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ABSTRACT

Learning new tasks accumulatively without forgetting remains a critical challenge
in continual learning. Generative experience replay addresses this challenge by
synthesizing pseudo-data points for past learned tasks and later replaying them for
concurrent training along with the new tasks’ data. Generative replay is the best
strategy for continual learning under a strict class-incremental setting when certain
constraints need to be met: (i) constant model size, (ii) no pre-training dataset,
and (iii) no memory buffer for storing past tasks data. Inspired by the biological
nervous system mechanisms, we introduce a time-aware regularization method to
dynamically fine-tune the three training objective terms used for generative replay:
supervised learning, latent regularization, and data reconstruction. Experimental
results on major benchmarks indicate that our method pushes the limit of a brain-
inspired continual learner under such strict settings, improves memory retention,
and increases the average performance over continually arriving tasks.

1 INTRODUCTION

Incremental learning is a continual learning setting, where new novel classes are encountered over
time | Van de Ven & Tolias|(2019). The goal in class incremental learning is to enable a base model to
learn new classes that arrive sequentially. Catastrophic forgetting (French,|1999) is a major challenge
in this setting because when the model is updated to learn new classes, its performance on the
past learn classes would degrade. Experience replay (Schaul et al., 2015) is a major approach to
addressing catastrophic forgetting. The idea is to stor and then replay representative samples of
past classes along with the samples of new classes to enforce the model to maintain its performance
in past classes. When storing data is not feasible, e.g., due to data privacy, generative replay is
applicable (Shin et al.| 2017). The idea is to enable the model to generate pseudo-data points that
resemble the original data for learned classes. Existing generative replay approaches with superior
performance (Van de Ven et al., |2020) are brain-inspired, where modules and mechanisms similar
to the interactions between the prefrontal cortex (PFC) and hippocampus are designed to mimic the
short-term cognitive function and long-term memory to mitigate catastrophic forgetting.

Despite being effective, the existing methods often use a simple static weighting mechanism be-
tween these two brain components, ignoring the fact that the bidirectional information pathways
between them are changing through time. In contrast, the brain is a dynamic system, with research
showcasing the importance of feedback connections in information processing and memory consoli-
dation (Thierry et al.,[2000). Specifically, there is a bi-directional interplay between the PFC and the
hippocampus, where the PFC not only gathers information from the hippocampus but also returns
feedback which can modulate the functionality of the hippocampus (Eichenbaum) [2000; [Preston &
Eichenbaum| 2013)). For instance, the synaptic plasticity of the hippocampus, referring to its adap-
tive nature in response to experiences, plays a pivotal role in memory consolidation. Under certain
circumstances, such as during attentive learning or active memory recall, feedback from the PFC
to the hippocampus can lead to enhanced synaptic plasticity. This in turn increases the likelihood
of short-term memory transitions into long-term memory (Wang et al., 2010). Although methods
like brain-inspired replay (Van de Ven et al., [2020) implement the bidirectional feedback pathways
through a shared network between these two components, the above-mentioned biological changes
under different circumstances are not reflected in the objective design. We thus deem it important to
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also adjust the objectives in addition to architecture change. This adjustment is also brain-inspired
and proves to be highly effective in generative replay in our later experiments.

Moreover, such dynamic feedback control on objectives is crucial from a model optimization per-
spective. During generative replay training, replayed data from recent or distant tasks are optimized
equally with real new data in the discriminator. The training objective to distinguish these classes
will inevitably consider the time-related features such as over-regularization and distance from the
real data distribution, which accumulated during the sample-optimize-sample loop through time.
Passing this time-related information to the generative model and modifying the confidence level
of each sample will improve memory consolidation. More specifically, the closer to the real data
distribution, the more confidence we should be able to consolidate into the memory. Bearing these
in mind, we look into how we can use the inherent time-related information from the discriminator
to dynamically adjust the objective of the generator. Our specific contributions include:

* We design an objective scheduling mechanism that depends on an inferred time, which we
claim to be implicit in the discriminator’s prediction.

* We improve the performance of the existing SOTA brain-inspired continual learning meth-
ods by a substantive margin without adding time, or space complexity.

