u>	59.58	81.28	46.6	60.94	61.39	85.16	51.54	70.97

Table 3: Accuracy (ACC, %) comparisons of different detectors under cross-dataset evaluation. All detectors are trained on the SDv1.4 subset of the GenImage dataset (Zhu et al., 2023) and evaluated on the ForenSynths test set (Wang et al., 2020). The best and second-best results are indicated in **bold** and underlined, respectively.

Method	Pro-GAN	Style-GAN	Big-GAN	Cycle-GAN	Star-GAN	Gau-GAN	CRN	IMLE	SITD	SAN	Deep-Fake	Avg AUC. (%)
GramNet	49.08	45.59	50.76	55.73	48.46	34.39	<u>49.90</u>	39.23	75.14	70.14	63.88	52.94
Conv-B	75.66	<u>74.59</u>	77.46	53.58	38.18	62.23	<u>44.21</u>	85.55	<u>86.54</u>	98.62	87.58	71.29
UnivFD	81.38	64.79	84.46	93.63	89.31	80.03	29.51	57.22	74.75	75.07	67.96	72.56
DIRE	55.64	52.37	45.25	47.64	51.94	45.38	43.86	62.73	93.95	<u>98.44</u>	<u>84.34</u>	61.96
DE-FAKE	55.74	46.53	70.09	76.11	71.15	43.10	51.76	46.21	51.93	77.38	51.11	58.28
DRCT	<u>89.35</u>	<u>75.73</u>	92.74	98.28	95.93	<u>88.23</u>	29.35	68.55	79.46	88.76	80.01	<u>79.67</u>
SARE (ours)	93.45	87.05	92.10	<u>95.83</u>	94.80	90.43	47.73	<u>79.10</u>	77.70	92.52	77.68	84.40

Table 4: AUC (%) comparisons of different detectors under cross-dataset evaluation. All detectors are trained on the SDv1.4 subset of the GenImage dataset (Zhu et al., 2023) and evaluated on the ForenSynths test set (Wang et al., 2020). The best and second-best results are indicated in **bold** and underlined, respectively.

ing, following the configuration described in the original paper. The results show that compared to DRCT, our method improves the average accuracy by 4.36%, and the average AUC by 2.49%, which indicates that integrating SARE effectively enhances the detection performance. Notably, our method achieves the highest average accuracy of 93.17% and AUC of 98.15%, outperforming all other detection approaches. While all the detectors show strong performance on SDv1.4, SDv1.5, and Wukong subsets, their performance tends to degrade significantly on other subsets like ADM, GLIDE, VQDM, and the non-diffusion model BigGAN. Our method maintains consistently high performance across all subsets, demonstrating robust generalization to diverse OOD generative models. Moreover, the proposed method outperforms DE-FAKE, suggesting that SARE leverages the relationship between an image and its caption more effectively than directly comparing image and caption embeddings obtained from CLIP.

4.3 CROSS-DATASET EVALUATION

To further assess the generalization ability of the detection methods, we conducted a cross-dataset evaluation. All detectors were trained on the SDv1.4 subset of the GenImage dataset and evaluated on the ForenSynths test set. Table 3 and Table 4 report the accuracy and AUC score of each method on this test set. Our method shows strong performance across diverse generative models, yielding an average accuracy of 70.97% and an average AUC of 84.40%, which are the highest among all detectors. These results highlight the effectiveness of our method in OOD scenarios, demonstrating its robust generalization to fake images from unseen generative models.

4.4 SEMANTIC SHIFT ANALYSIS

Quantitative Results To validate the core assumption that real images undergo larger semantic shifts than fake images, we measured the perceptual distance between an image x and its reconstruction \hat{x} using the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) metric. Figure 4a summarizes the average LPIPS scores for real and fake images in each subset of the GenImage dataset under two conditions: (1) reconstruction without caption guidance, and (2)

Figure 4: Semantic shift analysis based on LPIPS scores (Zhang et al., 2018). Higher scores indicate lower similarity between the original and reconstructed images. Images are reconstructed under two conditions: with and without caption guidance.

