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ABSTRACT

Self-improvement through post-training methods such as iterative preference learn-
ing has been acclaimed for enhancing the problem-solving capabilities (e.g., mathe-
matical reasoning) of Large Language Models (LLMs) without human intervention.
However, as exploration deepens, it becomes crucial to assess whether these im-
provements genuinely signify progress in solving more challenging problems or if
they could lead to unintended regressions. To address this, we propose a comprehen-
sive evaluative framework that goes beyond the superficial pass@1 metric to scruti-
nize the underlying enhancements of post-training paradigms for self-improvement.
Through rigorous experimentation and analysis across diverse problem-solving
tasks, the empirical results point out the phenomenon of self-improvement reversal,
where models showing improved performance across benchmarks will paradoxi-
cally exhibit declines in broader, essential capabilities, like output diversity and
out-of-distribution (OOD) generalization. These findings indicate that current self-
improvement practices through post-training are inadequate for equipping models
to tackle more complex problems. Furthermore, they underscore the necessity of
our critical evaluation metrics in discerning the progress or regress dichotomy for
self-improving LLMs.

1 INTRODUCTION

In the rapidly evolving landscape of artificial intelligence (AI), the pursuit of self-improving large
language models (LLMs) has garnered significant attention (Singh et al., 2023; Huang et al., 2023;
Sun et al., 2024). The essence of self-improvement in LLMs lies in their capacity to iteratively
refine models’ own performance without human intervention (Zelikman et al., 2022; Yuan et al.,
2024). This capability is paramount as it holds the promise of fostering the development of more
autonomous, adaptable, and efficient AI systems (Silver et al., 2016). Embracing and implementing
self-improvement methodologies enables us to push the boundaries of these models’ capabilities,
ultimately fostering the creation of more sophisticated and versatile AI applications (Significant-
Gravitas, 2023).

Building on the concept of self-training (Grandvalet & Bengio, 2004), wherein models bootstrap
their own generated responses for iterative training, a synergetic effect is observed and amplified.
When models produce superior responses, the quality of the training data used to refine the models
improves, subsequently enabling even better responses in future iterations. Such iterative post-
training has become the standard paradigm for current self-improving AI (Yuan et al., 2024). Notably,
STaR (Zelikman et al., 2022) has demonstrated that leveraging model’s self-generated reasoning
steps for iterative supervised fine-tuning (SFT) can effectively enhance its reasoning abilities. Recent
studies (Pang et al., 2024) have further revealed that employing iterative preference optimization in
LLMs can achieve more performance improvements in reasoning tasks.

However, despite the promising advances in various post-training methods for self-improvement,
a comprehensive understanding of their effects and underlying mechanisms is still lacking. To
address this gap, in this study, we first endeavor to provide a comprehensive overview of the main
iterative post-training paradigms for self-improvement, identifying the factors that contribute to
consistent performance improvements. We decouple the influencing factors into the initial model,
task datasets, the number of iterations, and the specific post-training methods employed. By isolating
these variables, our comprehensive experiments and analysis uncover their individual and combined
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effects on the model’s performance. This provides actionable insights for practitioners on how to
perform iterative self-improvement practices more effectively.

While our extensive empirical results show that all these iterative post-training methods can achieve
notable improvements in pass@1 accuracy across various problem-solving benchmarks, the evaluation
has been limited to this single and superficial metric. Amidst the quest for self-improvement in
LLMs, the persistent question arises: are these iterative post-training methods truly fostering
progress, or are they inadvertently leading to regression? Transitioning beyond using pass@1
accuracy as the indicator of improvement, we further develop an evaluative framework equipped
with a comprehensive suite of metrics to assess improvement problems, solutions diversity, and
OOD capabilities within the iterative process, enabling us to scrutinize the actual improvements
beneath self-improvement. Surprisingly, our evaluation results display a paradoxical trend: as pass@1
accuracy increases, the proposed metrics exhibit consistent performance declines.

The perceived reversals in our evaluative framework prompt a critical reflection on the effectiveness
of current self-improvement practices. Through this study, we aim to illuminate the path forward for
developing truly self-improving LLMs that balance accuracy, diversity, and robustness. To summarize,
our work makes three significant contributions as follows:

• Systematic Analysis: In Sections 3 and 4, we systematically formulate current post-training
methodologies and conduct extensive experiments to examine how various factors influence self-
improvement in solving challenging tasks. To the best of our knowledge, this work provides the first
in-depth overview of these influencing factors.

• Metric Innovation: In Section 5, we propose a comprehensive set of evaluation metrics to better
capture the multifaceted nature of LLM performance in self-improvement practices.

• Identified Phenomenon: In Section 5, based on the proposed evaluation metrics, we reveal the
phenomenon of self-improvement reversal, where increases in pass@1 accuracy compromise other
essential capabilities such as solution diversity and OOD generalization.

2 BACKGROUND AND RELATED WORK

Training paradigms for LLMs typically consist of two stages: pre-training and post-training (Liu
et al., 2024). Common post-training methods include supervised fine-tuning (Taori et al., 2023; Wang
et al., 2023) and preference learning (Ouyang et al., 2022; Lee et al., 2024). Supervised fine-tuning
trains LLMs to produce standard responses for given instructions, while preference learning trains
LLMs to align with human preferences for different responses. Both methods, however, rely heavily
on extensive human-annotated data.