* We improve the existing brain-inspired replay methods’ memory retention ability by pro-
viding more diverse replayed generated samples of previously seen classes.

* We demonstrate that our method is closely related to the activity in the brain qualitatively.

2 RELATED WORK

There has been many works on class incremental learning setting. Recent works in this area can
be grouped into five classes based on the used strategies to address catastrophic forgetting: (i) data
replay (Bang et al., 2022; 2021} [Mai et al.| 2021} |De Lange & Tuytelaars| 20215 |Van de Ven et al.}
2020; Rolnick et al., [2019; [Chaudhry et al., [2018; |Shin et al.,|2017)) which involves storing a subset
of training data and then replaying them back, (ii) growing network (Zhou et al., 2023} | Douillard
et al. 2022; [Wang et al., 2022; [Yan et al., 2021) which involves learning the new classes through
new added network weights, (iii) model regularization (Yang et al.,[2021};|Aljundi et al.,[2019;|Yang
et al.,2019;Lee et al.,|2019a;[2017; |Aljundi et al., 2018} Kirkpatrick et al., 2017 Zenke et al.,[2017)
which involves identifying important network weights and then consolidating them when learning
new classes, (iv) knowledge distillation (Lu et al., 2022; Smith et al.| 2021; [Zhang et al., [2020; |Lee
et al.| 2019b; |Hou et al.,[2018; |Li & Hoiem) 2017 which involves using distillation on the previous
model, and (v) model rectification (Zhou et al., 2022} |Liu et al., 2021} |Yu et al.| 2020; Belouadah
& Popescul, 2019; (Castro et al., 2018) which involves training a model on new classes. Our work is
inspired by brain-inspired replay (BI-R) (Van de Ven et al.,[2020) which is a generative experience
replay method, where we assumes that a task model D is trained to solve the classification problem
and a generator model G is trained to learn generating pseudo-data points for the past learned tasks to
implement generative replay. BI-R uses additional regularization terms for improved performance:

* Replay through feedback, where the generator G is merged into the task model D.

» Conditional replay: the latent distribution is modeled as a Gaussian mixture model and
allows conditional sampling based on class label Y to build a balanced dataset.

» Gating: a different subset of neurons are disabled in the backward process of the generator.

* Internal replay: the first several layers are pretrained and frozen. Replay parameters are
updated only on the trainable layers.

Among all the above methods, BI-R without internal replay is the best-performing model under
the strict setting where limited resources is available. Our method is inspired by this model and it
provides additional model regularization using dynamic objective weighting through feedback.
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3  PROBLEM DEFINITION: CLASS INCREMENTAL LEARNING AND
GENERATIVE REPLAY

3.1 CLASS-INCREMENTAL LEARNING

Class-incremental learning is a continual learning scenario where a model is sequentially trained on
new classes without access to previously seen class data. At each task timestamp ¢, only a previously
unseen subset of data X and class labels Y are made available to the model D;, defined as X; and
Y};. The objective of this learning scenario is to minimize the aggregate task loss term at time 7" is:

T
La =Y Luk(X1, Yy; Dr) )

t=1

The task commonly used in continual learning is classification because emergence of new classes
is very natural. For a classification task at timestamp ¢ provided by inputs X; and their respective
labels Y}, and given a classifier f parameterized by learnable weights 6, the task loss is defined as:

N
Lus(X1,Yy; Dy) = = > Yy ilog(f (X5 Dy)) )
=1

We study a strict setting in our work. The scalability of incremental learning algorithms is heavily
impacted by growing space complexity. Existing state-of-the-art (SOTA) models utilize growing
model architecture, or growing storage for exemplars, which makes the performance comparison
less meaningful since the brute force space-scaling can overshadow the actual contribution of con-
tinual learning mechanisms. However, the human brain maintains a relatively stable amount of
neural connections throughout life, with constant development and pruning of neural connections.
Understanding what mechanisms can improve continual learning performance and making a fair
comparison between different strategies thus has to be conducted under a strict setting: (i) constant
model size, (ii) no pre-training dataset, and (iii) no memory buffer storage for past task data. Such
a requirement aims to simulate the setting where humans can learn new tasks without forgetting
old ones even without exact memory storage, externalization for memorizing data points, or an in-
creasing number of brain connections when more classes are learned. For comparative results, we
exclusively selected algorithms that fall into this category, in addition to the traditional unrestricted
settings. We think this setting resembles the constraints that under which the human brain works.

