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Abstract

This paper proposes a new framework and several results to quantify the performance of data-driven
state-feedback controllers for linear systems against targeted perturbations of the training data.
We focus on the case where subsets of the training data are randomly corrupted by an adversary,
and derive lower and upper bounds for the stability of the closed-loop system with compromised
controller as a function of the perturbation statistics, size of the training data, sensitivity of the
data-driven algorithm to perturbation of the training data, and properties of the nominal closed-loop
system. Our stability and convergence bounds are probabilistic in nature, and rely on a first-order
approximation of the data-driven procedure that designs the state-feedback controller, which can be
computed directly using the training data. We illustrate our findings via multiple numerical studies.
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1. Introduction

Data-driven algorithms are becoming increasingly more popular to solve a variety of engineering
problems, ranging from computer vision and speech recognition to the design of stabilizing con-
trollers for dynamical systems (e.g., see Tabuada et al. (2017); Recht (2018)). While providing
competitive performance under nominal operating conditions and accurate data, these data-driven
methods typically offer no robustness guarantees against accidental or adversarial manipulation of
the training data, as demonstrated by unfortunate incidents (Poland et al., 2018) and early studies
(Persis and Tesi, 2020; Dean et al., 2019; Makdah et al., 2019, 2020). This creates concerns and
poses critical limitations on the deployment of data-driven control algorithms for practical problems.

In this paper we propose a novel framework and certain bounds to characterize the robustness
of data-driven state-feedback controllers against perturbation of the training data. In particular, we
view a data-driven algorithm to design a stabilizing state-feedback controller as a (differentiable)
map from the collected data to the space of controllers. Then, we compute a first-order approxima-
tion of such map, which inherently measures the sensitivity of the data-driven control algorithm to
perturbations of its input data, and use it to derive lower and upper bounds for the stability of the
closed-loop system with the controller obtained from the perturbed data. Our stability results are
probabilistic in nature, and they explicitly depend upon the statistics of the perturbation, the size
of the training data of the data-driven algorithm, the sensitivity of the data-driven algorithm, and
the spectral properties of the nominal closed-loop dynamics. Our results can be used to provide
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stability guarantees for data-driven controllers, as well as to compare the effectiveness of different
data-driven procedures. Finally, we illustrate our findings through a numerical example.

We will make use of the following notation. The cardinality of a set S is denoted by |S|. The
spectral radius and trace of a square matrix are denoted by p(-) and tr(-), respectively. The symbol
|| - || denotes the Euclidean norm. The operators vec(-) and vec™!(-) denote the vectorization and
inverse vectorization of a matrix and a vector, respectively. The probability of an event is denoted
by P(-), and the expectation of a random variable is represented by E[-]. N (0, ) denotes a zero-
mean Gaussian distribution with covariance Y. The complementary cumulative distribution function
(CDF) of the standard normal distribution and the error function are denoted by Q(-) and erf(-).

2. Problem Setup

We consider a discrete-time linear time-invariant system given by
x(t+1) = Az(t) + Bu(t), t>0, (1)

where z € R", u € R™, A € R"™", and B € R™ ™ denote, respectively, the state, the input, the
system matrix, and the input matrix. We assume that the system matrices A and B are unknown,
and that a set of control experiments have been conducted to generate training data consisting of
pairs of input sequences and samples of the system trajectories. Specifically, the training data is

UZ[UI uN]ngTXN’ and X:C[l'l xN]ERpXN, )

where NV € N and T' € N denote the number and length of the control experiments, respectively, u;
and x; the input and state trajectory of the i-th experiment, and C' € RP*""" identifies the samples
of the state trajectories measured during each experiment. For instance, if C = [0 --- 0 I], then
only the state at time 7' is measured during each experiment, as in Baggio et al. (2019). Similarly,
if C' = I, then the whole trajectory is measured as, for instance, in Persis and Tesi (2020).