An important question is whether effective LLM post-training can be achieved without excessive
external feedback. Predating the era of LLMs, the self-training algorithm (Grandvalet & Bengio,
2004; Goodfellow et al., 2014) demonstrated the potential to enhance model performance without
additional labeled data. Recent studies have revived this concept, employing iterative self-training to
facilitate self-improvement in LLMs without external feedback (Wang et al., 2023; Sun et al., 2023).
For instance, STaR (Zelikman et al., 2022) shows that iterative training on the model’s own reasoning
traces for correct answers can help solve increasingly difficult problems. Unlike the iterative nature
of SFT, recent works (Yuan et al., 2024; Pang et al., 2024) propose iterative preference fine-tuning to
aid models in self-improving.

In contrast to post-training methods, another line of research explores self-improvement through
iterative post-prompting during inference (Huang et al., 2023). This approach does not update
the model’s parameters but achieves self-improvement by generating reflections on its outputs and
adjusting future outputs accordingly (Madaan et al., 2023; Gou et al., 2024). However, as revealed
by Huang et al. (2024), post-prompting strategies are limited by the model’s intrinsic self-correction
capabilities, thereby failing to significantly enhance problem-solving capabilities.

The potential of iterative post-training for self-improvement in LLMs remains underexplored. Al-
though various post-training methods have demonstrated promise in general instruction-following
tasks (Li et al., 2024; Sun et al., 2024; Chen et al., 2024; Yuan et al., 2024), they predominantly focus
on aligning models with human values rather than enhancing the models’ internal knowledge. A key
challenge remains whether LLMs can sustain consistent performance on more complex problem-
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solving tasks. Recently, Pang et al. (2024) examined iterative preference learning in the context of
reasoning tasks, marking the first study to expand beyond instruction tuning.

Despite these advancements, a comprehensive overview investigating the effectiveness of various
iterative post-training methods for problem-solving is still lacking. First, it remains unclear how
improvements vary across iteration steps, different base models, task difficulties, and iterative post-
training techniques. For practitioners, there is a need for guidelines to help choose the most effective
post-training method among the various iterative post-training paradigms. Second, current research
only concentrates on maximizing benchmark scores through iterative self-improvement, there is little
exploration of the underlying factors contributing to performance gains. As a result, the progress and
reliability of different self-improvement methods are not guaranteed.

In this work, we aim to address these two critical issues. Our goal is not only to ensure the
effectiveness of various self-improvement methods but also to ensure that other capabilities are not
compromised during the complex self-improvement process.

3 POST-TRAINING FOR SELF-IMPROVEMENT

3.1 FORMULATION

Consider a training dataset D = {(xi, yi)}Ni=1, consisting of pairs of queries xi and their correspond-
ing correct responses yi. A foundation model, denoted as M0. Our objective is to enhance M0

through a self-driven iterative post-training process, leveraging the model’s own outputs to refine its
capabilities, without reliance on external signals.

Iterative Post-Training The iterative post-training process involves a series of post-training steps,
each aimed at using the model’s previous outputs to guide its subsequent refinement. These steps are
designed to foster a continuous loop of self-improvement for the model.

The process is outlined across three main phases as follows, where the total number of iterations is
denoted as T , and the model employed in the t-th iteration is denoted as Mt−1, implying that M0 is
used in the first iteration:

• Answer sampling: In the t-th iteration, we prompt Mt−1 to generate N answers for each query
xi in D to form a new self-generated dataset Dself

t = {(xi, y
j
i )|xi ∈ D, j = [1, N ]}.

• Training set construction: The training set Dt in the t-th iteration is assembled from Dself
t

without introducing any external data. The approach to constructing the training set depends on the
specific paradigm of post-training.

• Model post-training: Utilizing Dt, the model Mt−1 is refined into Mt.

It’s worth noting that, in the first iteration, we always directly supervised fine-tuning M0 on D to
initialize M1 with task-specific knowledge.

Central to these diverse methodologies is the post-training function, symbolized as F . We distinguish
among the practices based on the nature of F , involving Supervised Fine-tuning (SFT) and Direct
Preference Optimization (DPO) (Rafailov et al., 2023), the latter being an effective implementation
of preference learning. During the SFT phase, this stage necessitates accurately labeled training data.
We derive these correct answers from Dself

t to assemble the training dataset:

Dt = {(xi, y
✔)|R(xi, y

✔) = 1, (xi, y
✔) ∈ Dself

t },

where R(x, y) evaluates whether the answer y accurately addresses the question. In our problem-
solving task, the correctness of an answer y is verified by its alignment with the response provided in
the dataset. While during the DPO phase, for each query qi in dataset D, both correct and incorrect
responses from Dself

t are paired to construct the training set, allowing for contrastive preference
learning:

Dt = {(xi, y
✔, y✘)|R(xi, y

✔) = 1,R(xi, y
✘) = 0, (xi, y

✔) ∈ Dself
t , (xi, y

✘) ∈ Dself
t }.

3
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Algorithm 1 Iterative Self-Improvement

Require: training set D = {xi, yi}, base model M0, iteration times T , post-training function series
[F1(·),F2(·), ...,FT (·)]

1: M1← SFT ((M0)|D) ▷ Initialize base model with task-specific knowledge
2: for t = 2 to T do
3: Dself

t = {(xi, y
j
i )|xi ∈ D, yji ∼Mt−1(xi), j ∈ [1, N ]}

4: if F(·) == SFT then
5: Dt = {(xi, y

✔)|R(xi, y
✔) = 1, (xi, y

✔) ∈ Dself
t }

6: else
7: Dt = {(xi, y

✔, y✘)|R(xi, y
✔) = 1,R(xi, y

✘) = 0, (xi, y
✔) ∈ Dself

t , (xi, y
✘) ∈ Dself

t }
8: end if
9: Mt ← Ft(Mt−1|Dt)

10: end for

3.2 THREE ITERATIVE POST-TRAINING PARADIGMS

Through the implementation of designated self post-training steps (e.g., self-SFT), several distinct
iterative post-training paradigms emerge. Our work focuses on three paradigms: (i) iterative SFT,
where each cycle consists exclusively of self-SFT steps, (ii) Iterative DPO, characterized by successive
self-DPO steps, except for the first iteration which supervised fine-tune the base model M0, and
(iii) iterative SFT-DPO, which initiates with a self-SFT step and alternates between self-DPO and
self-SFT steps to form a complete iterative post-training loop.

