
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Distinctiveness Maximization in Datasets Assemblage
Anonymous Author(s)

Abstract
In this paper, given a user’s query set and budget, we aim to use

the limited budget to help users assemble a set of datasets that

can enrich a base dataset by introducing the maximum number

of distinct tuples (i.e., maximizing distinctiveness). We prove this

problem to be NP-hard. A greedy algorithm using exact distinctive-

ness computation attains an approximation ratio of (1−𝑒−1)/2, but
it lacks efficiency and scalability due to its frequent computation

of the exact distinctiveness marginal gain of any candidate dataset

for selection. This requires scanning through every tuple in candi-

date datasets and thus is unaffordable in practice. To overcome this

limitation, we propose an efficient machine learning (ML)-based

method for estimating the distinctiveness marginal gain of any

candidate dataset. This effectively eliminates the need to test each

tuple individually. Estimating the distinctiveness marginal gain of

a dataset involves estimating the number of distinct tuples in the

tuple sets returned by each query in a query set across multiple

datasets. This can be viewed as the cardinality estimation for a

query set on a set of datasets, and the proposed method is the first

to tackle this cardinality estimation problem. This is a significant

advancement over prior methods that were limited to single-query

cardinality estimation on a single dataset and struggled with identi-

fying overlaps among tuple sets returned by each query in a query

set across multiple datasets. Extensive experiments using five real-

world data pools demonstrate that our algorithm, which utilizes

ML-based distinctiveness estimation, outperforms all relevant base-

lines in effectiveness, efficiency, and scalability. A case study on two

downstream ML tasks also highlights its potential to find datasets

with more useful tuples to enhance the performance of ML tasks.

ACM Reference Format:
Anonymous Author(s). 2018. Distinctiveness Maximization in Datasets As-

semblage. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX). ACM, New

York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Data is an essential resource for informed decision making [59].

This importance is reinforced by remarkable progress in machine

learning (ML), which heavily relies on vast amounts of data to

extract insights [50]. Hence, data preparation plays a pivotal role in

transforming raw data into meaningful insights to support decision-

making processes [70].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Find a subset S of D with the

maximum distinctiveness given

a query set and a budget

Search relevant datasets by

a base dataset, followed by

schema alignment

Raw datasets

2 Datasets discovery

Data cleaning1

Missing values

Duplicates Inconsistency

Outliers

......

d1 d5

d10 d15

...

...

...

Coarse-grained candidates D

A Basic datasets discovery B Advanced datasets assemblage

Fine-grained candidate S

Select tuples from datasets in

S satisfying a specific target

3 Tuples discovery

Our pipeline Existing pipeline

d1

d5

d10

d5

d10

Figure 1: Our data preparation pipeline with advanced
datasets assemblage versus existing pipelines. The user in-
put for each stage is shown by color (blue for basic datasets
discovery, red for advanced datasets assemblage, and purple
for tuples discovery).
A common pipeline of data preparation. As shown in Fig. 1,

it comprises three key stages: data cleaning, datasets discovery,

and tuples discovery [50]. In Stage 1, cleaned datasets are obtained

through data cleaning, involving tasks like missing value imputa-

tion [39] and duplicate removal [9]. In Stage 2, a subset of cleaned

candidate datasets identified through datasets discovery is acquired

by users to meet their information needs. At Stage 3, tuples are

selected from the candidate datasets using tuples discovery to fulfill

users’ specific targets (e.g., enriching the training set of an existing

ML model [7]). Despite extensive prior research efforts in datasets

discovery (Stage 2) [2, 5, 6, 20, 22, 27, 44, 45, 58], an important

research gap remains, limiting the practicality of existing solutions.

The gap in the pipeline: datasets discovery. Basic datasets dis-
covery returns top-𝑘 relevant datasets using keywords (e.g., AWS

Marketplace [44]) or a base dataset (e.g., table union search [51]).

Its search process generally evaluates each candidate dataset indi-

vidually, focusing on the similarity or overlaps between individual

datasets and given keywords or base datasets. This can bring sub-

stantial information redundancy when assembling these returned

datasets [55]. Moreover, this approach implicitly assumes that users

can afford all of the discovered datasets to later perform tuples

discovery, which is often unrealistic. Users often have a limited

budget and emphasize the return on investment [1].

Our study: advanced datasets assemblage. To bridge the above

gap, we delve into advanced datasets assemblage. It builds upon

the results of basic datasets discovery using a user’s base dataset.

It allows a user to specify her fine-grained information needs to
assemble a useful dataset collection within a budget, aiming to

evaluate the dataset collection as a whole to reduce information

redundancy. Since SQL queries are widely used to pinpoint fine-

grained and precise information within datasets [17, 38, 61], we

employ a query set with SQL queries to allow a user to express

her fine-grained information needs. Additionally, the schemas of

candidate datasets obtained through basic datasets discovery can be

easily and effectively aligned with the user’s base dataset using the

state-of-the-art schema alignment techniques, achieving high accu-

racy [53]. Therefore, the user can readily formulate her query set

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

A query set Q

� : SELECT * FROM d WHERE Type =

‘House’ and City = ‘Melbourne’

� : SELECT * FROM d WHERE 500,000 <

Price < 800,000 and City = ‘Melbourne’

Type City Price

Apartment Sydney 705,000

House Melbourne 520,000

House Sydney 970,000

House Melbourne 750,000

Type City Price

House Melbourne 520,000

Apartment Sydney 735,000

House Sydney 815,000

House Melbourne 510,000

�

�!"

House Melbourne 520,000

House Melbourne 510,000

House Melbourne 520,000

House Melbourne 750,000

House Melbourne 520,000

House Melbourne 510,000

House Melbourne 750,000

#(�)

#(�!")
#(�) ∪ #(�!")

Figure 2: An example forMCE (red for the overlapping tuple).
using the schema information from her base dataset. We introduce

the concept of distinctiveness to evaluate the usefulness of datasets

discovered w.r.t. a user’s fine-grained information needs. Let 𝑄 (𝑑)
be the union of tuple sets returned by each query in a user’s query

set 𝑄 on a dataset 𝑑 and 𝑑𝑢 be a user’s base dataset. We define the

distinctiveness for a dataset as the size of 𝑄 (𝑑), including tuples in
𝑄 (𝑑𝑢). Correspondingly, the distinctiveness for a set of datasets
is defined as the size of the union of 𝑄 (𝑑) over each dataset 𝑑 in a
set of datasets, including tuples in 𝑄 (𝑑𝑢). The usefulness of datasets
is application-dependent and remains an open problem, but this

distinctiveness definition serves as a starting point for assembling

a useful dataset collection with distinct tuples as no one prefers to

purchase an “assembled” dataset full of duplicate information. By

maximizing distinctiveness, advanced datasets assemblage identi-

fies datasets with minimal information redundancy within a budget,

thereby locating useful datasets in a cost-effective manner.

To this end, we introduce the problem of distinctiveness maxi-
mization in datasets assemblage. Given a user’s fine-grained informa-

tion needs expressed as a query set, along with her base dataset and

budget, and a set of candidate datasets discovered in basic datasets

discovery, our goal is to select a subset of candidate datasets for

user acquisition. This selection process maximizes the total distinc-

tiveness for the subset within the user’s budget. We exemplify this

problem within the data preparation pipeline in Appendix A.

The gap in a solution backbone. We establish the NP-hardness of

obtaining an exact solution for the distinctness maximization prob-

lem (See Appendix B), as well as showing a greedy algorithm using

exact distinctiveness computation (Exact-Greedy for brevity) that

can achieve an approximation ratio of (1 − 1/𝑒)/2 in Appendix C.

However, the Exact-Greedy algorithm heavily relies on the fre-

quent computation of the exact distinctiveness marginal gain of

any dataset in candidate datasets during selection. The exact dis-

tinctiveness marginal gain of a dataset is computed as the differ-

ence between the distinctiveness for a set of datasets including

the dataset and the distinctiveness for the dataset itself. Thus, the

union 𝑄 (𝑑) of tuple sets returned by each query in a query set 𝑄

over any dataset 𝑑 in candidate datasets must be obtained, which

demands inspecting every tuple in the candidate datasets returned

for the queries provided, significantly degrading both efficiency

and scalability. To overcome this limitation, a natural choice is to

effectively approximate the distinctiveness marginal gain rather

than relying on the exact computation.

From distinctiveness to cardinality estimation. The key to estimating

the distinctiveness marginal gain of a dataset is to estimate the dis-

tinctiveness for a set of datasets w.r.t. a query set𝑄 . This involves es-

timating the size of the union of𝑄 (𝑑) over each dataset 𝑑 in a set of

datasets, and we refer to it as multi-dataset-query cardinality estim

ation (MCE). MCE can be viewed as a generalized version of the clas-

sical cardinality estimation problem [24, 26, 32, 42, 71, 76], which

estimates the cardinality of a single query for a single dataset (i.e.,
the size of the tuple set returned by a query on a dataset). To

distinguish between these two concepts, we refer to the latter as

single-dataset-query cardinality estimation (SCE). As illustrated in

Example 1.1 below, existing SCE solutions cannot be used to solve

the MCE problem since they cannot capture both overlaps among

the tuple sets returned by different queries on a dataset and overlaps

among different datasets.

Example 1.1 (Using the SCE solution for the MCE problem). Con-
sider the datasets 𝑑5 and 𝑑10, and a query set 𝑄 = {𝑞1, 𝑞2} shown
in Fig. 2. Using an SCE solution, for 𝑑5, the cardinality of 𝑞1 is 2,

and the cardinality of 𝑞2 is 2. For 𝑑10, the cardinality of 𝑞1 is 2, and

the cardinality of 𝑞2 is 2. Since the SCE solution only reports the

cardinality of each query for each dataset, the size of the union of

𝑄 (𝑑5) and 𝑄 (𝑑10) is estimated to be 8, by aggregating the cardinal-

ity of each query on each dataset, which is much greater than the

true result (three distinct tuples in the union of 𝑄 (𝑑5) and 𝑄 (𝑑10)).

A novel solution. To address this, we propose a novel ML-based

method to estimate the distinctiveness for a set of datasets w.r.t. a

query set. Specifically, we leverage a pre-trained model to trans-

form the data summary of a dataset into embeddings that capture

nuanced information from each dataset, queries, and their interrela-

tionships to effectively identify overlaps among the tuple sets returned
by different queries on a dataset. We use the embeddings created to

estimate distinctiveness for the respective dataset. Furthermore, we

incorporate a learning function to consolidate the data summaries

from individual datasets to generate a data summary corresponding

to a collection of the considered datasets while identifying overlaps
among datasets. This allows us to estimate the distinctiveness of a

set of datasets utilizing pertinent pre-trained models. Finally, we

propose a new greedy algorithm that uses our ML-based distinc-

tiveness estimation method (ML-Greedy for brevity) to address the

distinctiveness maximization problem (§3).

Evaluation. We conduct extensive evaluations on five real-world

data pools showcasing: 1) Our ML-based distinctiveness estima-

tion method significantly outperforms the SOTA SCE solution on

the MCE problem, with one-order-of-magnitude higher accuracy

for estimating distinctiveness and is several times more efficient

than the SOTA SCE solution. 2) Our ML-Greedy algorithm is com-

petitive with Exact-Greedy and significantly outperforms other

baselines for distinctiveness maximization. 3) Our ML-Greedy algo-

rithm achieves impressive efficiency gains, with up to four orders

of magnitude speedup over Exact-Greedy and three orders of mag-

nitude improvement over the most efficient baseline method.

We conduct a case study on two downstreamML tasks, classifica-

tion and regression, to assess the impact of our datasets assemblage

methods, ML-Greedy and Exact-Greedy, on downstream task per-

formance through the pipeline in Fig. 1. By comparing with the

SOTA basic datasets discovery method, we validate our methods’

potential in identifying datasets with more useful tuples(§4).

2 Problem Formulation
In this section, we outline our problem formulation and present the

hardness analysis for our problem.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Given a user’s base dataset 𝑑𝑢 , a set 𝐷 = {𝑑1, ..., 𝑑 |𝐷 | } of can-
didate datasets is retrieved using basic datasets discovery. Each

dataset 𝑑 ∈ 𝐷 has a price 𝑝 (𝑑) ∈ R+, determined by a pricing func-

tion 𝑝 . It is noteworthy that data pricing is an open problem and

falls outside the scope of our study. We briefly discuss it in §5 (Re-

lated Work). We define the total price of 𝐷 as 𝑝 (𝐷) = ∑
𝑑∈𝐷 𝑝 (𝑑).

A user submits a query set with SQL queries 𝑄 = {𝑞1, ..., 𝑞 |𝑄 | } to
specify fine-grained information needs. An SQL query can be ex-

pressed as SELECT * FROM 𝑑 WHERE ... AND 𝑙𝑐 ≤ 𝑐 ≤ 𝑢𝑐 AND ...where
𝑑 is a dataset and 𝑐 is a query column, handling both numerical and

categorical data. For categorical data, 𝑙𝑐 equals 𝑢𝑐 . The queries 𝑞1
and 𝑞2 in Fig. 2 are two examples.

A user interested in acquiring datasets may want to determine

the number of unique tuples returned from a set𝐷 of datasets based

on a query set 𝑄 and base dataset 𝑑𝑢 . We refer to this concept as

the distinctiveness of 𝐷 in relation to a user’s information needs.

