Under review as a conference paper at ICLR 2026

TASK VECTORS, LEARNED NOT EXTRACTED: PERFOR-
MANCE GAINS AND MECHANISTIC INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can perform new tasks from in-context demon-
strations, a phenomenon known as in-context learning (ICL). Recent work suggests
that these demonstrations are compressed into task vectors (TVs), compact task
representations that LLMs exploit for predictions. However, prior studies typically
extract TVs from model outputs or hidden states using cumbersome and opaque
methods, and they rarely elucidate the mechanisms by which TVs influence compu-
tation. In this work, we address both limitations. First, we propose directly training
Learned Task Vectors (LTVs), which surpass extracted TVs in accuracy and exhibit
superior flexibility—acting effectively at arbitrary layers, positions, and even with
ICL prompts. Second, through systematic analysis, we investigate the mechanistic
role of TVs, showing that at the low level they steer predictions primarily through
attention-head OV circuits, with a small subset of “key heads” most decisive. At
a higher level, we find that despite Transformer nonlinearities, TV propagation is
largely linear: early TVs are rotated toward task-relevant subspaces to improve
logits of relevant labels, while later TVs are predominantly scaled in magnitude.
Taken together, LT Vs not only provide a practical approach for obtaining effective
TVs but also offer a principled lens into the mechanistic foundations of ICL'.

1 INTRODUCTION

Large Language Models (LLMs) possess the remarkable capability of performing novel natural
language tasks by learning from demonstrations included in the input without training, a phenomenon
referred to as In-context Learning (ICL) (Brown et al., 2020; Radford et al., 2019). ICL has
revolutionized natural language processing through its extensive empirical success in enabling swift
and efficient adaptation of models to downstream tasks (Dong et al., 2024; Liu et al., 2021).

Since its effectiveness is difficult to reconcile with the traditional framework of machine learning
centered on model training (Ren et al., 2024), investigating the internal mechanisms of LLMs that
enable ICL has attracted substantial attention. Among these efforts, one prominent line of research
shows that LLMs leverage demonstrations by summarizing them into task vectors (TVs)—succinct
vector representations of the task exemplified by the demonstrations (Hendel et al., 2023). These TVs
can be injected (added) into the hidden states of zero-shot prompts without demonstrations to achieve
ICL-level performance. Subsequent work has primarily proceeded in three directions: 1) studying
where (e.g., from LLM hidden states (Hendel et al., 2023), attention head outputs (Todd et al., 2024;
Yin & Steinhardt, 2025), or MLP outputs (Merullo et al., 2024) at different layers) and how (e.g.,
PCA-based approaches (Liu et al., 2024) or complex optimization methods (Li et al., 2024a; Cai
et al., 2025)) to extract and construct TVs, with the practical goal of boosting performance through
injection; 2) investigating how the ability of LLMs to form TVs gradually emerges during pretraining,
typically using small trained-from-scratch models and artificial tasks such as regression (Han et al.,
2025; Yang et al., 2025b); and 3) demonstrating that TVs naturally arise from the LLM architecture
itself, and providing theoretical guarantees for their emergence (Bu et al., 2025; Dong et al., 2025).

Despite important contributions, prior studies face key limitations. First, existing approaches often
depend on opaque and complex filtering or optimization to construct TVs from model representa-
tions, making them inefficient and reliant on the model’s representational quality. This dependence
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can produce suboptimal TVs and mischaracterize their true effect, while the opaque construction
procedures obscure an understanding of TV’s mechanism. Indeed, most works stop at showing that
injected TVs improve performance but leave unanswered the central question of how LLMs leverage
TVs to make correct predictions. This gap spans both the low-level interactions, referring to the
microscopic localization of model components that interact with injected TVs to express their effects
during forward computation, and the high-level channels, referring to the macroscopic mechanisms
by which TVs ultimately steer outputs toward correct predictions. The lack of explanation reduces
the model’s deployment of TVs to an uninterpretable black-box function (Merullo et al., 2024).

In this work, we address the first

shortcoming by proposing to directly negative—Gradient
train Learned Task Vectors (LTVs) E— t 7
by adding a vector to a specific [ emammg Ve

layer’s hidden states and optimizing

it through gradient descent (Figure 1 ‘ @—@—@ %
(A)), which finds the optimal TV un-
constrained by the quality of model’s 1 Layers ] LTV
representations. LTVs not only out- ¥

