Under review as a conference paper at ICLR 2026

TASK VECTORS, LEARNED NOT EXTRACTED: PERFOR-
MANCE GAINS AND MECHANISTIC INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can perform new tasks from in-context demon-
strations, a phenomenon known as in-context learning (ICL). Recent work suggests
that these demonstrations are compressed into task vectors (TVs), compact task
representations that LLMs exploit for predictions. However, prior studies typically
extract TVs from model outputs or hidden states using cumbersome and opaque
methods, and they rarely elucidate the mechanisms by which TVs influence compu-
tation. In this work, we address both limitations. First, we propose directly training
Learned Task Vectors (LTVs), which surpass extracted TVs in accuracy and exhibit
superior flexibility—acting effectively at arbitrary layers, positions, and even with
ICL prompts. Second, through systematic analysis, we investigate the mechanistic
role of TVs, showing that at the low level they steer predictions primarily through
attention-head OV circuits, with a small subset of “key heads” most decisive. At
a higher level, we find that despite Transformer nonlinearities, TV propagation is
largely linear: early TVs are rotated toward task-relevant subspaces to improve
logits of relevant labels, while later TVs are predominantly scaled in magnitude.
Taken together, LT Vs not only provide a practical approach for obtaining effective
TVs but also offer a principled lens into the mechanistic foundations of ICL'.

1 INTRODUCTION

Large Language Models (LLMs) possess the remarkable capability of performing novel natural
language tasks by learning from demonstrations included in the input without training, a phenomenon
referred to as In-context Learning (ICL) (Brown et al., 2020; Radford et al., 2019). ICL has
revolutionized natural language processing through its extensive empirical success in enabling swift
and efficient adaptation of models to downstream tasks (Dong et al., 2024; Liu et al., 2021).

Since its effectiveness is difficult to reconcile with the traditional framework of machine learning
centered on model training (Ren et al., 2024), investigating the internal mechanisms of LLMs that
enable ICL has attracted substantial attention. Among these efforts, one prominent line of research
shows that LLMs leverage demonstrations by summarizing them into task vectors (TVs)—succinct
vector representations of the task exemplified by the demonstrations (Hendel et al., 2023). These TVs
can be injected (added) into the hidden states of zero-shot prompts without demonstrations to achieve
ICL-level performance. Subsequent work has primarily proceeded in three directions: 1) studying
where (e.g., from LLM hidden states (Hendel et al., 2023), attention head outputs (Todd et al., 2024;
Yin & Steinhardt, 2025), or MLP outputs (Merullo et al., 2024) at different layers) and how (e.g.,
PCA-based approaches (Liu et al., 2024) or complex optimization methods (Li et al., 2024a; Cai
et al., 2025)) to extract and construct TVs, with the practical goal of boosting performance through
injection; 2) investigating how the ability of LLMs to form TVs gradually emerges during pretraining,
typically using small trained-from-scratch models and artificial tasks such as regression (Han et al.,
2025; Yang et al., 2025b); and 3) demonstrating that TVs naturally arise from the LLM architecture
itself, and providing theoretical guarantees for their emergence (Bu et al., 2025; Dong et al., 2025).

Despite important contributions, prior studies face key limitations. First, existing approaches often
depend on opaque and complex filtering or optimization to construct TVs from model representa-
tions, making them inefficient and reliant on the model’s representational quality. This dependence

I'The source code will be released upon acceptance of this paper

Under review as a conference paper at ICLR 2026

can produce suboptimal TVs and mischaracterize their true effect, while the opaque construction
procedures obscure an understanding of TV’s mechanism. Indeed, most works stop at showing that
injected TVs improve performance but leave unanswered the central question of how LLMs leverage
TVs to make correct predictions. This gap spans both the low-level interactions, referring to the
microscopic localization of model components that interact with injected TVs to express their effects
during forward computation, and the high-level channels, referring to the macroscopic mechanisms
by which TVs ultimately steer outputs toward correct predictions. The lack of explanation reduces
the model’s deployment of TVs to an uninterpretable black-box function (Merullo et al., 2024).

In this work, we address the first

shortcoming by proposing to directly negative—Gradient
train Learned Task Vectors (LTVs) E— t 7
by adding a vector to a specific [emammg Ve

layer’s hidden states and optimizing

it through gradient descent (Figure 1 ‘ @—@—@ %
(A)), which finds the optimal TV un-
constrained by the quality of model’s 1 Layers] LTV
representations. LTVs not only out- ¥

perform constructed ones across clas- ~ 5ad movie. sentiment
sification and generation tasks but Figure 1: (A) We directly train Learned Task Vectors (LTVs)
also demonstrate greater flexibility to be injected, which influence model outputs through later
and scalability than extracted ones. layers updates. (B) In the low-level interactions between
Furthermore, through analysis of in- TVs and later layers, the OV circuits of attention heads are
teractions between TVs and model the crucial components interacting with TVs to induce their
components, we decode the low-level effects. (C) On a high level, subsequent layer updates act
mechanisms by which LLMs interact on TVs as a largely linear transformation of rotation and
with TVs: injected TVs are primar- stretch, with the rotation aligning TVs with the relevant task
ily utilized through attention-head OV ~ subspace to promote prediction of task-related tokens.
circuits (Figure 1 (B)). We also characterize which attention heads are most decisive in leveraging the
injected TVs, focusing on their attention and distribution patterns. Regarding the high-level influence
channels of TVs, we show that despite the abundance of nonlinearities in Transformer layers, the
propagation of injected TVs through subsequent layers is largely linear, involving a rotation that
aligns TVs to the subspace spanned by task-related tokens and a scaling that adjusts their magnitude
(Figure 1 (C)). We further observe a distinct pattern: the rotation effect attenuates as the injection
layer index increases, while the scaling effect becomes the dominant factor translating TVs into
output changes. In summary, our work introduces an efficient method to obtain effective TVs and
provides a comprehensive exposition of the mechanisms underlying TVs’ effectiveness.

f” 6 after Layer Updates

2 RELATED WORKS

Task Vector and ICL The hypothesis that TVs form the mechanistic basis of ICL was first proposed
by Hendel et al. (2023), who patched ICL hidden states into zero-shot prompts at certain layers,
achieved high accuracy, and argued that in-context demonstrations are compressed into TVs applied
during later updates. Follow-up studies (Todd et al., 2024; Li et al., 2024a; Kahardipraja et al., 2025;
Liu et al., 2024) extended this idea by extracting TVs from specific components (e.g., attention heads,
MLP) and injecting them. The universality of TVs has been validated across model scales (small
trained-from-scratch vs. large open-source) and task types (mathematical vs. natural language) (Han
et al., 2025; Yang et al., 2025b; Jiang et al., 2025a). Yet, little is known about how TVs enhance
performance after injection, or how they interact with later components to shape outputs.

Mechanisms of Task Vectors Current explanations of TV effectiveness remain preliminary, more
sketches than systematic analyses. For instance, Hendel et al. (2023) observed that TV injection is
more effective in earlier than later layers. Todd et al. (2024) reported that TVs exhibit word2vec-style
arithmetic (Mikolov et al., 2013), with Bu et al. (2025) giving a theoretical account of this property.
Furthermore, Han et al. (2025) and Jiang et al. (2025b) found that TV effectiveness depends on how
well hidden states of a task’s prompts can be separated from others in the LLM representation space.

LLM Steering The success of TV injection in restoring ICL performance parallels recent advances
in LLM steering (Zhan et al., 2025; Li et al., 2024b; Panickssery et al., 2024), where vectors are added

Under review as a conference paper at ICLR 2026

to hidden states to mitigate undesirable model behaviors (Lee et al., 2024; Bayat et al., 2025). Prior
work also explored training steering vectors directly (Cao et al., 2024; Dunefsky & Cohan, 2025),
motivating our strategy of training TVs rather than relying on complex selection or construction.

3 METHODOLOGY

Transformer hidden states and ICL. According to the autoregressive structure of Transformer
LLMs with residual connections, a zero-shot input query x, of N tokens (e.g., “I like this movie.
Sentiment:”) is sequentially embedded and updated across L layers into N d-dimensional hidden
states. At each layer, the hidden state of token i at layer / is updated as b} = h!™! +YX a! +ml,

where af‘ . is the output of the k-th attention head (head (/,k)), and mf is the MLP output. Concretely,
af « depends on the previous layer’s hidden states of the first i tokens [hﬁfl];:l through:

i

l 1,k 1T) -1

ai,k—ch’iWO’kWV’khj , 60
=1

where W‘ﬂ and Wék € R% >4 are the value embedding and output projection matrices of head (1,k)

respectively, jointly referred to as the OV circuit, with dj, being the head dimension. cl]’: denotes the

attention weight from token i to j of head (I,k). Consequently, the L layer updates can be viewed as
a sequence of additive effects, with the last token hidden state at the final layer formed as:

L K
R =h%+ Y (X ahy+mi), @
=1 k=1

which is then multiplied by the unembedding matrix Wy € R¢* VI to produce the output logits and
final prediction. An ICL prompt is formed by prepending » demonstration—label pairs to the query,
yielding an input sequence 1, Y1, ..., Tm, Ym, Lq (€.g., “I hate this movie. Sentiment: negative. This
movie is great. Sentiment: positive ... I like this movie. Sentiment:”). Because Transformer updates
depend on hidden states from earlier tokens and layers, the hidden states as well as attention and
MLP outputs change throughout, producing a different hk,ICL and ultimately a different prediction.

Task Vector as a Mechanistic Explanation for ICL Existing TV studies provide a functional
characterization of the mechanism enabling LLMs to leverage demonstrations as f (wq; 0),ie.,LLMs
make predictions based on the query together with a vector 6 that represents the query—label mappings
(Hendel et al., 2023; Merullo et al., 2024). These studies propose that 8 is formed in early layers
and assists LLM predictions as later layers execute f(xq4;6). Accordingly, they seek to extract the
TV 6 from the ICL hidden state stream and add it to the last token hidden state of =, at layer /, i.e.,
hfv + 6. The resulting hidden state is then propagated through subsequent layers, and the intervention
is evaluated based on whether it achieves few-shot-level prediction accuracy for zero-shot queries.
Two major methods of extracting 6 have been proposed, which we treat as baselines in this work:

1. Vanilla TV (Hendel et al., 2023), defined as 0 = hf\,,ICL — hﬁ\,, where hf\,’ICL is the layer-/ last

token hidden state of an ICL prompt formed with a query different from @, which produces hf\,

2. Function Vector (FV) (Todd et al., 2024; Li et al., 2024a; Yin & Steinhardt, 2025), defined as
0 =Y (ke afv,k,lcu where afv"k‘ICL is the attention head output to the last token hidden state
given ICL prompts, and I is an index set of selected attention heads.

Both methods have drawbacks. Vanilla TV injection yields lower accuracy and is highly sensitive to
the choice of injection layer /. FV depends on selecting an proper head set I, typically determined
by ablating heads one by one to measure their impact on output probability, which is suboptimal
as it neglects intercorrelations among ablations. Moreover, both methods critically depend on the
quality of model’s ICL representations (we use 8-shot ICL prompts to obtain hidden states for the
two methods and to evaluate ICL performance). As a remedy, we propose directly training LTVs.
Training LTV Instead of distilling from ICL hidden states, we train the LTV 6 to minimize:

—logp(yq|wq,0,]L,IP), (3)

where y, is the correct label for the zero-shot query x,, I denotes the set of layers and IP the token
positions of hidden states where 6 is injected. This approach eliminates the need to manipulate ICL

Under review as a conference paper at ICLR 2026

hidden states and uncovers the most effective TV, unconstrained by representation or demonstration
quality crucial for traditional TV extraction. Moreover, we do not restrict P to the final position or
LL to a single layer as in the baselines. In general, we add |L| x |P| different Os to the hidden states
indexed by L and IP. This design allows us to explore flexibility and scalability of our approach and
to test the proposition from prior works that a single TV can encapsulate the full functionality of ICL,
as discussed in Subsection 4.1. In the special case of L. = {/} and P = {—1}, we add one 6 to hl
following baseline practice. During the training, for multi-token labels, we average log probabilities
across tokens. 6 is optimized using AdamW (Loshchilov & Hutter, 2017) with learning rate = 0.001
and weight decay = 0.01. Details of the training procedure are provided in Appendix B.

4 EXPERIMENTS

Models We use the following models: Llama3-8B, Llama3.1-8B, Llama3.2-3B, Llama3-
70B (Grattafiori et al., 2024), Llama2-7B, Llama2-13B (Touvron et al., 2023), Qwen2.5-32B (Yang
etal., 2024), Yi-34B (01. Al et al., 2024). In the main text, results are reported on Llama3.1-8B.