Definition 2.1 (Distinctiveness). Suppose 𝑞(𝑑) is the tuple set

returned by applying query 𝑞 to dataset 𝑑 , and𝑄 (𝑑) is the union of

the tuple sets returned by each 𝑞 ∈ 𝑄 on 𝑑 , referred to as 𝑄 (𝑑) =
∪𝑞∈𝑄𝑞(𝑑). The distinctiveness𝒟(𝑆, 𝑑𝑢 , 𝑄) of a set of datasets 𝑆 is the
size of the union of 𝑄 (𝑑) over all 𝑑 ∈ 𝑆 ∪ 𝑑𝑢 . That is,𝒟(𝑆, 𝑑𝑢 , 𝑄) =��⋃

𝑑∈𝑆∪𝑑𝑢 𝑄 (𝑑)
��
.

As mentioned in §1, the distinctiveness estimation problem is

analogous to the MCE problem, as formalized below.

Definition 2.2 (Multi-dataset-query cardinality estimation (MCE)).
Given a set 𝐷 of datasets and a query set 𝑄 , MCE estimates the

cardinality of 𝑄 for 𝐷 , which is the size of the union of 𝑄 (𝑑) over
each dataset 𝑑 ∈ 𝐷 , i.e., |⋃𝑑∈𝐷 𝑄 (𝑑) |

In the rest of this paper, we use the concepts of distinctiveness

estimation and MCE interchangeably. Notably, when 𝑄 has only

one query (|𝑄 | = 1) and 𝐷 contains only one dataset (|𝐷 | = 1), the

distinctiveness estimation problem is equivalent to the well-known

SCE problem [42, 71, 76].

Definition 2.3 (Distinctiveness Maximization (DM)). Given a bud-

get 𝐵, a query set𝑄 , a base dataset 𝑑𝑢 , a set 𝐷 of candidate datasets,

and a pricing function 𝑝 , the DM problem returns a subset 𝑆∗ ⊆ 𝐷
that yields the maximum distinctiveness within the budget 𝐵. For-

mally, we have

𝑆∗ = argmax𝑆⊆𝐷 𝒟(𝑆, 𝑑𝑢 , 𝑄) s.t.
∑
𝑑∈𝑆 𝑝 (𝑑) ≤ 𝐵. (1)

We prove the NP-hardness of the DM problem using a reduction

from the maximum coverage (MC) problem [48] in Appendix B.

3 Greedy Algorithm using ML-based
Distinctiveness Estimation

Given the NP-hardness of the DM problem, obtaining an optimal

solution is computationally intractable, even for moderately sized

datasets. To this end, a straightforward choice is to apply a greedy

algorithm to find an approximate solution (Alg. 1 shows a skeleton

of the greedy algorithm). We prove that a greedy algorithm us-

ing exact distinctiveness computation (Exact-Greedy for brevity)
achieves an approximation ratio of (1 − 𝑒−1)/2. We present more

details of Exact-Greedy in Appendix C.

However, Exact-Greedy is still computationally expensive due

to the exact computation of the distinctiveness marginal gain (i.e.,

Algorithm 1 The Greedy Skeleton

Input: a set 𝐷 of datasets, a base dataset 𝑑𝑢 , a query set𝑄 , a budget 𝐵;

Output: a subset 𝑆 ⊆ 𝐷 of datasets with distinctiveness;

1: 𝑆 ← ∅,𝒟(𝑆,𝑑𝑢 ,𝑄) ← 0

2: while 𝐷 ≠ ∅ do
3: 𝑑∗ ← argmax𝑑∈𝐷 𝒟(𝑆 ∪ 𝑑,𝑑𝑢 ,𝑄) −𝒟(𝑆,𝑑𝑢 ,𝑄) ;
4: if 𝑝 (𝑆) + 𝑝 (𝑑∗) ≤ 𝐵 then 𝑆 ← 𝑆 ∪ 𝑑∗ , update𝒟(𝑆,𝑑𝑢 ,𝑄) ;
5: 𝐷 ← 𝐷 \ 𝑑∗ ;
6: 𝑑𝑡 ← argmax𝑑∈𝐷∧𝑝 (𝑑) ≤𝐵 𝒟({𝑑𝑡 }, 𝑑𝑢 ,𝑄) ;
7: if 𝒟(𝑆,𝑑𝑢 ,𝑄) < 𝒟({𝑑𝑡 }, 𝑑𝑢 ,𝑄) return {𝑑𝑡 } and𝒟({𝑑𝑡 }, 𝑑𝑢 ,𝑄) ;
8: return 𝑆 and𝒟(𝑆,𝑑𝑢 ,𝑄) ;

𝒟(𝑆∪𝑑,𝑑𝑢 , 𝑄)−𝒟(𝑆, 𝑑𝑢 , 𝑄)). This is not practical since a data prepa-
ration system in production must deliver results to users quickly

in order to avoid user abandonment. Therefore, a natural question

arises: Is it possible to efficiently estimate the distinctiveness and

maintain high effectiveness? As aforementioned in §1, distinctive-

ness estimation is analogous to the MCE problem, with the goal

of estimating the cardinality of a query set on a set of datasets. It

cannot be addressed by a solution of the SCE problem [42]. Thus,

we devise a new ML-based method for solving the MCE problem.

Overview for ourML-based distinctiveness estimationmethod.
As shown in Fig. 3, our method consists of five components.

In an offline process, we use Component 1 to generate a data

summary for each dataset under consideration. In an online process,

we use the data summary from each dataset and a query set as the

input. Using Components 2-4, we estimate the distinctiveness for

a dataset w.r.t. a query set while identifying overlaps among the

tuple sets returned by each query in a query set on a dataset. Specif-

ically, we first utilize Component 2 to transform the data summary

into a query-aware dataset embedding, which captures the connec-

tions between the query set and the data summary. Then, we use

Component 3 to generate a query-set embedding by merging the

information from the queries in the query set. Finally, Component

4 estimates the distinctiveness for a dataset w.r.t. a query set using

the embeddings generated in the previous components. To estimate

the distinctiveness for a set of datasets w.r.t. a query set using the

above components, we first compute a data summary for a set of

datasets by identifying overlaps among them. The data summary

for a set of datasets is computed by iteratively merging the current

data summary with the data summary of a new dataset, starting

with the first dataset in the set. To this end, our ML-based method

uses Component 5, which includes a learning function, to efficiently

generate a data summary for a set of datasets by merging the data

summaries for individual datasets.

3.1 Component 1: Data Summary Generation
We adopt the pre-training summarization approach IRIS [42] to

generate data summaries (see the left side of Fig. 3). When com-

pared to other possible approaches such as histograms [29] or

sketches [13], IRIS does not require per-dataset training. Hence,

it reduces the total cost required to generate the summaries while

producing high-quality results for the SCE problem.

Specifically, IRIS has a two-step process. The first step is iden-
tifying column sets where a set C𝑑 of columns, which are highly

correlated with dataset 𝑑 , is located. The second step, generating
column set embeddings, uses pre-trained models to create an embed-

ding 𝑒𝐶 for each column set 𝐶 ∈ C𝑑 . These column set embeddings

collectively form a data summary 𝐸𝑑
𝐶
= {..., 𝑒𝐶𝑖

, ...} where 𝐶𝑖 ∈ C𝑑 .
Further details on these two steps are provided below.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

∏ !
" #$ %&' ((&') + !

…
,'

…
((&-)

((&|∏.!
/|)

(()

((
…

…
&-

&|∏.!
/|

&
…

......

......

∏ 0
"

∏ |12|
"

+ 0

+ |12|

......

......

" ∏"
1/

3
/

…

∏ "

…
+
…

…

Reorder(#4 5 6'
- , … , #4 5 6'

8
, … , #4 5 6'

| |
)

#4

#4 5 6'
- , … , #4 5 6'

8
, … , #4 5 6'

| |

#4 #4

&'

Component 1

Data Summary Generation

Component 3

Query-set Embedding Generation

� [�!" , �!#] $! % [�!& , �!",!#]�!",!# [�
�!&[�!",…,! ' , �!|'|]$! % $! %�!(

�!|'|

�!"�!
…

!(

…

��
) [*+]

…

…

!!

) [*-]
!!

…
�!!

. …
�!

) [*| |]
�

.

�

…
�

.

)
*+

)
*-

) *| |

/0
1 �

1

!(

�
1

!|'|

�1
!"

…

…

0
1 �

1

() [*-]
0

) [*-]

…

…

�1
 [�1

!" , �1
!#] $1 % [�1

!& , �1
!",!#]�1

!",!# [�
!, �1

!&

............[�
1

!",…,! ' 2"
, �
1

!|'|
]$1 % $1 %

Component 2

Query-aware Dataset Embedding Generation

�
! "# $

�! "% $

. "& $ (�
!
, �!)

Component 4

Distinctiveness Estimation

Offline Online

�
!"

�

!#

Component 5

Merging Data Summaries

� ! "#$
%,&

'
#

()∪(+

"#$
%

(- = | ∪.∈0 10 2 |)

"#$
&

� ! "#3
%,&

"#3
%

"#3
&

… …

Figure 3: The ML-based distinctiveness estimation method, where red arrows represent the process of estimating the distinc-
tiveness of a dataset and green arrows represent the process of merging data summaries.
3.1.1 Identifying column sets. For each dataset 𝑑 ∈ 𝐷 , a small num-

ber of tuples is randomly selected from 𝑑 and the correlation scores

for each column pair are computed using CORDS [28]. A graph is

then constructed with columns as nodes and edges weighted using

their correlation scores. Using this graph, a set of nodes (columns)

is selected iteratively to form a column set. During each iteration,

a clique, containing no more than 𝜅 (2 in our experiments) nodes,

with the highest total edge weight is selected as a column set. Then,

all edges from the chosen clique are removed from the graph.

Let Π𝐶𝑑 denote a projection of dataset 𝑑 on columns in 𝐶 . The

process of selecting column sets continues until the combined stor-

age size of Π𝐶𝑑 of all of the column sets reaches a pre-defined limit

(4 kb in our experiments), resulting in a set of column sets C𝑑 , e.g.,
in Fig. 2, C𝑑1 of 𝑑5 is {𝐶1 = {Type,City},𝐶2 = {City, Price}}.
3.1.2 Generating column set embeddings. For each column set

𝐶 ∈ C𝑑 and corresponding rows Π𝐶𝑑 from dataset 𝑑 ∈ 𝐷 , a row
embedding is learned for each row 𝑟 ∈ Π𝐶𝑑 . Then, the average for

all of the row embeddings for 𝐶 is computed, which is the column

set embedding 𝑒𝐶 of 𝐶 , i.e,

𝑒𝐶 ≜
1

|Π𝐶𝑑 |
∑ |Π𝐶𝑑 |
𝑖=1

𝜓 (𝑟𝑖) . (2)

Here, 𝜓 (·) is a learned function (model) for a row embedding,

computed using a quantization function q(·) [42], a column embed-

ding function 𝜙𝑐 (·), a row embedding function 𝜙𝑟 (·), and a ReLU

activation function 𝛿 (·) as
𝜓 (𝑟𝑖) ≜ 𝛿 (𝜙𝑟 (Reorder([· · · , 𝜙𝑐 (q(𝑐 𝑗𝑖)), · · ·]))), (3)

where 𝜙𝑐 : R𝜉 → R64, 𝜙𝑟 : Rℓ → R𝜂 , and 𝑐 𝑗
𝑖
are values of the

𝑗-th column in 𝐶 for row 𝑟𝑖 . The Reorder function reorders the

values based on the total number of bits assigned, such that the

most distinct columns are aligned with the same input position

for 𝜙𝑟 . A quantization function q(·) replaces the value for each

column, with an identifier containing at most 𝜉 bits, while𝜙𝑐 (q(𝑐 𝑗𝑖))
encodes an identifier q(𝑐 𝑗

𝑖
) in an embedding layer. Let 𝑣𝑖 be a vector

concatenating the reordered outputs for 𝜙𝑐 . The function 𝜙𝑟 (𝑣𝑖)
creates a row embedding of 𝑟𝑖 ∈ Π𝐶𝑑 using a fully-connected

neural-network (NN) layer. The function 𝜙𝑟 (𝑣𝑖) receives ℓ bits as
input and outputs 𝜂 bits (the size of the row embedding). Finally,

𝛿 (𝜙𝑟 (𝑣𝑖)) is the ReLU activation function is applied to 𝜙𝑟 (𝑣𝑖). Using
Eq. 2, a column set embedding 𝑒𝐶 of 𝐶 is computed with size 𝜂.

Example 3.1. Consider the column set 𝐶 = {City, Price} from
dataset 𝑑5 in Fig. 2. We allocate ℓ = 3 bits for the two columns, con-

taining 2 and 4 distinct values, respectively. Using a quantization

approach [42], we assign [1, 2] bits to the columns. Using the embed-

ding method, we produce 𝜙𝑐 (q(𝑐1
1
)) = [0], 𝜙𝑐 (q(𝑐2

1
)) = [0, 1], and

Reorder[𝜙𝑐 (q(𝑐1
1
)), 𝜙𝑐 (q(𝑐2

1
))] = [𝜙𝑐 (q(𝑐2

1
)), 𝜙𝑐 (q(𝑐1

1
))] = [0, 1, 0]

for 𝑟1 ∈ Π𝐶𝑑 . Thus, we have𝜓 (𝑟1) = 𝛿 (𝜙𝑟 ([0, 1, 0])).
3.2 Component 2: Query-aware Dataset

Embedding Generation
To effectively represent any relationships between the queries in

𝑄 and a data summary 𝐸𝑑
𝐶
of 𝑑 , we create a query-aware dataset

embedding 𝑒
𝑄

𝑑
using a learnedmodel𝜙𝑑 (·). This process is shown in

the “query-aware dataset embedding generation” portion of Fig. 3.

