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ABSTRACT

Adversarial examples, which can mislead neural networks through subtle pertur-
bations, continue to challenge our understanding, raising more questions than
answers. This paper presents a novel perspective on interpreting adversarial exam-
ples through the Asymptotic Equipartition Property (AEP). Our theoretical analysis
examines the noise within these examples, revealing that while normal noise aligns
with AEP, adversarial noise does not. This insight allows us to classify samples
in high-dimensional space as belonging to either the typical or non-typical set,
corresponding to normal and adversarial examples, respectively. Our analyses and
experiments show adversarial examples arise from AEP in high-dimensional space
and derive some key properties regarding their quantity, probability, and informa-
tion capacity. These findings enhance our understanding of adversarial examples
and clarify their counterintuitive phenomena, such as adversarial transferability,
the trade-off between robustness and accuracy, and robust overfitting.

1 INTRODUCTION

Adversarial Examples, small human-imperceptible perturbations of a benign input, which change
the output of deep neural networks (DNNs), threaten various AI tasks, including traditional deep
learning tasks Szegedy et al. (2014); Goodfellow et al. (2015); Carlini & Wagner (2018); Li et al.
(2020), as well as popular LLM-based tasks Zhang et al. (2022); Zou et al. (2023); Liang et al.; Wu
et al. (2024); Zhao et al. (2024). Although there have been a large amount of studies on adversarial
examples Goodfellow et al. (2015); Ilyas et al. (2019), and several defense strategies proposed Metzen
et al. (2017); Madry et al. (2018); Zhang et al. (2019); Kuang et al. (2023); Schlarmann et al. (2024);
Zeng et al. (2024), the reason behind the susceptibility of adversarial examples remains an open
question.

Previous works in this field have explained adversarial examples from various perspectives. Szegedy
et al. (2014) considered adversarial examples as low-probability, high-dimensional pockets in the
manifold. Goodfellow et al. (2015) viewed them as fluctuations resulting from the linear behavior in
the high-dimensional nature of the input space. Gilmer et al. (2018) hypothesized that this behavior
arises from the high-dimensional geometry of data manifolds and low but non-zero error rates.
More broadly, Ilyas et al. (2019) argued that adversarial examples are features rather than bugs,
suggesting that the features learned by DNNs can be divided into robust and non-robust features,
and that adversarial vulnerability is a fundamental consequence of the dominant supervised learning
paradigm. Tsipras et al. (2019) showed that representations learned by standard and robust models
are fundamentally different, sparking debates on whether there exists a trade-off between adversarial
robustness and clean accuracy. Zhang et al. (2019) proposed TRADES, which characterizes this
trade-off theoretically, algorithmically, and experimentally. Conversely, Raghunathan et al. (2020)
argued that infinite data can eliminate this trade-off. Furthermore, Yang et al. (2020) proved that the
trade-off in deep learning is not inherent but a consequence of current methods for training robust
networks.

Except for the trade-off problem, adversarial examples raise many other counterintuitive behaviors.
One intriguing behavior is adversarial transferability: the phenomenon where adversarial perturbations
computed for one model can transfer to other independently trained models Papernot et al. (2016a);
Cheng et al. (2019). Robust adversarial training also exhibits overfitting, termed robust overfitting
Rice et al. (2020), where robust accuracy rises immediately after the first learning rate decay and
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Raw Data

(a) Raw image pipeline

Demosaicing

Tone Mapping

Shot-Read Noise

Final ImagePhysical Object

Y
(Raw Data)

X
(Final Form)

(b) Causal noise model

Figure 1: (a) is raw image pipeline. The camera sensor captures the raw data, then optical processing
is required to transform its noisy linear intensities into the final image. (b) is causal graphs with Y , Z
causing X , where Y is the raw data (the real-world physical object), Z is the perturbation introduced
during the entire imaging process, X is the final image. The causal process can correspond to the raw
image pipeline.

then decreases beyond this point. Additionally, adversarial learning requires a high-capacity network
and more training data Madry et al. (2018); Schmidt et al. (2018) than standard learning. Despite
abundant theories and empirical experiments, it is still not fully understood why adversarial examples
lead to such behaviors across the various aspects mentioned above.

To further explore this inquiry, we focus on image data and establish a causal noise model to simulate
the image generation process, as illustrated in Figure 1. We assume the existence of an underlying
noise-free dataset Y , with any variability attributed to additional noise Z. We hypothesize that the
abnormal behavior of samples is driven by this noise Z. As discussed in the subsequent section,
we find that normal noise adheres to the Asymptotic Equipartition Property (AEP) Shannon (1948),
whereas adversarial noise does not. AEP, a fundamental property of samples drawn from a probability
distribution, arises from the weak law of large numbers. According to AEP theory, samples in
high-dimensional space can be divided into a typical set and an non-typical set. The behavior of
samples is largely governed by the typical set, which contains those that satisfy the AEP criteria, while
adversarial samples predominantly fall within the non-typical set. This hypothesis is empirically
validated by training Deep Neural Networks (DNNs) on artificially generated datasets containing
both sets and assessing their vulnerability to adversarial attacks. In essence, adversarial examples can
be understood as a manifestation of the AEP in high-dimensional space.