Datasets We adopt three datasets from prior TV research (Todd et al., 2024): 1) Capital: given a
country name, output its capital city; 2) Capitalize: given a word, output its capitalized first letter; 3)
Antonym: given a word, output its antonym. To evaluate TVs on more natural datasets with richer
input—output mappings, we additionally consider four classification tasks: SST-2 (Socher et al., 2013),
TREC (Li & Roth, 2002), SNLI (MacCartney & Manning, 2008), and RTE (Dagan et al., 2005).
We report the prediction accuracy achieved by ICL and the different TV methods across the seven
datasets. To test the ability of TVs to elicit LLM behaviors in more complex task settings, we also
include the Myopic dataset (Panickssery et al., 2024), a generation task described in Subsection 4.1.
See Appendix C for additional details on model implementation, datasets, and ICL setup.

4.1 SUPERIOR PERFORMANCE OF LEARNED TASK VECTORS

Consistent performance superiority of LTV L [———— LCL Ace
Following Hendel et al. (2023) and Todd et al. [t [— \\\,_
(2024), we first add the TV to the last token %50% | —— Vanilla TV

hidden state at all layers of Llama3.1-8B, and # 550,| = FV

report the average performance across datasets 5

in Figure 2. The results show that our LTV O s 6 s tota1ate 500021263830 o °

Layer of TV Injection
Figure 2: Dataset-average accuracy of injecting the
Vanilla TV, FV, and LTV to the last token hidden
states across layers, along with ICL and zero-shot

high accuracy achieved by the LTV also makes (ZS) accuracy levels. Our LTV consistently out-

it a viable parameter-efficient finetuning (PEFT) P erforms the Vanilla TV ?nd FV at all .layers., with
method (Wu et al., 2024: Subramani et al., 2022 the performance gap particularly prominent in late

Turner et al., 2024), since it involves optimizing layers. See Appendix D.1 for other models.
exactly d parameters, which is lower than for most existing PEFT strategies.

not only consistently outperforms the baseline
methods at all layers, but also matches or even
surpasses ICL performance—particularly when
injected at early layers of both models. The

Accuracy of Late-Layer Injection Another notable trait of the LTV is that it still achieves nontrivial
performance when trained and injected at late layers, despite an overall decreasing trend with depth.
This contrasts with Vanilla TV and FV, which show severely degraded accuracy beyond a certain
depth as reported in prior work (Li et al., 2024a; Todd et al., 2024). Our results therefore challenge
the idea that a critical depth threshold exists beyond which layers cannot utilize the injected TV. We
further analyze the mechanism enabling LT Vs at different depths to take effect in Subsection 4.3.

Flexibility and scalability of the LTVs Existing TV studies typically inject solely into the last
token hidden state (P = {—1}) at one specific layer (L = {/}) of the zero-shot prompt. We go
beyond this baseline to examine the adaptability of our LTV to more diverse configurations. We set / to
the middle layer of the model (i.e., 16 for the 32-layer Llama3.1-8B) as the baseline, and then consider
the following variants. 1) Keep [fixed but inject (and train) at a different position P = {4}, i.e., add
the TV to the fourth token hidden state”. 2) Inject at multiple positions: P = {—5,—4, -3, -2, —1}.
3) Keep P = {—1} but inject at every four layers, i.e., L = {0,4,...,28,32} for Llama2-13B. 4) Set

ZPrompts with fewer than 4 tokens are skipped in the accuracy calculation.

Under review as a conference paper at ICLR 2026

Table 1: LTV outperforms Vanilla TV and FV not only in the baseline case but also across diverse
configurations with varied positions, layers, and prompt formats. See Appendix D.2 for other models.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.

Method P={-1},L={16} P={4} P={-5,...,—-1} L={0,438,...} P={-5,..}1L={02,..} 5) ICL prompts
Vanilla TV 37.80% 2.16% 19.18% 17.97% 18.15% 56.12%
Fv 37.30% 2.68% 6.05% 31.88% 0.38% 74.78%
LTV (Ours) 83.49%T45,5g% 78'39%T75»7]% 82-44%T63.26% 86.43%154‘55% 51»39%733‘24% 84.61%@_83%

P={-5-4,-3,-2,—1} and L = {0,4,...,28,32} simultaneously. 5) Keep P and L fixed but
change the zero-shot prompt to an 8-shot ICL prompt. We compare our LTV to Vanilla TV and FV in
all five settings®, with implementation details for FV in Appendix G.

(A) ¢ Mean + SD The results in Table 1 demonstrate the advantages
of our method over the baseline and highlight the

10| 7.78 8.02 sha oha flexibility and scalability of TVs in general. The LTV
? s takes effect at arbitrary positions and is not confined

(B<)) - — — - to the last token. Multiple LT Vs can be injected at dif-

ferent positions or layers with performance benefits,
and injecting into ICL prompts can further improve
accuracy (baseline ICL accuracy is slightly < 80%,
ICL Response: 0.1 point now. as in Figure 2). By contrast, TVs distilled from ICL

LTV Response: 6.1 point now. hidden states are sensitive to injection position, do
Vanilla TV/FV Response: 1 point in 10 davs: 1t improve ICL accuracy, and fail to synergize when
injected at multiple locations. The only exception is

Figure 3: (A) Mean and standard deviation the “More layers & Pos.” setting, where both meth-
of ratings for responses generated with ICL, ods fall behind baseline. Closer examination suggests
LTV, FV, and Vanilla TV. (B) An example that injecting at many layers and positions simulta-
question and responses across settings. neously does not help artificial Capital, Capitalize,
and Antonym tasks—Ilikely because their simplicity makes heavy TV injection prone to overfitting.

Q: I can give you a reward of 0.1 points now,
or 1 point in 10 days. Which would you prefer?

Adaptability of LTVs to complex task settings The 10
tasks above have single-token labels and unique correct
answers (e.g., The capital of China is — Beijing). To
evaluate generalizability to a more complex generation
task with multi-token responses—where the goal is to
elicit a behavioral mode rather than a single answer—we Capital
adopt the Myopic dataset from the LLM steering literature ~ Capitalize
Panickssery et al. (2024); Bayat et al. (2025). Each entry Antonym
presents a question with two choices (see Figure 3 (B)), R gsia?\«i@\\«{o@o
one myopic and the other favoring long-term rewards. We i
compare the generated answers with LTV (injected at the
middle layer) to the two baselines by asking an LLM to
rate them on a 10-point scale (details in Appendix H)
based on how well they reflect the myopic choice. The statistics in Figure 3 show that the LTV not
only surpasses the baselines but also exceeds ICL performance—something existing TV methods
distilled from ICL representations struggle to achieve. These results provide clear evidence of the
potential of LTVs in complex generation settings (see Appendix D.3 for other models).

SST-2

o
®

Cosine Similarity

TREC

SNLI

e
=)

RTE

N
IS

e
v

o
°

Figure 4: Cosine similarity heatmap of
LTVs for seven tasks, showing inter-task
separation and intra-task clustering.

LTVs as effective task representations As a first step toward understanding how TVs capture task
idiosyncrasies, we compute cosine similarities among TVs trained for different tasks (and across
repeats of the same task). For each of the seven tasks, we train a middle-layer LTV five times and
compute cosine similarities among the resulting 7 x 5 = 35 vectors. The outcome in Figure 4 (other
models in Appendix D.4) shows that LT Vs internalize effective and consistent task representations,
with clear intra-task alignment and inter-task separation. The only notable exception is the moderate
alignment between LTVs trained for SNLI and RTE, which share the labels {true, false}. This
suggests that the unembedding directions of task labels critically determine the orientation of TVs:

3In the baseline case, the FV method adds the sum of head outputs at the last position to the final token’s
hidden state. For varied [P, we add summed outputs at each position in [P to the corresponding hidden state. For
multiple layers, we replicate the FVs |L| times and inject a copy at each layer. For the Vanilla TV, we patch
hidden states at positions I’ and IL. of an ICL prompt with a different query into those of x,.

Under review as a conference paper at ICLR 2026

83%
75%-

?50.,,, 52% g7 51%
207 5 50%-
< 25%- / -
%/// 2 o v ‘ ‘
Trained TV Reconstructed through OV zs Trained TV Key Heads Ablated Rand. Heads Ablated
(a) Reconstructing TV effect through OV circuits. (b) Ablating key attention heads

Figure 5: Assessing the significance of attention heads in the low-level interactions between TVs
and model components. (A) Changes induced by TVs on head outputs through OV circuits explain a
substantial portion of the performance boost. (B) Ablating attention heads that critically leverage
TVs significantly degrades performance. Results for other models in Appendix E.2

LTVs that ultimately promote alignment of hidden states to the same unembedding vectors naturally
exhibit high cosine similarity. We elaborate further in Subsection 4.3.

4.2 LOW-LEVEL INTERACTIONS BETWEEN TV AND ATTENTION HEADS

After demonstrating the superiority of our approach over inefficient methods of extracting TVs,
we next address the second gap in prior TV studies: the lack of exposition of the mechanism
behind TV effectiveness. We begin with the low-level mechanism through which concrete model
components interact with TVs to induce their effects in computation. We focus on attention heads
given their centrality in Transformer-based LLMs (Zheng et al., 2024), and their well-documented
significance for model performance (Yang et al., 2025a; Cho et al., 2025; Jin et al., 2024) and
behaviors (McDougall et al., 2023; Song et al., 2025) across diverse settings.

Reconstructing TV effect through OV circuits In Section 3, we showed that the output of an
attention head (l k) to the final token hidden state (which directly determines the output) can be

expressed as aN K=):N lcl le TWI khl !, When a TV 6 is injected at the last position of layer

[— 1, the corresponding hidden state becomes hfv 16, and the attention head output becomes:
aNk = Z clleTWthl '+ NIW(Z)IWVk(hI '+0), “

with an additional component cN lWé—,EWé k0 Since cf\,kl is a scalar attention weight and considering

the effect of layer normalization, the term Wo K W‘Z, (0—i.e., the TV transformed by the head’s OV
circuit—is the core factor reflecting the effect of the TV on the head’s contribution to the residual
stream (Figure 1 (B)). Because residual connections (He et al., 2015) carry 6 forward, it influences
all heads in layer / and beyond. Thus, the aggregate influence on head outputs caused by the TV is:
' T !
Wy W0, (5)
(I K):1'>1

which has a similar form to FV. To test whether interactions between 6 and attention heads constitute
the main low-level pathway, we inject this aggregate back as a packaged TV into the residual
stream at layer / — 1 to reconstruct the aggregate effect of the original TV expressed and propa-
gated through OV circuits of all heads on the residual stream. We provide further clarifications
in Appendix E.1. We again experiment with the middle layer and rescale the vector to match the
norm of @, avoiding shifting hidden states out of distribution. After injection, we also add 0 to the
final-layer hidden state to reinstate its purely residual effect . The results in Figure 5a confirm the
critical role of attention heads and their OV circuits: reconstructing the TV effect via OV-transformed
decompositions restores much of the performance gain, showing that TVs steer the residual stream
largely through channels modulated by attention heads.

Assessing key attention heads leveraging the TV We further evaluate attention heads by identifying
those most reliant on TV for predictions and examining the effect of ablating them (setting outputs
to 0). We compute a saliency score (Bansal et al., 2022; Michel et al., 2019; Molchanov et al., 2016)

for each head in the presence of a TV. Let af\l,‘ . be head (1, k)’s output to the last position with the TV

4We confirm this residual effect plays an inconsequential role in the observed accuracy gain through
reconstructing the OV effect, see Appendix E.3.

Under review as a conference paper at ICLR 2026

o]

220.0% > I Key Heads

= = 50% [0 Random Heads
$10.0% g

- -

g E ol Ll

17 19 21 23 25 27 29 31 0 4 8 12 16 20 24 28 32 36 40
Layer Position
(a) Distribution of key heads across layers (b) Distribution of attention weights across positions

Figure 6: (A) Key attention heads cluster mainly in layers immediately after the injection (16 for
Llama3.1-8B) and secondarily in final layers. (B) Compared to random heads, key heads suffer less
from attention sink and focus more on final positions. See Appendix E.4 for other models.

dp(yqlzq,0,LP)
80,5\;,,{

the correct label probability via a first-order Taylor approximation. We compute scores for all heads

after the injection layer and designate the top 10% as key heads. We then ablate these and randomly

ablate 10% of heads as a control. The results in Figure 5b support the saliency-based identification:

ablating key heads reduces performance far more than random ablations, confirming attention heads’

central role in realizing TV-driven gains, compared with direct residual bias of 6.

, estimating the influence of the head output on

. !
injected; its saliency score is [aly |- |

Characterization of the key attention heads After identifying key heads, we further analyze their
characteristics—specifically their distribution across layers and attention weights over token positions.
We report the average percentage of key heads per layer across datasets. For attention distribution,
we show average patterns of all identified heads over input positions on an SST-2 prompt (for more
prompts see Appendix E.5), alongside the average from an equal number of randomly selected heads.

The results in Figure 6 show two main patterns. First, key heads leveraging TVs follow a quasi-U-
shaped distribution: many appear right after the injection layer (serving as early gateways for TV
influence) and again in final layers (integrating TV effects into outputs). Second, randomly selected
heads exhibit a strong “attention sink” (Xiao et al., 2023; Sun et al., 2024), focusing on the first
token and often performing “no-op” behaviors (Vig & Belinkov, 2019; Vig, 2019), making them
unresponsive to TV injection (see Figure 5b). By contrast, key heads show weaker sink and greater
focus on final positions, enabling them to exploit TVs when shaping outputs (Figure 5a).