We assume that a static state-feedback data-driven controller u = K is used to stabilize the
system (1), where K = F(U,X) and F : RMT*N 5 RPXN 5 RMX" The map F denotes an
arbitrary data-driven algorithm to compute stabilizing controllers, such as the procedures described
in Persis and Tesi (2020) and Valadbeigi et al. (2019). We make the following assumptions:

(A1) The controller K = F'(U, X) stabilizes (1), that is, p(A + BK) < 1.
(A2) The closed-loop matrix A, = A + BK is diagonalizable.

(A3) The map F'(U, X) is Fréchet differentiable with respect to X, and admits a first-order Taylor
expansion. Formally, for any Z € RP* the data-driven map satisfies

vec(F(U, X + Z)) = vec(F(U, X)) + Jx (U, X)vec(Z) + R(U, X, Z), 3)
with lim BUXDI 0, where Jx is the Jacobian matrix consisting of partial derivatives.
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We remark that Assumption (A1) requires the data-driven algorithm to stabilize the system with
nominal data. Instead, Assumption (A2) is convenient for the analysis and is not restrictive.' Finally,
Assumption (A3) is a working assumption of this paper and is typically used in similar studies.

1. This assumption is not restrictive and simplifies the technical derivations.
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The main objective of this paper is to quantify the robustness of the data-driven controller K =
F (U, X) to perturbations of the experimental data, which can be due, for instance, to measurement
noise or targeted adversarial manipulation of the data collection sensors.” To this aim, let X =
X + Z denote the data perturbed by the zero-mean random noise Z. Let supp(Z) denote the set of
compromised entries of X, thatis, supp(Z) = {i : z; # 0}, with z; the i-th component of vec(Z7).
Then, the main objective of this paper is to characterize whether the perturbed closed-loop matrix
Aq = A + BK is stable as a function of the perturbation statistics, where K=F (U, X ) denotes
the data-driven controller computed with the perturbed data. Notice that Z is a random matrix, and
so are X s K , and gcl. Thus, the stability of gcl will be studied in a probabilistic framework.

3. Robustness results for data-driven state-feedback controllers

In this section we study the stability properties of the perturbed closed-loop system Ecl = A+ BK.
In particular, we provide bounds for P[p(Ag) > 1], which is a well-defined random variable (see
(Bharucha-Reid, 1973, p. 85)) and quantifies the probability that the closed loop system A is
unstable. We start with the following instrumental result to approximate the matrix Aq.

Lemma 1 (First-order approximation of A.) Let JY denote the i-th column of Jx (U, X) in (3),
and let J; = Vec_l(JiV ). Then, for any T > 0, the perturbed closed-loop matrix satisfies

> 7/E[[vec(Z)[]] — 0.

HAVCI — Aa = D supp(z) % BJi

lim P [
B[|jvec(Z)|[] -0

Proof From (3) we have K=K+ Zle zivecfl(JiV) + vec 1(R). Since Zd = Aq + BK, it
now follows that Bvec !} (R) = Aq— A+ Z‘ijzl z; BJ;. By invoking (Kollo and von Rosen, 2005,
Theorem. 3.1.1), we note that [P [HBvec*l(R)H > T\/IE[Hvec(Z)H]] 5 0as E[[vec(Z)|] — 0. ®

Lemma 1 states that, if the expected norm of the perturbation Z is sufficiently small,® then Acl

can be well approximated as Aci + 3 ,,p(z) 2iBJi- Thus, in what follows we let

Acl = Acl + Esupp(z) ziBJ;. (4)

The right hand term in (4) captures the effect of each perturbation entry of Z on the nominal system
A in an additive form. In particular, the matrix J;, consisting of partial derivatives of the data-
driven control map F'(U, X) with respect to X, captures the sensitivity of the data-driven controller
to variations of the i-th component of vec(X). Also, the specific form of the perturbation matrix
allows us to capture the effect of a particular subset of the data on the controller’s performance, since
zi = 01if ¢ € supp(Z). Using (4), we now present bounds on the stability of the closed-loop system
for the case of normally distributed perturbations. Our bounds make use of recent concentration
inequality results for the sum of random matrices (Tropp, 2015; Boucheron et al., 2013).