Leveraging the Asymptotic Equipartition Property (AEP), we identify several key characteristics
of adversarial examples that help explain their counterintuitive phenomena, including adversarial
transferability, the trade-off between robustness and accuracy, and robust overfitting:

• High-dimensional data can be divided into typical and non-typical sets. Normal samples correspond
to the typical set, while adversarial samples belong to the non-typical set. In essence, adversarial
examples can be understood as a manifestation of the AEP in high-dimensional space.

• Adversarial vulnerabilities occur because deep neural networks are unable to learn the intrinsic
features of non-typical sets in high-dimensional space. This limitation stems from the fact that
the data samples used in standard training conform to the AEP and belong to the typical set. As a
result, the model is not exposed to or capable of learning the features of non-typical sets.

• In high-dimensional spaces, adversarial examples belong to the low-probability set, while normal
examples reside in the high-probability set. Interestingly, the number of adversarial examples
significantly exceeds that of normal examples. As a result, robust learning necessitates larger
models and more extensive datasets to effectively capture both typical and non-typical patterns.

2 ASYMPTOTIC EQUIPARTITION PROPERTY

In information theory, the Asymptotic Equipartition Property (AEP) Shannon (1948) is a general
property of the output samples from a probability distribution. It is fundamental to the concept of the
typical set used in theories of data compression and is a direct consequence of the weak law of large
numbers. The following Theorem 1 formalizes the classical AEP 1.

1For more details of the AEP, we refer the reader to Shannon (1948); Algoet & Cover (1988); Cover (1999).
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Figure 2: Visualization of the AEP from our perspective. We divide the samples into two parts,
i.e., the typical set and the non-typical set, which correspond to the normal and adversarial sample,
respectively. According to the AEP theory, the number of samples in the typical set is 2n(H+ϵ) that is
smaller than that of the non-typical set ∣X ∣n. In addition, we give the definition of maximum coding
descriptions for the typical set and non-typical set, where the bits of typical set is n(H + ϵ), while
that of non-typical set is n log ∣X ∣. This can explain why a high-capacity network is required for
adversarial training, which is related to our conclusion in the Section 4.5.

Theorem 1. (AEP): if x1, x2, . . . are i.i.d. ∼ p(x), then

− 1
n
log p(x1, x2, . . . , xn)→H(X), (1)

where H(X) denotes the entropy rate of X .

A Toy Example. Let us define the random variable x ∈ {0,1} has a probability mass function, where
p(1) = p and p(0) = q. If x1, x2, . . . , xn are i.i.d. random samples taken from P (x), the probability
of a sequence p(x1, x2, . . . , xn) is∏n

i=1 p(xi). If there are two sequences, i.e., (1,0,1,1,0,1) and
(0,0,0,0,0,0), and p(1) = p = 0.8, we can obtain the following:

p(1,0,1,1,0,1) = p4q2 = 0.0164,
p(0,0,0,0,0,0) = p0q6 = 0.0000064.

(2)

It is clear that not all sequences of the same length have the same probability. Assuming n→∞, the
number of 1’s in the sequence is close to np with high probability, and all such sequences have the
same probability 2−nH. The AEP indicates that samples meeting the property of AEP belong to a
high-probability set and determine the overall behavior of all samples.

That is, the AEP states that − 1
n
log p(x1, x2, . . . , xn) is close to the entropyH, where x1, x2, . . . , xn

are the i.i.d. random variables and p(x1, x2, . . . , xn) is the probability of observing the sequence
(x1, x2, . . . , xn). Thus, the probability p(x1, x2, . . . , xn) assigned to an observed sequence will be
close to 2−nH.

According to Cover (1999), AEP theory allows us to divide any high-dimensional dataset into two
independent sets: the typical set (i.e., the entropy of the samples is close to the true entropy) and the
non-typical set (i.e., samples outside the typical set), as shown in Figure 2. Therefore, the definition
of the typical set is as follows:

Typical Set. The typical set A(n)ϵ w.r.t. p(x) is the set of sequences (x1, x2, . . . , xn) ∈ Xn with the
following property:

2−n(H+ϵ) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H−ϵ), (3)
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where ϵ is a constant.

We introduce some important properties of the typical set A(n)ϵ as follows, which serve as the
fundamental preliminaries of this paper.2

Properties. If (x1, x2, . . . , xn) ∈ A(n)ϵ , we have:

(1). H(X) − ϵ ≤ − 1
n
log p(x1, x2, . . . , xn) ≤H(X) + ϵ, which is determined by the definition of the

typical set.

(2). Pr(A(n)ϵ ) > 1 − ϵ, for any small number ϵ together with sufficiently large n.

(3). The scale of the typical set ∣A(n)ϵ ∣ ≤ 2n(H(x)+ϵ).

(4). (1 − ϵ)2n(H(x)−ϵ) ≤ ∣A(n)ϵ ∣ for a sufficiently large n.

