
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PAV-DIT: A CROSS-MODAL ALIGNMENT PROJECTED
LATENT DIFFUSION TRANSFORMER FOR SYNCHRO-
NIZED AUDIO-VIDEO GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sounding video generation (SVG) has emerged as a challenging task due to the
inherent cross-modal temporal and semantic misalignment and the high compu-
tational costs associated with multimodal data. To address these issues, we pro-
pose the Projected Latent Audio-Video Diffusion Transformer (PAV-DiT), a novel
diffusion transformer explicitly designed for synchronized audio-video synthesis.
Our approach introduces a Multi-scale Dual-stream Spatio-temporal Autoencoder
(MDSA) that bridges audio and video modalities through a unified cross-modal
latent space. This framework compresses audio and video inputs into 2D la-
tents, each capturing distinct aspects of the signals. To further enhance audio-
visual consistency and facilitate cross-modal interaction, MDSA incorporates a
multi-scale attention mechanism that enables temporal alignment across resolu-
tions and supports fine-grained fusion between modalities. To effectively capture
the fine-grained spatiotemporal dependencies inherent in SVG tasks, we intro-
duce the Spatio-Temporal Diffusion Transformer (STDiT) as the generator of our
framework. Extensive experiments demonstrate that our method achieves state-
of-the-art results on standard benchmarks (Landscape and AIST++), surpassing
existing approaches across all evaluation metrics while substantially accelerating
training and sampling speeds. We also further explore its capabilities in open-
domain SVG on AudioSet, demonstrating the generalization ability of PAV-DiT.

1 INTRODUCTION

Sounding Video Generation (SVG) is a multimodal content generation task that aims to synthesize
dynamic videos directly from static images or textual inputs, while simultaneously generating se-
mantically aligned and temporally synchronized audio. Its ability to produce coherent audio-video
content makes SVG promising for applications in film production, virtual reality, and intelligent me-
dia. Existing SVG methods (Liu et al., 2023; Yang et al., 2025; Yariv et al., 2024; Wang et al., 2024;
Zhao et al., 2025; Ruan et al., 2023; Sun et al., 2024; Xing et al., 2024) can be broadly categorized
into two groups (Fig. 1a). The first is cascade generation, where video is generated first, followed
by audio conditioned on the video. These methods often rely on additional alignment modules to
mitigate synchronization issues (Xing et al., 2024; Zhang et al., 2024b; Comunità et al., 2024; Jeong
et al., 2023; Yu et al., 2024), but typically suffer from temporal misalignment and error accumula-
tion across cascaded stages. The second is synchronized generation, where both audio and video are
generated jointly within a unified framework. While this approach reduces global alignment errors,
achieving fine-grained synchronization and semantic coherence remains challenging. Representa-
tive methods (Ruan et al., 2023; Wang et al., 2024; Sun et al., 2024; Liu et al., 2023) are either trained
directly in the signal space, incurring high computational costs, or adopt image DiT, which lack the
capacity for fine-grained spatiotemporal modeling. Despite these efforts, fine-grained spatiotempo-
ral alignment remains an open challenge, primarily due to the intrinsic heterogeneity between audio
and video.

To systematically characterize the limitations of the SVG task, we identify three fundamental chal-
lenges that distinguish SVG from conventional unimodal video generation. First, the structural
heterogeneity of audio and visual data introduces significant modeling difficulties. Video is a 3D
tensor with dimensions for time, height, and width, necessitating complex spatiotemporal modeling.
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Figure 1: (a) Existing Audio-Video Generation methods. (b) The audio is segmented by frame,
divided into audio segments in each colored square, and then converted into the Mel spectrogram
sequence below. Each spectrogram has the same duration as the video frame, and the sequence is
stacked along the time dimension to form a video-like audio representation (A ∈ RT×H×W ), where
the spectrogram acts as an image-like frame.

In contrast, audio is a 1D waveform with much higher temporal resolution (22.7 µs vs. 33.3 ms
per video frame), resulting in a 1500× mismatch. This disparity complicates latent space align-
ment and hinders joint optimization. Second, achieving temporal consistency between audio and
visual modalities remains highly challenging. For instance, synchronizing an explosion’s sound
with its corresponding visual impact requires precise multi-scale temporal modeling. However, ex-
isting methods (Ruan et al., 2023; Wang et al., 2024) often rely on shallow or global strategies,
thus struggling to capture the fine-grained temporal dependencies essential for accurate synchro-
nization. Third, computational inefficiency remains a critical obstacle for large-scale synchronized
audio-video generation. High-dimensional inputs and multi-branch architectures incur substantial
memory and computation costs, severely limiting scalability and practical deployment.