Figure 5: Real and fake images from the GenImage dataset (Zhu et al., 2023) with their captions generated by a pre-trained BLIP (Li et al., 2022), the corresponding reconstructions, and SAREs.

reconstruction with caption guidance. While real images consistently exhibit higher LPIPS scores than fake images in both settings, the gap between real and fake images is substantially larger when caption guidance is applied. To quantify this gap, we define Δ as follows:

$$\Delta = \mathbb{E}_{x \sim \mathcal{D}_{\text{real}}} [\text{LPIPS}(x, \hat{x})] - \mathbb{E}_{x \sim \mathcal{D}_{\text{fake}}} [\text{LPIPS}(x, \hat{x})]. \quad (7)$$

Method	Image Captioning	Avg ACC. (%)	Avg AUC. (%)
DRCT	-	88.81	95.66
SARE (ours)	BLIP	93.17	98.15
	LLaVA-NeXT	92.51	97.95

Table 5: Ablation study on the influence of image captioning models on the GenImage dataset (Zhu et al., 2023).

Method	w	Avg ACC. (%)	Avg AUC. (%)
DRCT	-	88.81	95.66
	2.5	93.15	98.24
SARE (ours)	7.5	93.17	98.15
	12.5	93.04	98.13

Table 6: Ablation study on the guidance scale w conducted on the GenImage dataset (Zhu et al., 2023).

As shown in Figure 4b, Δ is relatively small without caption guidance, but increases significantly in all subsets when caption guidance is used. These results suggest that the semantic difference between an image and its caption-guided reconstruction may serve as a more discriminative feature for detection, thereby leading to improved performance across diverse generative models.

Qualitative Results and Visualizations Figure 5 presents qualitative examples of real and fake images from the GenImage dataset and their caption-guided reconstructions, where captions were generated using a pre-trained BLIP. In GenImage, real images are sourced from ImageNet, while fake images are synthesized by generative models using ImageNet class labels as text prompts. For a fair comparison, we visualize real and fake images from the same ImageNet class label along with their reconstructions. The results show that real images tend to undergo larger semantic shifts than fake images during the caption-guided reconstruction process.

4.5 ABLATION STUDY

Influence of Image Captioning models To evaluate the impact of different image captioning models on detection performance, we conducted an ablation study using captions generated by pre-trained BLIP and LLaVA-NeXT-8B (Liu et al., 2024) on the GenImage dataset. As shown in Table 5, SARE demonstrates strong performance with both captioning models, but BLIP consistently achieves higher accuracy and AUC. To further examine this difference, Figure 6 visualizes real images from GenImage and their reconstructions guided by captions from the two models. BLIP tends to generate concise captions such as “a butchery”, which do not fully capture fine details like “a man in a white shirt” or “hanging meat”. As a result, the reconstructed images differ significantly from the original, leading to noticeable semantic shifts. In contrast, LLaVA-NeXT provides more detailed descriptions that include such elements, yielding reconstructions that remain relatively close to the input image and thus exhibit smaller semantic changes. These observations suggest that BLIP’s coarse captions induce larger semantic shifts in real images, thereby enhancing the effectiveness of SARE in distinguishing real from fake images. A more detailed analysis of captioning models is presented in Appendix A.

Influence of Guidance Scale We investigated the impact of the guidance scale w on detection performance within the caption-guided reconstruction framework. Table 6 presents the accuracy and AUC results on the GenImage dataset for different guidance scale values. The results show that incorporating SARE consistently improves the performance over the baseline across all settings. Notably, the best accuracy is achieved at $w = 7.5$ (93.17%), whereas the highest AUC is observed at $w = 2.5$ (98.24%).