We describe the unified procedure in Algorithm 1.

4 EXPERIMENT

As outlined in Algorithm 1, we hypothesize that the key variables—initialized model (M ), task dataset
(D), iteration steps (T ), and post-training method (F )—critically influence model performance during
iterative self-improvement. This section explores the impact of these variables on different problem-
solving tasks. We aim to determine if models consistently improve with increasing iterations (T ) and
to uncover the trade-offs and comparative advantages of Iterative SFT, Iterative DPO, and Iterative
SFT-DPO in enhancing performance across various tasks. Through this analysis, we seek to provide
deeper insights into the mechanisms driving iterative self-improvement.

4.1 EXPERIMENTAL SETUP

Datasets To measure model problem-solving capabilities, we train and test on a broad spectrum of
problem-solving datasets. We measure general knowledge using the CommonsenseQA (CSQA) (Tal-
mor et al., 2019) dataset, assessing mathematical reasoning with the GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) dataset, and weigh code generation skills using the MBPP
dataset (Austin et al., 2021). Regarding the train-test split, we adhere to (Kojima et al., 2022),
utilizing the validation set of CSQA for evaluation. The GSM8K and MATH datasets are employed
with their predefined train-test splits. For the MBPP code dataset, we follow the approach outlined
by (Austin et al., 2021) that utilizes examples of Task IDs 11-510 as the 500 test problems, and the
remaining 374 examples ranging Task IDs from 601 to 974 for fine-tuning.

Sampling and Rewarding At the end of training, we sample N=50 outputs for each problem using
top p sampling (Holtzman et al., 2020) with p = 0.95 and temperature 0.75. Considering the gold
labels are provided for the problem-solving datasets, we use the correctness of final answer as a
binary reward for the output to annotate the preference.

Training Our experiments primarily leverages three open-source models LLaMA-2-7B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023) and LLaMA3-8B (AI@Meta, 2024), with a fully fine-
tuning setting. For the implementation of preference-based learning, we utilize DPO (Rafailov et al.,
2023) due to its scalability and efficiency. In each iteration, preference data are derived by sampling
outputs from the newly updated model, utilizing an on-policy sampling strategy. Hence, we posit

4
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(a) Iterative SFT
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(b) Iterative DPO
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(c) Iterative SFT-DPO

Figure 1: Pass@1 accuracy across the four benchmarks by performing with the three paradigms:
Iterative SFT, Iterative DPO and Iterative SFT-DPO. For each model along with the training iterations,
we highlight the optimal result with a larger-size marker, the improvement above and final accuracy
below.

that this online DPO can be treated as an effective and representative implementation for preference
learning (Tajwar et al., 2024).

Evaluation We use greedy decoding as the temperature set 0 for testing generation. Meanwhile,
we utilize zero-shot prompting (Kojima et al., 2022) for both answer sampling and evaluations since
we find for LLMs finetuned on specific tasks, zero-shot prompting is superior to few-shot prompting.
More experimental details can be seen in Appendix B.

4.2 MAIN RESULTS: DECOUPLING THE INFLUENCES OF VARIABLES

We perform the three post-training paradigms with the selected LLMs, training and testing them on
the respective tasks. Based on the results shown in figure 1, we delve into the detailed analysis of
how these variables influence the effectiveness of self-improvement.

Iteration T Across all methods and datasets, there is a general trend of improvement in pass@1
accuracy with increasing iteration steps. This indicates that iterative post-training effectively enhances
model performance over time. However, the rate of improvement tends to plateau or even decline
slightly after 4-5 iterations. This suggests that current post-training methods struggle to achieve
long-lasting improvements, and excessive post-training (beyond a certain number of iterations) may
even yield diminishing returns.

Foundation Model M The optimal accuracy improvements across various datasets and post-training
methods suggest that LLaMA2-7B demonstrates a relatively higher capacity for improvement under
iterative post-training. For instance, on the GSM8K dataset, LLaMA2-7B with Iterative SFT shows
an improvement of +12.31 after 5 iterations, whereas LLaMA3-8B exhibits only a moderate gain.
This indicates that the more capable M1 is not necessarily the model that achieves the most significant
performance gains during the self-improvement process. However, the most capable model M1

generally achieves the highest optimal accuracy overall. For example, although LLaMA2-7B achieves

5
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Figure 2: Left: The answer distributions of models. PM1 and PM∗
t

represent the answer distributions
of M1 and the optimal model M∗

t (achieving the highest pass@1 accuracy) within iterative process.
The shaded area indicates the correct answer coverage of M1. Right: For foundation model M and
task D, each line lists the correct answer coverage and the optimal pass@1 accuracy of M∗

t with
the three iterative post-training methods. This table aims to display the relationship between correct
answer coverage and the effectiveness of the post-training method F .

the maximum gains on GSM8K with Iterative SFT, it still struggles to outperform LLaMA3-8B in
terms of absolute optimal accuracy (53.91 vs. 69.06).