3 ANALYSIS AND VERIFICATION

3.1 CAUSAL NOISE MODEL

Modern digital cameras strive to render a pleasant and accurate image of the real world, simulating
what the human eye sees Szeliski (2010). However, the raw sensor data from a camera does not
resemble a photograph, requiring many processing stages to transform its noisy linear intensities into
their final form. These stages include shot and read noise Hasinoff (2014), demosaicing Gharbi et al.
(2016), and tone mapping Debevec & Malik (2008), as shown in Figure 1(a). Each of these steps
may influence the final observed data.

For simplicity, we model these processes as a noise graph model, visualized as an exemplar probability
graph in Figure 1(b). We assume that Y represents the raw data (i.e., the real-world physical object),
which is pure and unpolluted. We define Z as the noise introduced during the overall imaging
process, with any uncertainties arising from this additional noise Z. X as the final image, where the
appearance of X is influenced by both the object Y and the noise Z. From the noise graph model, we
can define valid perturbations of data through the lens of causality. Generating an adversarial example
is equivalent to perturbing the factors that produce X in the graph model, where we posit that an
adversarial perturbation is an intervention on Z. We exclude intervention on Y because it would alter
the actual objects in the image, which contradicts the setting of human-imperceptible perturbations.
Therefore, we focus on the influence of the noise Z on the final image. Generally, a DNN takes X as
input and directly outputs the prediction Y , which can be formulated as p(Y ∣X) = p(Y )p(X ∣Y )

p(X)
.

Experiments show that deep neural networks are not sensitive to small and normal noise, such as
Gaussian or uniform noise. Adding such noise to data samples typically does not change the model’s
output. However, adversarial noise can mislead the network into producing incorrect results. We
assumes all noise is relatively small (e.g., image noise with a magnitude of 8.0/255), remaining
imperceptible to the human eye. The differing effects of normal and adversarial noise demonstrate
that, despite their similar appearance, they possess fundamentally different properties. Numerous
studies have attempted to train classifiers to distinguish between adversarial and normal samples
Metzen et al. (2017); Cohen et al. (2020). However, the precise nature of this fundamental difference
remains unknown

3.2 DISENTANGLING NORMAL AND ADVERSARIAL EXAMPLES

To differentiate between normal and adversarial noise, we associate the AEP of data with noise
Z. Through AEP, samples in high-dimensional space are divided into typical and non-typical sets.
We prove that normal samples and adversarial samples correspond to typical and non-typical sets,
respectively.

2The corresponding proofs are provided in the supplementary material and are useful for understanding the
adversarial examples.
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Figure 3: We have constructed typical and non-typical datasets on CIFAR-10. For typical set
examples, we add AEP-compliant noise to clean examples, such as Gaussian noise or uniform noise.
For non-typical set examples, we artificially construct two types of noise that do not meet AEP.
Finally, the final image is synthesized through our causal noise model.

Let Z = (z1, z2, . . . , zn), where z1, z2, . . . , zn are i.i.d. samples from P (Z), and n = C ×W ×H .
For example, in CIFAR-10 Krizhevsky et al. (2009) data, Z ∈ Rn and n = 3 × 32 × 32. We have the
following Lemmas:

Lemma 1. Normal samples Xnorl belong to the typical set.

Throughout the image generation process, various factors may influence the final image. Normally,
this noise adheres to the AEP. For instance, shutter noise follows a Poisson random variable, and
read noise approximates a Gaussian random variable with zero mean and fixed variance. Therefore,
generally, high-dimensional noise Z can be considered as independent random variables following
distribution p(Z), such as Gaussian, Poisson, or exponential distribution. When sampling normal
noise from p(Z), it will conform to the characteristics of AEP, making Z the noise in the typical set.
Consequently, the sampled image becomes a normal sample Xnorl, which belongs to the typical set.

Lemma 2. Adversarial samples Xadv belong to the non-typical set.

The majority of existing methods for generating adversarial perturbations, such as FGSM or PGD,
rely on model gradients. Black-box attacks similarly utilize gradient estimation to create adversarial
samples. Their formulations can be simplified as follows:

Zk = Π(Zk−1 + α ⋅ sign(∇xL(Fθ(X +Zk−1), Y ))),

where F represents the neural network model with weights θ, L denotes the cross-entropy loss
function, Π stands for the projection function, α indicates the step size, and Zk signifies the adversarial
perturbation at step k.

In this scenario, due to the intervention of adversarial noise, the true distribution of Z becomes
indeterminate, making it difficult to ascertain whether Z conforms to AEP. To tackle this challenge,
we adopt a causal perspective and hypothesize that the adversarial noise Zadv is drawn from the
distribution P (Z ∣G), where G serves as the prior for generating noise (based on gradient information).
Consequently, if Zadv, sampled from P (Z ∣G), does not adhere to the AEP, it can be classified as
belonging to the non-typical set. As a result, the adversarial samples Xadv also belong to this
non-typical set. A more detailed proof is available in Appendix D.