3.2 GENERATIVE REPLAY

Generative replay is a strategy where a generative model GG, such as a Variational Autoencoder
(VAE), is trained to approximate the input data distribution of previously encountered tasks. Dur-
ing the training phase of a new task, instead of relying solely on the original data, the model also
rehearses using pseudo-data generated by the generative model. This approach mitigates the issue
of catastrophic forgetting of earlier tasks which is especially severe in class-incremental learning
because of inter-class diversity. The overall objective in generative replay consists of two main
components balanced by hyperparameter «: task loss Ly, and replay 10ss Lireplay:

Ler(Xt, Yi; D) = Liga( X161, Yiee—15 Dt) + Lk (X4, Yi; Dy)

. . 3)
+ OK{Lreplay()(lzt—la Yl:t—l; Gt) + Lreplay(Xt7 }/ta Gt)}a

Where X1:t71 denotes the generated samples from Gt,l(ZAl;t,l), where ZAl;t,l ~ N(0,1). )A/M,l
is predicted labels by Dt,l(f(l;t,l). The replay Loss focuses on both accurate data reconstruc-
tion and maintaining a regularized latent space for sampling. Variational autoencoder (VAE) is the
generative model often used and the objective for training it is denoted as:

Lreplay = LVAE = Eq¢(z|x) [Ing0($|Z)] - DKL(Q¢(Z|1’)||P(Z)) (4)

Reconstruction Term Regularization Term
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Figure 1: Our regularization method applied to the generative replay pipeline. We introduce addi-
tional feedback to adjust the relative plasticity between the Hippocampus and the PFC. Two regu-
larization parameters can also adjust the emphasis on episodic memory or schematic memory.

Where x € X is the input data. 6 and ¢ are the parameters of the VAE’s encoder and decoder,
the combined is G. g4(z|x) denotes the encoder’s approximation of the posterior. pg(x|z) is the
likelihood of reconstructing the data given the latent representation. p(z) is the prior distribution of
the latent space, often assumed to be a standard Gaussian distribution.

4 PROPOSED METHOD

A high-level description of our method is to adjust the loss function through feedback. We add addi-
tional decaying hyperparameters to the generative replay loss function and use the time information
inferred from the classifier to guide such decay. We present our detailed modifications and methods.

4.1 [(-VAE GENERATOR

Instead of using a plain VAE as the replay generator, we use a 3-VAE. 5-VAE is a VAE variant
which allows the trade-off between the KL term and the reconstruction term:

Lpvae = Eq, (2[2) [log po(2[2)] — BDki(gs(2|2)||p(2)) (5)

Reconstruction Term Regularization Term

4.2 DYNAMIC CONTINUAL LEARNING LOSS, WITH TIME-DEPENDENT «, /3

To control the relative strength of the 3-VAE’s loss and the task loss in our continual learning setting,
we modified the hyperparameter « introduced in 3.2 to only control the reconstruction part of the
replay loss, and combine it with 5. In addition, we make these hyperparameters dependent on the
inferred time-stamp ¢ which is the elapsed time since the first time seeing some label y, inferred
from the output ¢ of the task model D. The total loss function L can be formulated as:

L= a(tA)Lrecon + B(E)DKL + Ltask (6)

The block-diagram of our method within the generative replay framework is presented in Figure
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4.3 INFER TIME-STAMP ¢

When the numerical class label increases through the arrival of new classes, the ordinal time stamp
is implicitly encoded in the label. For example, consider a binary digit classification setting with
5 tasks, each consisting of two digits. When we compare class 0 to class 9 when learning the last
task, the model implicitly can predict that 0 has been seen a long time ago rather than recently.
This implicit time prediction can be enhanced by the decaying sampling quality among classes after
recursive sampling and replaying. We infer the time £ as:

Y

t({)) = # tasks seen so far — (m

(N
Where 4 is the predicted numerical class label. Since this label is predicted by the classifier, we
bridge the feedback pathway by using this information to control the generative path’s loss function.