Problem-solving Tasks D Models utilizing the three post-training methods all demonstrate notable
improvements on the CSQA and GSM8K datasets, while showing more modest gains on the MATH
and MBPP datasets. This indicates that, from the perspective of task difficulty, problems in the CSQA
and GSM8K datasets are relatively easier for the models to resolve. In contrast, the MATH dataset
poses significant challenges for 7B models due to its complexity. Additionally, the task of code
generation, as represented by the MBPP dataset, is also difficult for these foundation models since
they were not specifically pretrained on code domains.

Comparative Analysis of Post-Training Methods With foundation model M and task D varying,
the best-performing iterative method also changes accordingly. For example, for Mistral-7B on the
CSQA dataset, Iterative-DPO achieves the highest accuracy improvement of +6.47. However, when
applied to the GSM8K dataset, the Iterative SFT-DPO method yields the maximum improvement
of +10.99. Therefore, with these identifiable variables characterized, it remains challenging for
downstream practitioners to determine the optimal post-training method F for their specific use case.

Answer Coverage: Characterizing More Deciding Factor As discussed above, the identifiable
variables fail to provide clear clues on the effectiveness of the post-training methodF when foundation
model M and task D change. Upon closer examination of Figure 1, we find a common thread:
regardless of the changes in M and D, models (M1) that perform well on a task after the initial
iteration of SFT tend to show substantial improvements with further iterations by performing iterative
DPO and iterative SFT-DPO, compared to using Iterative SFT. Conversely, those M1 that achieve
lower pass@1 accuracy initially exhibit limited gains with iterative DPO. Based on this observation,
we hypothesize that M1’s capability to solve the test problems fundamentally influences further
improvement trends and optimal improvements of F . To quantify M1’s capability on the test set, we
introduce Correct Answer Coverage as a measurement, the proportion of the correct answer space
that the model’s responses occupy. An illustrative display of this coverage is shown in Figure 2.

Mathematically, we can sample N model’s outputs to approximate the answer space. As N →∞,
these outputs can effectively represent the entire answer space. Therefore, expected accuracy over the
N outputs can serve as an unbiased estimate of the correct answer coverage. Formally, we use the
following equation to calculate M1 correct answer coverage (for a more detailed derivation, please
refer to the Appendix C.):

Correct Answer Coverage = E
[
Ncorrect

N

]
≈ 1

|Dtest|
∑

x∈Dtest

1

N

N∑
i=1

I[M(xi) == y] (1)
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(c) Iterative SFT-DPO

Figure 3: Pass@N accuracy of M1 with zero-shot prompting on IS(t), for t > 2.

As shown in Figure 2, the relationship between correct answer coverage and optimal performance of
F validate our prior observation and hypothesis. The table clearly demonstrates that when the correct
answer coverage is high (> 0.5), Iterative DPO and Iterative SFT-DPO produce the best-performing
M∗

t . Conversely, when the coverage is lower (≤ 0.5), Iterative SFT is more effective in achieving the
optimal M∗

t . Therefore, correct answer coverage can serve as a key factor in guiding practitioners to
choose the most suitable iterative post-training method F for the specific problem-solving task with a
fixed foundation model.

5 CRITICAL EVALUATIONS ON SELF-IMPROVEMENT

Despite the extensive exploration of various post-training practices for self-improvement and a
deepened understanding of their efficacy, current endeavors remain narrowly focused on enhancing
performance numbers across these problem-solving benchmarks. Transitioning beyond using pass@1
accuracy as the indicator of improvement, our objective in this section is to engage in a critical
examination and reevaluation of iterative self-improvement: discerning whether the improvements
constitute genuine progress or merely regression. For brevity, all the results shown in this section is
based on the foundation model M as Mistral-7B.

5.1 IMPROVEMENT PROBLEMS

In Figure 1, it is evident when t > 1, the pass@1 accuracy of Mt consistently improves in comparison
to M1. Traditionally, it has been assumed that this improvement indicates the model progressively
learning to tackle more challenging problems (Zelikman et al., 2022). However, we posit a nuanced
perspective: while an increase in pass@1 accuracy suggests improvements, it does not inherently
equate to an increase in model capabilities to solve more difficult problems.

To better gauge how the model problem-solving capabilities evolve overtime, we propose to first quan-
tify the improvement problems as improvement set (IS) at each iteration. An intuitive improvement
betweenMt andM1 is the pass@1 accuracy on test set, so we use the subset of test problems that
Mt correctly answers whileM1 fails under greedy decoding to represent IS(t), defined as follows:

IS(t) = {x ∈ Dtest |Mt(x) = y ∧M1(x) ̸= y}. (2)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 50.0

0.2

0.4

0.6

0.8

Di
ve

rs
ity

CSQA

1 2 3 4 5

GSM8K

1 2 3 4 5

MATH

1 2 3 4 5

MBPP

1 2 3 4 5

GSM8K - Distinct Equation 
Correct
Incorrect

Training Iterations

Correct-SentenceBERT Correct-DistinctN Incorrect-SentenceBERT Incorrect-DistinctN 

(a) Iterative SFT

1 2 3 4 50.0

0.2

0.4

0.6

0.8

Di
ve

rs
ity

CSQA

1 2 3 4 5

GSM8K

1 2 3 4 5

MATH

1 2 3 4 5

MBPP

1 2 3 4 5

GSM8K - Distinct Equation 

Training Iterations

(b) Iterative DPO

1 2 3 4 50.0

0.2

0.4

0.6

0.8

Di
ve

rs
ity

CSQA

1 2 3 4 5

GSM8K

1 2 3 4 5

MATH

1 2 3 4 5

MBPP

1 2 3 4 5

GSM8K - Distinct Equation 

Training Iterations

(c) Iterative SFT-DPO

Figure 4: Diversity of the sampling outputs from Mt within the iterative process.