To address these challenges, we propose the Projected Latent Audio-Video Diffusion Transformer
(PAV-DiT), a unified framework for efficient SVG. First, to mitigate the structural inconsistency be-
tween audio and video, we preprocess raw audio into video-like audio representations. As depicted
in Fig. 1b, audio is segmented into frame-wise chunks, converted to mel-spectrograms, and stacked
along the temporal axis. This process aligns the structure of audio with that of video, enabling them
to share a compatible format and facilitating unified encoding. Second, we introduce the Multi-
scale Dual-stream Spatio-Temporal Autoencoder (MDSA) for fine-grained spatiotemporal model-
ing and semantic alignment. MDSA employs orthogonal decomposition to compress both audio
and video into 2D latent representations along three axes (temporal, height, and width), disentan-
gling dynamic and static content while reducing dimensionality. It further incorporates a multi-scale
attention mechanism, improving temporal coherence through Multi-scale Temporal Self-Attention
(MT-SelfAttn) and aligning modality-specific features using Group Cross-Modal Attention (GCM-
Attn). Finally, Bidirectional Block Cross-Attention (Bi-Block CrossAttn) enhances semantic align-
ment across modalities in the decoder. Third, to improve computational efficiency, we stack the 2D
latents from MDSA into a unified 3D latent and feed it into STDiT, which efficiently models spa-
tiotemporal dependencies via serialized spatial–temporal attention. Operating in latent space greatly
reduces memory and computation, enabling high-fidelity audio–video synthesis.

We have conducted comprehensive experiments to validate the effectiveness and efficiency of our
proposed method on the Landscape (Lee et al., 2022), AIST++ (Li et al., 2021) and AudioSet (Gem-
meke et al., 2017) datasets. Results show that our model outperforms the state-of-the-art method and
is more efficient. In particular, our model surpasses the previous SOTA model by 23.5% FVD score
with 2.2× sampling speed on the Landscape dataset. Our contributions are summarized as follows:

• We propose PAV-DiT, a unified framework for synchronized audio-video generation, incor-
porating video-like audio representations to align audio and video in a shared latent space,
improving cross-modal alignment and temporal coherence.

• We design MDSA, which introduces orthogonal feature decomposition to disentangle spa-
tial and temporal components, reducing redundancy and enabling efficient yet expressive
cross-modal fusion.
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• We design a multi-scale attention mechanism, consisting of MT-SelfAttn for temporal mod-
eling, GCM-Attn for modality-specific fusion, and Bi-Block CrossAttn for localized cross-
modal integration, enhancing motion consistency and synchronization.

• Extensive experiments on AIST++ and Landscape demonstrate that PAV-DiT achieves
state-of-the-art performance in generation quality and inference efficiency.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion Models (DMs) (Ho et al., 2020; Rombach et al., 2022) have shown strong performance
in image, video, and audio generation through iterative denoising. Extending DMs to video gener-
ation (Singer et al., 2022; Ho et al., 2022b; Zhou et al., 2022; He et al., 2022; Wang et al., 2023;
Ho et al., 2022a) raises challenges in spatiotemporal modeling and computational cost. VDM (Ho
et al., 2022b) utilizes 3D convolutions but suffers from high computational overhead. Make-A-
Video (Singer et al., 2022) and VideoLDM (He et al., 2022) decouple spatial-temporal modeling via
2D/1D convolutions and 3D-VAEs. Imagen Video (Ho et al., 2022a) and PVDM (Yu et al., 2023) re-
duce computational costs by applying latent compression, with PVDM using 2D latents. However,
these methods are still mainly focused on unimodal video generation. Most diffusion models are
based on the Transformer. Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Liu et al., 2024)
replace U-Net with global self-attention to better capture long-range dependencies. Latte (Ma et al.,
2024), CogVideoX (Yang et al., 2024), Sora (Liu et al., 2024), and VDT (Gupta et al., 2024) im-
prove scalability and temporal alignment through latent 3D blocks. Despite these advances, most
DiTs remain modality-specific, lacking effective integration between audio and video. In contrast,
our framework unifies audio and video through aligned representations and reduces complexity via
hierarchical feature decoupling.

2.2 SOUNDING VIDEO GENERATION (SVG)

Unlike silent video generation, SVG requires the synchronous synthesis of high-quality audio-video
content. Existing methods can be broadly classified into two categories.The first is cascade genera-
tion (Zhang et al., 2024a;b; Xing et al., 2024; Yang et al., 2025), while the second is synchronized
generation (Liu et al., 2023; Yariv et al., 2024; Wang et al., 2024; Ruan et al., 2023; Sun et al.,
2024; Zhao et al., 2025). MM-Diffusion (Ruan et al., 2023) is a pioneering method that employs
diffusion models to jointly generate audio and video. It introduces two pairs of denoising diffusion
models for synchronized generation and proposes a randomly shifted attention mechanism to model
cross-modal consistency. MM-LDM (Sun et al., 2024) is the first latent diffusion model specifically
designed for SVG, mapping audio and video to a shared semantic space via a hierarchical multi-
modal autoencoder. AV-DiT (Wang et al., 2024) employs a shared pre-trained DiT backbone with
lightweight adapter modules, allowing for the adaptation of a frozen image generator to audio-video
tasks while reducing computational overhead. Uniform (Zhao et al., 2025) employs DiT to inte-
grate visual and audio tokens into a unified latent space, enabling joint representation learning and
audio-video generation.