4.4 SCHEDULING & AND 3

The best-performing schedule is an exponentially decaying function with a small lower bound (0.2
through exhaustive search). The process of finding the schedule and how it is related to neural
science is discussed in the ablative experiments and discussion section. The general functions are:

af)=(1—-a)-e*lta and BE)=(1—-b) e +b

Our empirical exploration indicates that our best performing &, is around 1 and kg is around 10, with
a = b = 0.2. We also show in the discussion section that such parameter choices correlate well with
the qualitative function of the brain, demonstrating our method benefits from similar mechanisms.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

The comparative and ablative experiment settings are identical to the ones used by BI-R (Van de
Ven et al.| [2020) for fair comparison against exiting works. We used MNIST, permMNIST, and CI-
FAR100 datasets for experiments. Note that more complex benchmarks are not used for generative
replay because the size of VAE should become very large to generate high-quality samples. The
generative backbone is a convolutional variational autoencoder (CVAE). For BI-R, a classification
head is attached to the latent space z of the generative model. For baselines, “joint” is when all tasks
are made available to the model which serves as an upperbound, and “none” is the setting where no
continual learning method is applied to the classifier which serves as a lowerbound, and the genera-
tor is not used in this case. We report the average accuracy across all classes at the end of training.
In addition, we also visualize the replayed samples and their modified FID score. The modified FID
score is used in BI-R to evaluate the quality of replay samples. Smaller FID indicates better quality.

5.2 COMPARATIVE RESULTS

We tested different schedule settings, with brain-inspired replay backbone on several class-
incremental learning settings: MNIST(S tasks), permutedMNIST (10 tasks), and CIFAR-100 (10
tasks). Table[T]is the average accuracy benchmark at the end of training for several class-incremental
learning strategies. Unrestricted settings allow model growth, Our method outperformed the best-
performing method in strict settings. We conclude that our method is effective.

We then evaluate the qualities of the replayed samples generated by BI-R and our method shown
in Figure [2] We measure the modified FID score of the generated samples concerning the original
dataset. The lower the score, the higher the quality. Although generated samples do not have to be
high-quality to increase the overall task performance, it is a good measurement of memory retention
capability. We can see that our method leads to generating more diverse samples.

Figure [3|shows the accuracy curve throughout training. In the left subfigure, our method (solid lines)
gradually outperforms the baseline BI-R(dotted lines) as more tasks are incoming. Our method
shows improved accuracy on all replayed tasks by trading off the accuracy on the current task. As



Under review as a conference paper at ICLR 2023

Strategies Method MNIST(5-TASK) permMNIST(10-Task) CIFAR-100(10-Task)
Unrestricted Settings
. Joint - - 80.4
Baselines(ResNet18) None ] ] 8.00(=£0.18)
. DyTox - - 77.15
Growing Network DER ] ] 7718
Strict Settings
. Joint 98.20(+0.02) 98.06(+0.04) 53.96(+0.20)
Baselines(CNN) None 19.98(+£0.02) 17.79(£0.7) 8.00(£0.18)
Reoularization EWC 19.92(40.08) 27.55(+0.15) 8.49(40.05)
& online EWC 19.96(+0.26) 33.2(+0.11) -
SI 20.08(+£0.32) 24.33(£0.21) 8.51(40.01)
Repla LwF 20.08(+0.12) 21.00(+£1.19) 9.83(%0.13)
play GR 82.59(+0.37) 91.53(=£0.06) 6.22(+0.12)
BI-R 91.50(=£0.06) 97.15(£0.03) 21.01(+£0.24)
BI-R + Our method ~ 94.63(+0.04) 97.98(+0.03) 24.16(+0.30)

Table 1: Average accuracy for different class-incremental learning Strategies

Baseline
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Figure 2: Replayed samples at the end of training. From left to right: MNIST (BI-R baseline and
ours), CIFAR100 (BI-R baseline and ours).

a result, the effect of such a trade-off will be dominated by the increasing number of tasks, and the
average performance margin will expand as shown in the right figure. This tradeoff is discussed
further in the discussion section.