Drawing from Lemma 1 and Lemma 2, it becomes clear that, although the human eye may not detect
subtle differences between normal noise and adversarial noise, significant mathematical and statistical
distinctions exist, driven by the Asymptotic Equipartition Property (AEP) of the data. According
to the properties of AEP, high-dimensional data can be divided into two categories: typical and
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Table 1: Generalizability attack of the typical noise and non-typical noise across different datasets
and networks. NT denote non-typical. The perturbation budget of ϵ = 8/255.

Datasets and Networks Clean Gaussian Uniform NT-I NT-II

CIFAR-10 91.9 91.3 (−0.6) 89.7 (−2.2) 76.5 (−15.4) 72.1 (−19.8)
SVHN 95.7 95.7 (−0.0) 95.4 (−0.3) 91.1 (−4.60) 87.1 (−8.60)

TinyImage 51.8 51.5 (−0.3) 51.3 (−0.5) 47.6 (−4.20) 39.2 (−12.6)

ResNet 91.9 91.3 (−0.6) 89.7 (−2.2) 76.5 (−15.4) 72.1 (−19.8)
VGG 91.1 91.0 (−0.1) 90.2 (−0.9) 88.8 (−2.30) 83.9 (−7.20)

DenseNet 92.4 90.9 (−1.5) 88.4 (−4.0) 82.8 (−9.60) 74.2 (−18.2)
MobileNet 90.1 88.4 (−1.7) 84.7 (−5.4) 79.1 (−11.0) 71.4 (−18.7)

non-typical sets. Normal samples fall within the typical set, while adversarial samples are classified
as belonging to the non-typical set.

3.3 CONSTRUCTING TYPICAL AND NON-TYPICAL EXAMPLES

Our proposed approach is based on the premise that both typical and non-typical sets exist in high-
dimensional space under the AEP. To investigate this, we aim to construct artificial typical and
non-typical sets, and then train deep neural networks (DNNs) on these datasets to analyze their
properties. Assuming that Y consists entirely of clean data, our focus shifts to the characteristics
of the noise Z. Specifically, when Z represents typical noise, X is classified as a typical sample;
conversely, when Z represents non-typical noise, X is classified as an non-typical sample.

To construct the typical set initially, we introduce AEP-compliant noise into the clean examples
Y . This noise can be randomly sampled from common distributions like Gaussian or uniform
distributions. Conversely, for the non-typical set, we introduce noise that deviates from the AEP when
applied to the clean examples Y . Indeed, generating noise that doesn’t adhere to the AEP is relatively
straightforward due to the abundance of non-typical noise types. There are two straightforward
methods to create samples for the non-typical set. One involves leveraging information from
trained DNNs, where non-typical noise is generated using the DNN gradient as a prior. The other
method entails generating non-typical noise relevant to the sample space, akin to a form of universal
adversarial perturbation Moosavi-Dezfooli et al. (2017); Liu et al. (2019). Here, we concentrate
solely on the latter approach, which can be practically crafted through simple manual disturbances,
as depicted in Figure 3. The noise labelled as non-typical-I and non-typical-II is custom-designed by
us and does not conform to the AEP.

To confirm the efficacy of the non-typical noise we generated for adversarial attacks, we perform
experiments across various datasets, comparing its impact with that of typical noise. The results are
detailed in Table 1, wherein we assess model performance on CIFAR-10, SVHN, and TinyImageNet
datasets. Notably, employing typical noise as an adversarial perturbation results in minimal accuracy
loss for DNNs, whereas the utilization of non-typical noise leads to a notable decrease in accuracy.
This observation underscores the general characteristic of non-typical noise, indicating its resilience
across different datasets. Subsequently, we assess performance across various backbone architectures
such as ResNet, VGG, DenseNet, and MobileNet. Table 1 further illustrates that non-typical noise
markedly reduces model accuracy. This experiment elucidates the transferability of adversarial
examples and underscores the presence of universal adversarial perturbation.

Moreover, we assess performance under robust adversarial training, which differs from standard
adversarial training Madry et al. (2018). During training, we initially employ the PGD attack to gen-
erate adversarial examples and then introduce artificially constructed noise, as previously described.
Consequently, we adapt the original adversarial examples and utilize either typical or non-typical
adversarial examples for training. During testing, we similarly introduce corresponding noise to input
samples. All models are evaluated using a 10-step PGD attack. We term this tailored adversarial
training as AEP-based adversarial training (AEP AT), as shown in Figure 4. The experimental results
are presented in Figure 5(a). Notably, the model trained on adversarial examples with typical noise
performs well on clean examples with a certain degree of robustness. Similar to standard adversarial
training, the robustness accuracy is lower than the clean accuracy, albeit consistent with standard
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Figure 4: The pipeline of AEP-AT.

practices. In contrast, for the model trained on adversarial examples with two types of non-typical
noise, we observe that clean accuracy is lower than robustness accuracy. This discrepancy indicates
that the non-typical noise we introduced improves the model’s ability to fit adversarial examples,
which contrasts with the results from training on typical noise. Therefore, we argue that the data
space is divided into two distinct domains: one consisting of typical samples and normal examples,
and the other comprising non-typical samples and adversarial examples.