perform constructed ones across clas- ~ 5ad movie. sentiment
sification and generation tasks but Figure 1: (A) We directly train Learned Task Vectors (LTVs)
also demonstrate greater flexibility to be injected, which influence model outputs through later
and scalability than extracted ones. layers updates. (B) In the low-level interactions between
Furthermore, through analysis of in- TVs and later layers, the OV circuits of attention heads are
teractions between TVs and model the crucial components interacting with TVs to induce their
components, we decode the low-level effects. (C) On a high level, subsequent layer updates act
mechanisms by which LLMs interact on TVs as a largely linear transformation of rotation and
with TVs: injected TVs are primar- stretch, with the rotation aligning TVs with the relevant task
ily utilized through attention-head OV ~ subspace to promote prediction of task-related tokens.
circuits (Figure 1 (B)). We also characterize which attention heads are most decisive in leveraging the
injected TVs, focusing on their attention and distribution patterns. Regarding the high-level influence
channels of TVs, we show that despite the abundance of nonlinearities in Transformer layers, the
propagation of injected TVs through subsequent layers is largely linear, involving a rotation that
aligns TVs to the subspace spanned by task-related tokens and a scaling that adjusts their magnitude
(Figure 1 (C)). We further observe a distinct pattern: the rotation effect attenuates as the injection
layer index increases, while the scaling effect becomes the dominant factor translating TVs into
output changes. In summary, our work introduces an efficient method to obtain effective TVs and
provides a comprehensive exposition of the mechanisms underlying TVs’ effectiveness.

f” 6 after Layer Updates

2 RELATED WORKS

Task Vector and ICL The hypothesis that TVs form the mechanistic basis of ICL was first proposed
by Hendel et al. (2023), who patched ICL hidden states into zero-shot prompts at certain layers,
achieved high accuracy, and argued that in-context demonstrations are compressed into TVs applied
during later updates. Follow-up studies (Todd et al., 2024; Li et al., 2024a; Kahardipraja et al., 2025;
Liu et al., 2024) extended this idea by extracting TVs from specific components (e.g., attention heads,
MLP) and injecting them. The universality of TVs has been validated across model scales (small
trained-from-scratch vs. large open-source) and task types (mathematical vs. natural language) (Han
et al., 2025; Yang et al., 2025b; Jiang et al., 2025a). Yet, little is known about how TVs enhance
performance after injection, or how they interact with later components to shape outputs.

Mechanisms of Task Vectors Current explanations of TV effectiveness remain preliminary, more
sketches than systematic analyses. For instance, Hendel et al. (2023) observed that TV injection is
more effective in earlier than later layers. Todd et al. (2024) reported that TVs exhibit word2vec-style
arithmetic (Mikolov et al., 2013), with Bu et al. (2025) giving a theoretical account of this property.
Furthermore, Han et al. (2025) and Jiang et al. (2025b) found that TV effectiveness depends on how
well hidden states of a task’s prompts can be separated from others in the LLM representation space.

LLM Steering The success of TV injection in restoring ICL performance parallels recent advances
in LLM steering (Zhan et al., 2025; Li et al., 2024b; Panickssery et al., 2024), where vectors are added
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to hidden states to mitigate undesirable model behaviors (Lee et al., 2024; Bayat et al., 2025). Prior
work also explored training steering vectors directly (Cao et al., 2024; Dunefsky & Cohan, 2025),
motivating our strategy of training TVs rather than relying on complex selection or construction.

3 METHODOLOGY

Transformer hidden states and ICL. According to the autoregressive structure of Transformer
LLMs with residual connections, a zero-shot input query x, of N tokens (e.g., “I like this movie.
Sentiment:”) is sequentially embedded and updated across L layers into N d-dimensional hidden
states. At each layer, the hidden state of token i at layer / is updated as b} = h!™! +¥X  a! +ml,

where af‘ . is the output of the k-th attention head (head (/,k)), and mf is the MLP output. Concretely,
af « depends on the previous layer’s hidden states of the first i tokens [hﬁfl];:l through:

i

I N kgl Tyl gl

aix =) ¢ iWo  Wyh M
=

where Wy, and W/, , € R%*“ are the value embedding and output projection matrices of head (I, k)

respectively, jointly referred to as the OV circuit, with dj, being the head dimension. cljlf denotes the

attention weight from token i to j of head (I,k). Consequently, the L layer updates can be viewed as
a sequence of additive effects, with the last token hidden state at the final layer formed as:

L K
hi=hY+ Y (X abu+mi). @)
=1 k=1

which is then multiplied by the unembedding matrix Wy € RIVI*d o produce the output logits and
final prediction. An ICL prompt is formed by prepending n demonstration—label pairs to the query,
yielding an input sequence 1, Y1,...,Zm, Ym, L4 (€.g., “I hate this movie. Sentiment: negative. This
movie is great. Sentiment: positive ... I like this movie. Sentiment:”). Because Transformer updates
depend on hidden states from earlier tokens and layers, the hidden states as well as attention and
MLP outputs change throughout, producing a different h’]%/,ICL and ultimately a different prediction.