Despite recent advances, existing SVG methods still face challenges such as coarse temporal align-
ment, limited modality correspondence, or rigid architecture designs. Some approaches rely on
parameter sharing or global latent alignment (Wang et al., 2024; Sun et al., 2024), while others pro-
cess raw audio or spectrograms without preserving fine-grained audiovisual consistency (Liu et al.,
2023; Ruan et al., 2023; Lee et al., 2023). In contrast to prior methods, we propose PAV-DiT with hi-
erarchical alignment for improved multi-scale temporal modeling. We further enhance cross-modal
fusion by aligning modality-homogeneous latent spaces at multiple scales.

3 METHOD

In this section, we introduce PAV-DiT, a novel framework for synchronized audio-video genera-
tion. To tackle the challenges of cross-modal alignment and computational efficiency, PAV-DiT
integrates two key components. The first is a Multi-scale Dual-stream Spatio-temporal Autoencoder
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(MDSA) for encoding audio and video into a unified latent space. The second is an audio-video
diffusion Transformer for generating synchronized audio-video content in this latent space. The
overall framework is illustrated in Fig. 2b.
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Figure 2: (a) Given audio and video inputs, the audio is first converted into a video-like representa-
tion (A). Both modalities are encoded via video-to-3D-latent encoders and projected into 2D latents
through orthogonal decomposition. These latents are enhanced and fused using a multi-scale atten-
tion mechanism: temporal consistency (HT, WT) is modeled by MT-SelfAttn, spatial features (HW)
are refined by SelfAttn, and GCM-Attn enables bidirectional cross-modal interaction. The resulting
2D latents are further processed by Bi-Block CrossAttn and decoded by a dual-modal decoder to
produce synchronized audio-video outputs. (b) Audio and video latents are concatenated along the
temporal axis to form a unified 3D latent representation, which serves as input to the ST-DiT. During
iterative diffusion, ST-DiT progressively denoises the latents at each timestep. After the final step,
the purified latents are decoded to synthesize video with temporally aligned audio-video streams.

3.1 MULTI-SCALE DUAL-STREAM SPATIO-TEMPORAL AUTOENCODER (MDSA)

The MDSA processes video and audio inputs to create aligned, low-dimensional latent representa-
tions. As shown in Fig. 2a, the MSDA processes both the video tensor V ∈ RT×H×W and the audio
tensor A ∈ RT×H×W through three collaborative stages: dual-stream encoder, multi-scale atten-
tion mechanism, and dual-modal decoder. The encoder decomposes each modality into compact 2D
latent representations, making them suitable for the subsequent diffusion process. The multi-scale
attention mechanism enhances temporal coherence within each modality and facilitates cross-modal
fusion, thereby improving semantic alignment and synchronization. The decoder reconstructs syn-
chronized video and audio from the fused latent representations.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Results of our method on Landscape, including spectrogram visualization images and
video frames.

Input Preprocessing. To align the structural differences between modalities, raw audio is seg-
mented into frame-wise chunks, converted into mel-spectrograms, and stacked along the tempo-
ral axis to match the video’s temporal structure. This results in a video-like audio representation
A ∈ RT×H×W , where each spectrogram acts as an image-like frame synchronized with the cor-
responding video frame, as illustrated in Fig. 1b. Unlike MM-LDM, our method supports direct
reconstruction via inverse Mel transformation, avoiding reliance on neural vocoders like HiFi-GAN
(Kong et al., 2020) and reducing conversion errors.

Dual-stream Encoder. The dual-stream encoder plays a crucial role in processing the audio and
video inputs separately before they are fused. Unlike traditional methods that process video data
as a 3D tensor, our approach decomposes each modality into compact 2D latent representations,
enhancing efficiency and maintaining temporal coherence. Specifically, given an audio or video
representation x, we compute a set of disentangled 2D latents z = [zt, zh, zw] using an encoder fϕ,
which consists of a video-to-3D encoder and three 3D-to-2D projectors. The encoding process can
be formulated as:

u := f thw
ϕthw

(x),where u ∈ RT×H′×W ′
(1)

z = [zt, zh, zw] where


zt = zhw = f t

ϕt
(u) ∈ RH′×W ′

zh = ztw = fh
ϕh
(u) ∈ RT×W ′

zw = zwh = fw
ϕw

(u) ∈ RT×H′
(2)

where f thw
ϕthw

is a video-to-3D-latent encoder, f t
ϕ, fh

ϕ , and fw
ϕ are the 3D to 2D projection modules,

H ′ = H/d and W ′ = W/d denote the downsampled spatial dimensions, and T represents the
number of temporal segments. Specifically, zt encodes shared temporal information between video
and audio, such as video backgrounds and audio spectral features, while zh and zw capture motion
patterns along the height and width axes of the video, respectively.Our design is inspired by tensor
decomposition and multi-view learning, where high-dimensional spatiotemporal data can often be
approximated as sums of separable components:

u ≈
R∑

r=1

ar ⊗ br ⊗ cr, (3)

with ⊗ denoting the outer product, and ar ∈ RT ,br ∈ RH′
, cr ∈ RW ′

representing variation along
temporal, height, and width axes. Instead of performing full factorization, we extract the three struc-
tured projections (zt, zh, zw), yielding complementary, minimally redundant latent representations.
From an information-theoretic perspective, this decomposition can be interpreted as maximizing
mutual information between corresponding audio-video latents along each axis while minimizing
redundancy across axes, providing a principled basis for efficient, fine-grained cross-modal align-
ment.