486 5 CONCLUSION
487

488 In this paper, we introduced a novel representation for AI-generated image detection, termed
489 Semantic-Aware Reconstruction Error (SARE), that quantifies the semantic difference between an
490 image and its caption-guided reconstruction. By effectively leveraging the relationship between an
491 image and its caption, SARE provided a discriminative and generalizable feature for detecting fake
492 images across diverse generative models. Our experimental results demonstrated that SARE signifi-
493 cantly improved detection performance in both ID and OOD settings, surpassing existing baselines.
494

495 REFERENCES
496

497 Midjourney. <https://www.midjourney.com/home>, 2022.

498 Wukong. <https://xihe.mindspore.cn/modelzoo/wukong>, 2022.

500 Belhassen Bayar and Matthew C Stamm. A deep learning approach to universal image manipulation
501 detection using a new convolutional layer. In *Proceedings of the ACM Workshop on Information
502 Hiding and Multimedia Security*, pp. 5–10, 2016.

503 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
504 natural image synthesis. In *International Conference on Learning Representations*, 2019.

505 George Cazenavette, Avneesh Sud, Thomas Leung, and Ben Usman. Fakeinversion: Learning to
506 detect images from unseen text-to-image models by inverting stable diffusion. In *Proceedings of
507 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10759–10769, 2024.

509 Baoying Chen, Jishen Zeng, Jianquan Yang, and Rui Yang. Drct: Diffusion reconstruction
510 contrastive training towards universal detection of diffusion generated images. In *International Con-
511 ference on Machine Learning*, 2024.

513 Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In *Proceedings
514 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3291–3300, 2018.

515 Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks.
516 In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1511–1520, 2017.

518 Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan:
519 Unified generative adversarial networks for multi-domain image-to-image translation. In *Pro-
520 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8789–
521 8797, 2018.

522 Beilin Chu, Xuan Xu, Xin Wang, Yufei Zhang, Weike You, and Linna Zhou. Fire: Robust detection
523 of diffusion-generated images via frequency-guided reconstruction error. In *Proceedings of the
524 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12830–12839, 2025.

526 Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, and Luisa Ver-
527 doliva. On the detection of synthetic images generated by diffusion models. In *IEEE International
528 Conference on Acoustics, Speech and Signal Processing*, pp. 1–5, 2023.

529 Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network
530 for single image super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer
531 Vision and Pattern Recognition*, pp. 11065–11074, 2019.

533 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
534 hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition*,
535 pp. 248–255, 2009.

536 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
537 in Neural Information Processing Systems*, 34:8780–8794, 2021.

538 William D Ferreira, Cristiane BR Ferreira, Gelson da Cruz Júnior, and Fabrizzio Soares. A review
539 of digital image forensics. *Computers & Electrical Engineering*, 85:106685, 2020.

540 Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten
 541 Holz. Leveraging frequency analysis for deep fake image recognition. In *International Conference on Machine Learning*, pp. 3247–3258. PMLR, 2020.
 543

544 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 545 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in Neural Information Processing Systems*, 27, 2014.
 546

547 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 548 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10696–10706, 2022.
 550

551 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 552 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
 553

554 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*, 2021.
 555

557 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
 558

559 Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, and Yang Liu. Countering malicious
 560 deepfakes: Survey, battleground, and horizon. *International Journal of Computer Vision*, 130(7):
 561 1678–1734, 2022.
 562

563 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
 564 proved quality, stability, and variation. In *International Conference on Learning Representations*,
 565 2018.

566 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 567 adversarial networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4401–4410, 2019.
 568

570 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *International Conference on Learning Representations*, 2014.
 571

573 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 574 training for unified vision-language understanding and generation. In *International Conference on Machine Learning*, pp. 12888–12900. PMLR, 2022.
 575

576 Ke Li, Tianhao Zhang, and Jitendra Malik. Diverse image synthesis from semantic layouts via
 577 conditional imle. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 578 pp. 4220–4229, 2019.