To improve overall efficiency, we construct a lookup table C𝑄
to store the column sets linked to each query 𝑞 ∈ 𝑄 , i.e., C𝑄 [𝑞] =
{𝐶 |𝐶 ∈ ∩𝑑∈𝐷C𝑑 & 𝐶 ∩ ColsOf (𝑞)}. Here, ColsOf (𝑞) refers to the

query columns. Each column set in C𝑞 is also a column set for

a dataset in 𝐷 . For a given data summary 𝐸𝑑
𝐶
for dataset 𝑑 and

lookup table C𝑄 [𝑞], we can construct the dataset embedding 𝑒
𝑞

𝑑
for each query 𝑞 ∈ 𝑄 . To this end, we concatenate all column

set embeddings from 𝐸𝑑
𝐶
which are associated with C𝑄 [𝑞]. This

produces 𝑒
𝑞

𝑑
= [..., 𝑒𝐶𝑖

, ...], where 𝑒𝐶𝑖
∈ 𝐸𝑑

𝐶
and 𝐶𝑖 ∈ C𝑄 [𝑞].

Next, we construct 𝜙𝑑 : R2𝜂𝑥 → R𝜂𝑥 , which is a fully-connected

layer with ReLU activation function 𝛿 (·). It is designed to iteratively
learn a query-aware dataset embedding for a dataset 𝑑 , i.e.,

𝑒
𝑞1,𝑞2
𝑑

= 𝛿 (𝜙𝑑 ([𝑒
𝑞1
𝑑
, 𝑒
𝑞2
𝑑
])) ... 𝑒𝑞1,...,𝑞 𝑗

𝑑
= 𝛿 (𝜙𝑑 ([𝑒

𝑞 𝑗

𝑑
, 𝑒
𝑞1,...,𝑞 𝑗−1
𝑑

]))

... 𝑒
𝑄

𝑑
= 𝛿 (𝜙𝑑 ([𝑒

𝑞 |𝑄 |
𝑑

, 𝑒
𝑞1,...,𝑞 |𝑄 |−1
𝑑

])).
(4)

For the first two queries, 𝑞1, 𝑞2 ∈ 𝑄 , we concatenate the respec-
tive dataset embeddings, 𝑒

𝑞1
𝑑

and 𝑒
𝑞2
𝑑
, as the input for 𝜙𝑑 . The result-

ing embedding, 𝑒
𝑞1,𝑞2
𝑑

, combines the information of both 𝑒
𝑞1
𝑑

and

𝑒
𝑞2
𝑑
. Similarly, we can generate the embedding 𝑒

𝑞1,...,𝑞 𝑗

𝑑
by combin-

ing 𝑒
𝑞 𝑗

𝑑
with 𝑒

𝑞1,...,𝑞 𝑗−1
𝑑

. Following this process, a final query-aware

dataset embedding 𝑒
𝑄

𝑑
= 𝑒

𝑞1,...,𝑞 |𝑄 |
𝑑

is created. Since the size of each

column set embedding is 𝜂, the input size for 𝜙𝑑 (·) is a constant,
2𝜂𝑥 , and the output size is 𝜂𝑥 . In cases where the input size is less

than 2𝜂𝑥 , zero-padding can be applied to achieve the required size.

3.3 Component 3: Query-set Embedding
Generation

In this section, we describe how to generate a query-set embedding

𝑒𝑄 which merges information for all queries in a query set 𝑄 , as

shown in the “query-set embedding generation” portion of Fig. 3.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

For each query 𝑞 ∈ 𝑄 , 𝐶 ∈ C𝑄 [𝑞] represents the column set

included in the WHERE clause from 𝑞. As discussed in §2, each

column 𝑐 ∈ 𝐶 is associated with a query range defined by the

minimum value 𝑙𝑐 andmaximum value𝑢𝑐 . We can represent a query

as 𝑞 = [𝑞𝐶
𝑙
, 𝑞𝐶

ℎ
], where 𝑞𝐶

𝑙
= [𝑙𝑐1 , ..., 𝑙𝑐 |𝐶 |] and 𝑞𝐶ℎ = [𝑢𝑐1 , ..., 𝑢𝑐 |𝐶 |].

To generate the embeddings for a query 𝑞 relative to the set 𝐶 , we

use the same row embedding function 𝜓 (·) (see Eq. 3) for both

the minimal and maximal values of each column, namely 𝑞𝐶
𝑙
and

𝑞𝐶
ℎ
. This produces two distinct embeddings for 𝑞 in 𝐶 ,𝜓 (𝑞𝐶

𝑙
) and

𝜓 (𝑞𝐶
ℎ
). Next, a complete query embedding 𝑒𝑞 is created for 𝑞 by

concatenating all of the embeddings for 𝑞, for each column set

𝐶 ∈ C𝑄 [𝑞], i.e., 𝑒𝑞 = [...,𝜓 (𝑞𝐶𝑖

𝑙
),𝜓 (𝑞𝐶𝑖

ℎ
), ...] where 𝐶𝑖 ∈ C𝑄 [𝑞].

Example 3.2. Consider the column set 𝐶 = {City, Price} in Ex-

ample 3.1 and the query 𝑞2 = SELECT Count(*) FROM d WHERE
500,000 ≤ Price ≤ 800,000 AND City = ’Melbourne’. We have 𝜙𝑐 (q(M
elbourne)) = [0] and 𝜙𝑐 (q(Sydney)) = [1], which is the range of

all distinct values in City. We also have 𝜙𝑐 (q(500, 000)) = [0, 0] and
𝜙𝑐 (q(800, 000)) = [1, 0]. Therefore, Reorder[𝜙𝑐 (q(Melbourne)), 𝜙𝑐
(q(500, 000))] = [0, 0, 0] and Reorder[𝜙𝑐 (q(Sydney)), 𝜙𝑐 (q(800, 000
))] = [1, 0, 1]. This results in the query embedding [𝜓 (𝑞𝐶

𝑙
),𝜓 (𝑞𝐶

ℎ
)] =

[𝛿 (𝜙𝑟 ([0, 0, 0])), 𝛿 (𝜙𝑟 (1, 0, 1))] representing 𝑞2.
After generating all of the individual query embeddings, we

apply an iterative procedure as described in §3.2 to produce the

final query-set embedding as follows:

𝑒𝑞1,𝑞2 = 𝛿 (𝜙𝑝 ([𝑒𝑞1 , 𝑒𝑞2])) ... 𝑒𝑞1,...,𝑞 𝑗
= 𝛿 (𝜙𝑝 ([𝑒𝑞 𝑗

, 𝑒𝑞1,...,𝑞 𝑗−1]))
... 𝑒𝑄 = 𝛿 (𝜙𝑝 ([𝑒𝑞 |𝑄 | , 𝑒𝑞1,...,𝑞 |𝑄 |−1])) .

(5)

Here, 𝜙𝑞 : R4𝜂𝑥 → R2𝜂𝑥 is a fully-connected layer and 𝛿 (·) is the
ReLU activation function. Since the size of the column set embed-

ding for a query is 2𝜂, we fix the input size of 𝜙𝑞 (·) to 4𝜂𝑥 and the

output size of 𝜙𝑞 (·) is 2𝜂𝑥 . In cases where the input size is less than

4𝜂𝑥 , zero-padding is applied to the embedding to ensure that the

input size is equal to 4𝜂𝑥 .

3.4 Component 4: Distinctiveness Estimation
Using our query-aware dataset embedding 𝑒

𝑄

𝑑
and query-set embed-

ding 𝑒𝑄 as inputs, we develop three learned models, namely, 𝜙1 (·),
𝜙2 (·), and 𝜙3 (·), which allow us to estimate the distinctiveness of

each dataset 𝑑 as

𝒟(𝑒𝑄
𝑑
, 𝑒𝑄) = 𝛿 (𝜙3 (𝛿 (𝜙1 (𝑒𝑄𝑑)) ⊙ 𝛿 (𝜙2 (𝑒𝑄))) . (6)

Here, 𝜙1 : R
𝜂𝑥 → R𝜂 and 𝜙2 : R

2𝜂𝑥 → R𝜂 are two fully-connected

layers and𝜙3 : R
𝜂 → R1 is a multilayer perceptron with one hidden

layer. 𝛿 (·) is the ReLU activation function.

The distinctiveness estimation process. As shown in Fig. 3,

our distinctiveness estimation process relies on Components 1 - 4,

each of which includes one or more models. Specifically, 𝜙𝑐 and

𝜙𝑟 are used to generate the data summary, 𝜙𝑑 is used to generate

the query-aware dataset embedding, 𝜙𝑞 is used to generate the

query-set embedding, and 𝜙1, 𝜙2, and 𝜙3 are used to estimate dis-

tinctiveness. These models are end-to-end pre-trained [23]. The

pseudocode for distinctiveness estimation is presented in Appen-

dix D. First, we compute a dataset embedding 𝑒
𝑞

𝑑
for each query

𝑞 ∈ 𝑄 together with a query embedding 𝑒𝑞 for each query 𝑞 ∈ 𝑄
through C𝑄 [𝑞] and 𝐸𝑑𝐶 . Next, we generate the query-aware dataset

embedding 𝑒
𝑄

𝑑
followed by the query-set embedding 𝑒𝑄 . Finally, we

estimate the distinctiveness of dataset 𝑑 . Note that while we adopt

an iterative approach to generate both query-aware dataset and

query-set embeddings, the order in which the queries are processed

minimally affects the final results.

The loss function. Consider a set D of training instances where

each instance includes an estimate for distinctiveness 𝒟̃(𝑑,𝑄) for
𝑑 given𝑄 as well as the exact value of distinctiveness𝒟(𝑑,𝑄). The
mean squared error (MSE) loss is defined as

1

|D |
∑
(𝒟̃(𝑑,𝑄),𝒟(𝑑,𝑄)) ∈D

(𝒟̃(𝑑,𝑄) −𝒟(𝑑,𝑄))2.

3.5 Component 5: Merging Data Summaries
This component is designed to compute a data summary 𝐸𝑆∪𝑑

𝐶

for 𝑆 ∪ 𝑑 by merging the data summary 𝐸𝑆
𝐶
for the current set of

datasets, 𝑆 , and the data summary 𝐸𝑑
𝐶
for a dataset 𝑑 . The objective

is to estimate the distinctiveness of 𝑆 ∪ 𝑑 w.r.t 𝑄 using Alg. 3.

IRIS [42] incrementally updates the data summary 𝐸𝑑
𝐶
for the

dataset 𝑑 when new rows are added to 𝑑 . Specifically, for each col-

umn set𝐶 of 𝑑 , with new rows in𝐶 denoted as 𝑅new, a new column

set embedding is computed as 𝑒′
𝐶

= (𝑛𝑒𝐶 +
∑
𝑟 ∈𝑅𝑛𝑒𝑤 𝜓 (𝑟))/(𝑛 +

|𝑅𝑛𝑒𝑤 |). Here, 𝑒𝐶 is the column set embedding for 𝐶 in 𝐸𝑑
𝐶
and

𝜓 (·) is the row embedding function from Eq. 3. The column set

embedding 𝑒𝐶 in 𝐸𝑑
𝐶
is then updated to 𝑒′

𝐶
.

However, this method is computationally expensive when updat-

ing the data summary 𝐸𝑆
𝐶
for the current set 𝑆 of datasets with new

rows from a dataset 𝑑 . So to better facilitate the update process, it

is necessary to check if any existing row in 𝑑 is already included

in 𝑆 . In such a scenario, a new model must be trained to learn the

column set embeddings for the data summary. This process is sum-

marized in the “merging data summaries” portion of Fig. 3. Given

two datasets 𝑑𝑖 and 𝑑 𝑗 , 𝑑𝑖, 𝑗 is the dataset resulting from the merge

process. Let 𝑒𝑖
𝐶
be a column set embedding for 𝑑𝑖 , 𝑒

𝑗

𝐶
for 𝑑 𝑗 , and 𝑒

𝑖, 𝑗

𝐶
for 𝑑𝑖, 𝑗 , where 𝐶 ∈ ∪𝑞∈𝑄C𝑄 [𝑞]. The embedding is learned using

𝑒𝑖
𝐶
and 𝑒

𝑗

𝐶
, which approximates 𝑒

𝑖, 𝑗

𝐶
using:

𝛿 (𝜙𝑒 ([𝑒𝑖𝐶 , 𝑒
𝑗

𝐶
])) ≈ 𝑒𝑖, 𝑗

𝐶
(7)

where 𝜙𝑒 : R2𝜂 → R𝜂 is a fully-connected layer.

Merging data summaries. The procedure for merging data sum-

maries is shown in Appendix D. Given a data summary 𝐸𝑑
𝐶
for the

dataset 𝑑 , a data summary 𝐸𝑆
𝐶
for the set of datasets 𝑆 , and a lookup

table C𝑄 , which maps column sets C𝑞 associated with each query

𝑞 ∈ 𝑄 , using Eq. 7 to update column set embeddings in 𝐸𝑆
𝐶
whose

column set is in ∪𝑞∈𝑄C𝑞 .
The loss function. Consider a set S of training instances where

each instance is the pair of column embedding 𝑒̃
𝑖, 𝑗

𝐶
for the column

set 𝐶 on the dataset created by merging 𝑑𝑖 and 𝑑 𝑗 and the corre-

sponding ground-truth column pair embedding 𝑒
𝑖, 𝑗

𝐶
. The MSE loss

is
1

|S |
∑
(𝑒𝑖,𝑗

𝐶
,𝑒
𝑖,𝑗

𝐶
) ∈S (𝑒̃

𝑖, 𝑗

𝐶
− 𝑒𝑖, 𝑗

𝐶
)2.