Multi-scale attention mechanism. To ensure cross-modal consistency between audio and video,
we perform temporal modeling and feature interaction on the spatiotemporal orthogonal representa-
tions ztw ∈ RT×W and zth ∈ RT×H . For decoupled spatiotemporal modeling, spatial self-attention

5
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is applied to the static content zhw, enhancing spatial feature representations and capturing long-
range dependencies across different locations within each video frame. The architecture employs
spatial self-attention for spatial components and introduces MT-selfAttn for temporal modeling.
MT-selfAttn follows a two-step process. First, 2× and 4× average pooling is applied along the
temporal axis T to extract multi-scale features at three different temporal resolutions.

z(1) = zt ∈ RT×S

z(2) = AvgPool2×(zt) ∈ RT/2×S

z(3) = AvgPool4×(zt) ∈ RT/4×S

(4)

where S represents the spatial dimension (H ′ or W ′), and zt corresponds to either zth or ztw. Self-
attention is then applied to the features at each scale, with global-scale attention preserving temporal
consistency, mid-scale attention capturing semantic relationships, and local-scale attention detect-
ing transient patterns. Second, the attended features are upsampled back to the original temporal
resolution and aggregated as follows:

z̃t =
∑

n∈{1,2,3}

DeConvkn

(
Attnt(z(n))

)
(5)

where DeConvkn
uses upsampling rate kn ∈ {1, 2, 4} to restore the original resolution.

The architecture hierarchically encodes visual and audio features, using decoupled spatial and tem-
poral self-attention to capture intra-modal dependencies efficiently.

To facilitate fine-grained cross-modal fusion, we employ GCM-Attn between corresponding 2D
latents from the audio and video branches. Let zv and za denote video and audio latent features,
respectively, derived from the three orthogonal axes zt, zh, and zw. For each group z, the audio
latent is updated as follows:

za = CA(zv, za) + za, z ∈ [zt, zh, zw] (6)

Here, CA(·) represents a cross-attention module where the query originates from the audio latent
za and the key-value pair is sourced from the corresponding video latent zv . The residual connec-
tion preserves modality-specific content while integrating semantically aligned video context. In a
symmetric manner, the video latents are updated using the audio latents as keys and values, thereby
enabling bidirectional information exchange. By combining multi-scale temporal modeling with
independent spatial and temporal processing, our framework mitigates feature entanglement, elimi-
nates redundant computation, and ensures efficient, semantically coherent cross-modal alignment.

Dual-modal Decoding Architecture. During decoding, the dual-modal decoder reconstructs both
video and audio streams using a dual-branch architecture (Fig. 2a), enabling unified multimodal
modeling. The features z′a and z′v are obtained by first applying the encoder for feature disentan-
glement, followed by a multi-scale attention mechanism to enhance the temporal coherence and
semantic expressiveness of the latent representations.

Zt×h×w = Et(z′hw) + Eh(z′tw) + Ew(z′th) ∈ RT×H×W (7)

where the E operator expands feature maps along temporal, height, and width dimensions for align-
ment and fusion. Bi-Block CrossAttn is applied to model cross-modal interactions across spatiotem-
poral dimensions. To ensure efficiency and semantic relevance, the unified latent tensor is divided
into non-overlapping blocks. Within each block, cross-attention is computed between audio and
video features to capture localized correlations. The attention matrix A is defined as:

Ai,j =
exp(q⊤

i kj/
√
d)∑

k exp(q
⊤
i kk/

√
d)

, (8)

where qi and kj are query and key vectors from the video and audio modalities, respectively. Ai,j

indicates how the i-th video patch attends to the j-th audio patch, enabling block-wise semantic
alignment. This design supports adaptive context modeling while maintaining efficiency through
sparse attention.

6
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Figure 4: Qualitative comparison of PAV-DiT with MM-Diffusion and MM-LDM.

Table 1: Quantitative performance comparison of multimodal video generation models on Land-
scape and AIST++ datasets. Results with ∗ are reproduced using released sources.