Task accuracy during training verage sccracy curng ramn
verage accuracy aining

—BI-R

07 i,

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 0 10k 20k 30k 40k 50k
iterations iterations

Figure 3: The comparison between BI-R and our method. We compare the accuracy of different
tasks (left) and the average accuracy (right) throughout training. Our method has significantly less
forgetting on previously learned tasks, by trading off the performance on the current task.
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6 ABLATIVE STUDY

We conducted several control experiments when BI-R is used as the baseline model:
(1) Only adjust a: (1) time-independent, (2) time-aware

(ii) Only adjust 3: (3) time-independent, (4) time-aware

(iii) Adjust both « and 3: (5) time-independent, (6) time-aware

(iv) Adjust both e and 3 according to our decay schedule: (7) inferred time from true class labels,
(8) inferred time from predicted class labels

Figure E| visualizes the ablative study results. Subfigures (2)(4)(6)(8) denote are our method. In
(2)(4)(6), the labels are values we set for replayed tasks parameter « and 8. In (8), the labels are
the lowerbound (if < 1) or upper bound (if = 2) for our decaying schedule function for (« and ).
We observe that (8) is the best setting groups, and the green curve is the best individual setting in
this group. (1) and (3) exclusively study the effect of a different constant of o and 3. (5) studies
the combined effect of different o and S. (7) studies the effect of decaying loss function in general
through time. We show the relative improvements in the final average accuracy of them in Figure 4]
(1) and (2) show that only changing « will not improve the performance. (3) shows a smaller £ in
general will improve the performance. (4) shows a small /3 for replayed classes and 1 for new tasks
can further improve the performance on top of (3). (5) shows changing both « and 3 at the same
time will not improve the performance. (6) shows a small « and 3 for replayed classes and 1 for new
tasks can further improve the performance compared to (4). (8) shows following a decay schedule
dependent on the predicted label performs better than a decay schedule dependent on the true labels
(conditional labels in conditional replay).

(2) (3)

— 0.9
-— 1.0
-— 2.0
— ours
12345678 910123456 7 8 91012 345@6 7 891012345867 8910
At the end of task#
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|
N
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6 7 8910 12 3 456 7 891012 3456 7 8 910
At the end of task#

Figure 4: Ablative experiments (1) to (8) on CIFAR-100 (10-TASK). Blue denotes BI-R, (8) is the
proposed method, and green is the best setting of our proposed method. The label is the hyperpa-
rameter we use for the value of a and 3 in (1) to (6), and the lower or upperbound in (7) to (8).

Our method also shows that the accuracy improvement depends on the length of the task horizon.
The more tasks incoming, the better improvements we can expect. This trend is crucial for real-life
applications since the task horizon will be infinite.

A parallel analysis of the FID score of the replayed samples is shown in Figure[5] We observe that
our method is showing improved sample quality across all groups.
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FID score comparison for different settings

FID score
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a B aand B d(a) and d(B)

Figure 5: Ablative experiments (1) to (8) on CIFAR-100(10-TASK) compararing replayed samples
quality. Light colors indicate our method improves sampling quality in general, the best setting is
(8), and the best decay lower-bound in setting (8) is 0.5.

7 ANALYTIC EXPERIMENTS

We visualized the latent space of our model compared with BI-R in Figure (6| using the MNIST
benchmark. We see that data points are more clustered in each class’s cluster, especially the early
classes for BI-R. This loss of variance due to the discrepancy in the regularization time horizon
under the same regularization amplitude results in low-variance early classes and high-variance new
classes. Our method shows a more balanced variance across classes arriving at different times.

Latent space for MNIST Laten space for MNIST

RN R
Sowaam W
ssesssss

o o3t

30, L -3,
40 -30 -0 -10 0 10 20 30 0 a0 -30 -20 -0 0 i 20 30 40

BI-R(Average Accuracy = 0.915) Ours(Average Accuracy = 0.9463)

Figure 6: The latent space visualization on MNIST dataset. Our method shows more spread-out
clusters with higher variance within each class.