Task Vector as a mechanistic explanation for ICL Existing TV studies provide a functional
characterization of the mechanism enabling LLMs to leverage demonstrations as f (mq; 0),i.e., LLMs
make predictions based on the query together with a vector 6 that represents the query—label mappings
(Hendel et al., 2023; Merullo et al., 2024). These studies propose that 8 is formed in early layers
and assists LLM predictions as later layers execute f(xq4;6). Accordingly, they seek to extract the
TV 6 from the ICL hidden state stream and add it to the last token hidden state of x, at layer /, i.e.,
hfv + 6. The resulting hidden state is then propagated through subsequent layers, and the intervention
is evaluated based on whether it achieves few-shot-level prediction accuracy for zero-shot queries.
Two major methods of extracting @ have been proposed, which we treat as baselines in this work”:

1. Vanilla TV (Hendel et al., 2023), defined as 6 = hj, o — hy, where hjy (¢ is the layer-I last
token hidden state of an ICL prompt formed with a query different from @, which produces h;v.

2. Function Vector (FV) (Todd et al., 2024; Li et al., 2024a; Yin & Steinhardt, 2025), defined as
0 =% ne aqu ricL> Where ajv’k’ICL is the attention head output to the last token hidden state
given ICL prompts, and I is an index set of selected attention heads.

Both methods have drawbacks. Vanilla TV injection yields lower accuracy and is highly sensitive to
the choice of injection layer /. FV depends on selecting an proper head set I, typically determined
by ablating heads one by one to measure their impact on output probability, which is suboptimal
as it neglects intercorrelations among ablations. Moreover, both methods critically depend on the
quality of model’s ICL representations (we use 8-shot ICL prompts to obtain hidden states for the
two methods and to evaluate ICL performance). As a remedy, we propose directly training LTVs.
Training LTV Instead of distilling from ICL hidden states, we train the LTV 6 to minimize:

_logp(yq|wq707L»P)a (3)

2See Appendix D.4 for comparison with more baselines and the reason for omitting them from the main text.
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where y, is the correct label for the zero-shot query x,, I. denotes the set of layers and IP the token
positions of hidden states where 6 is injected. This approach eliminates the need to manipulate ICL
hidden states and uncovers the most effective TV, unconstrained by representation or demonstration
quality crucial for traditional TV extraction. Moreover, we do not restrict P to the final position or
L to a single layer as in the baselines. In general, we add |IL| x |P| different s to the hidden states
indexed by L and IP. This design allows us to explore flexibility and scalability of our approach and
to test the proposition from prior works that a single TV can encapsulate the full functionality of ICL,
as discussed in Subsection 4.1. In the special case of L = {/} and P = {—1}, we add one 6 to h},
following baseline practice. During the training, for multi-token labels, we average log probabilities
across tokens. 6 is optimized using AdamW (Loshchilov & Hutter, 2017) with learning rate = 0.001
and weight decay = 0.01. Details of the training procedure are provided in Appendix B.

4 EXPERIMENTS

Models We use the following models: Llama3-8B, Llama3.1-8B, Llama3.2-3B, Llama3-
70B (Grattafiori et al., 2024), Llama2-7B, Llama2-13B (Touvron et al., 2023), Qwen2.5-32B (Yang
etal., 2024), Yi-34B (01. Al et al., 2024). In the main text, results are reported on Llama3.1-8B.

Datasets We adopt three datasets from prior TV research (Todd et al., 2024): 1) Capital: given a
country name, output its capital city; 2) Capitalize: given a word, output its capitalized first letter;
3) Antonym: given a word, output its antonym. To evaluate TVs on more natural datasets with
richer input—output mappings, we additionally consider four classification tasks: SST-2 (Socher
et al., 2013), TREC (Li & Roth, 2002), SNLI (MacCartney & Manning, 2008), and RTE (Dagan
et al., 2005). We report the prediction accuracy achieved by ICL and the different TV methods
across the seven datasets. To test the ability of TVs to elicit LLM behaviors in more complex
task settings, we also include the Myopic dataset (Panickssery et al., 2024), a generation task
described in Subsection 4.1. We further include three more datasets specifically for investigating the
compositionality and generalizability of LTV, also described in Subsection 4.1. See Appendix C for
additional details on model implementation, datasets, and ICL setup.