Method Resolution Sampler Landscape AIST++
FVD ↓ KVD ↓ FAD ↓ FVD ↓ KVD ↓ FAD ↓

Single-Modal Video Generation
DIGAN* 642 - 305.4 19.6 - 119.5 35.8 -
TATS-base* 642 - 600.3 51.5 - 267.2 41.6 -
MM-Diffusion-v* 642 dpm-solver 237.9 13.9 - 163.1 28.9 -
MM-Diffusion-v+SR* 642 dpm-solver+DDIM 225.4 13.3 - 142.9 24.9 -
MM-LDM-v* 642 DDIM 122.1 6.4 - 83.1 13.1 -
MM-Diffusion-v+SR* 2562 dpm-solver+DDIM 347.9 27.8 - 225.1 51.9 -
MM-LDM-v* 2562 DDIM 156.1 13.0 - 120.9 26.5 -
PAV-DiT-v 2562 Reflect Flow 90.9 7.8 - 84.2 13.3 -

Multi-Modal Generation
MM-Diffusion-svg+SR* 642 dpm-solver+DDIM 211.2 12.6 9.9 137.4 24.2 12.3
MM-LDM-svg* 642 DDIM 77.4 3.2 9.1 55.9 8.2 10.2
MM-Diffusion-svg+SR* 2562 dpm-solver+DDIM 332.1 26.6 9.9 219.6 49.1 12.3
MM-LDM-svg* 2562 DDIM 105.0 8.3 9.1 105.0 27.9 10.2
AV-DiT* 2562 - 172.7 15.4 11.2 68.8 21.0 10.2
PAV-DiT wo/text 2562 Reflect Flow 87.3 7.7 8.7 85.6 19.8 9.8
PAV-DiT 2562 Reflect Flow 80.3 7.3 8.5 77.6 18.2 9.4

200 Samples (Follow the See&Hear experimental setup)
See&Hear* 2562 - 326.2 9.2 12.7 - - -
AV-DiT* 2562 - 260.5 9.2 14.1 - - -
PAV-DiT 2562 Reflect Flow 240.3 9.0 12.2 - - -

3.2 CROSS-MODAL DIFFUSION TRANSFORMER FOR SYNCHRONIZED GENERATION

As illustrated in Fig. 2b, PAV-DiT first encodes video and audio inputs into three orthogonal 2D la-
tent representations using the MDSA encoder: zv = [ztv, z

h
v , z

w
v ] for video and za = [zta, z

h
a , z

w
a ] for

audio. These representations respectively capture spatiotemporal visual features and time-frequency
audio characteristics. To enhance temporal consistency in modeling the joint data distribution
pdata(zv, za), we adopt a temporal stacking strategy within the STDiT framework, where modality-
specific latent tensors are concatenated along the temporal dimension to form a unified six-frame
latent sequence.

P = Stack([ztv, z
h
v , z

w
v , z

t
a, z

h
a , z

w
a ]) ∈ R6×H×W (9)

The P serves as input to the STDiT generator, which jointly models cross-modal interactions. The
resulting latent outputs are then decoded by a dual-modal decoder to synthesize videos with tempo-
rally aligned audio and video content. The framework enables efficient multimodal fusion through
two key innovations. First, we represent the audio and video latents zv and za as six contiguous
frames within a unified tensor P. This stacking strategy preserves local spatiotemporal continu-
ity and allows the use of standard video diffusion transformers without architectural modifications.
Second, this unified latent representation enables joint modeling of audio-video semantics through
a single spatiotemporal attention mechanism, while maintaining computational efficiency.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Datasets and Evaluation Metrics. Following Ruan et al. (Ruan et al., 2023), we evaluate our
model on two benchmark datasets: Landscape (Lee et al., 2022) AIST++ (Li et al., 2021) and Au-
dioSet (Gemmeke et al., 2017). Both datasets are preprocessed into 16-frame video clips with each
frame resized to 2562 resolution.Details are provided in the supplementary material. We use Fréchet
Video Distance (FVD) and Kernel Video Distance (KVD) to assess video quality, and Fréchet Audio
Distance (FAD) to measure audio fidelity, aligning with prior studies (Sun et al., 2024; Ruan et al.,
2023; Wang et al., 2024). All videos generated by PAV-DiT are synthesized at 2562 resolution.

Implementation Details. The autoencoder and diffusion model are trained using the Adam
(Kingma & Ba, 2017) and AdamW (Loshchilov & Hutter, 2019) optimizers, respectively. The dual-
stream encoder is based on Timesformer (Bertasius et al., 2021), which serves as the backbone for
projecting video into 3D latents. A two-stage training scheme is adopted. We first minimize percep-
tual loss, followed by adversarial loss and KL divergence loss (β = 6e−6). We adopt STDiT as the
generative model, and all reported results in this paper are obtained using 16 STDiT blocks. Video
and audio discriminators are jointly trained with equal weighting (0.5). A linear noise schedule and
reflected-flow sampling are used to accelerate inference. Details are provided in the supplementary
material.