Based on the preceding experiment, we deduce that typical samples and normal examples share similar
properties, while non-typical samples and adversarial examples exhibit analogous characteristics.
Consequently, we contend that the typical set aligns with normal examples, whereas the non-typical
set corresponds to adversarial examples. Building upon the insights from Section ??, we demonstrate
that the typical set and adversarial examples are interchangeable.

4 EXPLAINING COUNTERINTUITIVE BEHAVIORS

From our new perspective, our theory and experiments not only give a clear insight into adversarial
examples, but also explain some counterintuitive behaviors, such as standard training not robust, the
trade-off between robustness and accuracy, adversarial transferability, and robust overfitting, etc.

4.1 STANDARD TRAINING IS NOT ROBUST

Ilyas et al. (2019) argued when training on the standard dataset, non-robust features take on a large
role in the resulting learned DNNs. From our perspective, we argue that adversarial vulnerability
is due to the DNNs not fitting the features from the non-typical in the high-dimensional space. The
fundamental reason is that there are no non-typical samples in the standard training dataset, so the
DNNs have no chance to learn the non-typical features. To verify this point, we suppose that the
typical set is the smallest high-probability set.

From the properties of the typical set, when n is sufficiently large, the probability of the typical
samples (normal examples) have Pr(A(n)ϵ ) > 1 − ϵ, where ϵ is any small number. In turn, we get a
probability of 0 for the non-typical samples (adversarial examples). However, one interesting thing is
that, in the entire n-dimensional space, the number of samples in the non-typical set is far more than
that in the typical set. Specifically, the number of samples in the typical set is about 2n(H±ϵ), and the
number of samples in the entire space is ∣X ∣n, where ∣X ∣ is the size of the state-space, we have

lim
n→inf

2n(H±ϵ)

∣X ∣n = 0. (4)

Thus, A(n)ϵ is a fairly small set that contains most of the probability. Now we demonstrate that the
typical set has the same number of samples as the smallest set.

Definition: For each n = 1,2, . . . , let B(n)δ ∈ Xn be any set with

Pr(B(n)δ ) > 1 − δ. (5)
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Figure 5: Left (a): Under the adversarial training setting, clean accuracy and robust accuracy for
models trained with the typical and non-typical datasets. Right (b): Trade-off between clean accuracy
and robust accuracy. We adjust the ratio of the typical samples and the non-typical samples to achieve
a trade-off.

We assume that B(n)δ must have a significant intersection with A(n)ϵ and therefore must have about as
many samples.

Theorem 2. In Cover (1999), assume x1, x2, . . . i.i.d. ∼ p(x), for δ < 1
2

and any δ
′ > 0, if Pr(B(n)δ ) >

1 − δ, when n is sufficiently large, then we have

1

n
log ∣B(n)δ ∣ >H − δ

′
. (6)

Thus, B(n)δ must have at least 2nH sample, to first-order in the exponent, while A(n)ϵ has 2n(H±ϵ).
Therefore, A(n)ϵ is about the same size as the smallest high probability set. This interesting result
shows that the number of samples in the typical set is extremely small compared to the total number
of samples in the entire space, but they do exist and appears with a high probability.

From the above theories, we conclude that, in general, the datasets we collect are from the typical set,
and our DNNs work on the typical set, regardless of training or testing, so the DNNs can have good
generalization. However, when the DNNs face adversarial examples (non-typical set), which they
have not learnt, they are deceived.

4.2 TRADE-OFF BETWEEN ROBUSTNESS AND ACCURACY

In the realm of robust adversarial training, there has been considerable debate regarding the existence
of a trade-off between robustness and accuracy. A prevailing notion suggests that robustness and
accuracy are mutually detrimental Zhang et al. (2019); Tsipras et al. (2019). Nonetheless, some
studies have contended that certain benchmark datasets exhibit class separation Yang et al. (2020),
positing that robustness can be upheld while enhancing accuracy with an infinite dataset Raghunathan
et al. (2020).

Table 2: Robustness and accuracy comparison of AEP-AT
with Standard AT on different datasets

Datasets Standard AT AEP AT
Clean Adv acc Clean Adv acc

CIFAR-10 85.7 48.3 78.4 86.5
SVHN 93.6 51.2 92.1 93.2

TinyImage 46.8 21.1 45.6 49.6

From our novel perspective, we ar-
gue that a delicate balance exists be-
tween robustness and accuracy in the
current learning paradigm. This trade-
off arises from the partitioning of high-
dimensional space into typical and non-
typical sets, each characterized by dis-
tinct properties. While, in theory, infinite
training data and a network with suffi-
cient capacity could accommodate all possible samples, in practice, the typical set represents a
high-probability domain, while the non-typical set contains a disproportionately larger number of
samples. Due to limitations in the capacity of current networks, achieving both high robustness and
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clean accuracy simultaneously is difficult. Therefore, we aim to navigate this trade-off between
robustness and accuracy within these constraints.