579 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 580 Llavanext: Improved reasoning, ocr, and world knowledge, 2024.
 581

582 Zhengzhe Liu, Xiaojuan Qi, and Philip HS Torr. Global texture enhancement for fake face detec-
 583 tion in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8060–8069, 2020.
 584

586 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 587 A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11976–11986, 2022.
 588

589 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 590 ence on Learning Representations*, 2019.
 591

592 Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Generalizing face forgery detection with high-
 593 frequency features. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16317–16326, 2021.

594 Yunpeng Luo, Junlong Du, Ke Yan, and Shouhong Ding. Lare²: Latent reconstruction error based
 595 method for diffusion-generated image detection. In *Proceedings of the IEEE/CVF Conference on*
 596 *Computer Vision and Pattern Recognition*, pp. 17006–17015, 2024.

597

598 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 599 McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and
 600 editing with text-guided diffusion models. In *International Conference on Machine Learning*, pp.
 601 16784–16804. PMLR, 2022.

602 Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
 603 across generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 604 *Pattern Recognition*, pp. 24480–24489, 2023.

605

606 Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
 607 spatially-adaptive normalization. In *Proceedings of the IEEE/CVF Conference on Computer Vi-*
 608 *sion and Pattern Recognition*, pp. 2337–2346, 2019.

609 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 610 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 611 models from natural language supervision. In *International Conference on Machine Learning*,
 612 pp. 8748–8763. PMLR, 2021.

613

614 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 615 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 616 *ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

617

618 Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
 619 Nießner. Faceforensics++: Learning to detect manipulated facial images. In *Proceedings of the*
 620 *IEEE/CVF International Conference on Computer Vision*, pp. 1–11, 2019.

621

622 Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-fake: Detection and attribution of fake
 623 images generated by text-to-image generation models. In *Proceedings of the 2023 ACM SIGSAC*
 624 *Conference on Computer and Communications Security*, pp. 3418–3432, 2023.

625

626 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 627 national Conference on Learning Representations*, 2021.

628

629 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking
 630 the up-sampling operations in cnn-based generative network for generalizable deepfake detection.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 631 28130–28139, 2024.

632

633 Chuangchuang Tan, Renshuai Tao, Huan Liu, Guanghua Gu, Baoyuan Wu, Yao Zhao, and Yunchao
 634 Wei. C2p-clip: Injecting category common prompt in clip to enhance generalization in deepfake
 635 detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7184–
 7192, 2025.

636

637 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
 638 images are surprisingly easy to spot... for now. In *Proceedings of the IEEE/CVF Conference on*
 639 *Computer Vision and Pattern Recognition*, pp. 8695–8704, 2020.

640

641 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
 642 Houqiang Li. Dire for diffusion-generated image detection. In *Proceedings of the IEEE/CVF*
 643 *International Conference on Computer Vision*, pp. 22445–22455, 2023.

644

645 Haiwei Wu, Jiantao Zhou, and Shile Zhang. Generalizable synthetic image detection via language-
 646 guided contrastive learning. *arXiv preprint arXiv:2305.13800*, 2023.

647

648 Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
 649 check for AI-generated image detection. In *International Conference on Learning Representa-
 650 tions*, 2025.

648 Zhiyuan Yan, Yong Zhang, Yanbo Fan, and Baoyuan Wu. Ucf: Uncovering common features for
 649 generalizable deepfake detection. In *Proceedings of the IEEE/CVF International Conference on*
 650 *Computer Vision*, pp. 22412–22423, 2023.

651

652 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 653 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference*
 654 *on Computer Vision and Pattern Recognition*, pp. 586–595, 2018.

655

656 Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating artifacts in gan fake
 657 images. In *IEEE International Workshop on Information Forensics and Security*, pp. 1–6. IEEE,
 658 2019.

659

660 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 661 using cycle-consistent adversarial networks. In *Proceedings of the IEEE International Conference*
 662 *on Computer Vision*, pp. 2223–2232, 2017.