4.2 QUANTITATIVE AND QUALITATIVE COMPARISON

Qualitative Comparison. Fig. 4 shows a qualitative comparison among PAV-DiT, MM-LDM,
and MM-Diffusion. MM-Diffusion produces blurry, low-detail samples, while MM-LDM achieves
clearer outputs with improved audio-video alignment but still lags behind PAV-DiT in realism and
fidelity. Fig. 3 further illustrates PAV-DiT’s superior generation quality on the Landscape dataset.
Moreover, the autoencoder yields reconstructions visually indistinguishable from ground truth, and
our audio reconstruction results (Appendix) demonstrate that recovered waveforms closely align
with the originals, validating the effectiveness of our heterogeneous modality unification.

Performance Comparison with Previous Methods. We quantitatively compare our method with
prior approaches to validate the effectiveness of PAV-DiT. As shown in Table 1, we quantita-
tively compare our method with previous approaches to validate the effectiveness of PAV-DiT in
the Sounding Video Generation task. When conditional inputs are provided, PAV-DiT achieves
average improvements of 7.3 in FVD on the Landscape dataset and 8.0 in FVD on the AIST++
dataset over unconditional generation. Furthermore, it achieves average gains of 0.3 in FAD and
1.0 in KVD across both datasets, demonstrating its capacity to capture cross-modal correlations.
These improvements are attributed to the dual-stream encoder, which enhances cross-modal rep-
resentation alignment and improves generation quality for both video and audio. Benefiting from
an end-to-end training framework at a resolution of 256×256, in which the autoencoder directly
processes native-resolution videos, PAV-DiT can generate high-quality outputs without relying on
an additional super-resolution module. Specifically, PAV-DiT achieves FVD of 80.3, KVD of 7.3,
and FAD of 8.5 on the Landscape dataset, and FVD of 77.6, KVD of 18.2, and FAD of 9.4 on the
AIST++ datasets, establishing new state-of-the-art performance at this resolution. Notably, in con-
trast to conventional methods that utilize DDPM or DDIM samplers—typically requiring 100–200
steps—PAV-DiT incorporates Reflected Flow Sampling, which generates high-quality videos in only
30 steps. This approach accelerates inference by a factor of 3–6×.To evaluate the generalization and
scalability of PAV-DiT, we conducted experiments on a larger open-domain dataset. Following the
protocol of MM-Diffusion, we selected 100K high-quality videos from AudioSet (Gemmeke et al.,
2017). As reported in Table 2, PAV-DiT consistently outperforms prior methods, demonstrating its
effectiveness at larger scales.

Efficiency Comparison. As shown in Table 3, PAV-DiT substantially improves both training and
inference efficiency. Unlike MM-Diffusion, which operates in signal space and runs out of mem-
ory at 2562, PAV-DiT leverages MDSA to process 2562 efficiently. Both MM-LDM and PAV-
DiT integrate an autoencoder with the DiT generator, while MM-LDM* and PAV-DiT* isolate DiT

8
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Table 2: Quantitative comparison with scaled-
up data and model for open-domain generation.

Model #P FVD↓ KVD↓ FAD↓
MM-Diffusion 134M 649.8 34.6 2.9
MM-LDM-S 131M 185.8 10.1 1.59
MM-LDM-B 384M 181.5 9.5 1.55
MM-LDM-L 1543M 164.1 8.5 1.52
PAV-DiT 702M 148.7 8.4 1.51

Table 3: Efficiency comparison of PAV-DiT
with MM-Diffusion and MM-LDM.

Method Res. Train/Step Infer/Sample

MM-Diffusion 642 1.70s 33.8s
MM-Diffusion 1282 2.36s 90.0s
MM-LDM 2562 0.46s 70.0s
MM-LDM* 2562 0.38s 8.7s
PAV-DiT (ours) 2562 0.44s 17.7s
PAV-DiT* (ours) 2562 0.32s 3.93s

generation performance by precomputing and storing latents, with PAV-DiT* further boosting effi-
ciency. At a batch size of 2, PAV-DiT trains at 0.31s per step, faster than MM-LDM (0.38s) and
MM-Diffusion (2.36s at 1282). For inference, Reflected Flow Sampling (Xie et al., 2024) reduces
sampling steps from 100–200 to 30, cutting runtime to 3.9s per sample—yielding 2.2× and 22.5×
speedups over MM-LDM (8.7s) and MM-Diffusion (90s), respectively.

4.3 HUMAN EVALUATION

Table 4: Human Evaluation Results

Method AQ↑ VQ↑ A-V↑
MM-Diffusion 2.46 2.10 2.99
MM-LDM 2.98 3.68 3.29

PAV-DiT 3.22 3.97 3.60

We conducted a human evaluation on 1,500 samples
from PAV-DiT, MM-Diffusion, and MM-LDM using
the Landscape dataset, following MM-Diffusion’s
protocol. Two annotators rated each sample on a
5-point scale across three criteria: Audio Quality
(AQ), Video Quality (VQ), and Audio-Video Align-
ment (A-V). As shown in Table 4, PAV-DiT con-
sistently outperforms baselines, achieving relative
gains over MM-LDM of 8.1% in AQ, 7.9% in VQ , and 9.4% in A-V.