4.3 HIGH-LEVEL ANALYSIS OF TV’S INFLUENCE MECHANISM

The previous section demonstrated that TV are realized primarily through attention-head OV circuits,
with a small subset of heads driving most of the effect. We now move from these local interactions to
the higher-level question: how do TV evolve as they propagate through the network and ultimately
shape predictions? To answer this, we analyze the layer-wise dynamics of hidden states after TV
injection which reflects how the injection effect propagates (Skean et al., 2025; Kirsanov et al., 2025;
Yang et al., 2025a) using the SST-2 dataset that offers clear mechanistic insights (Yang et al., 2025a).
we track three complementary metrics across layers of TV influence (Figure 7 (A)):

1. Logit Lens Accuracy (nostalgebraist, 2020): decode hidden states at intermediate layers with
the unembedding matrix Wy and compute accuracy. This global metric indicates whether the
inference dynamics driven by the TV are able to yield correct predictions at a given depth.

2. Logit Difference: the logit gap between correct and incorrect labels, e.g., W/ vs. W}, for
SST-2. This measures whether the TV-affected hidden states can separate the correct label from
the wrong in the task label space to support high Logit Lens Accuracy.

3. Task Alignment: average cosine similarity between hidden states and label unembeddings. This
measures whether TV-affected hidden states align with task-related directions to identify the
label space, which achieves high Logit Lens Accuracy given correct Logit Difference.

Given the different effects of TVs injected at early vs. late layers note in Subsection 4.1, we compute

these metrics for [H 8,)7 .. H (Ll;], i.e., the collections of last-token hidden states across layers when a

TV 0, is injected at an early or late layer /. We set [= % for early and [= %L for late (8 and 24 for
Llama3.1-8B). We compare these TV-affected hidden states with ICL and zero-shot baselines.

Early vs. Late TVs Shape Hidden States Differently From Figure 7 (A), both early- and late-layer
TVs nudge zero-shot hidden states toward ICL trajectories in metric trends, indicating that LTVs
capture the essence of ICL. Yet they act differently: early TVs improve metrics gradually over several

Under review as a conference paper at ICLR 2026

(A) Early Layer TV: Logit Lens 6 Early Layer TV: Logit Diff Early Layer TV: Task A
° i 04 ; ®
% 50% i8 zs % i5 % 01
= ig LTV -2) =
iF ICL 2 0.0
0% 1, E. g : [an. . y . i . .,
o 10 20 30] 10 20 30 o 10 20 30
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff 0.2, Late Layer TV: Task A
75% 2
Es0% - El A 5 £o0a 4
g 25% 5 g E g S
> £ 0.0 =
0% & o F
o 10 20 30 o 10 20 30 o 10 20 30
() Layer Layer Layer
Tokens Decoded from LTVs:

Early Layer: classical, Classical, nghiép, brushes, /forms, enant, irm,......

Late Layer: positive, negative, -positive, positives, Negative, Positive,...
Figure 7: (A) Metric values of hidden states across layers when the TV is injected at an early or late

layer. (B) Tokens decoded from TVs, with early-layer TVs yielding random tokens and late-layer
TVs producing task-related tokens. See Appendix F.1 for other models’ results.

100% g 100%
B’ 75% : 75%
<)]
5 50% g 50% ,
o ~ —— H
S 25% — £ 25% v
0 .
—— Reconstructed 6, 2 —— H{,Wgs,0
oL, ¢ 00 H o 0%le—reeeeed
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Layer Layer
(a) Effect of linearly reconstructed TV. For other mod- (b) Using a linear transformation to replace layer up-
els see Appendix F.3. dates of hidden states.

Figure 8: (A) A reconstructed TV based on modeling 6;’s influence as linear achieves comparable
accuracy for most layers. (B) Characterizing hidden-state updates with TVs as linear yields positive
results: the fitted transformation matrix substantially increases intermediate-layer decoding accuracy.

updates, whereas late TVs immediately align hidden states with label unembedding vectors. This
aligns with Figure 7 (B), where decoding TVs directly with Wy shows early TVs yield irrelevant
tokens while late TVs produce task-related tokens—implying stronger alignment with task directions
and direct steering of hidden states to increase label logits. These differences motivate a closer
look at how early vs. late TV effects propagate through intermediate updates.

Linear propagation of TV’s effect To analyze how a TV’s effect is transmitted to final-layer hidden
states, note that we have the abstraction of the from / to L :

H! = Layer_Update,,, (H'), H{;; = Layer_Update,, (H'+ 1;01), 6)

where H’ are zero-shot hidden states at the final layer L, and multiplying by 1, adds the TV to each
of the n examples. Given ample evidence of linear mechanisms in Transformers (Marks & Tegmark,
2024; Park et al., 2024), we hypothesize that if the composite update acts linearly on 6;, then

1, 0,Wry) ~ H(L,) — HE,

for some Wry ;) € R%*4 parameterizing the linear effect of hidden states update. The resulting effect
of TV on label logits is 8;Wry, ;) Wy, and on task labels 8, Wy,) W/;*"* (inner products with

columns of Wry, ;s Wy for “positive”/“negative”). To test this hypothesis, we proceed as follows:
(1) Collect states with noise injection: Using LTV 6, on sample prompts, we obtain H (Ll; (with
injection) and H'” (without). We perturb 6, as 0, ; = 0;+ Aie; while obtaining H (LII) to avoid degenerate

rank-1 solutions when fitting Wry, ;) since 1, 6; is rank-1.

(2) Construct and evaluate proxy TV: We compute Wy, (\ W/ + Wy (s W[/ as a proxy TV,
rescale it to match 6;’s norm, and inject it at layer /. This vector should have high inner products
with Wy,) W[and Wy, ;W) should raise both label logits to support correct prediction if
the hypothesis is correct. We test this 0; at all layers / (details in Appendix I).

Under review as a conference paper at ICLR 2026

The results in Figure 8a support the linear hypothesis: the linearly reconstructed TV matches the
original TV’s performance for most layers, with only a few exceptions. This indicates that a purely
linear operator Wry, ;) can almost fully capture the channel linking injected TVs at different layers
to changes in final-layer hidden states, despite the many nonlinear components within the model.

Linearity of hidden-state updates The strong linearity of Layer_Update;_; on TVs suggests
that hidden-state updates may also be summarized linearly. To verify this, we fit Wy ;) such that
H (l;)WH&(,) ~H (LI; on a sample (details in Appendix I), where H (l;) are layer-/ hidden states with 6,

injected. We then multiply Wy ;) with a separate set of H, (l;) and check if decoding with Wy, yields
higher accuracy than direct decoding, which is confirmed in Figure 8b and signals the strong linearity
of hidden-state updates. These results align with prior evidence of LLM layer linearity (Razzhigaev
et al., 2024) and the success of attempts to linearize Transformers (Li et al., 2020; Han et al., 2024).

(A) (€ - Decomposition of TV’s influence
k alignment of 6, - COSS -

$ 0p| —— Took aligament of 0t g 0-501 =m0 COSMBQ0) .« mechanism While TVs injected at

57 So2s T different layers are converted to final

0.0 e : : _

0 4 8 12 16 20 24 28 000 e 15 1o 20 21 28 OUtPUt changes via a hnegr transfor

(8) Layer Layer mation Wry), finer-grained analy-

Tokens Decoded from Early Layer LTVs sis can be Conducted to explaln Why

Before Rotation: classical, Classical, nghiép, brushes, /forms, enant,... early and late TVS dlffer as in Fl oure 7

Rotation: positive, negative, adverse, favorable, unfavorable,... TO thls end, we Considel‘ the polar

decomposition Wry ;) = Q)X),
Figure 9: (A) Applying the rotation to TVs at different lay— where orthonormal Q) represents
ers substantially increases alignment with unembeddings of a rotation and positive semidefinite
task-related labels. (B) After rotation, early-layer TVs that 3, o a stretch along the right-singular
originally decode random tokens produce task-related tokens. directions of Wy - Since Figure 7
(C) The rotation effect diminishes for late-layer TVs as the (B) shows early-layer TVs aligned
estimated matrix approaches identity. with directions unrelated to the task,
we apply only the rotation to 6; at different layers and measure changes in task alignment. This
addresses whether early-layer TVs operate via a distinct mechanism, or are rotated by subse-
quent layers to align with task label unembeddings to increase logits as late-layer TVs do. The
substantial increases in task alignment in Figure 9 (A), especially for early layers, indicate a common
mechanism: TVs steer hidden states toward task-related directions (Figure 1 (C)). The fact that
early-layer TVs decode task-relevant tokens after rotation (Figure 9 (B)) supports this view. The
observed lag between early-layer injection and the layer where metrics begin to change (Figure 7(A))
arises because in-between layers (primarily the OV circuits of heads in these layers as we show
in Subsection 4.2) are needed to rotate the TV toward task-related directions. Thus, Figure 9
provides a unified account linking TVs at different layers to final outputs.

Rotation phases out, stretch phases in To further understand how rotation and stretch evolve
across layers, we compute the cosine similarity between 6; and Q(;)6,. This quantifies rotation
strength: higher similarity implies less rotation as the matrix approximates identity mapping. The
rising similarity across layers in Figure 9 (C) reveals a clear trend of diminishing rotation in deeper
layers, with stretch becoming the dominant component of Wry ;). This suggests that early-layer
TVs undergo stronger rotation—consistent with the finding that intermediate layers are needed to
rotate TVs toward task-related directions.

5 CONCLUSION

We revisited task vectors as mechanistic explanations for in-context learning. Moving beyond
extraction-based approaches, we introduced directly trained Learned Task Vectors, which achieve
higher accuracy and adapt flexibly across layers, positions, and task settings. Our analysis showed that
TVs at the low level operate mainly through attention-head OV circuits, with a few key heads driving
their effect. At the high level, TVs propagate through the model in a largely linear manner: early TVs
rotate to align with task subspaces, while later TVs are stretched in magnitude. This rotation—stretch
dynamic offers a unified account of how TVs at different depths shape final predictions. By combining
empirical performance with mechanistic explanation, our work provides both a tool for finding
effective TVs and a principled inquiry into how LLMs use them to realize their effects.

Under review as a conference paper at ICLR 2026

REFERENCES

01. AL Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin
Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and
Zonghong Dai. Yi: Open foundation models by 01.ai, 2024.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. arXiv preprint arXiv:2212.09095, 2022.

Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, and Pascal Vincent.
Steering large language model activations in sparse spaces. arXiv preprint arXiv:2503.00177,
2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, et al. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing Systems, pp.
1877-1901, Online and Vancouver, Canada, 2020. URL https://dl.acm.org/doi/abs/
10.5555/3495724.3495883.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
Provable in-context vector arithmetic via retrieving task concepts. In Forty-second International
Conference on Machine Learning, 2025.

Wang Cai, Hsiu-Yuan Huang, Zhixiang Wang, and Yunfang Wu. Beyond demonstrations: Dynamic
vector construction from latent representations. arXiv preprint arXiv:2505.20318, 2025.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207-1223, 2006.

Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, and Jinghui Chen.
Personalized steering of large language models: Versatile steering vectors through bi-directional
preference optimization. Advances in Neural Information Processing Systems, 37:49519-49551,
2024.

Hakaze Cho, Mariko Kato, Yoshihiro Sakai, and Naoya Inoue. Revisiting in-context learning
inference circuit in large language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=x1izpnYNvQq.

Robert Csordas, Christopher D. Manning, and Christopher Potts. Do language models use their depth
efficiently?, 2025. URL https://arxiv.org/abs/2505.13898.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177-190. Springer, 2005. URL https:
//1link.springer.com/chapter/10.1007/11736790_09.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context
learning, 2024. URL https://arxiv.org/abs/2301.00234.

Yuxin Dong, Jiachen Jiang, Zhihui Zhu, and Xia Ning. Understanding task vectors in in-context
learning: Emergence, functionality, and limitations. arXiv preprint arXiv:2506.09048, 2025.

Jacob Dunefsky and Arman Cohan. One-shot optimized steering vectors mediate safety-relevant
behaviors in llms, 2025. URL https://arxiv.org/abs/2502.18862.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey et al. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

10

https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://openreview.net/forum?id=xizpnYNvQq
https://arxiv.org/abs/2505.13898
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2502.18862
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Dongchen Han, Tianzhu Ye, Yizeng Han, Zhuofan Xia, Siyuan Pan, Pengfei Wan, Shiji Song, and
Gao Huang. Agent attention: On the integration of softmax and linear attention. In European
conference on computer vision, pp. 124-140. Springer, 2024.

Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness
of task vectors in in-context learning: An encoder decoder perspective, 2025. URL https:
//arxiv.org/abs/2412.12276.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9318-9333, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624/.

Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Sigiao Xue, Jun Zhou, Linqi Song, Defu Lian, and Ying Wei.
Unlocking the power of function vectors for characterizing and mitigating catastrophic forgetting
in continual instruction tuning, 2025a. URL https://arxiv.org/abs/2502.110109.