2. We focus on perturbations of X only, although our methods can be extended to perturbations affecting both U and X.
3. In this work we focus on small perturbations because these have been observed in practical adversarial examples.
Large perturbations are typically easier to detect, and thus to remediate via appropriate protection mechanisms.
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Theorem 2 (Probabilistic bounds on the stability of Ay) Let z; ~ N (0,02), with i € supp(2).
Let J; be as in Lemma 1, and define the following parameters:

VU = max Z o?BJ; (BJi)T ; Z o? (BJi)T BJi|| ¢, andv= Y o? [tr(BJi)]Q.
supp(Z2) supp(Z) supp(Z2)

Let k = ||Aa||||A'|| be the condition number of A, and let ji = tr(Aq). Then,

n—+u n— [ = —(1 _p(Acl))2
< > < —_— .
@< N ) +Q ( N > <P |p(Aa) 2 1] < 2nexp ( T 5)
Proof Let A = Zsupp (2) z; BJ;. From (4) we have the following estimate:
nr(Aa)] < p(Aa) < p(Aa) + KA. (6)

The second inequality in (6) follows from the Bauer-Fike Theorem (Stewart and Ji-guang Sun, 1990,
Chapter 4). Instead, the first inequality is trivially obtained using the triangle inequality.

(Upper bound) Let t = (1 — p(Aq))/k and A = > supp(2) Zi(0iBJ;), where Z; are indepen-
dent and identically distributed random variables with zero mean and unit variance, which are also
independent of the perturbation variables z;. Notice the following chain of inequalities:

P[p(Aa) 2 1] < P [p(Aa) + K| Al = 1] = PA] = ] = P [J|A]] > t] < (2n) exp(—#2/20).

The first inequality follows by invoking monotonicity of probabilities on the set inclusion { p(Ad) >
1} € {p(Aa) + &[|A]| > 1}. The second equality follows from the fact that the random matrices
A and A are equal in distribution. The last inequality follows from (Tropp, 2015, Theorem. 4.1.1).
(Lower bound) From (6), consider the set inclusion {[tr(A Ag)| > n} C {p(Aq) > 1}, which
implies P[|tr(Aq)| > n] < P[p(Aq) > 1]. Further, from (4) it follows that tr(Ay) = K+
Zsupp(Z)zZtr(BJ ). Since z; ~ N(0,0?) and the terms x and tr(B.J;) are known scalars, tr(Aq)

is distributed according to A(y, v). Hence, |tr(Aq)| follows a folded normal distribution (Leone
etal,, 1961), and, by definition, P[|tr(Aq)| > n] = Q((n + u)//8) + Q((n — 1)/ /0). [ |

The bounds in Theorem 2 quantify how different properties of the nominal system dynamics and
the data perturbation affect the stability of the closed-loop dynamics. First, the variance parameters
v and v depend on the variance of the perturbation (o;), the number of perturbed entries (supp(Z2)),
and the sensitivity of the data-driven control algorithm, as captured by the Jacobian matrices J;. In
particular, when the variance of the perturbation grows and the other quantities remain bounded, v
grows to infinity and the lower bound in (5) converges to 1 because Q(-) converges to 0.5. As intu-
itively expected, the probability of having a stabilizing controller decreases to zero for perturbations
of increasing variance. Conversely, when the variance of the perturbation, the number of perturbed
experiments, or the sensitivity of the data-driven algorithm converge to zero, then, assuming the
other quantities remain bounded, v decreases to zero and the upper bound in (5) converges to zero.
This shows that the closed-loop system is stable with probability growing to one when the effect
of the perturbation on the data-driven controller decreases to zero. Second, the eigenvalues and the
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non-normality degree of the nominal closed-loop system, as measured by the condition number
(Trefethen and Embree, 2005), also affect the performance of the data-driven controller. Specifi-
cally, the upper bound in (5) grows with the condition number «, as expected since the sensitivity
of the eigenvalues of a matrix increases with its condition number (Trefethen and Embree, 2005),
and with the spectral radius p(A.), since matrices with eigenvalues closer to the unit circle require
smaller perturbations to become unstable. Similarly, the lower bound in (5) is also increasing with
respect to ||, thus yielding a larger lower bound for nominal systems that are closer to instability.
Third, our bounds depend on the system matrices. This is to be expected, since the controller de-
pends on the data that are in turn generated by the system, and somehow desirable because it allows
us to (i) quantify the properties of the dynamics that regulate robustness of data-driven controllers
and (ii) identify for which systems data-driven controllers are better suited. The characterization of
robustness bounds that can be computed directly form the system data is left as the subject of future
research. Fourth and finally, Theorem 2 can be used to characterize the rate at which the probability
of instability of the closed-loop system grows as a function of the number of perturbed experiments.