To validate this assertion, we implement AEP-based adversarial training (AEP AT). Here, we augment
the adversarial examples generated by the PGD attack with the non-typical pattern (e.g., non-typical-
II), then utilize these modified adversarial examples for training. AEP AT is evaluated across different
datasets using a 10-step PGD attack, and the outcomes are detailed in Table 2. Relative to standard
adversarial training, AEP-AT maintains a higher robustness accuracy compared to clean accuracy.
This suggests the presence of a balance point where robustness and accuracy stabilize, rather than
exhibiting bias toward either extreme. To pinpoint this equilibrium, we train the DNN using both
clean samples and modified adversarial samples, varying the ratio of the two and monitoring the
resulting model’s robustness and accuracy. The findings, depicted in Figure 5(b), demonstrate that
our trained model attains an optimal trade-off state between robustness and accuracy. This outcome
aligns precisely with our expectations, affirming our hypothesis.

4.3 ROBUSTNESS OVERFITTING

Rice et al. (2020) highlighted the presence of robust overfitting in robust adversarial training, where
robust accuracy initially increases following the first learning rate decay but declines thereafter.
Overfitting in machine learning typically arises due to either an insufficient size of training data or an
inconsistency between the feature distributions of training and test data.

Viewed through the lens of AEP, the high-dimensional data is partitioned into two domains: a typical
set and a non-typical set, each characterized by distinct feature distributions. Our research demon-
strates that the non-typical set contains significantly more samples than the typical set. Furthermore,
as current adversarial training employs Projected Gradient Descent (PGD) to generate adversarial
examples for training, the adversarial noise is intricately linked to the input samples. Consequently,
the model predominantly learns features specific to the non-typical set related to the training samples,
impeding generalization to test samples and leading to robust overfitting.

4.4 ADVERSARIAL TRANSFERABILITY

Another crucial aspect of adversarial examples is their transferability, a phenomenon where pertur-
bations crafted for one model can effectively target another, regardless of their training Papernot
et al. (2016a); Cheng et al. (2019). Ilyas et al. (2019) posit that due to the likelihood of two models
learning similar non-robust features, perturbations manipulating such features can affect both models.
This perspective holds merit to some extent. As outlined in Section 4.1, standard benchmark datasets
typically comprise samples from a common set. Consequently, deep neural networks (DNNs) are
trained predominantly on these standard samples, learning analogous features. The distinction from
Ilyas et al. (2019) lies in our assertion that these common set features arise from the high-dimensional
characteristics of external noise, rather than inherent non-robust features within the samples. An
adversary manipulates the AEP of pristine samples using the gradient information of DNNs, thus
converting samples from the typical set into the non-typical set. It is important to note that adversaries
utilize model information to craft adversarial examples. However, the AEP remains unaffected by
the model’s architecture or the dataset’s category; it is solely linked to the high-dimensional data
distribution. Hence, adversarial examples can transcend different model architectures, rendering them
universal.

To validate this claim, we conducted several comparative experiments in Section 3.3, employing
both typical and non-typical samples to evaluate various model architectures and benchmark datasets.
The results, depicted in Table 1, support our assertion that the AEP bias in high-dimensional space
underlies adversarial examples, independent of model architecture and datasets.

4.5 BIGGER MODEL AND MORE DATA

Many works have found that adversarial training not only consumes computational resources but
also requires a high-capacity network and more training data to improve the robustness of the model
Madry et al. (2018). Now, from the perspective of AEP-based data compression, we try to explain
why a larger model and more data are needed to improve robustness. We design a coding scheme
for samples in high-dimensional space. The size of the typical set does not exceed 2n(H+ϵ), so the
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index of all these samples can be encoded by no more than n(H + ϵ) bits. Similarly, the size of
the non-typical set is about ∣X ∣n, so we can encode the index of each sample in the non-typical set
by using no more than n log ∣X ∣ bits. A model with limited capacity is usually only trained on the
typical set, so it only needs to accommodate the information with n(H + ϵ) bits. Under adversarial
training, the model must fit not only the typical samples but also the non-typical samples. However,
the non-typical set information has n log ∣X ∣ bits, which is much larger than the n(H + ϵ) bits of the
typical set. Such analyses show the original model capacity is insufficient, and a high-capacity model
is needed to better accommodate the increased information.

On the other hand, there are many works to improve the robustness of the DNNs by adding additional
training data Schmidt et al. (2018). From our perspective, it is equivalent to increasing the training
data of the non-typical samples (adversarial examples), which can be regarded as another form of
adversarial training. In this way, the DNNs learn the features from the non-typical set and can
better fit the non-typical set (adversarial examples). Therefore, additional data not only improves the
robustness of the model but also can reduce overfitting.

5 CONCLUSIONS

In this paper, we revisit adversarial examples from a new perspective: asymptotic equipartition
property (AEP). We decompose and construct normal and adversarial samples, further explore the
consequences of AEP causing the model’s adversarial vulnerability. We further derive important
properties of normal and adversarial samples in terms of quantity, probability, and information
capacity, thus providing explainable reasons for a series of related phenomena.