Jiachen Jiang, Yuxin Dong, Jinxin Zhou, and Zhihui Zhu. From compression to expansion: A
layerwise analysis of in-context learning, 2025b. URL https://arxiv.org/abs/2505.
17322.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang
Liu, and Jun Zhao. Cutting off the head ends the conflict: A mechanism for interpreting and
mitigating knowledge conflicts in language models, 2024. URL https://arxiv.org/abs/
2402.18154.

Patrick Kahardipraja, Reduan Achtibat, Thomas Wiegand, Wojciech Samek, and Sebastian La-
puschkin. The atlas of in-context learning: How attention heads shape in-context retrieval augmen-
tation. arXiv preprint arXiv:2505.15807, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Artem Kirsanov, Chi-Ning Chou, Kyunghyun Cho, and SueYeon Chung. The geometry of prompt-
ing: Unveiling distinct mechanisms of task adaptation in language models. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 1855-1888, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.org/2025.
findings—-naacl.100/.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld, and Rada
Mihalcea. A mechanistic understanding of alignment algorithms: A case study on dpo and toxicity,
2024. URL https://arxiv.org/abs/2401.01967.

Dongfang Li, Zhenyu Liu, Xinshuo Hu, Zetian Sun, Baotian Hu, and Min Zhang. In-context learning
state vector with inner and momentum optimization, 2024a. URL https://arxiv.org/abs/
2404.11225.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model, 2024b. URL https:
//arxiv.org/abs/2306.03341.

Rui Li, Jianlin Su, Chenxi Duan, and Shunyi Zheng. Linear attention mechanism: An efficient
attention for semantic segmentation. arXiv preprint arXiv:2007.14902, 2020.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International Confer-
ence on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/
C02-1150.

11

https://arxiv.org/abs/2412.12276
https://arxiv.org/abs/2412.12276
https://arxiv.org/abs/1512.03385
https://aclanthology.org/2023.findings-emnlp.624/
https://aclanthology.org/2023.findings-emnlp.624/
https://arxiv.org/abs/2502.11019
https://arxiv.org/abs/2505.17322
https://arxiv.org/abs/2505.17322
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2025.findings-naacl.100/
https://aclanthology.org/2025.findings-naacl.100/
https://arxiv.org/abs/2401.01967
https://arxiv.org/abs/2404.11225
https://arxiv.org/abs/2404.11225
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150

Under review as a conference paper at ICLR 2026

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing, 2021. URL https://arxiv.org/abs/2107.13586.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering, 2024. URL https://arxiv.
org/abs/2311.06668.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Bill MacCartney and Christopher D. Manning. Modeling semantic containment and exclusion in
natural language inference. In Donia Scott and Hans Uszkoreit (eds.), Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008), pp. 521-528, Manchester,
UK, August 2008. Coling 2008 Organizing Committee. URL https://aclanthology.
org/C08-1066/.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets, 2024. URL https://arxiv.org/abs/2310.
06824.

Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy
suppression: Comprehensively understanding an attention head, 2023. URL https://arxiv.
org/abs/2310.04625.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic, 2024. URL https://arxiv.org/abs/2305.16130.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

nostalgebraist. Interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6veru/interpreting-gpt-the-logit-lens.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.org/
abs/2312.06681.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models, 2024. URL https://arxiv.org/abs/2311.03658.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAl blog, 2019. URL
https://d4mucfpksywv.cloudfront.net/better-language—-models/
language-models.pdf.

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Nikolai Gerasimenko, Ivan Oseledets,
Denis Dimitrov, and Andrey Kuznetsov. Your transformer is secretly linear. arXiv preprint
arXiv:2405.12250, 2024.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Quanshi Zhang, Xipeng Qiu, and Dahua Lin.
Identifying semantic induction heads to understand in-context learning, 2024. URL https:
//arxiv.org/abs/2402.13055.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. arXiv
preprint arXiv:2502.02013, 2025.

12

https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://aclanthology.org/C08-1066/
https://aclanthology.org/C08-1066/
https://arxiv.org/abs/2310.06824
https://arxiv.org/abs/2310.06824
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2305.16130
https://arxiv.org/abs/1301.3781
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2311.03658
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2402.13055
https://arxiv.org/abs/2402.13055

Under review as a conference paper at ICLR 2026

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631-1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1170/.

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in transformers. Proceedings of the National Academy of Sciences,
122(6):e2417182122, 2025. URL https://arxiv.org/abs/2408.09503.

Nishant Subramani, Nivedita Suresh, and Matthew E. Peters. Extracting latent steering vectors from
pretrained language models, 2022. URL https://arxiv.org/abs/2205.05124.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models, 2024. URL https://arxiv.org/abs/2402.17762.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models, 2024. URL https://arxiv.org/abs/2310.
15213.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023. URL https://arxiv.org/abs/2302.
13971.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
https://arxiv.org/abs/2308.10248.

Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv preprint
arXiv:1906.05714, 2019.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model, 2019. URL https://arxiv.org/abs/1906.04284.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning,
and Christopher Potts. Reft: Representation finetuning for language models, 2024. URL https:
//arxiv.org/abs/2404.03592.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Haolin Yang, Hakaze Cho, Yiqiao Zhong, and Naoya Inoue. Unifying attention heads and task
vectors via hidden state geometry in in-context learning, 2025a. URL https://arxiv.org/
abs/2505.18752.

Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in
in-context learning: Emergence, formation, and benefit. arXiv preprint arXiv:2501.09240, 2025b.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? arXiv preprint
arXiv:2502.14010, 2025.

13

https://aclanthology.org/D13-1170/
https://arxiv.org/abs/2408.09503
https://arxiv.org/abs/2205.05124
https://arxiv.org/abs/2402.17762
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/1906.04284
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2505.18752
https://arxiv.org/abs/2505.18752

Under review as a conference paper at ICLR 2026

Li-Ming Zhan, Bo Liu, Zexin Lu, Chengqgiang Xie, Jiannong Cao, and Xiao-Ming Wu. Deal:
Disentangling transformer head activations for llm steering, 2025. URL https://arxiv.
org/abs/2506.08359.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding

deep learning requires rethinking generalization, 2017. URL https://arxiv.org/abs/
1611.03530.

Haiyan Zhao, Heng Zhao, Bo Shen, Ali Payani, Fan Yang, and Mengnan Du. Beyond single
concept vector: Modeling concept subspace in llms with gaussian distribution, 2025. URL
https://arxiv.org/abs/2410.00153.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu

Xiong, and Zhiyu Li. Attention heads of large language models: A survey. arXiv preprint
arXiv:2409.03752, 2024.

14

https://arxiv.org/abs/2506.08359
https://arxiv.org/abs/2506.08359
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/2410.00153

Under review as a conference paper at ICLR 2026

Appendices

A STATEMENT OF LLLM USAGE

In this work, LLMs are used to help with writing, experiment coding, and visualization of the results.
LLMs are also used to produce results in one of the experiments, as explained in Subsection 4.1 and
Appendix H.

B DETAILED PROCEDURES OF TRAINING LEARNED TASK VECTORS

As described in the main text, we train € by minimizing the loss —log p(y,|z4,6,L,P). Optimization
is performed with AdamW (Loshchilov & Hutter, 2017) using a learning rate of 0.001 and weight
decay of 0.01. Prompts for training are drawn from the training split of each dataset, and performance
is evaluated on the corresponding test split, with dataset construction explained in Appendix C. For
efficiency, we select from the training data the first number of examples equal to the size of the test
set, and further divide them into training and validation splits. For example, the Antonym dataset
contains 600 training and 400 test samples; we take the first 400 training samples and split them
into 240 for training and 160 for validation. Training runs for up to 10 epochs, with 100 examples
randomly sampled from the training split per epoch (or the entire split if it contains fewer than 100
samples). Early stopping with a patience of 2 is applied: if validation performance does not improve
for two consecutive epochs, training halts and the 0 that achieved the best validation accuracy is
retained as the final TV. In the setting of Subsection 4.1, where TVs are trained on ICL prompts
rather than zero-shot ones, demonstrations are also drawn from the training data. To avoid label
leakage, demonstrations are sampled only from examples not used in TV training. For instance, in
the Antonym dataset, where 400 of 600 training samples are used for TV training, the remaining 200
are reserved for demonstration construction.

C IMPLEMENTATION DETAILS

Models We use the official HuggingFace implementations of all models. Models with more than
10B parameters are quantized to 4-bit precision, while smaller models are run in half precision.

Datasets We use the official HuggingFace implementations of SST-2, SNLI, RTE, and TREC. For
Capital, Capitalize, Antonym, and Myopic, we use the data released by previous authors. Specifically,
the data for Capital, Capitalize, and Antonym are taken from Todd et al. (2024), and the data for
Myopic from Panickssery et al. (2024).

ICL and evaluation settings We select demonstrations randomly for each query without relying on
any principled selection methods. For SST-2, TREC, SNLI, and RTE, we use the training set both for
demonstration selection and for training task vectors, and we evaluate performance on the test set
(or the validation set if ground-truth test labels are unavailable). To ensure efficiency, if the training
set has more than 10,000 entries, we keep only the first 10,000 for demonstration selection, and
for evaluation we restrict to the first 1,000 examples from the test or validation set. For the Capital
dataset (197 examples in total), we use the first 120 examples for training and the remaining 97 for
testing. For the Capitalize dataset, we use the first 500 rows for training and the following 300 rows
for testing. Similarly, for Antonym we use the first 600 rows for training and the next 400 rows for
testing. For the Myopic dataset, we use the first 500 rows for training and the remaining 450 rows for
testing.

Devices All experiments are conducted on an H200 GPU.

D SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.1

D.1 PERFORMANCE OF LTV INJECTED AT THE LAST POSITION ON OTHER MODELS

In Subsection 4.1, we reported the performance of our LTV for Llama2-7B and Llama2-13B under
the traditional setting following Hendel et al. (2023) and Todd et al. (2024), i.e., injecting at one

15

Under review as a conference paper at ICLR 2026

specific layer into the last position. In Figures 13—14, we provide similar layer-sweeping results of
LTV performance for Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B. The results likewise
demonstrate a consistent performance advantage of the LTV over the two baselines across layers, with
the gap being most prominent in later layers. In Table 3, we report the corresponding results for the
remaining three non-Llama models. Concretely, we inject the TVs at layers corresponding to 50% of
the total number of layers of each model (for instance, at layer 16 for a 32-layer model). The results
validate the performance of our LTVs across model sizes and architectures, as they consistently raise
performance significantly above the zero-shot level and up to the level of ICL.

D.2 REPLICATION OF TABLE 1 FOR OTHER MODELS

In Tables 4—7, we present the comparison of FV, Vanilla TV, and LTV across the five scenarios on
Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B, which yields largely the same conclusions.
Our LTV demonstrates strong flexibility with respect to injection positions and ICL prompts, as
well as scalability to cases involving multiple positions and layers. By contrast, FV and Vanilla
TV struggle to adapt to different injection positions and fail to improve performance when multiple
injections are used. For the other models we report only the performance of the LTV. The results,
shown in Tables 8—10, are consistent with those in Table 1. The reduced average performance of TVs
when trained and injected at multiple layers and positions simultaneously is again observed, which
we attribute to lower accuracy on the Capital, Capitalize, and Antonym tasks.

D.3 REPLICATION OF FIGURE 3 FOR OTHER MODELS

In Figures 15-18, we present the comparison between Vanilla TV, FV, and LTV injected into the
middle layer of Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B on the Myopic dataset. The
results closely echo those of Figure 3: the LTV consistently outperforms both baselines as well as ICL
across models, demonstrating its generalizability to complex generation tasks beyond single-token
responses and the superiority of its performance uncapped by the representation quality of the ICL
hidden states. In Figures 19-21, we present the results on the remaining models (Llama3-70B,
Qwen2.5-32B, Yi), where we compare Vanilla TV and LTV. The results are largely similar.

D.4 REPLICATION OF FIGURE 4 FOR OTHER MODELS

In Figures 22-28, we provide visualizations of the experiments presented in Figure 4 for additional
models. The results indicate that the pattern of intra-task clustering and inter-task separation among
LTVs is common across models, though the strength of intra-task clustering varies, being stronger
in Llama2-7B and Llama2-13B and more moderate in Llama3.1-8B and Llama3-8B. Moreover, the
relatively stronger alignment between LT Vs trained on SNLI and RTE, which share the same label
space, is also consistently observed. This supports our claim in the main text that the direction of
an LTV is closely correlated with the directions of the relevant unembedding vectors, which it must
align hidden states with to facilitate correct decoding.

E SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.2

E.1 CLARIFICATIONS OF THE APPROACH TO SIMULATE THE AGGREGATE EFFECT OF TVS
INDUCED THROUGH THE OV CIRCUITS IN SUBSECTION 4.2

We provide a visual explanation of how we simulate the aggregate effect of TVs induced through the
OV circuits of attention heads in Figure 10. We first compute the products between the OV circuit
of each attention head in layers after the point of injection and the injected TV 6, then sum these
products and rescale them to match the norm of € before injecting this aggregate vector as a TV at
the original injection site.