663

664 Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin
 665 Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated
 666 image. *Advances in Neural Information Processing Systems*, 36:77771–77782, 2023.

667

668 APPENDIX

669 A MORE ANALYSIS OF CAPTIONING MODELS

670 In Section 4.5, we analyzed the impact of different captioning models on detection performance. To
 671 further examine the differences between BLIP (Li et al., 2022) and LLaVA-NeXT (Liu et al., 2024),
 672 we present additional analysis based on LPIPS scores (Zhang et al., 2018) and visualizations.

673 **LPIPS-Based Semantic Shift Analysis** We measured the LPIPS scores between original images
 674 and their caption-guided reconstructions. Figure 7a shows the average LPIPS scores of real and
 675 fake images in each subset of the GenImage dataset (Zhu et al., 2023) under two conditions: (1)
 676 using captions generated by BLIP, and (2) using captions generated by LLaVA-NeXT. In both cases,
 677 real images consistently yield higher LPIPS scores than fake images, suggesting that caption-guided
 678 reconstruction serves as a reliable cue for detection. However, as shown in Table 7b, the LPIPS
 679 score gap between real and fake images, denoted as Δ in Eq. 7, is smaller with LLaVA-NeXT than
 680 with BLIP, which explains the slightly lower performance reported in Table 5.

691 (a) Average LPIPS scores between original images and their reconstructions.

Δ	SDv1.4	SDv1.5	ADM	BigGAN	GLIDE	MJ	VQDM	Wukong
w/ BLIP caption	0.091	0.098	0.065	0.091	0.147	0.105	0.082	0.076
w/ LLaVA-NeXT caption	0.090	0.096	0.062	0.088	0.144	0.103	0.080	0.073

692 (b) Δ values measuring the LPIPS score gap between real and fake images.

693 Figure 7: Semantic shift analysis based on LPIPS scores (Zhang et al., 2018). Higher scores indicate
 694 lower similarity between the original and reconstructed images. Images are reconstructed under two
 695 conditions: (1) using captions generated by BLIP (Li et al., 2022), and (2) using captions generated
 696 by LLaVA-NeXT (Liu et al., 2024)

Method	JPEG (QF=90)	JPEG (QF=80)	JPEG (QF=70)	Scale (0.75)	Scale (1.25)
GramNet (Liu et al., 2020)	71.22	71.02	71.22	69.89	66.31
Conv-B (Liu et al., 2022)	71.91	71.57	71.42	75.30	75.28
UnivFD (Ojha et al., 2023)	73.24	70.42	69.75	75.96	73.99
DIRE (Wang et al., 2023)	52.79	50.65	50.34	51.94	53.77
DE-FAKE (Sha et al., 2023)	71.00	70.88	70.44	72.33	71.88
NPR (Tan et al., 2024)	69.44	70.94	70.77	71.27	71.20
AIDE (Yan et al., 2025)	57.22	58.50	60.45	83.13	83.79
DRCT (Chen et al., 2024)	80.97	78.06	76.18	79.51	74.75
SARE (ours)	85.64	82.72	79.14	87.60	82.74

Table 7: Accuracy (ACC, %) performance of robustness evaluation on the GenImage (Zhu et al., 2023) dataset. QF denotes JPEG quality factor. For NPR (Tan et al., 2024) and AIDE (Yan et al., 2025), the publicly released checkpoints are used.