4.4 ABLATION STUDY

Table 5: Ablation study of MDSA (PAV-DiT)
on the Landscape dataset

Model rFVD rKVD FAD
PVDM 70.2 4.1 9.0
MM-LDM 53.9 2.4 8.9

MDSA (PAV-DiT) 29.5 1.3 8.5
multi-scale attention mechanism
− MT-selfAttn 35.1 2.2 8.6
− GCM-Attn 39.2 2.3 8.7
− Bi-Block CrossAttn 45.6 2.4 8.8
Other ablations:
− finetune with KL loss 60.2 3.2 8.9
− adversarial loss 134.5 8.3 9.8

We perform an ablation study on the architecture of
MDSA, with the results summarized in Table 5.
The base model demonstrates strong performance
(rFVD: 29.5, rKVD: 1.3, FAD: 8.5), significantly
outperforming PVDM (rFVD: 70.2) and MM-LDM
(rFVD: 53.9), indicating its superiority in audio-
video generation quality and synchronization. To
assess the impact of the multi-scale attention mech-
anism, we remove MT-selfAttn, GCM-Attn, or Bi-
Block CrossAttn leads to higher rFVD scores of
35.1, 39.2, and 45.6, respectively, confirming the ef-
fectiveness of our attention design. Ablating KL reg-
ularization results in a degraded performance, with
rFVD increasing to 60.2, demonstrating the benefit
of regularization-based fine-tuning.

5 CONCLUSION

We introduce PAV-DiT, a novel diffusion transformer designed for the SVG task. We propose a uni-
fied projection autoencoder that maps both audio and video into a shared latent space by projecting
3D data into a 2D representation. Furthermore, the use of a multi-scale dual-stream spatiotempo-
ral autoencoder and the multi-scale attention mechanism strengthens temporal synchronization and
bridges the semantic gap between modalities. Built upon the STDiT architecture, PAV-DiT enables
rich cross-modal interactions during the generation process. Our method achieves new state-of-the-
art results across multiple benchmarks, demonstrating superior efficiency and promising adaptabil-
ity.
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A APPENDIX

A.1 DATASETS

Landscape Dataset. The Landscape dataset focuses on high-fidelity audiovisual synchronization
of natural scenes. It comprises 928 landscape videos crawled from YouTube, covering nine repre-
sentative natural scenarios such as rainfall, splashing water, thunderstorms, and underwater bubbles.
Each video clip is annotated with scene category, weather conditions, and types of acoustic events
(e.g., “heavy rain + thunder”), supporting fine-grained conditional generation tasks. After prepro-
cessing, the dataset yields 1,000 non-overlapping 10-second video clips, with a total duration of
approximately 2.7 hours. The audio tracks feature a high dynamic range of environmental sounds
that are tightly aligned with the visual scenes (e.g., thunder sounds coinciding with lightning flashes),
providing naturally aligned annotations for cross-modal learning tasks.

AIST++ Dataset. AIST++ is constructed based on the AIST street dance database and consists
of 1,020 dance video clips (with a total duration of 5.2 hours), accompanied by 60 copyright-free
music tracks spanning 10 dance genres (e.g., Hip-Hop, Krump, Ballet Jazz). The dataset includes
85% basic choreography and 15% freestyle movements, enhancing the model’s ability to adapt to di-
verse musical styles. It provides 9 camera pose parameters, 17 COCO-format 2D/3D keypoints, 24-
dimensional SMPL pose parameters, and global motion trajectories. Its core value lies in the precise
spatiotemporal alignment between dance movements and music. Through multi-view camera cali-
bration and SMPL-based 3D human motion reconstruction, the dataset offers 3D motion sequences
with joint rotations and displacement information, along with annotated music beat timestamps.

A.2 IMPLEMENTATION DETAILS

Detailed description of training objective The proposed multi-modal adversarial training objec-
tive jointly optimizes reconstruction constraints and distribution alignment through a dynamically
scheduled optimization framework. The overall loss function is defined as:

Ltotal =
∑

m∈{video,audio}

ωm

(
Lrec + Lperc + γ(L(G)

adv + Lfm)
)

(10)

where ωm = 0.5 balances cross-modal weights and γ denotes the dynamic adversarial activation
factor. Specifically, the multimodal reconstruction loss combines pixel-level fidelity with latent
space regularization:

Lrec = 4.0 · ∥x− x̂∥1︸ ︷︷ ︸
pixel fidelity

+6× 10−6 ·DKL (Q(x̂) ∥ P(x))︸ ︷︷ ︸
distribution alignment

(11)

with KL-divergence computed using batchmean reduction: KL(p ∥ q) =
∑

p(x) log p(x)
q(x) .

We adopt a two-stage training strategy to stabilize optimization. During the first stage, both the
adversarial loss L(G)

adv and KL regularization are disabled, allowing the model to focus on basic
reconstruction. In the second stage, we enable adversarial training and KL divergence to enhance
visual fidelity and latent alignment. The dynamic adversarial activation is governed by:

γ =

{
0 if t < tthreshold

1.0 otherwise
(12)

where tthreshold denotes the training step at which the discriminator becomes active (controlled via
the disc start parameter in code).