Note that we inject the aggregate product of the TV and all OV circuits, i.e., Z(1)1 ngT, Wé/ k/H,
as a whole back into the injection layer. This follows the procedure of previous TV studies, which
attempt to construct TVs from attention head outputs (Todd et al., 2024; Li et al., 2024a). We also
considered an alternative approach: instead of injecting the reconstructed TV as a whole, we first

16

Under review as a conference paper at ICLR 2026

All Subsequent OV Circuits

negative LTV

[[Layers]
Rescale

@

f

Bad movie. Sentiment

Figure 10: Visualization of how we reconstruct the aggregate effect of TVs induced through the OV
circuits of attention heads in Subsection 4.2.

compute
K

0 =Y Wé,j W} 0. (7
k=1

for each I’ > [. Then, at each layer I’ from [to the final layer, we inject OI‘,W into the residual stream.
This approach is intended to simulate the gradual incorporation of the TV transformed by the OV
matrices at each layer into the residual stream through consecutive updates. Empirically, we found
this method achieves lower reconstructed accuracy than the one presented in Figure 5. We believe the
reason is the strong inconsistencies in hidden state scales across layers (Csordas et al., 2025), which
make it much harder to adjust 8¢ to an appropriate scale. As a result, adding 87" at every layer
from [to the final one risks shifting hidden states out of distribution, which greatly compromises the
accuracy compared to the reconstruction approach in Subsection 4.2.

E.2 REPLICATION OF FIGURE 5 FOR OTHER MODELS

In Figures 29-35, we present results assessing the significance of attention heads in mediating the
low-level interactions between TVs and model components. The findings are somewhat mixed but
overall support the critical role of attention heads. Specifically, reconstructing the TV effect through
OV circuits proves effective for Llama3-8B, Llama3.2-3B, Qwen2.5-32B, and Yi-34B, but not for
the other three models. In contrast, this discrepancy does not appear in the ablation experiments:
across all models, ablating the heads with the highest saliency scores consistently and substantially
reduces the effect of the TV, far more than ablating an equal number of randomly selected heads. In
summary, the importance of attention heads for realizing the impact of TVs is robust across models
and architectures, though reconstructing TV effects by injecting summed OV transformations back
into the stream appears more model-dependent.

E.3 VERIFYING THE SIGNIFICANCE OF THE ACCURACY ACHIEVED THROUGH
RECONSTRUCTING OV EFFECTS OF TVs

In Subsection 4.2, in addition to injecting the summed product of the TV with the OV circuits of
all affected heads as explained in Appendix E.1, we also add the TV to the final layer hidden states
prior to decoding to reinstate the effect of the TV transferred purely through the residual stream.
To test whether this residual effect is the main cause of the observed accuracy gain, which would

17

Under review as a conference paper at ICLR 2026

otherwise invalidate OV circuits as the dominant low-level channel, we repeat the OV reconstruction
experiment from Subsection 4.2 but omit the final-layer TV addition. The results across models in
Figures 36—43 show that including or excluding the TV at the last layer has only an inconsequential
impact, as accuracy remains practically unchanged.

E.4 REPLICATION OF FIGURE 6 FOR OTHER MODELS

In Figures 44-50, we characterize key attention heads for the remaining seven models, focusing
on their average distribution across layers and the distribution of their attention weights over token
positions. For layer distribution, the primary concentration of key heads immediately after TV
injection is a consistent pattern across models. However, the U-shaped trend—featuring a secondary
rise in the proportion of key heads in later layers—is observed in Llama3-8B, Llama3.2-3B, Llama3-
70B, and Llama2-13B, but not in Llama2-7B, Qwen2.5-32B, or Yi-34B. Regarding attention weight
distributions, randomly selected heads in all models exhibit a clear attention sink pattern, whereas key
heads consistently mitigate this effect by concentrating more attention on the final tokens, particularly
near the last position where TVs are injected.

E.5 DISTRIBUTION PATTERNS OF ATTENTION WEIGHTS OF KEY HEADS LEVERAGING TVS
EVALUATED ON MORE PROMPTS

In Figure 6, we reported the difference in the attention distribution of key heads leveraging TVs
versus random heads over token positions of a single SST-2 prompt. To test the generalizability
of these results and exclude the risk of prompt idiosyncrasies, we evaluate the average attention
distribution of heads over the entire SST-2 test set. To address inconsistencies in prompt lengths, we
discretize the tokens of each prompt into 8 bins, each containing % of the total tokens (bin intervals
rounded to the nearest integer). We then calculate the proportion of attention falling into each bin
and average across prompts. The results across models in Figures 72—79 confirm the observation in
Figure 6: key heads allocate a higher proportion of attention to final tokens, as revealed by the high
concentration in the final bin.

F SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.3

F.1 REPLICATION OF FIGURE 7 FOR OTHER MODELS

In Figures 51-57 and Tables 11-17, we present results tracking the progress measures introduced in
Subsection 4.3 for the evolution of hidden states at each layer of other models, along with the tokens
decoded from early- and late-layer TVs. The findings largely mirror those in Figure 7: injection of
early-layer TVs influences the metrics only after a few subsequent layers, whereas late-layer TVs
change the measures immediately. Moreover, TVs trained at late layers consistently decode more
task-related tokens than early-layer TVs, except in Qwen2.5-32B and Yi-34B, where both early- and
late-layer TVs yield many irrelevant Chinese tokens.

F.2 INVESTIGATING THE LAYER THRESHOLD OF THE TWO OPERATING MODES OF TVs

In Figure 7, we see how early- and late-layer TVs behave very differently: early TVs cause the
measures to change only after several subsequent layers, whereas late TVs directly induce changes
immediately after injection. It is therefore worthwhile to examine the layer depth at which TVs
switch between these two operating modes. In Figures 80-95, we provide the layer-wise trends in
the metrics with TVs injected from the first to the last layer at an interval of 2 on Llama3.1-8B, to
accurately pinpoint this threshold. The results reveal that the transition occurs between layers 18 and
20. Interestingly, this is also the depth at which the Logit Lens Accuracy and Task Alignment values
of the ICL hidden states begin to rise significantly above the zero-shot hidden state baselines. This
is consistent with previous findings (Yang et al., 2025a), which report that ICL features a distinct
transition pattern where hidden states increasingly align with the unembedding vectors of task-related
labels from a certain layer depth onward. The capability of our LT Vs to accurately simulate the traits
of ICL hidden states further demonstrates the superiority of our method in that it finds TVs that truly
recover the essence of ICL functionality.

18

Under review as a conference paper at ICLR 2026

F.3 REPLICATION OF FIGURE 8 FOR OTHER MODELS

In Figures 58—64, we show results from replacing the composite layer updates from / to the final layer
with a fitted linear transformation, applied either to TVs or to hidden states across all /. The outcomes
are strongly positive: the linearly reconstructed TVs nearly perfectly match the functionality of the
original TVs across models, with only a few exceptions at certain layers. Likewise, the fitted linear
transformation effectively recovers the influence of composite layer updates on TV-affected hidden
states and raises the Logit Lens Accuracy at intermediate layers significantly above the baseline.

F.4 REPLICATION OF FIGURE 9 FOR OTHER MODELS

In Figures 65-71, we replicate the experiments of Figure 9 on other models. These experiments apply
the rotation component of the estimated linear transformation linking TV injection to output changes,
at different layers. The results confirm that early-layer TVs across models ultimately increase the
logits of task-related labels by being rotated, through subsequent layer updates, into directions aligned
with the corresponding unembedding vectors. This implies that the observation made for Llama3.1-
8B in the main text—that early and late TVs share the same fundamental mechanism of influence—is
consistent across models. Furthermore, the cosine similarity between the original TV and its rotated
counterpart increases monotonically with layer depth across models, validating the finding that
rotation effects are strongest in early layers and diminish in deeper layers. As a consequence,
early-layer TVs undergo stronger rotations and must adjust their orientations accordingly.

G IMPLEMENTATION DETAILS RELATED TO FUNCTION VECTORS

For Llama2-7B and Llama2-13B, we use the selected attention head index sets (100 heads for each
model) I released by Todd et al. (2024) to construct function vectors. Following the same practice,
we take the sum of the average outputs of each head in I at the last token position across a pool of
ICL prompts, i.e.,

I
Z a_y ricL
(1k)el

The ICL prompts are 8-shot, where the queries consist of the entire test set of each dataset, and the
demonstrations for each query are exactly those used in the evaluation of ICL performance for that
dataset. We also computed function vectors for Llama3-8B, Llama3.1-8B, and Llama3.2-3B, which
were not included in Todd et al. (2024)’s experiments. We adapt Todd et al. (2024)’s procedures to
these models and likewise identify 100 heads for each model from which to construct FVs.

H DETAILED PROCEDURES OF GENERATING CORRECTNESS RATINGS FOR
THE MYOPIC DATASET

We use the following template, adapted from Zhao et al. (2025), to prompt ChatGPT-5 to rate LLM
responses to questions in the Myopic dataset under different TV settings.

19

Under review as a conference paper at ICLR 2026

Assign a correctness rating on a scale of 10 to an LLM’s response to a question from the
dataset. Each question presents two choices: one is myopic and the other is far-sighted.
For example, consider the question: "Would you like a donut now, or two donuts in an
hour?" Here, the myopic answer is "A donut now," and the far-sighted answer is "Two
donuts in an hour." Assign the myopic choice, or any synonymous response, a score of 10.
Assign the far-sighted choice, or any synonymous variant or irrelevant response, a score of
0.

Question: "You can watch a movie now, or wait a week and watch two movies. What do
you want to do?"

Prompt

Watch a movie now. Score: 10. Wait a week and watch two movies. Score: 0.

Response

I DETAILS REGARDING TESTING THE LINEAR HYPOTHESIS OF TV EFFECT

We use the Adam optimizer (Kingma & Ba, 2017) to fit Wry ;) and AdamW to fit Wy). The
learning rate is set to 10~ with a weight decay of 5 x 107> to prevent overfitting. The sample
prompts used to collect H, (LII) and H’ are the same as those used to train task vectors for SST-2,
described in Appendix B. For Wry, ;), we minimize the MSE loss

1©Wry,) — (Hf) — H")|,
where ©; =[0;,;,i=1,...,n] and 0;; = 6, + Ase;.

We do not fit directly on 1, 6; because, under the equivalence between weight decay and ¢, regular-
ization (Zhang et al., 2017), the optimization objective with weight decay becomes

min |1, 6,W — (H" — H")||7 + k|| W[@®)
This corresponds to a ridge regression setting, whose closed-form solution is

W*=(ATA)'A"B, A=16, B=H"-H.

This simplifies to a rank-1 matrix m@ﬂ), where b is the row-wise mean of B. Each column of
W* is a scaled version of 8, i.e.,
I’ll_)j
—0;, j=1,...,d.
k+nlo, 7

Consequently, computing W*W/”* + W*W® and rescaling it to match the norm of ; is not
meaningful, since any column of W*W/; is also a scaled version of 8;, effectively reproducing the
original ;.

To introduce variability, €; is drawn from Gaussian white noise .4'(0, I;). The scaling factor 4; is
chosen by first sampling €; and then setting A; such that
102 _
Aill€ill2

ensuring a moderate signal-to-noise ratio (SNR) of 2. This facilitates accurate fitting of Wry, ;) while
avoiding degenerate solutions (Candes et al., 2006).

When fitting Wiy ;), we similarly inject noise to obtain H, (l;) = H' + ©; and the corresponding

H (Ll/), which ensures the stability of the fitted Wy ;). We then apply Wy) to H '4+1)6,,ie., the
hidden states with the noiseless TV, and evaluate decoding accuracy.

20

Under review as a conference paper at ICLR 2026

Table 2: Prompt templates and labels for different datasets.

Dataset Template Label
SST-2 {Sentence} Sentiment: {Label} positive / negative
TREC Question: {Sentence} Type: {Label} abbreviation / entity / description / human / location / number
SNLI The question is: {Premise}? True or maybe or false? The true / maybe / false
answer is: {Hypothesis} {Label}
RTE The question is: {Premise}? True or false? The answer is: true / false
{Hypothesis} {Label}
CB The question is: {Premise}? True or maybe or false? The true / maybe / false
answer is: {Hypothesis} {Label}
Capital {Country Name} Answer: {Label} capital of the country
Capitalize {Word} Answer: {Label} capitalized version of the first letter in the word
Antonym {Word} Answer: {Label} antonym of the word
Myopic {A question involving two choices} Answer: the myopic choice
{Label}

80% -
——— ICL Acc

60% -
g Commp [TV
— —e— Vanilla TV
c o/ |
S 40% FV

20% A

) B ZS Acc

0 2 4 6 8 101214 16 18 20 22 24 26 28 30
Layer of TV Injection

Figure 11: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama2-7B.

Model ZS Accuracy ICL Accuracy Accuracy with LTV
Llama3-70B 2.51% 81.93% 78.18%
Qwen2.5-32B 12.52% 85.44% 75.59%
Yi-34B 14.82% 81.33% 81.37%

Table 3: Performance of LT Vs under the traditional setting (injecting into the last-token hidden state
at a single layer). Injection layers correspond to 50% of each model’s total depth.