8 DISCUSSION
8.1 ROLES OF (), (f) AND THEIR NEUROSCIENTIFIC INTERPRETATION

a(t) modulates the strength of the reconstruction loss and 3(f) modulates the strength of KL-
divergence regularization. The combined changes the relative learning rate between the generator
and the classifier. The relative balance between these components has neuroscientific significance
when likened to the interplay between episodic and schematic memories in the brain and neural
plasticity under novel and familiar stimuli:

* Generation Loss and Hippocampus Synaptic Plasticity: A higher emphasis on the com-
bined generation loss simulates the increased synaptic plasticity of the hippocampus. Ex-
posure to novel stimuli can lead to such an increase, manifesting as changes in synaptic
strength, which is foundational for encoding new memories. When exposed to familiar
stimuli, the hippocampus is less likely to experience extensive synaptic changes.

* Reconstruction Loss and Episodic Memory: A higher « in loss mirrors the hippocam-
pus’s emphasis on forming episodic memory, retaining detailed specifics of experiences.
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* KL Divergence and Schematic Memory: A higher 3 regularizes the latent space to align
with a prior, resembling the hippocampus’s emphasis on forming schematic memories that
abstract and generalize knowledge across experiences.

A qualitative relative strength of these mechanisms in the brain can be shown in Table 2] The plas-
ticity strength corresponds to our decaying function for both o and . Episodic memory formation
corresponds to the decaying function of o with k, =~ 10. Schematic memory formation corresponds
to the decaying function of 8 with k., ~ 1

Experience Type

Plasticity Strength

Episodic Memory Formation

Schematic Memory Formation

Novel Experience

Recent Memory Replayed

Distant Memory Replayed

High

(reconsolidation)

(most consolidation has oc-
curred)

High (initial encoding of unique
experiences)

(reinforcing or updat-
ing recent episodic memories)

(older episodic memories
are more cortex-dependent)

(building new schemas
or adjusting existing ones)

(reinforcing or updat-
ing existing schemas)

to (schemas are
largely established and may not

need the hippocampus as much)

Table 2: Qualitative Strength of Hippocampal Processes for Different Experiences. Our hyperpa-
rameter schedules qualitatively follow these trends.

By scheduling o and 3, our model can adjust 1. the synaptic plasticity of the hippocampus. 2.
the emphasis on forming episodic memory or schematic memory. This flexibility is reminiscent of
the brain’s recognition and consolidation processes, where the hippocampus is more active when
seeing novel experiences, stores clear memories, and, over time, the neocortex abstracts generalized
knowledge, forming schematic memories. In the context of continual learning, striking the right
balance ensures effective learning and retention across tasks.

8.2 LIMITATIONS:

our method is only applicable to the generative replay framework which means that when scaling
to a more complicated dataset using a small latent dimension is challenging. From our experi-
ments, the largest improvement is around 15%, which is still far from the methods under unstrict
settings or joint baselines. In addition, the performance is limited by the complexity of our neural
network backbone. For hyperparameter searching and comparison purposes, the generative model
complexity is far from SOTA models such as latent diffusion models and GANs. Our best schedule
parameters are also found empirically and the exponential decay function is a sensible guess.

8.3 POTENTIAL IMPROVEMENT:

The schedule we used is not learnable, but such a schedule can be learned using reinforcement
learning given the feedback. Since our method is designed as a plug-in method for any unified model
with generative and discriminative components, we can apply this method to more settings other than
generative replay where such models are used. In addition, the time-related information extraction
is related to the time-embedded U-Net backbone used in diffusion models. Better segmentation of
this time information might be possible with such a segmentation neural network backbone.

9 CONCLUSION

We presented an incremental learning method rooted in the mechanisms of neural plasticity and
memory encoding, specifically adjusting the parameters (%) and 3(f) through feedback within
the joint classification and generative replay framework. The empirical evaluations reinforced the
effectiveness of this strategy, especially when benchmarked under a strict setting. Notably, the
enhanced quality of replayed samples and a more balanced distribution in the latent space across
different class arrival times stand as testaments to the method’s efficacy. The insights gathered from
human memory systems and their incorporation into artificial neural models are invaluable. This
cross-disciplinary approach has led to enhanced performance in the continual learning domain. By
bridging neuroscience and artificial intelligence, we pushed the existing brain-inspired methods and
provided more insights into the parallelism of human intelligence and machine intelligence.
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A APPENDIX

Our code will be made available on GitHub.
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