Training Details. For all experiments, we use a batch size of 32 and a learning rate of 1 × 10−4

to train the autoencoders. Training continues until both FVD and PSNR metrics converge. For 3D-
to-2D projection, we employ a 4-layer Transformer with 4 attention heads, a hidden dimension of
384, and an MLP dimension of 512. The latent codebook dimensionality is set to 4. For diffusion
model training, we use a batch size of 64 and the same learning rate of 1 × 10−4. Additional
architectural hyperparameters, we basically followed the parameters of Opensora Liu et al. (2024),
but we used 16 layers in STDiT. Specifically, we set the codebook channel C = 4 and the patch size
to 4 × 4 × 1, such that a video of size 256 × 256 × 16 × 3 is encoded into a latent vector of size
(32× 32 + 32× 16 + 32× 16)× 4 = 8192.
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Metric. To ensure a fair comparison with prior work, we adopt consistent settings for quantita-
tive evaluation. For Fréchet Video Distance (FVD) and Fréchet Audio Distance (FVD), we fol-
low the fixed protocol proposed by StyleGAN-V Skorokhodov et al. (2021). Unlike the standard
protocol—which first preprocesses the dataset into fixed-length video clips before computing real
statistics—the StyleGAN-V protocol samples video data first, then randomly extracts fixed-length
clips. This adjustment addresses bias introduced when long videos dominate the dataset, skewing
the statistics due to their excessive number of clips. Following MM-Diffusion, we sample 2,048
videos (or the full dataset if it contains fewer samples) to compute the real distribution and another
2,048 videos to evaluate the generated samples.

Figure 5: Video reconstruction results of our
MDSA on the Landscape dataset

Figure 6: Video reconstruction results of our
MDSA on the Landscape dataset

(a) Real Audio Wave (b) Reconstructed Audio Wave

Figure 7: Audio reconstruction results of our
MDSA on the Landscape dataset

Figure 8: Results of our method on AIST++.

A.3 QUANTITATIVE COMPARISON

Table 6: Comparison of our autoencoder perfor-
mance with the baseline (PVDM)

Method FVD↓ FAD↓ PSNR↑
PVDM-v 30.3 - 31.34
PVDM-a - 9.4 35.93
PAV-DiT-v 18.7 - 32.19
PAV-DiT-a - 8.9 37.33

Autoencoder. Evaluated on two datasets, it
surpasses the single-stream baseline with gains
of 1.40 dB PSNR and 14.6 FVD in video,
and 0.85 dB PSNR and 0.5 FAD in au-
dio—demonstrating the effectiveness of hier-
archical attention-enhanced dual-branch recon-
struction. The detailed results are provided in
the Fig. 6.

A.4 QUALITATIVE RESULTS

Autoencoder. Fig. 5 and Fig. 6 shows the results of our MDSA reconstruction of the Landscape
dataset. As can be seen, our MDSA produces high-quality synthetic results overall. The precise
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reconstruction of the layered rock structure of the coastal cliffs, the instantaneous shape of the
splashing waves and their gradual transition back to the sea surface, and the natural transition from
the bright flame core to the orange outer flame all demonstrate the excellent performance of our
autoencoder. Figure 7 illustrates the audio reconstruction performance of our method. Subfigure
(a) shows the ground-truth audio waveform, while subfigure (b) depicts the reconstructed waveform
obtained after encoding and decoding via our autoencoder, followed by inverse Mel-spectrogram
transformation. The close similarity between the two waveforms demonstrates that our autoencoder
effectively preserves high-fidelity audio content. This accurate reconstruction of both audio and
video provides a solid foundation for the subsequent high-fidelity generation within the diffusion
model.

Diffusion generator. We present qualitative results of PAV-DiT in Fig. 8 and Fig. 9, showcasing
generated samples on the AIST++ and Landscape datasets, respectively. The synthesized videos
exhibit high visual fidelity and realism, demonstrating the effectiveness of PAV-DiT in generating
temporally coherent and semantically meaningful audiovisual content. We also present results for
text-to-video generation in the Fig. 9. Since category names are used as text conditions during
training, the model can generate corresponding videos when prompted with queries such as “a video
of <x>”, demonstrating its capacity to generalize from text-based inputs.

A video of fire crackling.

A video of thunder.

A video of squishing water.

a video of wind noise.

A video of splashing water.

A video of splashing water.

A video of thunder.

a video of rain.

Figure 9: Our method’s text-conditional guided generation results on the landscape dataset.

B THE USE OF LLM

Throughout the preparation of this paper, we employed a large language model (LLM) to enhance
the writing and correct grammatical mistakes.

C REPRODUCIBILITY STATEMENT

Implementation details, evaluation protocols, and dataset descriptions are provided in the main text
and appendix. Complete proofs are also included in the main text. The full source code will be
released upon acceptance.
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