Method	JPEG (QF=90)	JPEG (QF=80)	JPEG (QF=70)	Scale (0.75)	Scale (1.25)
GramNet (Liu et al., 2020)	80.12	81.71	81.15	69.47	69.32
Conv-B (Liu et al., 2022)	90.53	90.17	90.43	94.15	96.90
UnivFD (Ojha et al., 2023)	85.31	82.53	81.08	85.48	82.05
DIRE (Wang et al., 2023)	70.83	63.44	59.23	78.92	80.61
DE-FAKE (Sha et al., 2023)	79.89	79.02	77.96	81.09	78.10
NPR (Tan et al., 2024)	75.23	76.54	77.09	90.87	92.12
AIDE (Yan et al., 2025)	75.23	78.12	80.66	96.28	96.00
DRCT (Chen et al., 2024)	88.89	86.18	84.05	89.29	87.93
SARE (ours)	94.33	93.10	89.68	94.97	92.77

Table 8: AUC (%) performance of robustness evaluation on the GenImage (Zhu et al., 2023) dataset. QF denotes JPEG quality factor. For NPR (Tan et al., 2024) and AIDE (Yan et al., 2025), the publicly released checkpoints are used.

Additional Visualizations Figures 9–12 present real and fake images from the GenImage dataset and their reconstructions guided by captions from BLIP and LLaVA-NeXT. To ensure a fair comparison, real and fake images are selected from the same ImageNet class label. The visualizations show that real images typically undergo larger semantic shifts than fake images during caption-guided reconstruction with both captioning models. In some real image cases, however, the detailed descriptions provided by LLaVA-NeXT yield reconstructions that remain relatively closer to the original input, whereas the concise captions generated by BLIP tend to produce larger shifts.

B ADDITIONAL ABLATION STUDY

Influence of Strength Parameter To evaluate the influence of the *strength* parameter on detection performance, we conducted an ablation study on the GenImage dataset by varying the *strength* value from 0.3 to 0.9. Figure 8 shows the accuracy and AUC performance for each *strength* value. The results demonstrate that the model maintains stable performance across all values. In particular, the highest accuracy is obtained at *strength* = 0.5, while the best AUC is achieved at *strength* = 0.7.

C LLM USAGE

Large language models (LLMs) were used solely for polishing the writing of this paper.

Figure 8: Ablation study on the *strength* parameter conducted on the GenImage dataset (Zhu et al., 2023).