The goal of this work is to explore and explain the adversarial phenomenons. Our findings not
only provide novel insights into adversarial examples but also serve as inspiration for researchers to
devise new defense or attack algorithms. Importantly, within the current learning paradigm, complete
immunity to adversarial attacks remains elusive. Hence, the pursuit of designing a new learning
paradigm to align models more closely with human cognition represents a valuable research trajectory.
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A RELATED WORK

A.1 ADVERSARIAL ATTACK

Adversarial example was first proposed in Szegedy et al. (2014), following by a series of adversarial
attacks to mislead DNN predictions by altering the inputs with human-imperceptible perturbation
Moosavi-Dezfooli et al. (2016); Papernot et al. (2016b); Carlini & Wagner (2017). The Fast Gradient
Sign Method (FGSM) Goodfellow et al. (2015) is a classical adversarial attack, for an input image,
FGSM uses the gradient of the loss w.r.t. the input image to create an adversarial image. Another
strong attack method is Project Gradient Descent (PGD) attack Madry et al. (2018), creates the
adversarial examples by using a multi-step projected gradient descent, which is the most popular
method to test adversarial robustness. Moosavi-Dezfooli et al. (2017); Liu et al. (2019) constructed a
single adversarial noise, termed universal adversarial perturbation (UAP), is sufficient to fool most
images from a data distribution with a given CNN model.

In addition, differing from aforementioned methods that require full knowledge of a DNN, black-box
attacks are more practical, which uses the adversarial transferability of adversarial examples. Previous
work Wu et al. (2018); Dong et al. (2019) shows that adversarial samples generated by one model
can attack other models with a high probability, which grants the attacker more flexibility. Another
type of black-box attack is a query-based attack Andriushchenko et al. (2019); Chen et al. (2020).
Query-based attacks update the perturbation iteratively to optimize the attack objective.

From our perspective, all these attack algorithms are looking for non-typical set samples in the data
sample space. Both adversarial transferability and UAP are based on the properties of non-typical set.

A.2 ADVERSARIAL DENFENSE

With the rapid development of attack methods, considerable efforts have been devoted to defend-
ing against adversarial examples, such as defensive distillation Papernot et al. (2016c), manifold-
projection Samangouei et al. (2018), pre-processing Guo et al. (2018); Yang et al. (2019), verification
and provable defenses Raghunathan et al. (2018); Salman et al. (2019), and Adversarial Training
Goodfellow et al. (2015); Madry et al. (2018); Cranko et al. (2019). AT augments the training
procedure with adversarial examples produced by adversarial attacks, in details, the adversarial
training is a kind of minimax optimization problems, which can be formulated as:

min
θ

E[max
xadv
L(Fθ(xadv), y)], (7)

where Fθ is a DNN model with parameters θ, and L is the loss function of the DNN. This objective
has an adversarial form. The inner maximization conducts a typical adversarial attack. For a given
image x, it aims to find an xadv within the ϵ-ball of x, such that the training loss is maximized, i.e.
the DNN is fooled. The inner maximization can be solved approximately, using PGD attack.

From our perspective, all current defense methods can be divided into two categories. One is based
on adversarial training, which enables the model to learn non-typical set features, thereby making the
model robust. The other is to transform non-typical set samples into typical set samples. so that the
input samples conform to the features of the typical set learned by the model.

A.3 ADVERSARIAL EXPLAINABILITY

Several works have been devoted to explaining the phenomenon of adversarial examples, such as
boundary tilting Tanay & Griffin (2016), local linearity Goodfellow et al. (2015), and test error in
noise Fawzi et al. (2016). However, the closest to our work is Ilyas et al. (2019). Ilyas et al. (2019)
argued that adversarial examples are not bugs, but features. They explicitly disentangled robust and
non-robust features in standard datasets. Compared to them, the concept of typical (non-typical) set
that we have proposed is similar to that of non-robust (robust) feature, but the key differentiating
aspect of our perspective is that we argue that adversarial examples are caused by the interference of
external noise, rather than inherent features of the samples themselves. On the other hand, regarding
the typical and non-typical set, we have strict mathematical definitions, not abstract descriptions.
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B IMPLEMENTATION DETAILS.

In our work, we customized a special adversarial training, termed the AEP-based adversarial training
(AEPAT). Specially, in the training phase, we first use the PGD attack to generate adversarial
examples, where step size = 2/255 with the iteration of 7 and the perturbation budget of = 8. Then
we add artificially constructed noise to them as generated before. Therefore, we modify the original
adversarial examples and use the typical or non-typical adversarial examples for adversarial training.
The initial learning rate λ = 0.1 and the learning rate schedule is [0.1, 0.01, 0.001], the decay epoch
schedule is [70, 75]. The training scheduling of 80 epochs. We performed standard data augmentation
including random crops and random horizontal flips during training. In the testing phase, we also add
corresponding noise to the input samples. All models are evaluated with 10 steps PGD attack, where
step size = 2/255 and perturbation budget = 8.

C LIMITATIONS

We explain the generation of adversarial examples and the reasons for adversarial vulnerability in
commonly trained models from the perspective of AEP, offering a higher-dimensional interpretation.
It derives important characteristics of non-robust representations in terms of quantity, probability,
and information capacity, providing explanatory reasons for a range of related phenomena. These
insights are not offered by other explanatory methods.