3.6 The Complete Algorithm
Combining all components in §3.1-3.5, we present ML-Greedy, a
greedy algorithm using ML-based distinctiveness estimation. The

process begins offline, generating the set of column sets C𝑑 and

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: q-error of DE and IRIS for varying percentiles.

Dataset Method

q-error

0th 25th 50th 75th 100th

TPCH

DE 1.602 1.661 1.669 1.682 1.801

IRIS 11.629 11.713 11.938 11.981 12.423

DMV

DE 1.139 1.171 1.189 1.212 1.237

IRIS 12.105 12.145 12.173 12.456 12.658

IMDB

DE 1.69 1.694 1.701 1.705 1.762

IRIS 12.17 12.229 12.245 12.276 12.322

Airline

DE 1.725 1.840 1.85 1.858 1.876

IRIS 12.07 12.087 12.103 12.134 12.18

RealEstate

DE 1.579 1.643 1.673 1.706 1.756

IRIS 12.186 12.22 12.251 12.313 12.445

the data summary 𝐸𝑑
𝐶
for each dataset 𝑑 ∈ 𝐷 and the base dataset

𝑑𝑢 . Next, an online process is executed. Initially, a lookup table C𝑄
is created to store column sets associated with each query 𝑞 ∈ 𝑄 .
From the outset, the data summary 𝐸𝑆

𝐶
of the current set of datasets

𝑆 is set to the data summary 𝐸
𝑑𝑢
𝐶

of 𝑑𝑢 and has the distinctiveness of

𝑑𝑢 . In the first iteration, the distinctiveness 𝒟({𝑑}, 𝑑𝑢 , 𝑄) for each
individual dataset 𝑑 is computed using our distinctiveness estima-

tion process in §3.4 and recorded in D. In subsequent iterations,

the marginal gain 𝑔 = 𝒟(𝑆 ∪ 𝑑,𝑑𝑢 , 𝑄) −𝒟(𝑆, 𝑑𝑢 , 𝑄) when adding

𝑑 to the set 𝑆 is computed after the data summaries for 𝑆 and 𝑑 are

merged using our method for merging data summaries in §3.5. The

set 𝑆 is then iteratively updated by adding the dataset 𝑑∗ that yields
the highest marginal gain 𝑔∗ until the budget is exceeded. Finally,
we locate the single dataset 𝑑𝑡 with the maximum distinctiveness. It

selects a better solution from the datasets in 𝑆 and a single dataset

𝑑𝑡 . The pseudo-code of ML-Greedy and its time complexity analysis

are shown in Appendix D.

4 Experiments
We conduct extensive experiments to verify the effectiveness, ef-

ficiency, and scalability of our greedy algorithm using ML-based

distinctiveness estimation.

4.1 Experimental Setup
Preparing datasets and queries. Since real-world user queries

and datasets are typically only available to commercial data market-

places, we propose several strategies to carefully prepare candidate

datasets and query sets using five real-world data pools of vary-

ing sizes and column types. The key behind these strategies is to

control overlapping tuples in the candidate datasets and overlapping
tuples in the tuple sets returned by different queries. To achieve this,

we introduce the following parameters for preparing datasets and

queries: (1) 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 set the sampling rate lower and upper

bounds for each candidate dataset (For simplification, we fix 𝑠𝑚𝑖𝑛

in our experiments); (2) 𝑜𝑙 controls the minimum overlap ratio in

the tuples returned by any pair of queries for a dataset. We believe

this helps reflect various (extreme) scenarios in real world. Please

refer to Appendix E for more details.

Methods for comparison. Our ML-based distinctiveness estima-

tion method includes two important components (1) distinctiveness

estimation and (2) updating data summaries. To demonstrate the

effectiveness of our method, we explore several alternatives for

both components. For component (1), we use two methods: DE –

our distinctiveness estimation method as described in §3.4; IRIS
– A state-of-the-art solution for the SCE problem [42], where the

TPCHDMV
IMDB

Airlin
e

RealEstate

ML-Greedy

(DE+IU)-ML-Greedy

(IRIS+IU)-ML-Greedy

|Q|=10

TPCHDMV
IMDB

Airlin
e

RealEstate

|Q|=40

TPCHDMV
IMDB

Airlin
e

RealEstate

|Q|=160

0.8

0.9

1.0

Figure 4: The impact of the number of queries |𝑄 | on the
distinctiveness ratio of each algorithm.
results can be aggregated for all queries to approximate the distinc-

tiveness of a query set. For component (2), we also consider two

methods: MS – our approach to merge data summaries, as described

in §3.5; IU – Amethod that identifies new tuples from a new dataset

not present in the current set of datasets, then update column set

embeddings using the new tuples, as outlined in §3.5. This results

in four different approaches being compared:

• ML-Greedy – Our greedy algorithm using ML-based distinctive-

ness estimation, as described in §3.6.

• (DE+IU)-ML-Greedy – A greedy algorithm that uses DE for dis-
tinctiveness estimation and IU for updating data summaries.

• (IRIS+IU)-ML-Greedy – A greedy algorithm that uses IRIS for

distinctiveness estimation and IU for updating data summaries.

• Exact-Greedy – The greedy algorithm using exact distinctiveness

computation as described in Appendix C.

Evaluation Metrics. We use the following metrics:

• Distinctiveness ratio (𝒟-ratio) is the ratio of the estimated distinc-

tiveness𝒟 to the exact distinctiveness𝒟𝑔𝑡 calculated by Exact-Gr
eedy, i.e,𝒟-ratio = 𝒟/𝒟𝑔𝑡 .

• Runtime. The average time over five independent runs.

Implementation. Please see Appendix F.1 for specific parameter

settings, training set generation, and experimental environment.

All source code is publicly available [12].

4.2 Accuracy of Distinctiveness Estimation
We first verify the effectiveness of our distinctiveness estimation

method DE. As discussed in §4.1, we have considered two different

implementations – our distinctiveness estimation method DE and a

state-of-the-art SCE method IRIS. We compare the effectiveness

using q-error, which is widely used in prior works on cardinality

estimation [32, 42]. Using the default settings, we estimate the

distinctiveness for each dataset in 𝐷 , and then compute the q-error

for all of the datasets. Table 1 compares the performance when

varying the percentiles of test cases. Observe that the q-error for

DE is more than an order of magnitude less than IRIS. This implies

that our distinctiveness estimation method is considerably more

effective than the adapted SOTA SCE approach.

4.3 Effectiveness Study
ML-Greedy is compared to its variants and Exact-Greedy in Figs. 4-
8. We observed: (1) The distinctiveness ratios of ML-Greedy and

(DE+IU)-ML-Greedy can be up to 13% larger than (IRIS+IU)-M
L-Greedy. Since |𝑑 | is typically large in practice, such a difference

– 13% – in distinctiveness ratio is equivalent to a difference of tens

of thousands of tuples. This shows that our distinctiveness esti-

mation method DE is effective and reliable. (2) The distinctiveness

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

ML-Greedy (DE+IU)-ML-Greedy (IRIS + IU)-ML-Greedy Exact-Greedy

0.1 0.3 0.5 0.7 0.9

B-ratio

0.91

0.94

0.97

1

�
-r
a
t
io

(a) DMV

0.1 0.3 0.5 0.7 0.9

B-ratio

0.91

0.94

0.97

1

�
-r
a
t
io

(b) IMDB

0.1 0.3 0.5 0.7 0.9

B-ratio

0.91

0.94

0.97

1

�
-r
a
t
io

(c) Airline

0.1 0.3 0.5 0.7 0.9

B-ratio

0.91

0.94

0.97

1

�
-r
a
t
io

(d) RealEstate

Figure 5: The impact of budget 𝐵 on the distinctiveness ratio
of each algorithm. (no line chart since cases are independent)

10 20 40 80 160
|D|

0.91

0.94

0.97

1.00

�
-r
a
ti
o

(a) DMV

10 20 40 80 160
|D|

0.91

0.94

0.97

1.00

�
-r
a
ti
o

(b) IMDB

10 20 40 80 160
|D|

0.91

0.94

0.97

1.00

�
-r
a
ti
o

(c) Airline

10 20 40 80 160
|D|

0.91

0.94

0.97

1.00

�
-r
a
ti
o

(d) RealEstate

Figure 6: The impact of the number of datasets |𝐷 | on the
distinctiveness ratio of each algorithm.

0.1 0.2 0.3 0.4 0.5
sample rate

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(a) DMV

0.1 0.2 0.3 0.4 0.5
sample rate

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(b) IMDB

0.1 0.2 0.3 0.4 0.5
sample rate

0.91

0.94

0.97

1.00
�

-r
a
ti

o

(c) Airline

0.1 0.2 0.3 0.4 0.5
sample rate

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(d) RealEstate

Figure 7: The impact of the sampling rate upper bound 𝑠max

on the distinctiveness ratio of each algorithm.

1 3 5 7 9
overlap ratio (%)

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(a) DMV

1 3 5 7 9
overlap ratio (%)

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(b) IMDB

1 3 5 7 9
overlap ratio (%)

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(c) Airline

1 3 5 7 9
overlap ratio (%)

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(d) RealEstate

Figure 8: The impact of the minimum overlap ratio 𝑜𝑙 between
query pairs on the distinctiveness ratio of each algorithm.

10 20 40 80 160
|D|

101

102

103

104

105

ru
n
ti

m
e
 (

s
)

(a) DMV

10 20 40 80 160
|D|

100
101
102
103
104
105
106

ru
n
ti

m
e
 (

s
)

(b) IMDB

10 20 40 80 160
|D|

101

102

103

104

ru
n
ti

m
e
 (

s
)

(c) Airline

10 20 40 80 160
|D|

101

102

103

104

ru
n
ti

m
e
 (

s
)

(d) RealEstate

Figure 9: The impact of the number of datasets |𝐷 | on the
runtime of each algorithm.

1 3 5 7 9
overlap ratio (%)

101

102

103

ru
n
ti

m
e
 (

s
)

(a) DMV

1 3 5 7 9
overlap ratio (%)

101

102

103

104

ru
n
ti

m
e
 (

s
)

(b) IMDB

1 3 5 7 9
overlap ratio (%)

101

102

ru
n
ti

m
e
 (

s
)

(c) Airline

1 3 5 7 9
overlap ratio (%)

101

102

ru
n
ti

m
e
 (

s
)

(d) RealEstate

Figure 10: The impact of theminimumoverlap ratio𝑜𝑙 between
query pairs on the runtime of each algorithm.

estimated by both ML-Greedy and (DE+IU)-ML-Greedy are com-

petitive with those of Exact-Greedy, especially on smaller datasets

such as Airline. (3) The distinctiveness ratio of ML-Greedy is con-
sistently higher than (DE+IU)-ML-Greedy. This implies that our

approach for updating data summaries (MS) is highly effective, re-

gardless of the number of datasets (controlled by |𝐷 |) or the level
of similarity between dataset distributions (controlled by 𝑠𝑚𝑎𝑥). (4)

As 𝑠max grows, the distinctiveness ratio of (IRIS+IU)-ML-Greedy
generally decreases. Since each dataset adds additional tuples as

𝑠max increases, the ability of IRIS to predict the number of tu-

ples is worse than DE. Recall that distinctiveness is the product of
Eq. 6 and the number of tuples in a dataset, so the error increases

as the number of tuples gets larger. (5) The distinctiveness ratio

of (IRIS+IU)-ML-Greedy decreases as |𝑄 | or |𝐷 | increases as it ig-
nores overlaps in query set results among datasets while a larger |𝑄 |
or |𝐷 | typically leads to more overlapping tuples. (6) In some cases,

the distinctiveness ratios of ML-Greedy and (DE+IU)-ML-Greedy
may also decrease with increasing |𝑄 |, but both still perform well

(> 83%), which is a testament to the merits of the newly proposed

distinctiveness estimation method DE, in accounting for overlaps

in the query set results.

4.4 Efficiency and Scalability Study
We present the runtime for ML-Greedy, along with its variants and

Exact-Greedy. The impact of varying the number of datasets |𝐷 |
and the minimum overlap ratio 𝑜𝑙 between query pairs is shown in

Fig. 9 and Fig. 10, respectively. Please refer to Appendix F.3 for the

impact of varying other parameters. We observe: (1) ML-Greedy is

up to four orders of magnitude faster than all other algorithms. This

translates to better scalability, especially when |𝐷 | is large. (2) Our
distinctiveness estimation method DE is up to three orders of mag-

nitude faster than the exact distinctiveness computation, and is up

to four times faster than IRIS. (3) Although (DE+IU)-ML-Greedy

Table 2: Comparison against basic datasets discovery where 𝑆
represents discovered datasets, the best model performance
is in bold (RMSE for House, AUC for HR).

Tasks Methods

∑
𝑑∈𝑆 |𝑑 | |⋃𝑑∈𝑆 𝑑 | Model performance

House

D3L 56,750 52,472 0.601

Exact-Greedy 133,391 110,404 0.569
ML-Greedy 133,391 110,404 0.569

HR

D3L 6711 3196 60.3%

Exact-Greedy 6270 5325 63.5%
ML-Greedy 6270 5325 63.5%

uses the same distinctiveness estimation method as ML-Greedy,
it is up to two orders of magnitude slower than ML-Greedy. This
demonstrates the high efficiency of our approach, MS, to update

data summaries. (4) When 𝑜𝑙 increases, the runtime for all of the

algorithms has little dependence on 𝑜𝑙 . This indicates that the num-

ber of overlapping tuples returned by queries has minimal impact

on runtime, even though our distinctiveness estimation method

considers the overlaps.