Theorem 3 (Convergence rate) Let i € supp(Z), and define diag(BJ;) = [v},..., 7", i =
min{y},...,7"}, and v = min;{o;;}. Then, Plp(Aq) > 1] > 2Q(2/+/~2|supp(2)|).
Proof Because |(| < nand Q(-) is a monotone function, (5) implies that 2Q(2n/,/v) < P[p(Aq) >

1]. The Theorem follows from /2 > \/|supp(Z)| min; [tr(0; BJ;)]?> > \/|supp(Z)|n?+2. [

Since 2Q(2/+/72[supp(Z)|) = 1—erf(1/1/0.572[supp(Z)|), Theorem 3 states that P[p(Aq) >
1] increases to one at the rate of a Gaussian error function of order 1//|supp(Z)|. Further, the con-

vergence rate towards instability is independent of the dimension of the closed-loop system.

To conclude this section, we discuss the performance of the data-driven controller when the
number or length of the experiments grows and the number of perturbed entries remain bounded. In
this case, if the data-driven control algorithm F' depends in a comparable way on all data points but
not almost exclusively on any of them, then the Jacobian matrices .J; have decreasing norm, and the
upper bound in Theorem 2 decreases to zero. This implies that the data-driven algorithm becomes
increasingly more robust to perturbations that are bounded in variance and support as the number of
experimental data increases. To formalize this discussion, let v be as in Theorem 2, and notice that

T < 0 [SUPD(Z)] T2 (7)

where oimax = MaX;cqupp(z) i ANd Jmax = MaX;equpp(z) [[BJi||. Then, whenever [supp(Z N2 0
decreases and oy« remains bounded, v converges to zero, and Theorem 2 implies that the perturbed
closed-loop system remains stable with probability converging to one. This robustness property,
which we validate in Section 4 for a class of data-driven control algorithms, is in contrast to model-
based control techniques, where only a finite number of perturbations can in general be detected
and remedied (e.g., see Sundaram and Hadjicostis (2011); Pasqualetti et al. (2013)).

Remark 4 (Tightness of the bounds) The bounds in (2) depends on the dimension of A.. Although
the lower bound ranges between 0 and 1, the upper bound can exceed 1, as suggested by the factor
2n outside the exponential function. Other factors can also deteriorate the upper bound; see (Tropp,
2015, Chapter. 4) for a thorough discussion of the role of the dimension on probabilistic tail bounds.
Yet, in addition to providing a qualitative understanding of the properties that affect closed-loop
stability with perturbed data, the bounds in (2) remain useful in many cases (e.g., see Fig. 1). [
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Figure 1: This figure shows the estimate of probability of instability (orange dashed line) of per-
turbed the closed-loop system described in (8), and the upper and lower bound (blue circle
and green triangle, respectively) derived in Theorem 2 as a function of perturbation vari-
ance (0;). Any value less than that of machine epsilon is rounded to that value (2.2e — 16)
Notice that (i) the probability of instability lies within the theoretical bounds derived in
Theorem 2, (ii) the upper (resp. lower) bound converges to zero (resp. one) as the pertur-
bation variance decreases (resp. increases) (iii) the lower bound is tight for all values of
0;; however, the upper bound proves to be meaningful only when o; € (le —4, 1.5e — 3).