Then we can prompt M1 with the problems in IS(t) and sample N answers for each problem to record
the pass@N accuracy of M1. Notably, if M1 exhibits lower pass@N accuracy even as N increases,
it can validate M1 struggles to solve the problems in IS(t) and the iterative process enhances the
model’s problem-solving abilities.

We apply this evaluative methodology to CSQA, GSM8K, MATH and MBPP datasets with three
post-training methods. Generation sampling N varies from 21 to 26 with the temperature set as 0.75.

Reversal Observation As depicted in Figure 3, contrary to prior assumptions, the rapid increase in
pass@N accuracy with increasing N challenges the notion of progressively harder problem-solving.
Specifically, as N grows, M1 achieves near-perfect pass@N accuracy on IS(t), suggesting its inherent
capacity to tackle the deemed improvement problems.

Selection Optimization for Answer Alignment The empirical findings depicted in Figure 3 offer
a critical insight: iterative self-improvement hardly entails the acquisition of new problem-solving
abilities, but rather the enhancement of the model’s correct answer selection within its generation
space.

5.2 SOLUTIONS DIVERSITY

While pass@1 accuracy measures the correctness of the final answer, it does not capture the diversity
of solutions a model can generate. We posit that a model’s capacity to produce diverse solutions is
indicative of its robustness and flexibility in problem-solving. To thoroughly understand the evolution
of answer diversity during the process of iterative self-improvement, we employ a combination of
Distinct N-grams (Li et al., 2016) and Sentence-BERT embedding cosine similarity (Reimers &
Gurevych, 2019) to measure mod diversity. These metrics have been shown to correlate well with
human assessments of diversity (Tevet & Berant, 2021). Additionally, for mathematical reasoning,
we introduce Distinct Equations to measure the diversity of mathematical answers by analyzing the
variety of equations in the generated solutions.

Each diversity metric Div takes a set of N model outputs, and produces a scalar score representing
how diverse the set is. Distinct N-grams measures syntactic diversity by counting the number of
unique n-grams (averaged over n = 1 . . . 5) in the output set. The Sentence-BERT metric assesses
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Figure 5: Pass@1 Accuracy of Mt on the MATH Algebra Test Set (Post-Training on GSM8K).

semantic diversity by embedding each output using a sentence transformer and calculating the average
cosine similarity between embeddings. The metric is then 1 minus the average similarity, ensuring
that higher scores reflect greater diversity. Distinct Equations, a specialized metric for mathematical
reasoning, computes logical diversity by extracting all equations from the outputs and calculating the
proportion of unique equations.

At each iteration, we sample N = 50 outputs per problem with a temperature of 0.75. Outputs are
categorized into correct and incorrect based on the final answer’s correctness. Then for each problem,
we use the metric Div to calculate the average diversity for the correct and incorrect answers.

Reversal Observation Figure 4 presents the diversity results of three post-training methods during
the iterative process. All methods show a consistent decrease in diversity, significantly diminishing
the diversity of model outputs over iterations, impacting both correct and incorrect answers. This
reduction is evident across all three metrics: syntactic, semantic, and logical diversity. Moreover,
comparing Iterative SFT and Iterative DPO, it is clear that both methods exhibit a reduction in
diversity, but the extent and pattern of reduction vary. For instance, Iterative DPO maintains a slightly
higher semantic diversity (as measured by cosine similarity) over multiple iterations compared to
Iterative SFT.

Trade-Off with Output Diversity. The evaluation results highlight a critical trade-off in iterative
self-improvement: while aiming for higher accuracy, the diversity of outputs, which can be crucial
for creativity and robustness in problem-solving, is compromised. Future approaches should consider
strategies to maintain or even enhance diversity while improving accuracy.

5.3 OOD GENERALIZATION

In our pursuit to understand the broader implications of iterative self-improvement, it is crucial to
assess not only the models’ performance on specific benchmarks but also their ability to generalize to
out-of-distribution (OOD) tasks. Generalization performance provides insight into the robustness and
adaptability of the models when faced with new and varying types of problems.

To evaluate the generalization capability of the models, we conducted iterative post-training on the
GSM8K dataset and then transferred these models to the MATH algebra test set. The MATH algebra
test set is organized into five levels of increasing difficulty, providing a comprehensive spectrum to
analyze how well the models perform across groups with varied complexities.

For the sake of measuring OOD generalization, we define two metrics as follows defined to facilitate
a deeper analysis:

• Whole Accuracy (Whole Acc.): This metric represents the pass@1 accuracy across the entire
test set, encompassing all difficulty levels from Level 1 to Level 5.

9
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• Group Disparity: This metric quantifies the difference in pass@1 accuracy between the best-
performing group (Level 1 test set) and the worst-performing group (Level 5 test set), thus highlighting
disparities in model performance across different difficulty levels. It is calculated using the following
equation:

Group Disparity =
Pass@1(Level 1)− Pass@1(Level 5)

Pass@1(Level 1)
(3)

A higher value of Group Disparity indicates that the model is performing significantly better on the
easier Level 1 while its performance deteriorates on the harder Level 5 group.

Reversal Observation As results shown in Figure 5, with the increase in iterative steps, Iterative
SFT and Iterative SFT-DPO can significantly harm the OOD generalization. In contrast, Iterative
DPO demonstrates a noticeable improvement, which may indicate better generalization to the OOD
test set, in consistent with the recent findings that DPO can improve OOD generalization (Kirk et al.,
2024). However, our more detailed examination of the results across Group Disparity shows Iterative
DPO is widening the performances between the easier and harder groups. This comparison uncovers
the OOD performance improvement from Iterative DPO actually stems from fitting simpler problems,
at the expense of solving more complex ones.