4.5 Case Study
Now, we conduct a case study to test the hypothesis that our

datasets assemblage can help find datasets with more useful tu-

ples than basic datasets discovery. The point is that, we compare

our datasets assemblage methods, ML-Greedy and Exact-Greedy,
with a state-of-the-art basic datasets discovery method D3L [5], to

show how ML-Greedy, Exact-Greedy and D3L impact downstream

task performance through the pipeline illustrated in Fig. 1.

To this end, we consider two ML downstream tasks in [66], i.e,

a classification task “predicting whether an employee will change

their job” using a multilayer perception (MLP) model (House for

brevity), and a regression task “predicting the price of a house”

using a support vector regression (SVR) model (HR for brevity).

For each ML task, the authors of [66] provide an initial training

set 𝑑𝑡𝑟𝑎𝑖𝑛 , a test set 𝑑𝑡𝑒𝑠𝑡 , a validation set 𝑑𝑣𝑎𝑙 , and a data pool

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

𝑑𝑝𝑜𝑜𝑙 . Using 𝑑𝑝𝑜𝑜𝑙 , we create a set 𝐷 with 20 candidate datasets

and a user’s query set 𝑄 with 10 queries following the procedure

of Appendix E. We use 𝑑𝑡𝑟𝑎𝑖𝑛 as a user’s base dataset 𝑑𝑢 . Then, we

address the following problems:

• Basic datasets discovery: given a user’s base dataset 𝑑𝑢 and a set 𝐷

of candidate datasets, it aims to find top-𝑘 datasets relevant to 𝑑𝑢 .

•Advanced datasets assemblage: given a user’s base dataset𝑑𝑢 , along
with her query set 𝑄 and her budget 𝐵, and a set 𝐷 of candidate

datasets, it aims to find a subset of 𝐷 such that the subset has the

maximum distinctiveness within the budget.

• Tuples discovery: The user’s target, as in [66], is to enrich her

base dataset for model training. Thus, given a user’s base dataset

𝑑𝑢 , along with her test set 𝑑𝑡𝑒𝑠𝑡 , her validation set 𝑑𝑣𝑎𝑙 and her ML

model𝑀 , and a data pool 𝑃 after assembling datasets discovered by

basic datasets discovery or advanced datasets assemblage, it aims to

select a set of tuples from 𝑃 to enrich 𝑑𝑢 , such that the performance

of𝑀 has the maximum improvements.

Since D3L does not account for dataset prices, for a fair compar-

ison, we set the price of each candidate dataset to 1 and 𝑘 = 𝐵 = 5.

For tuples discovery, we apply the IAS algorithm in [66], stopping

when the number of selected tuples is equal to the number of tuples

in 𝑑𝑢 . As shown in Table 2, ML-Greedy can find the same datasets

as Exact-Greedy for both ML tasks, showing that our ML-based

distinctiveness estimation is very close to exact distinctiveness

computation. Our datasets assemblage methods, ML-Greedy and

Exact-Greedy, can identify more distinct tuples than D3L, even

when the total number of tuples in the datasets they discover is

smaller than in those discovered by D3L. For both ML tasks, models

trained on datasets enriched by our datasets assemblage methods

perform better. This suggests that our datasets assemblage methods’

potential in finding those datasets with more useful tuples, as a

higher number of distinct tuples leads to more diverse data distri-

butions in the training set, resulting in better model training [37].

5 Related Work
Datasets discovery can be broadly divided into basic datasets

discovery and advanced datasets assemblage.

Basic datasets discovery is normally formulated as a search prob-

lem [8]. It relies on keywords [6, 44] or a base dataset [5, 20,

22, 27, 58] to retrieve relevant datasets. For example, table union

search [20, 22, 27, 58] finds relevant datasets that share common

columns with the input base dataset to extend it with additional

tuples. Basic datasets discovery usually evaluates each candidate

dataset individually, emphasizing the similarity or overlaps between

individual datasets and given keywords or base datasets. In contrast,

our datasets assemblage evaluates a set of candidate datasets as a

whole, emphasizing minimal overlaps with the input base dataset

and among the datasets in the results. Moreover, basic datasets dis-

covery is usually followed by a schema alignment step that aligns

the schemas of the returned datasets with the input base dataset,

e.g., when materializing the final dataset through union operations

in table union search [19]. Our dataset assemblage builds upon the

results of basic datasets discovery after schema alignment.

Advanced datasets assemblage allows users to specify fine-grained
information needs to assemble the most desirable datasets that are

evaluated as a whole. A recent study [36] defines a user’s fine-

grained information needs as specific data attributes. They focus

on the richness of features in the datasets discovered. However, this

can result in insufficient data instances and redundant features dur-

ing model training, which may increase the risk of overfitting [75].

In contrast, our defined distinctiveness measure (see Definition 2.1)

evaluates the distinctiveness of datasets, thereby facilitating the

discovery of a more varied range of data instances.

Tuples discovery [7, 11, 21, 30, 37, 41, 73] is the process of selecting
the most beneficial tuples from a pool of datasets, for a specific

target such as model training [7], causal inference in question

answering [21] or revenue allocation [43]. The “usefulness” of the

tuples added is typically assessed in relation to a single target.

However, our work differs in that it focuses on acquiring complete

datasets (with less overlapping tuples) rather than individual tuples.

Cardinality estimation. As discussed in §1, estimating the dis-

tinctiveness for a set of datasets w.r.t. a query set can be cast as the

multi-query-dataset cardinality estimation (MCE) problem. There-

fore, we also examine existing research works for the single-query-

dataset cardinality estimation (SCE) problem, which is generally

divided into two categories: query-driven or data-driven [24, 32].

Query-driven approaches [25, 47, 54, 57, 62, 65, 67] train SCE mod-

els on historical queries. Conversely, data-driven approaches [26,

40, 64, 69, 71, 72, 76] train SCE models based on data distribu-

tions, without relying on any information from query workloads.

While query-driven methods often lack flexibility, especially in the

absence of representative queries, data-driven methods generally

outperform query-driven methods [24]. Moreover, some hybrid

methods [18, 33, 35, 42, 52, 68, 74] train SCE models by utilizing

both data distributions and query workloads, which exhibit higher

estimation accuracy and generality [24]. Despite the large body of

existing works, current methods for SCE are not amenable to the

MCE problem directly since they estimate cardinality for only a

single query on a single dataset, whereas MCE requires estimating

the cardinality for a query set on a set of datasets. This distinction

underscores the key challenge in the MCE problem, which is to

effectively identify overlaps among the tuple sets returned by each

query in a query set across multiple datasets.

Data pricing. A recent survey [56] reports several data pricing

functions. Commonly used pricing functions, such as tuple-based

pricing [3, 37, 46], usage-based pricing [44, 45] and query-based

pricing [10, 16, 17, 36, 38], primarily depend on the number of tuples

in a dataset. Please see Appendix G for the detailed description.

Without loss of generality, in our experiments, we adopt tuple-based

pricing for datasets, as described in §E.1.

6 Conclusion
We introduced the problem of maximizing distinctiveness, which

requires a subset of candidate datasets to be found that have the

highest distinctiveness for a user-provided query set, a base dataset,

and a budget. We first establish the NP-hardness of this problem.

To solve this problem, we propose a greedy algorithm using ML-

based distinctiveness estimation. This ML-based distinctiveness

estimation method can effectively approximate the distinctiveness

marginal gain without examining every tuple in each dataset. Us-

ing a comprehensive empirical validation on five real-world data

pools, we demonstrate that our greedy algorithm using ML-based

distinctiveness estimation is effective, efficient, and scalable.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Abolfazl Asudeh and Fatemeh Nargesian. 2022. Towards Distribution-aware

Query Answering in Data Markets. Proc. VLDB Endow. 15, 11 (2022), 3137–3144.
[2] NYU Auctus. 2022. https://auctus.vida-nyu.org/

[3] Magdalena Balazinska, Bill Howe, and Dan Suciu. 2011. Data Markets in the

Cloud: An Opportunity for the Database Community. Proc. VLDB Endow. 4, 12
(2011), 1482–1485.

[4] TPC-H Benchmark. 2022. http://www.tpc.org/tpch/.

[5] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-

nou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709–720.
[6] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset

Search: Building a search engine for datasets in an open Web ecosystem. In

WWW. 1365–1375.

[7] Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selective

Data Acquisition in the Wild for Model Charging. Proc. VLDB Endow. 15, 7 (2022),
1466–1478.

[8] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-

Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.

VLDB J. 29, 1 (2020), 251–272.
[9] Surajit Chaudhuri, Anish Das Sarma, Venkatesh Ganti, and Raghav Kaushik.

2007. Leveraging aggregate constraints for deduplication. In SIGMOD. 437–448.
[10] Shuchi Chawla, Shaleen Deep, Paraschos Koutris, and Yifeng Teng. 2019. Revenue

Maximization for Query Pricing. Proc. VLDB Endow. 13, 1 (2019), 1–14.
[11] Yiling Chen, Yiheng Shen, and Shuran Zheng. 2020. Truthful Data Acquisition

via Peer Prediction. In NeurIPS. 18194–18204.
[12] Source Code. 2023. https://gitfront.io/r/user-3680909/fuDbUGQtSjjF/um/.

[13] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-

mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005),

58–75.

[14] Airline dataset. 2022. https://relational.fit.cvut.cz/dataset/Airline.

[15] IMDB dataset. 2022. https://https://homepages.cwi.nl/~boncz/job/imdb.tgz.

[16] Shaleen Deep and Paraschos Koutris. 2017. The Design of Arbitrage-Free Data

Pricing Schemes. In ICDT, Vol. 68. 12:1–12:18.
[17] Shaleen Deep and Paraschos Koutris. 2017. QIRANA: A Framework for Scalable

Query Pricing. In SIGMOD. 699–713.
[18] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,

and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using

Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057.
[19] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in

Data Lakes: State-of-the-art and Future Directions. In SIGMOD. 69–75.
[20] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-

aware Dataset Discovery from Data Lakes with Contextualized Column-based

Representation Learning. Proc. VLDB Endow. 16, 7 (2023), 1726–1739.
[21] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. Metam: Goal-

Oriented Data Discovery. In ICDE. 2780–2793.
[22] Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez. 2023. Ver:

View Discovery in the Wild. In ICDE. 503–516.
[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.

[24] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,

Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren

Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A

Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765.

[25] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,

and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of

Multi-Attribute Queries. In SIGMOD. 1035–1050.
[26] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from

Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.
[27] Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos Falout-

sos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S. Yu. 2023.

Automatic Table Union Search with Tabular Representation Learning. In ACL.
3786–3800.

[28] Ihab F. Ilyas, VolkerMarkl, Peter J. Haas, Paul Brown, andAshraf Aboulnaga. 2004.

CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.

In SIGMOD. 647–658.
[29] Yannis E. Ioannidis. 2003. TheHistory of Histograms (abridged). InVLDB. Morgan

Kaufmann, 19–30.

[30] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gürel, Bo

Li, Ce Zhang, Costas J. Spanos, and Dawn Song. 2019. Efficient Task-Specific

Data Valuation for Nearest Neighbor Algorithms. Proc. VLDB Endow. 12, 11
(2019), 1610–1623.

[31] Samir Khuller, Anna Moss, and Joseph Naor. 1999. The Budgeted Maximum

Coverage Problem. Inf. Process. Lett. 70, 1 (1999), 39–45.
[32] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and

Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In

SIGMOD. 1214–1227.
[33] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with

Deep Learning. In CIDR.
[34] Mingzhao Li, Zhifeng Bao, Timos Sellis, Shi Yan, and Rui Zhang. 2018. Home-

Seeker: A visual analytics system of real estate data. J. Vis. Lang. Comput. 45
(2018), 1–16.

[35] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.

ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on

Dynamic Workloads. Proc. VLDB Endow. 17, 2 (2023), 197–210.
[36] Yanying Li, Haipei Sun, Boxiang Dong, and Wendy Hui Wang. 2018. Cost-

efficient Data Acquisition on Online Data Marketplaces for Correlation Analysis.

Proc. VLDB Endow. 12, 4 (2018), 362–375.
[37] Yifan Li, Xiaohui Yu, and Nick Koudas. 2021. Data Acquisition for Improving

Machine Learning Models. Proc. VLDB Endow. 14, 10 (2021), 1832–1844.
[38] Bing-Rong Lin and Daniel Kifer. 2014. On Arbitrage-free Pricing for General

Data Queries. Proc. VLDB Endow. 7, 9 (2014), 757–768.
[39] Wei-Chao Lin and Chih-Fong Tsai. 2020. Missing value imputation: a review

and analysis of the literature (2006–2017). Artificial Intelligence Review 53 (2020),

1487–1509.

[40] Yuming Lin, Zejun Xu, Yinghao Zhang, You Li, and Jingwei Zhang. 2023. Cardi-

nality estimation with smoothing autoregressive models. World Wide Web 26, 5
(2023), 3441–3461.

[41] Jiabin Liu, Fu Zhu, Chengliang Chai, Yuyu Luo, and Nan Tang. 2021. Automatic

Data Acquisition for Deep Learning. Proc. VLDB Endow. 14, 12 (2021), 2739–2742.
[42] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021.

Pre-training Summarization Models of Structured Datasets for Cardinality Esti-

mation. Proc. VLDB Endow. 15, 3 (2021), 414–426.
[43] Xuan Luo, Jian Pei, Zicun Cong, and Cheng Xu. 2022. On Shapley Value in

Data Assemblage Under Independent Utility. Proc. VLDB Endow. 15, 11 (2022),
2761–2773.

[44] Amazon AWS Marketplace. 2022. https://aws.amazon.com/marketplace.

[45] Snowflake Data Marketplace. 2022. https://www.snowflake.com/data-

marketplace/.

[46] Sameer Mehta, Milind Dawande, Ganesh Janakiraman, and Vijay S. Mookerjee.