Real Images

756	Original				
757					
758		“a panda in a zoo”	“a basket full of bread”	“a group of wild dogs in a fenced area”	“a group of people standing in a circle”
759					
760	BLIP				
761		0.4974	0.4697	0.4071	0.5338
762		“A black and white panda bear walking through a lush green forest.”	“A basket filled with bread rolls under a yellow tent.”	“Two spotted hyenas in a fenced enclosure.”	“A group of football players huddled together on a field.”
763					
764	LPIPS				
765		0.4625	0.4610	0.4327	0.5610
766		“A black and white panda is walking through a lush green forest. The panda is moving towards the right side of the image, with its head slightly lowered as if sniffing the ground. The forest is dense with green foliage, and there's a metal fence visible in the background, suggesting a boundary or enclosure. The panda's fur is distinct, with black patches around its eyes, ears, and body, contrasting with its white face and belly.”	“A woven basket filled with freshly baked bread rolls, displayed under a yellow tent. The bread rolls are golden brown and appear soft. A price sign is attached to the basket, indicating “1.00”. The basket is placed on a tiled floor, and the tent provides shade, suggesting an outdoor market setting.”	“In a fenced enclosure, two hyenas are captured in a moment of tranquility. The hyena in the foreground, with its coat of brown and black, is walking towards the camera, its gaze fixed on the viewer. Its companion, a bit further back, is lying down, its body relaxed and at ease. The enclosure they inhabit is simple, with a chain link fence and a wooden post visible in the background. The grass beneath their feet is a vibrant green, providing a stark contrast to their earthy tones.”	“A group of football players huddled together on a field, wearing helmets and jerseys. They are surrounded by a blurred background of trees and a fence. A coach stands to the side, observing the team. The image is a digital art piece with a red and blue color filter, giving it a vibrant and dynamic appearance.”
767					
768		0.4729	0.4492	0.4289	0.5523
769	LLaVA-NeXT				
770		0.4729	0.4492	0.4289	0.5523
771		“A black and white panda is walking through a lush green forest. The panda is moving towards the right side of the image, with its head slightly lowered as if sniffing the ground. The forest is dense with green foliage, and there's a metal fence visible in the background, suggesting a boundary or enclosure. The panda's fur is distinct, with black patches around its eyes, ears, and body, contrasting with its white face and belly.”	“A woven basket filled with freshly baked bread rolls, displayed under a yellow tent. The bread rolls are golden brown and appear soft. A price sign is attached to the basket, indicating “1.00”. The basket is placed on a tiled floor, and the tent provides shade, suggesting an outdoor market setting.”	“In a fenced enclosure, two hyenas are captured in a moment of tranquility. The hyena in the foreground, with its coat of brown and black, is walking towards the camera, its gaze fixed on the viewer. Its companion, a bit further back, is lying down, its body relaxed and at ease. The enclosure they inhabit is simple, with a chain link fence and a wooden post visible in the background. The grass beneath their feet is a vibrant green, providing a stark contrast to their earthy tones.”	“A group of football players huddled together on a field, wearing helmets and jerseys. They are surrounded by a blurred background of trees and a fence. A coach stands to the side, observing the team. The image is a digital art piece with a red and blue color filter, giving it a vibrant and dynamic appearance.”
772					
773		0.4729	0.4492	0.4289	0.5523
774		0.4729	0.4492	0.4289	0.5523
775		0.4729	0.4492	0.4289	0.5523
776		0.4729	0.4492	0.4289	0.5523
777		0.4729	0.4492	0.4289	0.5523
778		0.4729	0.4492	0.4289	0.5523
779		0.4729	0.4492	0.4289	0.5523
780		0.4729	0.4492	0.4289	0.5523
781		0.4729	0.4492	0.4289	0.5523
782		0.4729	0.4492	0.4289	0.5523
783		0.4729	0.4492	0.4289	0.5523
784		0.4729	0.4492	0.4289	0.5523
785		0.4729	0.4492	0.4289	0.5523
786		0.4729	0.4492	0.4289	0.5523
787		0.4729	0.4492	0.4289	0.5523
788		0.4729	0.4492	0.4289	0.5523
789		0.4729	0.4492	0.4289	0.5523
790		0.4729	0.4492	0.4289	0.5523
791		0.4729	0.4492	0.4289	0.5523
792		0.4729	0.4492	0.4289	0.5523
793		0.4729	0.4492	0.4289	0.5523
794		0.4729	0.4492	0.4289	0.5523
795		0.4729	0.4492	0.4289	0.5523
796		0.4729	0.4492	0.4289	0.5523
797		0.4729	0.4492	0.4289	0.5523
798		0.4729	0.4492	0.4289	0.5523
799		0.4729	0.4492	0.4289	0.5523
800		0.4729	0.4492	0.4289	0.5523
801		0.4729	0.4492	0.4289	0.5523
802		0.4729	0.4492	0.4289	0.5523
803		0.4729	0.4492	0.4289	0.5523
804		0.4729	0.4492	0.4289	0.5523
805		0.4729	0.4492	0.4289	0.5523
806		0.4729	0.4492	0.4289	0.5523
807		0.4729	0.4492	0.4289	0.5523
808		0.4729	0.4492	0.4289	0.5523
809		0.4729	0.4492	0.4289	0.5523

Figure 9: Real images from the GenImage dataset (Zhu et al., 2023) with captions from BLIP (Li et al., 2022) and LLaVA-NeXT (Liu et al., 2024), their corresponding reconstructions, and LPIPS scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed description within 80 words.”