Capabilities Collapse All three iterative post-training methods can exacerbate the generalization
disparities across groups, inadvertently causing models to focus on easier problems rather than
enhancing their ability to solve more complex ones. As discussed in Section 5.2, the decrease in
solution diversity during iterations may be the bottleneck leading to reduced OOD generalization and
capability collapse. This highlights the intricate nature of model capabilities under self-improvement,
where capabilities at different levels and different facets will compromise each other. Therefore,
research developing more sophisticated methods should employ such a comprehensive, fine-grained
evaluative framework to monitor post-training processes, as an increase in a single facet of accuracy
does not necessarily represent true self-improvement.

6 EPILOGUE

Conclusion In this paper, we foster a comprehensive understanding of the current landscape of post-
training practices in self-improvement. Our evaluation, beyond simple pass@1 accuracy, utilizing
multifaceted metrics such as improvement problems, solutions diversity and OOD generalization,
underscores the necessity for a critical examination of both the progressive and regressive effects in
current self-improving post-training methods. By broadening the scope of our analysis, we provide
deeper insights into the true nature of iterative self-improvement with post-training, paving the way
for more robust and genuinely self-improving LLMs.

Limitations and Future Work Despite the comprehensive evaluation and nuanced insights pro-
vided by our study, there are several limitations to consider. Firstly, while our investigation covers a
variety of iterative post-training methods, the scope of our experiments is constrained by computa-
tional resources, limiting the range of models and tasks we could explore. Secondly, our evaluation
metrics, although more holistic than traditional measures, may still not capture all dimensions of
model performance and behavior, particularly in real-world applications. Thirdly, the iterative nature
of our methodologies requires extensive training cycles, which can be computationally expensive
and time-consuming, potentially limiting their practical applicability in environments with limited
resources.

Our future work would like to address the limitations identified in this study. Expanding the range of
models and tasks, particularly those involving more diverse and complex real-world scenarios, will
provide a more comprehensive understanding of iterative self-improvement. Additionally, developing
more sophisticated and multidimensional evaluation metrics will help in capturing the full spectrum
of model capabilities and limitations. Future studies could also explore optimizing the computational
efficiency of iterative post-training methods, making them more accessible for broader use. Moreover,
investigating the long-term impacts of these methodologies on model robustness and adaptability will
be crucial in ensuring sustainable advancements in LLM capabilities.
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APPENDIX

A ALGORITHMIC OVERVIEW OF LLM POST-TRAINING

A.1 SUPERVISED FINE-TUNING

Supervised fine-tuning (SFT) is employed to tailor a pre-trained LLM to specific downstream tasks.
Consider the training dataset D = {x(i), y(i)}Ni=1, where x(i) is the problem and y(i) is the target
response, which the model M parameterized by θ is trained to generate. The training objective of
SFT is to minimize the following negative log-likelihood of the answers:

LSFT(θ) = −E(x,y)∼D log p(y|x; θ) (4)

where p(y|x) is the probability of observing the answer y given the problem context x.

A.2 PREFERENCE LEARNING

Preference learning is commonly used to train large language models to learn human preferences. The
preference learning dataset includes not only problem and target response pairs but also preferences
or rankings between different target responses for the given problem. A typical form of preference
learning data is represented as D = {x(i), y

(i)
w , y

(i)
l }Ni=1, where each piece of data contains a problem

x(i), and corresponding preferred and dispreferred responses, denoted y
(i)
w and y

(i)
l , respectively.

Using a theoretical model of human discrete choice such as the Bradley-Terry model, which relates
discrete choices to implicit goodness scores of the underlying options, we can train a reward model
with maximum likelihood using this preference data. For the Bradley-Terry model, the reward
modeling loss is:

LR(Rϕ,D) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]. (5)

In the context LLMs, rϕ(x, y) is initialized from the SFT model ϕSFT. Then, the learned reward
function is used to provide feedback to the language model, through the optimization problem
described below to train preferences in the language model:

maxπθ
Ex∼D,y∼πθ(y|x)[Rϕ(x, y)]− βDKL[πθ(y|x)||πSFT(y|x)], (6)

where β is a parameter controlling the deviation from the base reference policy πSFT. More recently,
(Rafailov et al., 2023) show that the optimal policy for the learned reward can be extracted in
closed form, especially skipping the need to perform iterative, approximate policy learning. The
resulting algorithm, direct preference optimization (DPO), is simpler to tune and less computationally
demanding than prior methods, while optimizing the same objective. We therefore use DPO as the
algorithm for the implementation for preference learning in our experiments. The DPO loss for the
language model policy πθ is

LDPO = −E(x,yw,yl)∼Dp

[
log

(
σ

(
β log

πθ(yw | x)
πSFT(yw | x)

− β log
πθ(yl | x)
πSFT(yl | x)

))]
. (7)

B EXPERIMENTS

B.1 TRAINING DETAILS

We use a fully fine-tuning setting for training LLaMA2-7B, Mistral-7B and LLaMA3-8B models
either for supervised and preference fine-tuning. All training experiments are conducted on 8 NVIDIA
A100 GPUs, and all experiments collectively consumed approximately 2000 A100 GPU hours. Our
training codebase is based on LLaMA Factory (Zheng et al., 2024), and we use vLLM (Kwon
et al., 2023) framework to perform inference for both CoT sampling and test evaluation. Detailed
hyperparameters utilized throughout these experiments are documented in Table 1.
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Type Parameter Value