2019. How to Sell a Dataset?: Pricing Policies for Data Monetization. In EC. 679.
[47] Magnus Müller, Lucas Woltmann, and Wolfgang Lehner. 2023. Enhanced Fea-

turization of Queries with Mixed Combinations of Predicates for ML-based

Cardinality Estimation. In EDBT. 273–284.
[48] Viswanath Nagarajan. 2021. Approximation & Online Algorithms. http://viswa.

engin.umich.edu/wp-content/uploads/ sites/169/2021/02/greedy.pdf (2021).

[49] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2021. Tailoring Data

Source Distributions for Fairness-aware Data Integration. Proc. VLDB Endow. 14,
11 (2021), 2519–2532.

[50] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2022. Responsible Data

Integration: Next-generation Challenges. In SIGMOD. 2458–2464.
[51] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table

Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825.
[52] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam

Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven

Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533.

[53] Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M. Peeters, and Stijn

Vansummeren. 2024. Schema Matching with Large Language Models: an Experi-

mental Study. CoRR abs/2407.11852 (2024). https://doi.org/10.48550/arXiv.2407.

11852

[54] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick

Selectivity Learning with Mixture Models. In SIGMOD. 1017–1033.
[55] Norman W. Paton, Jiaoyan Chen, and Zhenyu Wu. 2024. Dataset Discovery and

Exploration: A Survey. ACM Comput. Surv. 56, 4 (2024), 102:1–102:37.
[56] Jian Pei. 2022. A Survey on Data Pricing: From Economics to Data Science. IEEE

Trans. Knowl. Data Eng. 34, 10 (2022), 4586–4608.
[57] Silvan Reiner and Michael Grossniklaus. 2023. Sample-Efficient Cardinality

Estimation Using Geometric Deep Learning. Proc. VLDB Endow. 17, 4 (2023),

740–752.

[58] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool,

Vijay Gadepally, and Michael Stonebraker. 2021. DICE: Data Discovery by

Example. Proc. VLDB Endow. 14, 12 (2021), 2819–2822.
[59] Fabian Schomm, Florian Stahl, and Gottfried Vossen. 2013. Marketplaces for

data: an initial survey. SIGMOD Rec. 42, 1 (2013), 15–26.
[60] snowmobile State of New York Vehicle and boat registrations. 2022. https:

//catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations.

[61] Michael Stonebraker and Andrew Pavlo. 2024. What Goes Around Comes

Around... And Around... ACM SIGMOD Record 53, 2 (2024), 21–37.

[62] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.

Proc. VLDB Endow. 13, 3 (2019), 307–319.
[63] Ki Hyun Tae and Steven Euijong Whang. 2021. Slice Tuner: A Selective Data

Acquisition Framework for Accurate and Fair Machine Learning Models. In

9

https://auctus.vida-nyu.org/
http://www.tpc.org/tpch/
https://gitfront.io/r/user-3680909/fuDbUGQtSjjF/um/
https://relational.fit.cvut.cz/dataset/Airline
https://https://homepages.cwi.nl/~boncz/job/imdb.tgz
https://aws.amazon.com/marketplace
https://www.snowflake.com/data-marketplace/
https://www.snowflake.com/data-marketplace/
http://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/greedy.pdf
http://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/greedy.pdf
https://doi.org/10.48550/arXiv.2407.11852
https://doi.org/10.48550/arXiv.2407.11852
https: //catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https: //catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

SIGMOD. 1771–1783.
[64] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently

adapting graphical models for selectivity estimation. VLDB J. 22, 1 (2013), 3–27.
[65] Fang Wang, Xiao Yan, Man Lung Yiu, Shuai Li, Zunyao Mao, and Bo Tang.

2023. Speeding Up End-to-end Query Execution via Learning-based Progressive

Cardinality Estimation. Proc. ACM Manag. Data 1, 1 (2023), 28:1–28:25.
[66] Tingting Wang, Shixun Huang, Zhifeng Bao, J. Shane Culpepper, Volkan

Dedeoglu, and Reza Arablouei. 2024. Optimizing Data Acquisition to Enhance

Machine Learning Performance. Proc. VLDB Endow. 17, 6 (2024), 1310–1323.
[67] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi

Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.

Proc. VLDB Endow. 12, 3 (2018), 210–222.
[68] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both

Data and Queries for Cardinality Estimation. In SIGMOD. 2009–2022.
[69] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.

2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.

CoRR abs/2012.14743 (2020).

[70] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-pipeline: synthesizing

complex data pipelines by-target using reinforcement learning and search. Proc.
VLDB Endow. 14, 11 (2021), 2563–2575.

[71] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,

and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73.

[72] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.

2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),
279–292.

[73] Jinsung Yoon, Sercan Ömer Arik, and Tomas Pfister. 2020. Data Valuation using

Reinforcement Learning. In ICML, Vol. 119. 10842–10851.
[74] Tianjing Zeng, Junwei Lan, Jiahong Ma, Wenqing Wei, Rong Zhu, Pengfei Li,

Bolin Ding, Defu Lian, Zhewei Wei, and Jingren Zhou. 2024. PRICE: A Pretrained

Model for Cross-Database Cardinality Estimation. CoRR abs/2406.01027 (2024).

[75] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,

Shaochen Zhong, and Xia Hu. 2023. Data-centric Artificial Intelligence: A Survey.

CoRR abs/2303.10158 (2023).

[76] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method

for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502.

A An Running Example
Example A.1. Suppose a user wishes to purchase datasets about

Melbourne house information. As shown in Fig. 11, a user must

spend $400 to acquire a set of datasets, 𝐷 = {𝑑1, 𝑑5, 𝑑10}, which are

discovered using a base dataset 𝑑𝑢 at Stage 2(A) within the existing

pipeline. Conversely, at Stage 2(B) in our pipeline, the user provides

a query set𝑄 = {𝑞1, 𝑞2} locating Melbourne house information. For

each dataset 𝑑 ∈ 𝐷 , the union 𝑄 (𝑑) of tuple sets returned by each

query in 𝑄 on 𝑑 is obtained. A subset 𝑆 = {𝑑5, 𝑑10} of 𝐷 exhibits

maximum distinctiveness (𝑄 (𝑑5),𝑄 (𝑑10), and𝑄 (𝑑𝑢) each have two

tuples.𝑄 (𝑑5) has an overlap with both𝑄 (𝑑10) and𝑄 (𝑑𝑢), resulting
in the distinctiveness of 𝑆 of 4, i.e., |𝑄 (𝑑5) ∪𝑄 (𝑑10) ∪𝑄 (𝑑𝑢) | = 4).

The user can purchase this subset for only $300. Using our pipeline,

a user spends less money while achieving the same tuples discovery

results as 𝐷 , as shown in Stage 3 of Fig 11.

B Hardness Analysis of the DM Problem
Theorem B.1. The DM problem is NP-hard.

Proof. We demonstrate a polynomial-time reduction from any

instance of the MC problem to an instance of the DM problem. Here

every element 𝑒 ∈ 𝑉 from the MC instance is converted into a tuple.

For categorical elements, each is assigned a unique index, which is

then mapped to a tuple. A set of elements 𝑆 ′ ⊆ 𝑉 in the MC problem

corresponds to a dataset 𝑑 ∈ 𝐷 in the DM problem. Hence, the

universe 𝑉 is equivalent to the universe of all tuples 𝑇𝐷 =
⋃

𝑑∈𝐷 𝑑 .
By setting 𝑝 (𝑑) = 1, we map 𝐾 to 𝐵. Next, we define an empty base

Algorithm 2 Exact-Greedy

Input: a set 𝐷 of datasets, a base dataset 𝑑𝑢 , a query set𝑄 , a budget 𝐵;

Output: a subset 𝑆 ⊆ 𝐷 of datasets with distinctiveness;

1: 𝑆 ← ∅, T ← ∅,𝑇𝑆 ← ∅;
2: for 𝑑 ∈ 𝐷 ∪ 𝑑𝑢 do
3: 𝑄 (𝑑) ← ∅;
4: for 𝑞 ∈ 𝑄 do 𝑞 (𝑑) ← ExecuteQueries(𝑑,𝑞) ,𝑄 (𝑑) ← 𝑄 (𝑑) ∪ 𝑞 (𝑑) ;
5: T[𝑑] ← 𝑄 (𝑑) ;
6: 𝑇𝑆 ← 𝑇𝑆 ∪ T[𝑑𝑢];
7: while 𝐷 ≠ ∅ do
8: 𝑔∗ ← 0, 𝑑∗ ← ∅,𝑇 ∗ ← ∅;
9: for 𝑑 ∈ 𝐷 do
10: 𝑇 ← 𝑇𝑆 ∪ T[𝑑], 𝑔← (|𝑇 | − |𝑇𝑆 |)/𝑝 (𝑑) ;
11: if 𝑔 > 𝑔∗ then 𝑔∗ ← 𝑔, 𝑑∗ ← 𝑑 ,𝑇 ∗ ← 𝑇 ;

12: if 𝑝 (𝑆) + 𝑝 (𝑑∗) ≤ 𝐵 then 𝑆 ← 𝑆 ∪ 𝑑∗ ,𝑇𝑆 ← 𝑇 ∗ ;
13: 𝐷 ← 𝐷 \ 𝑑∗ ;
14: 𝑑𝑡 ← argmax𝑑∈𝐷∧𝑝 (𝑑) ≤𝐵 | T [𝑑] ∪ T[𝑑𝑢] | ;
15: if |𝑇𝑆 | < | T [𝑑𝑡] ∪ T[𝑑𝑢] | return {𝑑𝑡 } and | T [𝑑𝑡] ∪ T[𝑑𝑢] | ;
16: return 𝑆 and |𝑇𝑆 | ;

dataset 𝑑𝑢 = ∅ and a query set 𝑄 = {𝑞} with 𝑞 = SELECT * FROM
𝑑 WHERE𝑚𝑖𝑛 (𝑇𝐷) ≤ 𝑐 ≤ 𝑚𝑎𝑥 (𝑇𝐷) where𝑚𝑖𝑛(𝑇𝐷) and𝑚𝑎𝑥 (𝑇𝐷)
are the minimum and maximum values in 𝑇𝐷 . As a result, 𝑄 (𝑑)
includes all tuples in 𝑑 , establishing a one-to-one correspondence

between 𝑆 ′ and 𝑄 (𝑑). So, the objective of maximizing | ∪𝑆 ′∈S 𝑆 ′ |
and |⋃𝑑∈𝑆∪𝑑𝑢 𝑄 (𝑑) | are equivalent. Therefore, the optimal solution

of the DM problem also solves the optimal MC problem. Given the

polynomial time complexity for this reduction, and the NP-hardness

of MC, the DM problem is also NP-hard. □

C Exact-Greedy
The pseudo-code of Exact-Greedy is shown in Alg. 2. Specifically,

we begin by executing each query 𝑞 ∈ 𝑄 on every dataset 𝑑 ∈ 𝐷 ,
and on the base dataset 𝑑𝑢 , followed by merging the tuple sets 𝑞(𝑑)
returned for 𝑞 ∈ 𝑄 to obtain the union 𝑄 (𝑑) of all 𝑞(𝑑) (Line 4).
We record 𝑄 (𝑑) in T [𝑑] (Line 6). Subsequently, in each iteration,

we add the dataset 𝑑∗ with the greatest marginal gain 𝑔∗ into 𝑆
until the budget is exhausted (Lines 7-13). In Line 14, we return a

single dataset𝑑𝑡 with themaximumdistinctiveness |T [𝑑𝑡]∪T [𝑑𝑢] |.
Finally, we select the one with a larger distinctiveness from a set 𝑆

of datasets and a single best dataset 𝑑𝑡 (Lines 15-16). We present

the associated approximation guarantee in Theorem C.1.

Theorem C.1. Exact-Greedy achieves an approximation ratio
of 1−1/𝑒

2
when solving the DM problem.

Proof. Let 𝑆∗ be the optimal set of datasets, 𝑆𝑚 the set of

datasets with size𝑚 added to 𝑆 in the first 𝑙 iterations, 𝑑𝑚+1 the
first dataset considered by 𝑆∗ but not included in 𝑆 since it ex-

ceeds the budget and 𝑆𝑚+1 = {𝑑𝑚+1} ∪ 𝑆𝑚 . Using Lemma 2 of [31],

observe that 𝒟(𝑆𝑚+1, 𝑑𝑢 , 𝑄) ≥ (1 − 1

𝑒)𝒟(𝑆
∗, 𝑑𝑢 , 𝑄) in Alg. 2. Let

Δ𝒟 be the increase in distinctiveness by including 𝑑𝑚+1 in 𝑆𝑚 ,

𝒟(𝑆𝑚+1, 𝑑𝑢 , 𝑄) = 𝒟(𝑆𝑚, 𝑑𝑢 , 𝑄) +Δ𝒟 ≥ (1− 1

𝑒)𝒟(𝑆
∗, 𝑑𝑢 , 𝑄). Since

Δ𝒟 cannot be greater than𝒟({𝑑𝑡 }, 𝑑𝑢 , 𝑄) for the best dataset 𝑑𝑡 ,
𝒟(𝑆𝑚, 𝑑𝑢 , 𝑄)+𝒟({𝑑𝑡 }, 𝑑𝑢 , 𝑄) ≥ 𝒟(𝑆𝑚, 𝑑𝑢 , 𝑄)+Δ𝒟 ≥ (1− 1

𝑒)𝒟(𝑆
∗,

𝑑𝑢 , 𝑄). Therefore, either𝒟(𝑆𝑚, 𝑑𝑢 , 𝑄) or𝒟({𝑑𝑡 }, 𝑑𝑢 , 𝑄) is greater
than

(1−1/𝑒)
2

𝒟(𝑆∗, 𝑑𝑢 , 𝑄), Exact-Greedy achieves an approxima-

tion ratio of
(1−1/𝑒)

2
. □

Time complexity analysis. Assume that 𝑑 is the dataset in 𝐷

with the greatest number of tuples. Alg. 2 requires O(|𝑑 | |𝑄 |) time

to execute each query 𝑞 ∈ 𝑄 and O(|𝑑 |2 |𝑄 |) time to combine the

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

City Type Land

size (m2)

House

price

Melbourne House 60 510K

Melbourne Studio 20 320K

Sydney Apartment 80 548K

Sydney House 200 820K

Category Location Car

space

Price

House Melbourne 1 520,000

Apartment Sydney 1 735,000

House Sydney 2 815,000

House Melbourne 1 510,000

Type City Price

Apartment SYD 705,000

House MEL 520,000

House SYD 970,000

House MEL 750,000

Stage 1: Datasets after data cleaning

Type City Price

Apartment Sydney 705,000

House Melbourne 520,000

House Sydney 970,000

House Melbourne 750,000

Type City Price

House Melbourne 510,000

Studio Melbourne 320,000

Apartment Sydney 548,000

House Sydney 820,000

Type City Price

House Melbourne 520,000

Apartment Sydney 735,000

House Sydney 815,000

House Melbourne 510,000Sydney

� ($100) � ($100) � !($200)

Stage 2(A): Coarse-grained candidates after basic datasets discovery

Stage 2(B): Fine-grained candidates after advanced datasets assemblage

Type City Price

House Melbourne 520,000

House Melbourne 750,000

Stage 3: Tuples after tuples discovery

...