Table 4: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama2-7B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.
Method P={-1},L={16} P={4} P={-5..,-1} L={048,...} P={-5,..}L={02,...} 5) ICL prompts
Vanilla TV 38.26% 1.96% 14.16% 18.85% 13.30% 52.82%
FV 51.81% 1.40% 28.60% 47.14% 20.44% 73.23%
LTV 82.54%1307300 719.34%17738% 84.60%156.00% 82.24%135.10% 51.60%+31.16% 85.16%+11.93%

21

Under review as a conference paper at ICLR 2026

80% - ICL Acc
60% -
g —— LTV
_— —— Vanilla TV’
c o/, |
S 40% FV
20% A
0% [ttt o i m s m i v e i e e e ZS Acc

0246 8101214161820222426283032343638
Layer of TV Injection

Figure 12: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama2-13B.

80% ICL Acc
60% -
O —— [TV ’
% o —e— Vanilla TV
> 40% - FV
20% A
0% 1 ZS Acc

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Layer of TV Injection

Figure 13: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama3-8B.

Table 5: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama2-13B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.
Method ‘ P={-1},L={20} P={4} P={-5,...,—-1} L={0438,...} P={-5,..}L={0.2,..} 5) ICL prompts
Vanilla TV | 27.67% 1.84% 16.42% 20.46% 16.07% 43.84%
FV | 41.59% 1.22% 42.25% 36.97% 24.74% 77.51%
LTV | 80.33%13874% 71.53%:160.60% 87.69%+r4s449 82.25%14528% 51.46%+26.72% 84.99%47.43%

22

Under review as a conference paper at ICLR 2026

80% -
ICL Acc

60% -
3
— —e— Vanilla TV
c o/ |
S 40% FV

20%- w/

) A S Y Y e ZS Acc

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Layer of TV Injection

Figure 14: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama3.2-3B.

® Mean *= SD

10
7.30
6.12 °
*
5 2.98 2.86
Py Py
0,
ICL LTV Vanilla TV FV

Figure 15: Myopic dataset: LTV vs. Vanilla TV and FV on Llama2-7B.

® Mean *= SD

104
[] '.
5 3.94 3.70
L4 °
0,
ICL LTV Vanilla TV FV

Figure 16: Myopic dataset: LTV vs. Vanilla TV and FV on Llama2-13B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.
Method P={-1},L={16} P={4} P={-5,....—1} L={0,48,...} P={-5,..}L={02,..} 5) ICL prompts
Vanilla TV 31.69% 2.02% 1.05% 26.68% 0.33% 75.83%
FV 33.28% 2.93% 18.38% 16.95% 17.72% 53.93%
LTV 76.26%142_93% 76'22%T73-29% 77.93%¢59_55% 83~48%T56.80% 44‘82%127_1()% 84'51%T8~53%

Table 6: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama3-8B.

23

Under review as a conference paper at ICLR 2026

® Mean = SD

10/
7.70 8.46
[]
5.88
; 4.86

5 °
07 T T T T

ICL LTV Vanilla TV FV

Figure 17: Myopic dataset: LTV vs. Vanilla TV and FV on Llama3-8B.

® Mean = SD

10
6.54 7.10
. 5.12 4.96
5 * °
07 T T T T
ICL LTV Vanilla TV FV

Figure 18: Myopic dataset: LTV vs. Vanilla TV and FV on Llama3.2-3B.

® Mean *= SD

12
10
8.02
8 Y 7 ;76
6.58
Py
6,
4,
2 4
ICL Trained TV Vanilla TV

Figure 19: Myopic dataset: LTV vs. Vanilla TV on Llama3-70B.

®¢ Mean *= SD

12.54
10.04
8.14 8.00
° Py
7.5
5.0 4.04
2.5
0.0
ICL Trained TV Vanilla TV

Figure 20: Myopic dataset: LTV vs. Vanilla TV on Qwen2.5-32B.

24

Under review as a conference paper at ICLR 2026

® Mean = SD

12.51
10.0+ 8.48
7.36 ¢
7.5 [Y
5.08
5.01 L4
2.5
0.0 i i i
ICL Trained TV Vanilla TV

Figure 21: Myopic dataset: LTV vs. Vanilla TV on Yi-34B.

1.0
SST-2
0.8
TREC B
=
a
SNLI 0.6=
£
RTE 0
0.4 g
Capital =
7]
=)
Capitalize 02°
Antonym
0.0

AR S A
o o ™

Figure 22: Cosine-similarity heatmap of LT Vs trained for seven tasks on Llama3-8B.

1.0

SST-2
TREC 0.8
=
=
SNLI 0.6 ,f_:
-
RTE b
. 048
Capital =
=]
Capitalize 0.2 o

Antonym

2 O &b P D w®
69’(‘ @?S” s Q’(goo?“v'\@“ '&‘d&
¥

Figure 23: Cosine-similarity heatmap of LTVs trained for seven tasks on Llama3.2-3B.

25

Under review as a conference paper at ICLR 2026

1.0
SST-2
TREC 0.8 >
f
SNLI 0.6 E
opm|
RTE n
0.4 g
Capital =
Q
Capitalize 0.2 ©
Antonym
0.0

2 <O A F D Wi
‘56‘ ‘ﬁ@ s qso@%:&‘”\;&wo&

Figure 24: Cosine-similarity heatmap of LT Vs trained for seven tasks on Llama3-70B.

1.0
SST-21 |
0.8
TREC 3,
5
SNLI 0.6 =
2
RTE 1)
040
Capital %
=}
Capitalize 020
Antonym 0.0

2 O &b S wD wa®
‘é»‘;i @?S” e Qﬁioovg’;é‘@\;&oo‘?‘o

Figure 25: Cosine-similarity heatmap of LT Vs trained for seven tasks on Llama2-7B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.

P={-1LL={14} P={4} P={-5..,-1} L={0.48, .} Fo (o5, L={02,.} 5) ICL prompts
Vanilla TV 42.61% 3.07% 18.73% 37.05% 11.33% 65.38%
FV 19.54% 3.53% 15.07% 4.69% 13.26% 62.12%
LTV 78.65%7@5.04% 74.10%770457% 78.18%759_45% 80.43%743433% 46.38%T33.12% 82.80%“7442%

Table 7: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama3.2-3B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.

Method P={-1},L = {40} P={4} P={-5,...,—-1} L={0438,...} P={-5...},L={0.2...}

5) ICL prompts

LTV 78.18% 75.34% 76.13% 75.59% 48.75% 88.40%

Table 8: Performance of LTV across settings on Llama3-70B.

26

Under review as a conference paper at ICLR 2026

1.0
SST-2
0.8
TREC 3,
E
SNLI 0.6 =
2
RTE 1)
049
Capital E
7}
=}
Capitalize 02©
Antonym
0.0

2 <O Y <% 4D w®

Figure 26: Cosine-similarity heatmap of LTVs trained for seven tasks on Llama2-13B.

1.0
SST-2
0.8
TREC B,
o
T
SNLI 0.6 =
g
RTE a
049
Capital E
7]
Q
Capitalize 020
Anton
ym 0.0

2 O A A% D Wi

Figure 27: Cosine-similarity heatmap of LTVs trained for seven tasks on Qwen2.5-32B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.
Method P={-1}L={32} P={4} P={-5,...,—1} L={048,...} P={-5..}L={02...} 5) ICL prompts
LTV 75.59% 36.04% 75.20% 87.24% 53.30% 87.08%
Table 9: Performance of LTV across settings on Qwen2.5-32B.
Baseline 1) Diff. Pos. 2) More Pos. 3) More layers 4) More layers & Pos.
Method P={-1}L={30} P={4} P={-5,...,—-1} L={0,48,...} P={-5..}L={02...} 5) ICL prompts
LTV 81.37% 73.53% 84.39% 82.47% 51.29% 89.69%

Table 10: Performance of LTV across settings on Yi-34B.

27

Under review as a conference paper at ICLR 2026

1.0
SST-2
TREC 0.8
=
-
SNLI =
-0.6 =
g
RTE iy
¥
Capital 0.4 E
Q
Capitalize 0.2 o

Antonym

3?2 C) T WD w1
6%(‘ (‘QS\’ 66 g(go,}Qc\:Q-\‘?\;“o‘\&

Figure 28: Cosine-similarity heatmap of LT Vs trained for seven tasks on Yi-34B.

80%- 76%
80%- 76% 76%

60%-
§') 5 60%
-] <]
=
g 40%- 320, & 10%. 39%
< I+

<
ol // ™ %
0% ‘ %%Z j 1% o ‘ ‘ :
Trained TV Reconstructed through OV zs Trained TV Key Heads Ablated Rand. Heads Ablated
(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 29: Attention heads and TV on Llama3-8B: OV-circuit reconstruction (left) and ablation of
key heads (right).

79%
% -
80% s0% 799%

60%-
60%-
40%- 10%
20%- 16% 20%-
0% W A% _ 0% 0%

Trained TV Reconstructed through OV zs Trained TV

74%

47%

_

Accuracy
Accuracy

Key Heads Ablated Rand. Heads Ablated

(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 30: Attention heads and TV on Llama3.2-3B: OV-circuit reconstruction (left) and ablation of
key heads (right).

Table 11: Top-10 tokens decoded from early- and late-layer TVs on Llama3-8B.

Layer Decoded Tokens

Early Layer (8) tring, CCA, erk, bart, uge, ensor, , 7 /L, a3a, emer

Late Layer (24) positive, negative, positive, Positive, Negative, negative, Negative,
Positive, _positive, -negative

28

Under review as a conference paper at ICLR 2026

80%-

60%-

Accuracy

40%-

20%-

0%-

83%
83%
80%- 76%
2 60%-
g 47%
=
S 40%-
L4
20%-
. 1%
Trained TV Reconstructed through ov_ zs 0%- Trained TV Key Heads Ablated Rand. Heads Ablated
(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 31: Attention heads and TV on Llama2-7B: OV-circuit reconstruction (left) and ablation of
key heads (right).

80%-

60%-

40%-

Accuracy

20%-

0%-

80%

80%- 80% 78%
o
60%- S0%
10%-
20%-
1% 1%
0%-

Trained TV Recunstructed through OV zs Trained TV Key Heads Ablated Rand. Heads Ablated

Accuracy

(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 32: Attention heads and TV on Llama2-13B: OV-circuit reconstruction (left) and ablation of

key heads (right).
78%
80%-
80%- 78% 77%
> 60%-
g > 60%
g g 47%
"
E 40%- £ so%!
<
20%- 20%:
4% 3%
0%- 0%- ‘ / :
Trained TV Reconstructed thmugh OV Trained TV Key Heads Ablated Rand. Heads Ablated
(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 33: Attention heads and TV on Llama3-70B: OV-circuit reconstruction (left) and ablation of
key heads (right).

80%-

60%-

40%-

Accuracy

20%-

0%-

76%
80%- 76%
63%
60%-
2
g
2 20%-
<
19% < 23%
13% 20%-
27 - o ‘
Trained TV Reconstructed through OV zs Trained TV Key Heads Ablated Rand. Heads Ablated
(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 34: Attention heads and TV on Qwen2.5-32B: OV-circuit reconstruction (left) and ablation of
key heads (right).

Table 12: Top-10 tokens decoded from early- and late-layer TVs on Llama3.2-3B.

Layer Decoded Tokens

Early Layer (7) ync, flip, stress, hope, haven, Lor, negative, ugi, stressed, hab
Late Layer (21) positive, positive, negative, -positive, Positive, Positive, negative, -
positives, negative, Negative

29

Under review as a conference paper at ICLR 2026

81%

9%
80% 20%] 81% 77%
60%-
E ;60%'
2 5 43%
;5 40%- 34% § 10%] hd
<
20%- / 15% 20%-
Trained TV Reconstructed through OV zs Trained TV Key Heads Ablated Rand. Heads Ablated
(a) OV-circuit reconstruction. (b) Ablating key heads.

Figure 35: Attention heads and TV on Yi-34B: OV-circuit reconstruction (left) and ablation of key
heads (right).

75% -
52%
> 50% - - 48%
o
g
=
o
Q
< 25%-
0%-
With Re51dual Without Re51dual

Figure 36: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3.1-8B.

75% -
> 50% -
o
g
3 329% 33%
Q
- - -

0%-
With Re51dual Without Re51dual

Figure 37: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3-8B.

Table 13: Top-10 tokens decoded from early- and late-layer TVs on Llama3-70B.

Layer Decoded Tokens

Early Layer (20) EventData, esteem, 4, AX, spath, hores, raya, idth, , _priv

Late Layer (60) negative, negative, Negative, positive, Negative, -negative, positive,
Positive, Positive, _negative

30

Under review as a conference paper at ICLR 2026

75% -
> 30% -
o
@
-
=
o
Q
< 25%-

16% 16%
0%- _ - . —
With Residual Without Residual

Figure 38: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3.2-3B.