Supervised Fine-Tuning Batch Size 128
Learning Rate {LLaMA2-7B} 1e− 5
Learning Rate {Mistral-7B, LLaMA3-8B} 2e− 6
Learning Rate Scheduler Cosine
Warm-up Ratio 0.03
Optimizer AdamW
Epoch 3

Preference Fine-Tuning Batch Size 32
Learning Rate {LLaMA2-7B} 2e− 6
Learning Rate {Mistral-7B, LLaMA3-8B} 2e− 7
KL Coefficient (β) 0.3
Optimizer AdamW
Epoch 1

Sampling Generation Temperature 0.75
Top p 0.95
Top k 50
Max tokens 512

Evaluation Generation Temperature 0
Top k -1
Max tokens 512

Table 1: Hyperparameters in all the experiments.

B.2 DATASET DETAILS

CommonsenseQA (CSQA) (Talmor et al., 2019) offers a collection of 5-way multiple-choice
questions on commonsense knowledge scenarios. It contains 12,102 questions with training/valida-
tion/testing set splits. Due to the unavailability of correct answers for the testing set, we utilize the
validation set comprising 1,221 questions for evaluation, following the practice of (Kojima et al.,
2022).

GSM8K (Cobbe et al., 2021) consists of 8.5K high-quality grade school math problems created by
human problem writers, with the segmentation into 7.5K training problems and 1K test problems.
These problems take between 2 and 8 steps to solve, and solutions primarily involve performing
a sequence of elementary calculations using basic arithmetic operations (+ - / *) to reach the final
answer.

MATH (Hendrycks et al., 2021) offers high school math competition problems that span seven
subjects including Prealgebra, Algebra, Number Theory, Counting and Probability, Goemetry, In-
termediate Algebra and Precalculus. It consists of 7,500 and 5,000 samples for training and testing,
respectively. Compared to GSM8K, addressing MATH challenges involves more intricate and
extended steps.

MBPP (Austin et al., 2021) consists of around 1,000 crowd-sourced Python programming problems,
designed to be solvable by entry-level programmers, covering programming fundamentals, standard
library functionality, and so on. Each problem consists of a task description, code solution and 3
automated test cases. Following the experimental setup described in (Austin et al., 2021), we utilize
Task IDs 11-510, comprising 500 problems, as our test set. The remaining 374 problems, ranging
from Task IDs 601 to 974, are employed for fine-tuning purposes.

B.3 EVALUATION PROTOCOLS

Zero-shot Prompting We employ zero-shot prompts, as listed in Figure 6 for answer sampling and
evaluation tests. Our comprehensive evaluation across all benchmarks demonstrates that zero-shot
prompting not only reduces inference costs but also consistently outperforms few-shot prompting in
terms of performance. Consequently, when LLMs are fine-tuned for task-specific applications, we
advocate for the adoption of zero-shot prompting as a superior method compared to various few-shot
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techniques. This perspective aligns with the findings of (Yu et al., 2024), who also reported the
advantages of zero-shot over few-shot prompting for fine-tuned LLMs.

Figure 6: Zero-shot Evaluation Prompt.

Generation Diversity In evaluating natural language generation (NLG) models, two prevalent
methods for assessing output diversity are the n-gram-based metric and the embedding-based metric,
which embeds generated sentences in a latent space. In this paper, we adopt distinct n-grams (Li
et al., 2016) and Sentence-BERT Embedding Cosine Similarity (Reimers & Gurevych, 2019) metrics.

Distinct n-grams is a straightforward yet effective method to quantify the lexical diversity of
generated text. This metric calculates the proportion of unique n-grams (sequences of n words)
within the generated text. The distinct n-gram measure is typically computed for unigrams, bigrams,
trigrams, and sometimes higher-order n-grams. Mathematically, for a generated sequence S, distinct-n
is defined as:

distinct-n(S) =
|unique n-grams in S|
|total n-grams in S|

(8)

This measure provides a direct indication of how varied the vocabulary and phrases are within the
generated text. In general , higher distinct-n values indicate greater diversity.

Sentence-BERT embedding cosine similarity assesses the semantic diversity of generated sentences.
Sentences generated by the model are first encoded into embeddings using Sentence-BERT. The
cosine similarity between each pair of sentence embeddings is then computed. Cosine similarity
between two embeddings u and v is given by:

cos(u,v) =
u · v
∥u∥∥v∥

(9)

The average cosine similarity of all sentence pairs gauges the overall semantic similarity. Lower
average cosine similarity indicates higher semantic diversity, as the sentences are less similar in
meaning. In our calculations, we measure diversity using 1− average cosine similarity, ensuring that
higher values reflect greater semantic diversity.

Distinct Equations provides a direct indication of how varied the mathematical approaches and
solutions are within the generated text. The calculation of this metric involves two steps that identifies
all equations present in the generated mathematical reasoning steps first, and then computes the ratio
of unique equations to the total number of equations. Mathematically, for a set of generated equations
E, distinct equations is defined as:

Deq(E) =
|unique equations in E|
|total equations in E|

(10)

Higher Deq values indicate greater diversity in the mathematical reasoning processes.
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C EXTRAPOLATION ANALYSIS ON COVERAGE

In Section 4.2, we mentioned that correct answer coverage may be a deeper factor influencing the
subsequent improvements in iterative self-improvement. Here, we provide a detailed explanation of
the related concepts involved in this influencing factor, as well as the derivation of the calculation for
correct answer coverage (in Equation 1) as presented in this paper.