...

A query set Q

� : SELECT * FROM d WHERE Type =

‘House’ and City = ‘Melbourne’

� : SELECT * FROM d WHERE 500,000 <

Price < 800,000 and City = ‘Melbourne’

A base dataset du

Type City Price

House Sydney 815,000

House Melbourne 510,000

Apartment Melbourne 470,000

House Melbourne 975,000

Target: a house price prediction task

User

Type City Price

House Melbourne 520,000

Apartment Sydney 735,000

House Sydney 815,000

House Melbourne 510,000

Type City Price

Apartment Sydney 705,000

House Melbourne 520,000

House Sydney 970,000

House Melbourne 750,000

� ($100) � !($200)

...

Figure 11: An example of Fig. 1 where our pipeline achieves the same tuples discovery with a lower budget.

Algorithm 3 Distinctiveness(𝑄, 𝐸𝑑
𝐶
, 𝑛, C𝑄)

Input: the data summary 𝐸𝑑
𝐶

of 𝑑 , a query set 𝑄 , the number of tuples 𝑛 in 𝑑 , a

lookup table C𝑄 to maintain column sets of each query 𝑞 ∈ 𝑄 ;

Output: estimated distinctiveness𝒟;

1: 𝒟← 0, 𝐸𝑑 ← ∅, 𝐸𝑄 ← ∅
2: for 𝑞 ∈ 𝑄 do
3: 𝑒

𝑞

𝑑
← ∅, 𝑒𝑞 ← ∅;

4: for 𝑒𝐶 ∈ 𝐸𝑑𝐶 and𝐶 ∈ C𝑄 [𝑞] do
5: 𝑒

𝑞

𝑑
← [𝑒𝑞

𝑑
, 𝑒𝐶], 𝑒𝑞 ← [𝑒𝑞 ,𝜓 (𝑞𝐶𝑙),𝜓 (𝑞

𝐶
ℎ
)];

6: 𝐸𝑑 ← 𝐸𝑑 ∪ 𝑒𝑞𝑑 , 𝐸𝑄 ← 𝐸𝑄 ∪ 𝑒𝑞 ;
7: Generate 𝑒

𝑄

𝑑
by each 𝑒

𝑞

𝑑
∈ 𝐸𝑑 using Eq. 4;

8: Generate 𝑒𝑄 by 𝑒𝑞 ∈ 𝐸𝑄 using Eq. 5;

9: 𝒟← 𝒟(𝑒𝑄
𝑑
, 𝑒𝑄) × 𝑛 using Eq. 6;

10: return𝒟;

Algorithm 4MergeEmbeddings(𝐸𝑑
𝐶
, 𝐸𝑆

𝐶
, C𝑄)

Input: data summary 𝐸𝑑
𝐶

of the dataset 𝑑 , data summary 𝐸𝑆
𝐶

of the set 𝑆 of datasets,

and a lookup table C𝑄 to maintain column sets associated with each query 𝑞 ∈ 𝑄 ;

Output: data summaries 𝐸𝑆∪𝑑
𝐶

;

1: 𝐸𝑆∪𝑑
𝐶
← ∅;

2: for 𝑒𝐶 ∈ 𝐸𝑆
𝐶
do

3: if 𝐶 ∈ ∪𝑞∈𝑄 C𝑄 [𝑞] then
4: Find column set embedding 𝑒′

𝐶
of𝐶 from 𝐸𝑑

𝐶
;

5: 𝑒 ← 𝛿 (𝜙𝑒 ([𝑒𝐶 , 𝑒′𝐶])) , 𝑒𝐶 ← 𝑒 ;

6: 𝐸𝑆∪𝑑
𝐶
← 𝐸𝑆∪𝑑

𝐶
∪ 𝑒𝐶

7: return 𝐸𝑆∪𝑑
𝐶

;

tuple sets 𝑞(𝑑) for each query 𝑞 ∈ 𝑄 (Line 4). Therefore, construct-

ing T [𝑑] requires O(|𝑑 |2 |𝑄 | |𝐷 |) time (Lines 2-5). Computing the

marginal gain for the dataset 𝑑 requires O(|𝑑 |2 |𝐷 |) time. So, finding

the set 𝑆 of datasets with the maximum distinctiveness requires

O(|𝑑 |2 |𝐷 |3) time (lines 7-13), resulting in a total time complexity

for Alg. 2 of O(|𝑑 |2 |𝑄 | |𝐷 | + |𝑑 |2 |𝐷 |3).

D ML-Greedy
The pseudo-code of distinctiveness estimation is shown in Alg. 3.

The procedure for merging data summaries is shown in Alg 4. The

pseudo-code of ML-Greedy is shown in Alg. 5.

Algorithm 5 ML-Greedy

Input: a set 𝐷 of datasets, a base dataset 𝑑𝑢 , a query set𝑄 , a budget 𝐵;

Output: a set 𝑆 ⊆ 𝐷 of datasets with its distinctiveness;

1: Generate a set C𝑑 of column sets and data summary 𝐸𝑑
𝐶
for each 𝑑 ∈ 𝐷 ∪ 𝑑𝑢 ; /*

offline process */

2: C𝑄 ← ∅;
3: for 𝑞 ∈ 𝑄 do C𝑄 [𝑞] ← {𝐶 |𝐶 ∈ ∩𝑑∈𝐷∪𝑑𝑢 C𝑑 and𝐶 ∩ ColsOf (𝑞) };
4: 𝑆 ← ∅, D← ∅, 𝐸𝑆

𝐶
← ∅, 𝑛∗ ← 0,𝒟

∗ ← 0;

5: 𝒟
∗ ← Distinctiveness(𝑄, 𝐸

𝑑𝑢
𝐶

, |𝑑𝑢 |, C𝑄) , 𝐸𝑆
𝐶
← 𝐸

𝑑𝑢
𝐶

, 𝑛∗ ← |𝑑𝑢 | ;
6: while 𝐷 ≠ ∅ do
7: 𝑔∗ ← 0, 𝑑∗ ← ∅, 𝐸∗ ← ∅;
8: for 𝑑 ∈ 𝐷 do
9: 𝐸𝑆∪𝑑

𝐶
← MergeEmbeddings(𝐸𝑑 , 𝐸𝑆

𝐶
, C𝑄)

10: 𝒟← Distinctiveness(𝑄, 𝐸𝑆∪𝑑
𝐶

, 𝑛∗ + |𝑑 |, C𝑄) , 𝑔← 𝒟−𝒟∗
𝑝 (𝑑) ;

11: if 𝑆 == ∅ then D[𝑑] ← 𝒟;

12: if 𝑔 > 𝑔∗ then 𝑑∗ ← 𝑑 , 𝑔∗ ← 𝑔, 𝐸∗ ← 𝐸𝑆∪𝑑
𝐶

;

13: if 𝑝 (𝑑∗) + 𝑝 (𝑆) ≤ 𝐵 then
14: 𝐸𝑆

𝐶
← 𝐸∗ , 𝑆 ← 𝑆 ∪ 𝑑∗ ,𝒟∗ ← 𝒟

∗ + 𝑔∗ × 𝑝 (𝑑∗) , 𝑛∗ ← 𝑛∗ + |𝑑∗ | ;
15: 𝐷 ← 𝐷 \ 𝑑∗ ;
16: 𝑑𝑡 ← argmax𝑑∈𝐷∧𝑝 (𝑑) ≤𝐵 D[𝑑];
17: If 𝒟∗ < D[𝑑𝑡] return {𝑑𝑡 } and D[𝑑𝑡];
18: return 𝑆 and𝒟

∗
;

Time complexity analysis. The proposed algorithm requires

O(|C𝑄 [𝑞] | |𝑄 |) time to create the dataset and query embeddings for

each query 𝑞 ∈ 𝑄 (Lines 2-6 in Alg. 3) and O(8𝜂2𝑥2 |𝑄 |) time to gen-

erate the corresponding query-aware dataset and query set embed-

dings (Lines 7-8 of Alg. 3). Thus, a total of O(|C𝑄 [𝑞] | |𝑄 |+8𝜂2𝑥2 |𝑄 |)
time is required to estimate the distinctiveness for each dataset

(Lines 1-9 in Alg. 3). Then, O(𝜂2 | ∪𝑞∈𝑄 C𝑄 [𝑞] |) time is required

to merge the data summary 𝐸𝑑
𝐶
of 𝑑 with the data summary 𝐸𝑆𝑐

of 𝑆 (Lines 1-6 in Alg. 4). Therefore, O(|C𝑄 [𝑞] | |𝑄 | + 8𝜂2𝑥2 |𝑄 | +
𝜂2 | ∪𝑞∈𝑄 C𝑄 [𝑞] |) time is needed to compute the marginal gain for

a dataset 𝑑 w.r.t. 𝑆 (Line 10 in Alg. 5). The total time complexity

for the proposed algorithm that utilizes ML-based distinctiveness

estimation is therefore O((8𝜂2𝑥2 |𝑄 | + 𝜂2 | ∪𝑞∈𝑄 C𝑄 [𝑞] |) |𝐷 |2).
Note that in model pre-training, we set 𝜂 = 128 (column set

embedding size) and 𝑥 = 4 (i.e., a query corresponds to at most

4 column sets). Moreover, |𝑑 | is generally in the millions. Hence,

the empirical efficiency improvement provided by ML-Greedy is

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 3: Data pools that are not used in model pre-training.
Name # of columns (R/C)

∗
of records

TPCH-LineItem [4] 11/4 6M

DMV [60] 7/13 11M

IMDB-CastInfo [15] 6/1 36M

Airline-OnTime [14] 66/17 440K

RealEstate [34] 21/14 1.4M

Table 4: Parameter settings (default value in bold).
Parameter Value

sample rate 𝑠𝑚𝑎𝑥 0.1, 0.2, 0.3, 0.4, 0.5
of datasets |𝐷 | 10, 20, 40, 80, 160
overlap ratio 𝑜𝑙 1%, 3%, 5%, 7%, 9%
of queries |𝑄 | 10, 20, 40, 80, 160
budget 𝐵-ratio 0.1, 0.3, 0.5, 0.7, 0.9

Table 5: Datasets used for model pretraining.

Name

cols

(R/C)
∗ Name

cols

(R/C)
∗ Name

cols

(R/C)
∗

Higgs 28/0 KDD99 34/5 SUSY 19/0

PRSA 16/2 Gasmeth 18/0 Retail 5/3

Gastemp 20/0 Covtype 10/9 hepmass 29/0

Sgemm 10/4 Weather 7/0 Adult 6/8

PAMPA2 54/0 YearPred 90/0 HTsensor 10/0

Power 7/0 WECs 49/0 Census90 0/50

GasCO 18/0

potentially even more substantial. This belief is verified in our

experiments where we observe that ML-Greedy can be up to four

orders of magnitude faster than Exact-Greedy.

E Preparing the Datasets and Queries
E.1 Datasets Preparation
To control overlapping tuples in the candidate datasets, following

existing related studies [49, 63], we generate each set of candidate

datasets, 𝐷 , by sampling tuples from a data pool, 𝑑
pool

(see Table 3

for five data pools). We introduce two new parameters, 𝑠min and

𝑠max, which set the lower and upper bounds (𝑠min |𝐷 |, and 𝑠max |𝐷 |)
which is the expected number of tuples in𝐷 . We randomly choose a

sampling rate 𝑠 within [𝑠min, 𝑠max] and then sample 𝑠 |𝑑
pool
| tuples

from 𝑑
pool

to produce each candidate dataset 𝑑 . We repeat this

process to generate all datasets in 𝐷 .

In our experiments, we set the size of 𝐷 to |𝐷 | = 20 by default.

Additionally, we set 𝑠min = 1/|𝐷 | = 0.05, implying that each tuple

is expected to appear in at least one dataset. We also set 𝑠max =

2/|𝐷 | = 0.1, indicating that each tuple is expected to appear in at
most two datasets. This ensures that the datasets in𝐷 have a realistic

overlap of tuples but also maintain sufficient mutual distinctness.