Real Images

810	Original				
811	BLIP				
812	LPIPS	0.5315	0.3026	0.5097	0.4387
813	LLaVA-NeXT				
814		0.4676	0.3145	0.5353	0.4189
815		<p>“A flowered fabric draped over a black metal cart with wheels.”</p>			
816		<p>“A beach with boats and a pier.”</p>			
817		<p>“A pile of corn on the cob with husks still attached.”</p>			
818		<p>“A small brown dog laying on a bed next to a bag of chips.”</p>			
819		<p>“A black metal cart with four wheels is parked on a grassy area. The cart is adorned with a large, colorful quilt featuring a floral pattern with red, pink, and blue flowers. The quilt is draped over the cart, covering the top and sides. The cart is positioned in front of a garden with green plants and purple flowers.”</p>			
820		<p>“A serene beach scene with several boats docked on the shore. The boats vary in size and color, with some appearing to be fishing vessels. The water is a light blue-green, and the sky is a clear blue with a few scattered clouds. The beach is sandy, and there are no people visible in the image. The overall atmosphere is peaceful and calm.”</p>			
821		<p>“A close-up view of a pile of corn on the cob, showcasing its golden and brown hues. The cob is tightly wrapped in its husk, with the corn kernels visible in various shades of yellow and orange. The cob’s texture and the corn’s natural patterns are clearly visible, indicating the corn is fresh and ready for harvest.”</p>			
822		<p>“A small brown chihuahua dog with a collar and tag, sitting on a bed with a bag of cheese crackers. The dog has a curious expression and is looking directly at the camera.”</p>			
823					
824		0.4716	0.3356	0.4975	0.4109

Figure 10: Real images from the GenImage dataset (Zhu et al., 2023) with captions from BLIP (Li et al., 2022) and LLaVA-NeXT (Liu et al., 2024), their corresponding reconstructions, and LPIPS scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed description within 80 words.”

Fake Images

864		MJ	SD1.4	SD1.5	ADM	
865						
866						
867						
868						
869						
870						
871						
872						
873						
874		Original				
875						
876						
877						
878						
879						
880						
881						
882						
883						
884						
885		BLIP				
886						
887						
888						
889						
890						
891						
892						
893						
894						
895		LPIPS	0.2950	0.2328	0.3271	0.2314
896						
897						
898						
899						
900						
901						
902						
903						
904						
905						
906						
907						
908		LLaVA-NeXT	0.2884	0.2447	0.2850	0.2385
909						
910						
911						
912						
913						
914						
915						
916						
917						

Figure 11: Fake images from the GenImage dataset (Zhu et al., 2023) with captions from BLIP (Li et al., 2022) and LLaVA-NeXT (Liu et al., 2024), their corresponding reconstructions, and LPIPS scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed description within 80 words.”

918 **Fake Images**

Figure 12: Fake images from the GenImage dataset (Zhu et al., 2023) with captions from BLIP (Li et al., 2022) and LLaVA-NeXT (Liu et al., 2024), their corresponding reconstructions, and LPIPS scores. For LLaVA-NeXT, we used the prompts “Brief description within 50 words.” and “Detailed description within 80 words.”

Figure 13: Single object real images from the GenImage dataset (Zhu et al., 2023) with captions from BLIP (Li et al., 2022) and their reconstructions.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Figure 14: Real and fake images from the GenImage (Zhu et al., 2023) dataset under different levels of JPEG compression (QF = 90, 80, 70), along with their captions generated by BLIP (Li et al., 2022) and caption-guided reconstructions.

1076

1077

1078

1079

Figure 15: Real and fake images from the GenImage (Zhu et al., 2023) dataset under different levels of scaling (0.75, 1.25), along with their captions generated by BLIP (Li et al., 2022) and caption-guided reconstructions.

Figure 16: Real and fake images from the GenImage (Zhu et al., 2023) dataset under flip perturbations (3 or 6 regions per image), along with their captions generated by BLIP (Li et al., 2022) and caption-guided reconstructions.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 17: Failure cases of caption-guided reconstructions for real and fake images from the Gen-Image (Zhu et al., 2023) dataset.

Figure 18: Fake images containing artifacts and distortions from the GenImage (Zhu et al., 2023) dataset and their caption-guided reconstructions.