Additionally, we emphasize that our consideration of coverage as a deeper factor is a preliminary
conclusion drawn from summarizing the factors of the model (M ), post-training function (F), and
task dataset (D) and the empirical results validated in Figure 2. It should be noted that we need
further work and more extensive experiments to both theoretically and empirically validate this
observation, as the discussion of correct answer coverage is beyond our work. Our intention here is to
offer empirical insights and lay the groundwork for future investigations into this aspect of iterative
self-improvement.

Answer space: For a given dataset D (test set), all possible (query, answer) pairs form the answer
space of the test set. Here, the set of query is fixed, and for a given query, the number of possible
answers can be quite large, hence we call the space as the answer space. Naturally, the entire answer
space can be partition into a correct answer space and an incorrect answer space based on whether
the answers are correct. In practical experiments, the correctness of an answer is approximated by
whether its final result exactly matches the final result provided by the ground truth in the training set.

Answer distribution: For a given model M , its answer distribution refers to the probability dis-
tribution of generating answers conditioned on queries from dataset D. For a specific element
(qi, aij), qi ∈ Dtest in the answer space, the generation of this (query, answer) pair occurs in two steps:
first, sampling qi from all queries in D, then model M generates aij conditioned on qi. Therefore,
the probability at (qi, aij) is the product of the probability of sampling qi from all queries in D and
the probability of model M generating aij conditioned on qi. Considering that all queries should
have equal importance, we define that all queries are sampled with the same probability, which is
1

Dtest
. The answer distribution of M can be mathematically linked to model M as follows:

PM (qj , aij)
def
= M(aij |qj)P (qj) = M(aij |qj)

1

Dtest
(11)

which PM represents the model’s answer distribution, and M(aij |qj) denotes the probability of
model M generating aij conditioned on qj .

Correct Answer Coverage: As mentioned earlier, the Correct Answer Coverage represents the
correctness rate of all answers generated by model M on a dataset D (training set). It can be
calculated using the following mathematical formula:

Correct Answer Coverage =

∫
Correct Answer Space

PM (a, q) (12)

Although we cannot exhaust the entire answer space and calculate a probability distribution to
demonstrate the trend of the answer distribution in the progress of self-improvement, we can get an
unbiased estimate of it by sampling answer and calculate the ratio of the number of correct answers
to the total number of answers generated by model M for all queries in Dtest, where N answers are
generated for each query, as illustrated in equation 1. The proof of Equation 1 is as follows:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Correct Answer Coverage =

∫
C
PM (a, q)

=

∫
C

1

|Dtest|
PM (a|q)

=
1

|Dtest|

∫
C
PM (a|q)

=
1

|Dtest|

∫
C

∑
x∈Dtest

PM (a|q = x)

=
1

|Dtest|
∑

x∈Dtest

∫
C
PM (a|q = x)

=
1

|Dtest|
∑

x∈Dtest

E(
N c

x

N
)

= E(
1

|Dtest|
∑

x∈Dtest

N c
x

N
)

= E[
1

|Dtest|
∑

x∈Dtest

1

N

N∑
i=1

I[M(xi) == y]]

(13)

where C denotes the correct answer space, and N c
x represents the number of correct answers generated

by model conditioned on the given query x.

D SCALING EXPERIMENTS

To validate that the phenomenon of self-improvement widely exists across different foundation models,
ranging from 7B to more capable models, in this section, we scale the iterative self-improvement
practices to LLaMA-2-70B (Touvron et al., 2023). As observed in Figure 2, Iterative SFT-DPO proves
to be a robust practice that achieves consistent performance improvements regardless of the correct
answer coverage being lower or higher. Considering the limitation of GPU resources, we hence set
up the scaling experiment with the following parameters: the foundation model M is LLaMA-2-70B,
the problem-solving task D is GSM8K, the post-training function F is Iterative SFT-DPO, and the
number of iterations T = 5. Additionally, we employ quantized low-rank adaptation (LoRA) (Hu
et al., 2022) for efficient post-training.
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Figure 7: Perform iterative SFT-DPO on GSM8K (a), and then evaluate Mt with proposed metrics:
pass@N on improvement problems (b), solutions diversity (c, d) and OOD generalization (a).

As shown in Figure 7, the performance of LLaMA2-70B on GSM8K demonstrates a similar self-
improving trend, first descending to an optimal pass@1 accuracy and then declining after the fourth
iteration. From Figure (b), it is evident that iterative self-improvement primarily involves the selection
of correct answers within its generation space. Additionally, the solution diversity illustrated in
Figures (c) and (d) highlights that the trade-off between pass@1 accuracy and output diversity is a
universal phenomenon, even for highly capable 70B models.

Regarding OOD transfer accuracy shown in Figure (a), we observe that while performing Iterative
SFT-DPO for self-improvement on GSM8K, LLaMA2-70B exhibits a certain degree of OOD gen-
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eralization to the more challenging MATH test set. This represents an opposing trend compared
with the whole accuracy of MATH shown in Figure 5. We conjecture that with the scaling of model
capacity, the capability of OOD generalization will gradually emerge and evolve within the iterative
self-improvement process.

E CASE STUDY

In this section, we select one problem from GSM8K test set and record the outputs of Mistral-7b
during the process of iterative DPO. This real case can vividly display our findings from Section 5,
which suggest that iterative self-improvement primarily manifests as an optimization of answer
selection rather than substantial enhancements in problem-solving capabilities. Additionally, we will
clearly see how diversity of the model’s reasoning steps decreases throughout the iterative process.
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Figure 8: One case of sampled responses from the test set after iterative DPO training of the Mistral-
7B model on the GSM8K dataset.
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