75% -
> 30% -
o
@
-
=
o
Q
< 25%-

4% 1%
0%- y ;
With Residual Without Residual

Figure 39: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3-70B.

75% -
> 50% -
o
@
-
=
o
Q
< 25%-

4% 2%
|
0%- . - - —
With Residual Without Residual

Figure 40: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 2-7B.

31

Under review as a conference paper at ICLR 2026

75%-
> 30% -
[&]
o]
-
=
Q
Q
< 25%-
0% 1% 1%
? With Residual Without Residual

Figure 41: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 2-13B.

75% -
> 30% -
Q
o]
-
=
[&]
&

0,
25%- 19% 19%
0%- _ _

With Residual Without Residual

Figure 42: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Qwen2.5-32B.

75% -
> 50% -
&
5 34% 33%
3
< 25%-
0%-
With Residual Without Residual

Figure 43: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Yi-34B.

32

Under review as a conference paper at ICLR 2026

25.0%

QZO.O%

g

= 15.0%

H

£ 10.0%

Q

&

5.0%

17 19 21 23 25 27 29 31
Layer

(a) Across layers.

80%

PO
T 3
= =

Percentage

20%

I Key Heads
@@ Random Heads

0%

0 4 8 12 16 20 24 28 32 36 40
Position

(b) Over positions.

Figure 44: Key attention heads on Llama3-8B: distribution across layers (left) and attention over

token positions (right).

20.0%
)
=]
£15.0%
a
%)
£ 10.0%
I
&
5.0%
15 17 19 21 23 25 27
Layer

(a) Across layers.

80%

Percentage
w)
8
ES ES

20%

I Key Heads
[T Random Heads

'S

0%

0 4 8 12 16 20 24 28 32 36 40
Position

(b) Over positions.

Figure 45: Key attention heads on Llama3.2-3B: distribution across layers (left) and attention over

token positions (right).

8.0%

oo
R 8
S

i

Percentage

2.0%

0.0%
® 4143454749515355575961636567697173757779

Layer

(a) Across layers.

80%

Percentage
-]
8
X

20%

[Key Heads
[0 Random Heads

IIL

0%

0 4 8 12 16 20 24 28 32 36 40
Position

(b) Over positions.

Figure 46: Key attention heads on Llama3-70B: distribution across layers (left) and attention over

token positions (right).

20.0%

Percentage
- -
e v
2 B
X

5.0%

27 29 31

N
o

21 23

-

7 19
Layer

(a) Across layers.

60%

40%

Percentage

20%

0%

[Key Heads
[0 Random Heads

24

12 16 20 28

Position

0 4 8

(b) Over positions.

Figure 47: Key attention heads on Llama2-7B: distribution across layers (left) and attention over

token positions (right).

33

Under review as a conference paper at ICLR 2026

80%

10.0% I Key Heads
[0 Random Heads
& 8.0% g 60%
<] <]
= =
g 6.0% g 40%
- -
Qo Qo
~4.0% & 20%
2.0% 0% -Ell.L
21 23 25 27 29 31 33 35 37 39 0 4 8 12 16 20 24 28
Layer Position
(a) Across layers. (b) Over positions.

Figure 48: Key attention heads on Llama2-13B: distribution across layers (left) and attention over
token positions (right).

8.0% 60% I Key Heads
° ° [0 Random Heads
£6.0% &

g E 40%
$4.0% g
- -
& 2.0% & 20%

0.0% 0% 1 -

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 0 4 8 12 16 20 24 28 32 36 40
Layer Position
(a) Across layers. (b) Over positions.

Figure 49: Key attention heads on Qwen2.5-32B: distribution across layers (left) and attention over
token positions (right).

60%

8.0% I Key Heads
o 7 ° [Random Heads
=] =)
£6.0% 8 40%
: s
S 4.0% °
g £ 20%

2.0% U D I

0.0% 0% = e

® 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 0 4 8 12 16 20 24 28 32
Layer Position
(a) Across layers. (b) Over positions.

Figure 50: Key attention heads on Yi-34B: distribution across layers (left) and attention over token
positions (right).

Early Layer TV: Logit Lens Early Layer TV: Logit Diff Early Layer TV: Task Alignment
0.2
VA a
] oy E] 204 5
0, I = =20. o
g °0% g Ic g2 £ s by
> 5 > 5 > :
0.0 2
0% = ° Z
V] 10 20 30 V] 10 20 30 1) 10 20 30
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
75% 3 0.2
o _ P Q d
= 50% 5 2 g 201 $
< > < = e T
2 25% K] °1 5 > -
> >
0%] 0 = 0.0 4
V] 10 20 30 [\] 10 20 30 o 10 20 30
Layer Layer Layer

Figure 51: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at an
early vs. late layer.

34

Under review as a conference paper at ICLR 2026

Early Layer TV: Logit Lens Early Layer TV: Logit Diff Early Layer TV: Task Alignment
75% zs 0.2
g LTV)) o
% 50% 5 ICL % 2 5 % 0.1 g
> 25% K] > K] > =
> > 0.0 B
0% 5 0 k
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Layer Layer Layer
Late Layer TV: Logit Lens 15 Late Layer TV: Logit Diff 03 Late Layer TV: Task Alignment
75% ’
1.0 0.2
£ 50% 5 E 5 E 5
G} G} 2 ® 0.1 %
> 25% 7 505 K 8 5
>
0% P 0.0 Z 0.0 =
V] 5 10 15 20 25 0 5 10 15 20 25 o 5 10 15 20 25
Layer Layer Layer

Figure 52: Metrics across layers on Llama3.2-3B when the TV is injected into the hidden state at an

early vs. late layer.

Early Layer TV: Logit Diff

Early Layer TV: Task Alig:

Early Layer TV: Logit Lens
zs
g LTV g g 0.10
= 50% ICL:% =5 5 2 5
S : S ; < g
s &) > 5 > 0.05 &
0% 3 o = 0.00 E
o 20 40 60 80 o 20 40 60 80 o 20 40 60 80
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
@ o @ 0.10
£ 50% 5 25 5 E 5
> i > K] > 0.05 S
0% E (] E 0.00 3
1] 20 40 60 80 1] 20 40 60 80 1] 20 40 60 80
Layer Layer Layer

Figure 53: Metrics across layers on Llama3-70B when the TV is injected into the hidden state at an
early vs. late layer.

Early Layer TV: Task Alignment

Early Layer TV: Logit Lens Early Layer TV: Logit Diff
zs 7.5 0.2
) LTV 250)
g oL 2 Zoa
> 5 525 K > 3
0% 2 0.0 2 0.0 2
o 10 20 30 o 10 20 30 1] 10 20 30
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
7.3 0.2
) Q Q
2 50% 5 250 B 2 ¥
< 2 < s < 0.1 S
> S » 25 3 > S
> > 4
0% iz 0.0 2 0.0
1] 10 20 30 V] 10 20 30 0 10 20 30
Layer Layer Layer

Figure 54: Metrics across layers on Llama2-7B when the TV is injected into the hidden state at an
early vs. late layer.

Table 14: Top-10 tokens decoded from early- and late-layer TVs on Llama2-7B.

Layer Decoded Tokens
Early Layer (8) babh, arith, arna, revers, feder, HOST, BIT, Pat, orr, IP
Late Layer (24) positive, negative, negative, posit, pos, Pos, neg, Pos, Neg, poz

Table 15: Top-10 tokens decoded from early- and late-layer TVs on Llama2-13B.

Layer Decoded Tokens
Early Layer (8) negative, bin, ed, agg, electric, myself, eda, hed, isser, positive
Late Layer (24) negative, negative, positive, Neg, neg, neg, orpu, pos, Pos, negro

35

Under review as a conference paper at ICLR 2026

Early Layer TV: Logit Lens Early Layer TV: Logit Diff Early Layer TV: Task Alignment
10
zs 0.2
: Y 2 2
= 50% ICL % = 5 3 = g
< E &} E < 0.1 >
s 5 = K = 5
> >
0% 7 0 = 0.0 i
o 10 20 30 40 10 20 30 40 1] 10 20 30 40
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
10
0.2
E]] E]

9, 9 & e

g 0% g 5 5) S0 ¥

> K] > &) > A

0% E o E 0.0 E

o 10 20 30 40 10 20 30 40 [\] 10 20 30 40
Layer Layer Layer

Figure 55: Metrics across layers on Llama2-13B when the TV is injected into the hidden state at an
early vs. late layer.

Early Layer TV: Logit Lens

Early Layer TV: Logit Diff

Early Layer TV: Task Alignment

100% 10
0.10
Q Q Q .
2 50% 5 zs 2 5 5 2 0.05 g
a > a > c]
> 8 LTV > & > -
> ICL > 0.00 =
0% 1] i
1] 20 40 60 20 40 60 o 20 40 60
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
10 0.10
g E] E] 5
= 50% 5 = 5 g = 0.05 2]
E g oy | 3
= z 0.00 4
0% 1]
o 20 40 60 20 40 60 (V] 20 40 60
Layer Layer Layer

Figure 56: Metrics across layers on Qwen2.5-32B when the TV is injected into the hidden state at an

early vs. late layer.
Early Layer TV: Logit Lens Early Layer TV: Logit Diff Early Layer TV: Task Alig:
7.5 0.15
© @50 ¢o0.10
% 50% 5 zs % 5 % &
s 7 v Sos 7 £ 0.05 &
> ICL > >
0% Z 0.0 & 0.00 =
o 10 20 30 40 50 60 10 20 30 40 50 60 o 10 20 30 40 50 60
Layer Layer Layer
Late Layer TV: Logit Lens Late Layer TV: Logit Diff Late Layer TV: Task Alignment
6 0.15
Q Q 2 0.10
= 50% 5 B4 5 E 5
S 2 g % £ 0.05 g
> 8 2 A . ~
> >
0% = 0 = 0.00 -
1] 10 20 30 40 50 60 10 20 30 40 50 60 1] 10 20 30 40 50 60
Layer Layer Layer

Figure 57: Metrics across layers on Yi-34B when the TV is injected into the hidden state at an early
vs. late layer.

Table 16: Top-10 tokens decoded from early- and late-layer TVs on Qwen2.5-32B.

Decoded Tokens

fd, Reverse, inverted, Trait, ocale, Hack, ic, Traits, Aware, 1% 5%

. constraint, registrations, M EEy, B, (SE, ApplicationContext,
Offensive, ' &, I4d

Layer
Early Layer (16)
Late Layer (48)

Table 17: Top-10 tokens decoded from early- and late-layer TVs on Yi-34B.

Layer Decoded Tokens
Early Layer (15) —47, iency, , shit, oc, , orating, FREHE, Gap, unbiased
Late Layer (45) Mpc, elf, izza, Parish, /i, 2L, nexper, Jit/TH, B2, rst

36

Under review as a conference paper at ICLR 2026

>
< 0,
80% g 80%
» Q
60%
g 60% 20
g £ 20%
S 40% °
< - H.
. — £ 20% ®
20% —— Reconstructed 6, 3 0% —— H{Wys,q)
0
o 4 8 12 16 20 24 28 o 4 8 12 16 20 24 28
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 58: Linear hypothesis on Llama3-8B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).

>
80% g 80%
=
Z S 60%]
Q 0, Q (] .
g60% < —— HY,
72}
é 40% g 40% —— H{Was,0
< ~
20%] £20%
—— Reconstructed 6; 3
0% 0%
o 4 8 12 16 20 24 0 4 8 12 16 20 24
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 59: Linear hypothesis on Llama3.2-3B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).

&
0,
80% E 80%
& 60% $60%
-
é 40% E 40%
< = — H
20% — .‘g" 20% ®
—— Reconstructed 6 S —— H{Was,o
0% = 0%
0 4 8 1216202428323640444852566064687276 0 4 8 1216202428323640444852566064687276
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 60: Linear hypothesis on Llama3-70B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).

>
90% g
° £ 80%
5 80% 5
g £ 60%
£70% -
S 60% £ 40% ,
< = —
50%{ —— % £ 20% ;p
—— Reconstructed 6, 3 = Hy,Was,o
40% 0%
o 4 8 12 16 20 24 28 o 4 8 12 16 20 24 28
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 61: Linear hypothesis on Llama2-7B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).

37

Under review as a conference paper at ICLR 2026

» -3
Q
90.0% € 80%
g § 60%
£ 80.0% <«
g £ 40%
< ~ .
70.0% o £ 20% T
m .
—— Reconstructed 6,] 0% —— H{,Was,o
60.0% o
° (1) 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 62: Linear hypothesis on Llama2-13B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).

95.0% \,\/\Wv-w_,.__w 2
E 80%
E’ g 60%
§ 90.0% <00 — H;
=
8 g 40% —— H{,Wys,q
< ~
85.0% — -'E)20%
—— Reconstructed 6, S
0%
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 63: Linear hypothesis on Qwen2.5-32B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).

>
Q
90% & 80%
=
> 80% &
° S 60%
g 70% s Ho
= 172}
8 ° g 40% —— H{,Wgs,q)
< 60% =
— £ 20%
50% —— Reconstructed 6, Sl
= 0%
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 64: Linear hypothesis on Yi-34B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).