Pricing and budget. For simplicity, we set 𝑝 (𝑑) = 𝑤 × |𝑑 | for each
dataset 𝑑 where𝑤 is selected randomly from (0, 1]. This approach
follows existing pricing functions [3, 37, 46], where prices are based

on the number of tuples in datasets. To better control budget vari-

ations, we introduce the B-ratio, which is the ratio of the budget

𝐵 and the total price of the datasets in 𝐷 ,
∑
𝑑∈𝐷 𝑝 (𝑑), and set it

to the default value of 0.5. Note that data pricing is orthogonal to

this work and alternative data pricing functions are discussed in

Appendix G.

∗
R indicates real-valued columns and C indicates categorical columns.

ML-Greedy (DE+IU)-ML-Greedy (IRIS + IU)-ML-Greedy Exact-Greedy

0.1 0.3 0.5 0.7 0.9

B-ratio

0.91

0.94

0.97

1

�
-r
a
t
io

(a) 𝐵

10 20 40 80 160
|D|

0.91

0.94

0.97

1.00

�
-r
a
ti
o

(b) |𝐷 |

0.1 0.2 0.3 0.4 0.5
sample rate

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(c) 𝑠𝑚𝑎𝑥

1 3 5 7 9
overlap ratio (%)

0.91

0.94

0.97

1.00

�
-r

a
ti

o

(d) 𝑜𝑙

Figure 12: The impact of varying 𝐵, |𝐷 |, 𝑠𝑚𝑎𝑥 , 𝑜𝑙 on the dis-
tinctiveness ratio of each algorithm for TPCH.
E.2 Query Set Preparation
To control overlapping tuples in the tuple sets returned by different

queries, we introduce the parameter 𝑜𝑙 which controls theminimum
overlap ratio in the tuples returned by any pair of queries for a

dataset. This idea is inspired by the approach used to generate

queries in prior work [42]. To simplify the final configuration, each

query is limited to using most one categorical column. Query set

generation is derived from the number of available categorical

columns, 𝑘𝑐 , which is randomly set to either 0 or 1:

• For 𝑘𝑐 = 1, we randomly select a categorical column 𝑐 from

datasets in 𝐷 . We set a value 𝑣𝑐 for 𝑐 by sampling 𝑐 from datasets

in 𝐷 , so that, in any dataset 𝑑 ∈ 𝐷 , the total number of tuples

that satisfy 𝑐 = 𝑣𝑐 exceeds 𝑜𝑙 × |𝑑 |. We merge tuples that satisfy

𝑐 = 𝑣𝑐 across datasets in 𝐷 , to produce a new dataset 𝑑𝑠𝑝 . Next,

we randomly select 𝑘𝑟 (𝑘𝑟 ∈ [1, 3]) real-valued columns from

𝑑𝑠𝑝 , setting the range to 𝑐 ∈ [min(𝑐),max(𝑐)], where min(𝑐) and
max(𝑐) are the minimum and maximum values for 𝑐 in 𝑑𝑠𝑝 .

• For 𝑘𝑐 = 0, we randomly sample 𝑜𝑙 × |𝑑 | tuples from each dataset

𝑑 ∈ 𝐷 and merge them into the new dataset 𝑑𝑠𝑝 . We then ran-

domly select 𝑘𝑟 (𝑘𝑟 ∈ [2, 4]) real-valued columns from 𝑑𝑠𝑝 , set-

ting the range to 𝑐 ∈ [min(𝑐),max(𝑐)].

After generating the query 𝑞 using the above method, we gen-

erate another query 𝑞′ by selecting real-valued columns from the

same sampled dataset 𝑑𝑠𝑝 produced from 𝑞. The query pair (𝑞, 𝑞′)
must satisfy having a minimum overlap ratio 𝑜𝑙 for the tuples re-

turned from each dataset 𝑑 ∈ 𝐷 . This query pair is then added

to the query pool. The query generation process terminates once

a query pool of 100 query pairs is created. Query pairs are then

randomly selected from the query pool to form a query set 𝑄 and

used with 𝐷 .

By default, the number of queries |𝑄 | = 20. Depending on the

size of 𝐷 , 𝑜𝑙 is set to 5% by default to ensure the size of the sampled

dataset𝑑𝑠𝑝 does not exceed the total number of tuples in any dataset

𝑑 ∈ 𝐷 , i.e., |𝑑𝑠𝑝 | ≤ |𝐷 | × 𝑜𝑙 × |𝑑 | ≤ |𝑑 |, 𝑜𝑙 ≤ 0.05. This prevents a

corner case where a query returns all tuples from the dataset.

F Supplementary Details for Experiments
F.1 Implementation
Parameter settings. The key parameters introduced in Appendix E

are summarized in Table 4. Three parameters govern the generation

of data summaries: 𝜉 (the maximum number of bits per column), ℓ

(the number of bits per row), 𝜂 (the column set embedding size). The

same parameters are used by IRIS [42]. We set 𝜉 = 128, ℓ = 2048,

and 𝜂 = 128 for DE and IRIS, which are also the default values in

prior work [42]. Note that, DE has an additional parameter, 𝑥 , which

is the maximum number of column sets that a query corresponds

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Distinctiveness Maximization in Datasets Assemblage Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

ML-Greedy (DE+IU)-ML-Greedy (IRIS + IU)-ML-Greedy Exact-Greedy

0.1 0.3 0.5 0.7 0.9
B-ratio

101

102

103

ru
n
ti

m
e
 (

s
)

(a) TPCH

0.1 0.3 0.5 0.7 0.9
B-ratio

101

102

103

ru
n
ti

m
e
 (

s
)

(b) DMV

0.1 0.3 0.5 0.7 0.9
B-ratio

101

102

103

104

ru
n
ti

m
e
 (

s
)

(c) IMDB

0.1 0.3 0.5 0.7 0.9
B-ratio

101

102

ru
n
ti

m
e
 (

s
)

(d) Airline

0.1 0.3 0.5 0.7 0.9
B-ratio

101

102

ru
n
ti

m
e
 (

s
)

(e) RealEstate

Figure 13: The impact of the budget 𝐵 on the runtime of each algorithm.

10 20 40 80 160
|Q|

101

102

103

104

ru
n
ti

m
e
 (

s
)

(a) TPCH

10 20 40 80 160
|Q|

101

102

103

104

ru
n
ti

m
e
 (

s
)

(b) DMV

10 20 40 80 160
|Q|

101

102

103

104

ru
n
ti

m
e
 (

s
)

(c) IMDB

10 20 40 80 160
|Q|

101

102

103

ru
n
ti

m
e
 (

s
)

(d) Airline

10 20 40 80 160
|Q|

101

102

103

ru
n
ti

m
e
 (

s
)

(e) RealEstate

Figure 14: The impact of the number of queries |𝑄 | on the runtime of each algorithm.

0.1 0.2 0.3 0.4 0.5
sample rate

101

102

103

ru
n
ti

m
e
 (

s
)

(a) TPCH

0.1 0.2 0.3 0.4 0.5
sample rate

101

102

103

104

ru
n
ti

m
e
 (

s
)

(b) DMV

0.1 0.2 0.3 0.4 0.5
sample rate

101

102

103

104

ru
n
ti

m
e
 (

s
)

(c) IMDB

0.1 0.2 0.3 0.4 0.5
sample rate

101

102

ru
n
ti

m
e
 (

s
)

(d) Airline

0.1 0.2 0.3 0.4 0.5
sample rate

101

102

103

ru
n
ti

m
e
 (

s
)

(e) RealEstate

Figure 15: The impact of the sampling rate upper bound 𝑠max on the runtime of each algorithm.
to during the generation of a query-aware dataset embedding and

a query-set embedding. We set this parameter to 𝑥 = 4.

Training set generation. We pretrain our models using the 19

datasets listed in Table 5. These datasets are publicly available [42]

and are used to pretrain the SCE models.

To train the models for distinctiveness estimation, we follow the

approach used in prior work [42]. We select 5 column sets with the

highest correlation score, as calculated using CORDS [28], from

the training datasets and 300 randomly generated queries. For each

column set, we record the top-10 queries by cardinality.We combine

every two column sets from the same training dataset to generate

the query pairs, resulting in 100 query pairs, for any two column

pairs, and create a total of 19,000 query pairs. We allocate 80% of the

query pairs for training and 20% for validation, and use a batch size

of 256. To train the model that is used to merge data summaries, we

randomly select 10,000 column pairs from the 19 datasets. For each

training dataset, we sample two datasets, 𝑑1 and 𝑑2, with a sample

rate of 0.5. For each column pair in the training dataset, we use

Eq. 2 to compute the column set embeddings 𝑒1 and 𝑒2 on 𝑑1 and

𝑑2, respectively. In addition, we generate a column set embedding

𝑒 for the dataset resulting from the merge of 𝑑1 and 𝑑2 using Eq. 2.

Experimental environment We perform all experiments on a

server running Red Hat Enterprise Linux with an Intel® Xeon®

CPU@2.60GHz, 512GB ofmemory, and twoNvidia Tesla P100 GPUs,

each with 16GB of memory. We implement all algorithms in Python.

F.2 Additional Effectiveness Results
Fig. 12 shows, for TPCH, the impact of varying the budget 𝐵, the

number of datasets |𝐷 |, the sampling rate upper bound 𝑠𝑚𝑎𝑥 , and

the minimal overlap ratio 𝑜𝑙 between query pairs on the distinctive-

ness ratio of the considered algorithms. They have a similar trend

with those results for other datasets in Figs. 5-8.

10 20 40 80 160
|D|

101

102

103

104

105

ru
n
ti

m
e
 (

s
)

(a) |𝐷 |

1 3 5 7 9
overlap ratio (%)

101

102

103

ru
n
ti

m
e
 (

s
)

(b) 𝑜𝑙

Figure 16: The impact of varying |𝐷 | and 𝑜𝑙 on the runtime
of each algorithm for TPCH.
F.3 Additional Efficiency Results
Impact of the budget 𝐵. The impact of varying the budget ratio

is shown in Figs. 13(a)-13(e). Observe that: (1) As the 𝐵-ratio is

increased, more datasets are selected, and the runtime for all of the

algorithms increases. However, ML-Greedy is at least two orders

of magnitude faster than all other algorithms. (2) Our distinctive-

ness estimation method DE is an order of magnitude faster than the

exact distinctiveness computation, and is three times faster than

IRIS. (3) Although (DE+IU)-ML-Greedy uses the same distinctive-

ness estimation method as ML-Greedy, it is an order of magnitude

slower than ML-Greedy. This demonstrates the high efficiency of

our approach, MS, to update data summaries.

Impact of the number of queries |𝑄 |. Based on Figs. 14(a)-14(e),

observe that: (1) With increasing |𝑄 |, the runtime for all algorithms

increases as more queries must be processed when estimating dis-

tinctiveness. However, our algorithms are at least two orders of

magnitude faster than the other algorithms. (2) Our distinctiveness

estimation method DE is two orders of magnitude faster than the

exact distinctiveness computation, and is two times faster than

IRIS. (3) Our approach to updating data summaries, MS, is at least
an order of magnitude faster than IU.

Impact of the sampling rate upper bound 𝑠max. From Figs. 15(a)-

15(e), we observe: (1) For larger values of 𝑠max, our approach is at

least two orders of magnitude faster than the baselines. (2) As 𝑠max

increases, the runtime of Exact-Greedy increases since it takes

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

more time to execute the queries and compute the marginal gain for

more tuples that are returned by the queries. All other algorithms

appear to be insensitive to changes to 𝑠max. This demonstrates the

advantage of using our distinctiveness estimation method, i.e., effec-

tively eliminating the need to test each tuple individually. (3) Our

distinctiveness estimation method DE is three orders of magnitude

faster than the exact distinctiveness computation, and three times

faster than IRIS. (4) Our method for updating data summaries, MS,
is two orders of magnitude faster than IU.

Additional efficiency results for TPCH. Fig. 16 shows, for TPCH,

the impact of varying the number of datasets |𝐷 | and the minimal

overlap ratio 𝑜𝑙 between query pairs on the runtime of the consid-

ered algorithms. They have a similar trend with those results for

other datasets in Figs. 9-10.

G Supplementary Details for Related Work
Data pricing. Tuple-based pricing functions [3, 37, 46] assign a

price to each tuple, and the price of a dataset is the sum of the tuple

prices. Usage-based pricing functions [44, 45] charge based on the

dataset’s usage, measured in bytes transferred per API request, with

the data transferred linked to the dataset’s tuple count. Query-based

pricing functions [10, 16, 17, 36, 38] charge for the query results

returned from a dataset rather than providing the entire dataset,

with the price of query results also depending on the number of

tuples returned.

14

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Greedy Algorithm using ML-based Distinctiveness Estimation
	3.1 Component 1: Data Summary Generation
	3.2 Component 2: Query-aware Dataset Embedding Generation
	3.3 Component 3: Query-set Embedding Generation
	3.4 Component 4: Distinctiveness Estimation
	3.5 Component 5: Merging Data Summaries
	3.6 The Complete Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Accuracy of Distinctiveness Estimation
	4.3 Effectiveness Study
	4.4 Efficiency and Scalability Study
	4.5 Case Study

	5 Related Work
	6 Conclusion
	References
	A An Running Example
	B Hardness Analysis of the DM Problem
	C Exact-Greedy
	D ML-Greedy
	E Preparing the Datasets and Queries
	E.1 Datasets Preparation
	E.2 Query Set Preparation

	F Supplementary Details for Experiments
	F.1 Implementation
	F.2 Additional Effectiveness Results
	F.3 Additional Efficiency Results

	G Supplementary Details for Related Work