Remark 5 (Gaussian assumption in Theorem 2) The results in Theorem 2 can be readily extended
to different classes of stochastic perturbations. For instance, an upper bound similar to the one in (5)
can be obtained for perturbations with bounded support (see Matrix Bernstein Inequality in (Tropp,
2015, Chapter. 6)). Lower bounds can be obtained using the Paley-Zygmund or Cantelli’s inequality,
although such results would likely be loose without any further assumption on the perturbation. []

4. Tllustrative examples

In this section we provide examples to illustrate the bounds derived in Theorem 2. To this aim, we
consider a simplified discrete-time linear time-invariant model of a vehicle (Dean et al., 2019):

1 7, 0 O 0 O
0O 1 0 O T, 0

z(t+1)= 00 1 T x(t) + 0 0 u(t), ®
0O 0 0 1 0 T
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Figure 2: For the setup in Section 4, this figure shows the norm Jp,.x in (7) as a function of the di-
mension of the experimental data (average over 15 trials). The norm Jp,.x is a decreasing
function of the dimension of the training data, which ensures robustness when the dimen-
sion of the experimental data grows faster than the dimension of the compromised data.

where z(t) € R?* contains the vehicles position and velocity in cartesian coordinates, u(t) € R?
is the input signal, and 75 = 0.1 is the sampling time. We assume that the matrices in (8) are
unknown, and collect the state trajectory resulting from a single control experiment with a random
control input of length 7 = 500, which implies that vec(X) € R2%%, Then, we use the data-
driven characterization provided in (Persis and Tesi, 2020, Theorem 3) as a procedure to design
a minimum-norm stabilizing controller for (8). We let the experimental data be perturbed at 50
random locations in vec(X), that is, |supp(Z)| = 50, and compute the Montecarlo estimate of the
probability of instability (numerically, over 10000 instances) of the closed-loop system for different
values of the variance of the Gaussian perturbation (with zero mean). Our results are in Fig. 1. We
remark that the Jacobian of the data-driven control algorithm (Jx in (3)), and thus the matrices J;
in (5), can be computed numerically using the available training data, similarly to the numerical
computation of the derivative of a scalar function. We refer the reader to Su et al. (2017).

To conclude, in Fig. 2 we show that the Jacobian matrix Jx of the considered data-driven control
algorithm satisfies the bound in (7). That is, the sensitivity of the algorithm in (Persis and Tesi, 2020,
Theorem 3) to variations of the training data decreases with the dimension of the training data. This
ensures that localized perturbations have increasingly less effect on the final feedback controller, and
that the stability of the perturbed closed-loop system is maintained with higher probability. We leave
the analytical characterization of this property as the subject of ongoing and future investigation.

5. Conclusion

In this paper we describe a novel framework to quantify the robustness of data-driven control algo-
rithms for linear systems against stochastic perturbations of the training data. We derive lower and
upper bounds for the probability of the spectral radius of the closed-loop system exceeding one, as a
function of the perturbation statistics, sensitivity of the data-driven algorithm, and properties of the
nominal closed-loop system. We also characterize the rate at which the probability of stability of the
closed-loop system decreases with the cardinality of the compromised data, and show that such rate



ANGULURI MAKDAH KATEWA PASQUALETTI

is independent of the system dimension. We discuss the qualitative implications of our bounds, and
show their effectiveness through numerical simulations. Directions of future research include the
derivation of tighter bounds, especially upper bounds since our estimate becomes increasingly more
loose with the system dimension, the generalization to more complex algorithms and perturbation
models, and the analysis of the sensitivity properties of different data-driven control algorithms.
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