In the exploration of explanations based on AEP, adversarial examples can be generated in various
ways, and different types of adversarial examples may have unique characteristics and properties.
However, we only consider two types of non-typical noise, which may result in a dataset that is not
sufficiently rich and comprehensive, thereby limiting the generalizability of the explanations.

Therefore, the interpretability of neural network models regarding adversarial examples still faces
many challenges and limitations. Continued efforts in future research are needed to find new methods
and strategies to overcome these challenges.

D PROOFS

Theorem 1. (AEP): if x1, x2, . . . are i.i.d. ∼ p(x), then

− 1
n
log p(x1, x2, . . . , xn)→H(X), (8)

where H(X) denotes the entropy rate of X .

Proof. Function of independent random variables are also independent random variables, Thus, since
the xi are i.i.d., so are log p(xi). Hence by the weak law of large numbers,

− 1
n
log p(x1, x2, . . . , xn) = −

1

n

n

∑
i

log p(xi)

→ −E log p(X)
=H.

(9)

Typical Set: The typical set A(n)ϵ w.r.t. p(x) is the set of sequences (x1, x2, . . . , xn) ∈ Xn with the
following property:

2−n(H+ϵ) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H−ϵ), (10)

where ϵ is a constant.

Properties. If (x1, x2, . . . , xn) ∈ A(n)ϵ , we have:

(1). H(X) − ϵ ≤ − 1
n
log p(x1, x2, . . . , xn) ≤H(X) + ϵ, which is determined by the definition of the

typical set.
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(2). Pr(A(n)ϵ ) > 1 − ϵ, for any small number ϵ together with sufficiently large n.

(3). The scale of the typical set ∣A(n)ϵ ∣ ≤ 2n(H(x)+ϵ).

(4). (1 − ϵ)2n(H(x)−ϵ) ≤ ∣A(n)ϵ ∣ for a sufficiently large n.

Proof. The proof of property (1) is immediate from the definition of A(n)ϵ . The second property
follows directly from Theorem 1, since the probability of the sequence (x1, x2, . . . , xn) ∈ A(n)ϵ tends
to 1 as n→∞. Thus for any δ > 0, there exists an n0, such that for all n ≥ n0, we have

Pr(∣ − 1

n
log p(x1, x2, . . . , xn) −H(X)∣<ϵ)>1 − δ. (11)

We set δ = ϵ, then obtain the second part of the property. Note that we are using ϵ for two purposes
rather than using both ϵ and δ. The identification of δ = ϵ will conveniently simplify notation later.

To prove property (3), we write
1 = ∑

x∈Xn

p(x) ≥ ∑
x∈A

(n)
ϵ

p(x)

≥ ∑
x∈A

(n)
ϵ 2−n(H(X+ϵ)

= 2−n(H(X)+ϵ)∣A(n)ϵ ∣,

(12)

where the second inequality follows from Equation 10. Hence ∣A(n)ϵ ∣ ≤ 2n(H(X)+ϵ).

Finally, for sufficiently large n,Pr(A(n)ϵ > 1 − ϵ, so that

1 − ϵ < Pr(A(n)ϵ )
≤ ∑

x∈A
(n)
ϵ

2−n(H(X)−ϵ)

= 2−n(H(X)−ϵ)∣A(n)ϵ ∣,

(13)

hence
∣A(n)ϵ ∣ ≥ (1 − ϵ)2n(H(X)−ϵ). (14)

This completes the proof of the properties of A(n)ϵ

Lemma 1. The adversarial example X belongs to the non-typical set.

Proof. We define the entropy of normal noise Z in the absence of adversarial interference asH(Z).
Since Z belongs to the typical set, we have

H(Z) = − 1
n
log p(z1, z2, . . . , zn). (15)

In the case of adversarial interference, we have
p(Zadv) = p(Z ∣G) = p(z1∣g1, z2∣g2, . . . , zn∣gn). (16)

We further formalize the entropy of Zadv as H(Z ∣G). Therefore, the error between two different
entropyH(Z) andH(Z ∣G) are shown as follows:

∆H =H(Z) −H(Z ∣G)
= −∑

z

p(z) log p(z) − (−∑
z,g

p(z, g) log p(z, g))

= −∑
z,g

p(z, g) log p(z) +∑
z,g

p(z, g) log p(z, g)

=∑
z,g

p(z, g) log p(z∣g)
p(z)

=∑
z,g

p(z, g) log p(z, g)
p(z)p(g)

= I(Z;G),

(17)
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where I(Z;G) is the mutual information between Z and G. From PGD attack Madry et al. (2018),
we know that gradient information G is closely related to Z. Thus, the value of I(Z;G) should be
greater than zero, leading to:

∆H =H(Z) −H(Z ∣G) = I(Z;G) > 0. (18)

That is,H(Z) ≠H(Z ∣G). According to the definition of the AEP, the noise variable Zadv does not
satisfy the AEP under adversarial interference. Therefore, the adversarial noise Zadv belongs to the
non-typical noise, and the adversarial example X belongs to the non-typical set
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