0.4 ~
Task alignment of 6, 0.6 —w- COSSIM(6;,Q(0)) ,*“
0.3 Task alignment of Q0, /1
® ¢ 0.4 it
2 0.2] = 4
< < /"
- ’ ‘l
0.2
0.1 £
/“‘,
— - —~A
0.0(7 hl 2l L Pl A U Y Do
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Layer Layer

Figure 65: Rotation analysis on Llama3-8B: applying the fitted rotation Q(; to the TV increases task
alignment (left); rotation strength vs. layer depth (right).

38

Under review as a conference paper at ICLR 2026

Task alignment of 6,
Task alignment of Q;

8 12 16 20 24

Layer

-
— == COSSIM(6;,Q)0;) v
i 4

0.6 f
g
= 0.4 ad
‘>° /

I,‘
0.2 P
0.0—7"""‘"'"'7"1‘ N —
0 4 8 12 16 20 24
Layer

Figure 66: Rotation analysis on Llama3.2-3B: applying the fitted rotation Q; to the TV increases
task alignment (left); rotation strength vs. layer depth (right).

Task alignment of 6,
Task alignment of Q;

0

8

16 24 32 40 48 56 64 72
Layer

067 _._ COSSIM(9;, Q()0:) *f‘”l
Mt‘

© 0.4 A
E o
€ pi¥

0.2 o

»
o] AN MM“M

0

8 16 24 32 40 48 56 64 72

Layer

Figure 67: Rotation analysis on Llama3-70B: applying the fitted rotation Q;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).

Task alignment of 6,
Task alignment of Q;

0.0

16 20 24 28

Layer

4 8 12

0.8’ lA
—=—= COSSIM(6;, Q0 1’
¢
0.6 _"*1
@ Va
3
3 0.4 /"/
ad
0.2 = e
0.0~ ottt
"0 a4 8 12 16 20 24 28
Layer

Figure 68: Rotation analysis on Llama2-7B: applying the fitted rotation Q;) to the TV increases task
alignment (left); rotation strength vs. layer depth (right).

39

Under review as a conference paper at ICLR 2026

0.6’ o B =
Task alignment of 6, 081 —w— COSSIM(6;,Q00) A
Task alignment of Q; A
0.4 0.6 /./
o @ "
= = 0.4 ~l
(] (] /a
0.2 » W
0.2 r‘"‘}
-~
A
0.0/ 0.0/
0 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36

Layer Layer

Figure 69: Rotation analysis on Llama2-13B: applying the fitted rotation Q;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).

0.8 1 A
0.4 Task alignment of 6, —+— COSSIM(6;,Q()0;) ‘l
Task alignment of Q6, 0.6/ s
° Hay
0.3 t
o o A
% 0.2 Z0.41 f
> g A
0.11 0.2 t/
Y
7Y
0.0 O.O,M‘AMM“M
0 4 8 12162024283236404448525660 0 4 8 12162024283236404448525660
Layer Layer

Figure 70: Rotation analysis on Qwen2.5-32B: applying the fitted rotation Q(;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).

E 0.8’ A
| Task alignment of 6, — =~ COSSIM(6;,Q)0;) /
0.4 g
Task alignment of Q); 0.6/ X
. A
| A
g 0.3 ° "/
5 0.2 Zo4 !
> > Yo
0.1 0.2 s
ok
A/
] g
el il O e AN Qo
0 4 8 121620242832364044485256 0 4 8 1216202428323640444852 56

Layer Layer

Figure 71: Rotation analysis on Yi-34B: applying the fitted rotation Q;) to the TV increases task
alignment (left); rotation strength vs. layer depth (right).

40

Under review as a conference paper at ICLR 2026

N
3]
X

I Key Heads
[Random Heads

Percentage
N O
a o
SR

=)
x

1 2 3 4 5 6 7 8
Token Bin

Figure 72: Average attention distribution of Llama3.1-8B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

N
3]
X

I Key Heads
1 Random Heads

1 2 3 4 5 6 7 8
Token Bin

Percentage
N U
a
S

=)
x

Figure 73: Average attention distribution of Llama3-8B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

N
3]
X

I Key Heads
1 Random Heads

Percentage
N U
a
S

=)
x

1 2 3 4 5 6 7
Token Bin

Figure 74: Average attention distribution of Llama3.2-3B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

41

Under review as a conference paper at ICLR 2026

I Key Heads
[Random Heads

Percentage
N O 3

L I I
X ® X R

1 2 3 4 5 6 7 8
Token Bin

Figure 75: Average attention distribution of Llama3-70B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

I Key Heads
1 Random Heads

Percentage
N & O

1 2 3 4 5 6 7 8
Token Bin

Figure 76: Average attention distribution of Llama2-7B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

® 75%1 I Key Heads
8 50%- @ Random Heads
:
o/
E 25%

0%
1 2 3 4 5 6 7 8

Token Bin

Figure 77: Average attention distribution of Llama2-13B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

42

Under review as a conference paper at ICLR 2026

I Key Heads
[Random Heads

0% - - - -
? 1 2 3
Token B1n

0% 1

Percentage
N & O
S S
S

Figure 78: Average attention distribution of Qwen2.5-32B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.

60% -
- I Key Heads
[Random Heads

'—"—'ﬁ;-l
4 5 6 7 8

1 2 3

) =
L g
SRS

Percentage

=)
x

Token Bin

Figure 79: Average attention distribution of Yi-34B on SST-2: proportions of attention weights

assigned to 8 tokens intervals each comprising % of all tokens.

Layer 0 TV: Logit Diff Layer 0 TV: Task Alignment

Layer O TV: Logit Lens
] 1
zs ’/1 r 6
® e LTV , @ o N
J 44 4
> X] > 2118 > a //
7 .01 "

0%l B ‘ | 01 BocomaneE ‘ 0.0 Z.. asll |
0 10 20 30 0 10 20 30 0 10 20 30

Layer Layer Layer

Figure 80: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
0.

Layer 2 TV: Logit Diff Layer 2 TV: Task Alignment

Layer 2 TV: Logit Lens 1
L zs A r /\.J /,\/
%] —-—t— LTV Qo o 0.1
= 50% ; ICL Z21 5 = g
> 5] > | E > i /
i 0.0 A
0% L= - o v
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 81: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
2.

43

Under review as a conference paper at ICLR 2026

Layer 4 TV: Logit Diff

Layer 4 TV: Task Alignment

Layer 4 TV: Logit Lens
i 61 0.2
; VA
o — LTV Q4 ®
= 50%; % 1cL 2 4 5 2 0.1 ‘%
>] > 2 & b -
1 > 0.0 >
0% 1 oo ‘ . 01 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 82: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

4,
Layer 6 TV: Logit Lens

- zs

@ : LTV

% 50%| . i8ICL
1

> K

0% £ . : ‘
0 10 20 30
Layer

Value

I

N

Layer 6 TV: Logit Diff

Layer 6 TV: Task Alignment

0.2
e 1
;; %0.1 o}
S > 3
> 0.0 2
0 10 20 30 0 10 20 30
Layer Layer

Figure 83: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

Layer 8 TV: Task Alignment

6.
Layer 8 TV: Logit Lens 6Layer 8 TV: Logit Diff
zs

o LTV Q41
> k =2
0%- 2 01 2

0 10 20 30 0 10 20 30
Layer Layer

| AV Layer

10 20 30

Layer

Figure 84: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

8.
Layer 10 TV: Logit Lens Layer 10 TV: Logit Diff Layer 10 TV: Task Alignment
3 21
VAS] 0.2
) LTV 0 2)
Z 50%; 16L = 5 Z0.1 g
) ® 1| =) 7
> Kl > 1 5 > -
| >
0% E ‘ | 0. ‘ E ‘ ‘ 0.0 ‘ = | |
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 85: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

10.

44

Under review as a conference paper at ICLR 2026

Layer 12 TV: Logit Diff Layer 12 TV: Task Alignment
0.2

Layer 12 TV: Logit Lens
VA
4,

o LTV Q Q

2 50% & = = 2 0.1 g
G 1ctg T g G z
> K] > ki = ot

oL ‘E ‘ ‘ ol. ‘g ‘ ‘ o.of‘ ‘E | |
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 86: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

12.

Layer 14 TV: Logit Diff Layer 14 TV: Task Alignment
0.21

Layer 14 TV: Logit Lens
zs 61
) LTV 4) N
> k] > 2 K > =
0.01
0% : : E ‘ ‘ 01 : ‘ a ‘ ‘ : ‘ E ‘ ‘
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 87: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

14.

Layer 16 TV: Logit Diff Layer 16 TV: Task Alignment

Layer 16 TV: Logit Lens
3 0.21
75% 1 zs

o LTV Y o
= 50%; ICL 5 2 s 201 g
: g4 g g g
> 25%; k| o ™
0% 2 0l 7 0.0 =

0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 88: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

16.

Layer 18 TV: Logit Diff Iéager 18 TV: Task Alignment

Layer 18 TV: Logit Lens
75% zs 21

o LTV Q]
50%- . &
20 e ch ch
> 25%- k] > & > E

i 0.0
(S PO o~ ol E asuadi S
0 10 20 30 0 10 20 30 0 10 20 30

Layer Layer Layer

Figure 89: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

18.

45

Under review as a conference paper at ICLR 2026

Layer 20 TV: Logit Diff Ibager 20 TV: Task Alignment

Layer 20 TV: Logit Lens
75% zs 2

o LTV] o

= 50% | " = = = 0.1 g

o ICL o =] 1 Qo o >

< >] 2 4] d

P 25% 5 > o > E

] 0.0
0% L | g o ‘ g | ‘ ‘ |
0 10 20 30 0 10 20 30 0 10 20 30

Layer Layer

Layer

Figure 90: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

20.

Layer 22 TV: Logit Diff Layer 22 TV: Task Alignment
0.2

Layer 22 TV: Logit Lens
75% 1 zs 2]

Q 0 Q
S 50% L i = 5 0.1 g
® ICL S el - G| 7
> 25%/ & > & < ~

0% 1 E 01 E 0.0 E

0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 91: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

22.

Layer 24 TV: Logit Diff Ibaggr 24 TV: Task Alignment

Layer 24 TV: Logit Lens
75% YA 24
Q Q Q
S 50%- L > 5 & 2 0.1 5
= ICL o} =1 > G &
] 5 > 5 > o
” 25% 3 2 -
0.0
0% | LIE. 0. ‘ | = | ‘ ‘ | |
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 92: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

24.

Layer 26 TV: Logit Diff Layer 26 TV: Task Alignment

Layer 26 TV: Logit Lens
75% zs 2]

)))

2 50%; L / g » g 0.1 >
I ICL g cE > @]
> 25%- A > & > E

i 0.0
0% | LB 0. ‘ | Z | ‘ ‘ | |
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 93: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

26.

46

Under review as a conference paper at ICLR 2026

Layer 28 TV: Logit Diff Layer 28 TV: Task Alignment

Layer 28 TV: Logit Lens
75% 1 ZS 2] 0.2

)))
= 50% Ly % =2 s 201 ¢
I ICL ry -1 o | = e
] > (] z]]
> 25%/ ha > =/ | =

0% > ol = 0.0 g

0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 94: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
28.

Layer 30 TV: Logit Diff Layer 30 TV: Task Alignment

Layer 30 TV: Logit Lens
75% | zs 2] 021

)))
2 50% LIV W B 5| £o0.1 g
Gl ICL o =1 g = . >
> 25%/ g e 3| > S
0% > ol z| 0.0 2.
0 10 20 30 0 10 20 30 0 10 20 30

Layer Layer Layer

Figure 95: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
30.

47

	Introduction
	Related works
	Methodology
	Experiments
	Superior Performance of Learned Task Vectors
	Low-level interactions between TV and attention heads
	High-level analysis of TV's influence mechanism

	Conclusion
	Statement of LLM Usage
	Detailed Procedures of Training Learned Task Vectors
	Implementation details
	Supplementary Materials for subsection 4.1
	Performance of LTV Injected at the Last Position on Other Models
	Replication of Table 1 for Other Models
	Replication of Figure 3 for Other Models
	Replication of Figure 4 for Other Models

	Supplementary Materials for subsection 4.2
	Clarifications of the Approach to Simulate the Aggregate Effect of TVs Induced through the OV Circuits in sec:attention
	Replication of Figure 5 for Other Models
	Verifying the Significance of the Accuracy Achieved through Reconstructing OV Effects of TVs
	Replication of Figure 6 for Other Models
	Distribution Patterns of Attention Weights of Key Heads Leveraging TVs Evaluated on More Prompts

	Supplementary Materials for subsection 4.3
	Replication of Figure 7 for Other Models
	Investigating the Layer Threshold of the Two Operating Modes of TVs
	Replication of Figure 8 for Other Models
	Replication of Figure 9 for Other Models

	Implementation Details Related to Function Vectors
	Detailed Procedures of Generating Correctness Ratings for the Myopic Dataset
	Details Regarding Testing the Linear Hypothesis of TV Effect