4.1 SUPERIOR PERFORMANCE OF LEARNED TASK VECTORS

Consistent performance superiority of LTV L[,
Following Hendel et al. (2023) and Todd etal. 7% " "

(2024),we first inject the TVs at one layer at %50% | —— Vanilla TV

a time, iterating over all layers of Llama3.1- % 550, = FV /?ED__::__\__
8B, and report the average performance across

datasets in Figure 2. The results show that our O S 4 6 5 101> 1atstas0 s sasesas0
LTV not only consistently outperforms the base-

Layer of TV Injection
line methods at all layers, but also matches or Figure 2: Dataset-average accuracy of injecting the
even surpasses ICL performance—particularly

Vanilla TV, FV, and LTV into the last-token hidden
when injected at early layers of both models.

states by iterating over all layers and injecting into
The high accuracy achieved by the LTV also one layer at a time, along with ICL and zero-shot
makes it a viable parameter-efficient finetuning

ICL Acc

(ZS) accuracy levels. Our LTV consistently out-

(PEFT) method (Wu et al., 2024; Subramani performs the Vanilla TV and FV across all layers,
etal., 2022; Turner et al., 202’4), sinE:e it involves With the performance gap.particularly prominent
optimizing exactly d parameters, which is lower 1 late layers. See Appendix D.I for other models.

than most existing PEFT strategies. To demonstrate the potential of LTV as a PEFT method, we
compare it against two widely used baselines—Prefix Tuning (Li & Liang, 2021) and LoRA (Hu
et al., 2021)—under a comparable parameter budget on SST-2. Specifically, we apply prefix tuning
to the key and value projections of all heads at the first layer of Llama3.1-8B with prefix length 2,
introducing exactly d trainable parameters. Likewise, we apply LoRA to the output projection at the
first layer with rank r = 1, yielding 2d parameters. We then compare these baselines with injecting a
single layer update at the last-token position of layer O (d parameters). Beyond accuracy, we track
mean latency and FLOPs per training or inference sample, and peak memory per training or inference
epoch. As summarized in Table 1, LTV achieves the strongest performance and best training-time
efficiency, and its inference-time FLOPs and memory cost are only marginally higher than prefix
tuning, which demonstrates its potential as a competitive PEFT method.
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Table 1: Comparing LTV against PEFT methods in terms of performance and efficiency

Training Inference
Method Acc.T Param Cnt. | Mean Lat. (Sec) | FLOPs (GB)| Peak Mem. (GB)| Mean Lat. (Sec) | FLOPs(GB)| Peak Mem. (GB) |
Prefix Tuning  85.67% d 0.050 533.15 43.65 0.026 361.51 16.31
LoRA 91.63% 2d 0.053 526.98 43.65 0.032 361.52 16.37
LTV (Ours) 92.89% d 0.049 503.87 43.56 0.024 361.52 16.36

Table 2: LTV outperforms Vanilla TV and FV not only in the baseline case but also across diverse
configurations with varied positions, layers, and prompt formats. See Appendix D.2 for other models.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers  4) More layers & Pos.
Method P={-1},L={16} P={4} P={-5,....—1} L={0,48,...} P={-5,..}LL={04,..} 5) ICL prompts
Vanilla TV 37.80% 2.16% 19.18% 17.97% 18.15% 56.12%
FV 37.30% 2.68% 6.05% 31.88% 0.38% 74.78%
LTV (Ours)  83.49%:4560%  78.39%1757190  82.44%+6326% 86.43%:54.55% 51.39%+33 249 84.61%:19.339%

Accuracy of late-layer injection Another notable trait of the LTV is that it still achieves nontrivial
performance when trained and injected at late layers, despite an overall decreasing trend with depth.
This contrasts with Vanilla TV and FV, which show severely degraded accuracy beyond a certain
depth as reported in prior work (Li et al., 2024a; Todd et al., 2024). Our results therefore challenge
the idea that a critical depth threshold exists beyond which layers cannot utilize the injected TV. We
further analyze the mechanism enabling LTVs at different depths to take effect in Subsection 4.3.

Flexibility and scalability of the LTVs Existing TV studies typically inject solely into the last token
hidden state (P = {—1}) at one specific layer (. = {/}) of the zero-shot prompt. We go beyond this
baseline to examine the adaptability of our LTV to more diverse configurations. We set [ to the middle
layer of the model (i.e., 16 for the 32-layer Llama3.1-8B) as the baseline, and then consider the
following variants. 1) Keep [ fixed but inject (and train) at a different position P = {4}, i.e., add the TV
to the fourth token hidden state’. 2) Inject at multiple positions: P = {—5,—4, —3,—2, —1}. 3) Keep
P = {—1} but inject at every four (ablation studies in Appendix D.3) layers, i.e., L = {0,4,...,28,32}
for Llama2-13B. 4) Set P = {-5,—4,-3,-2,—1} and L = {0,4,...,28,32} simultaneously. 5)
Keep P and L fixed but change the zero-shot prompt to an 8-shot ICL prompt. We compare our LTV
to Vanilla TV and FV in all five settings*, with implementation details for FV in Appendix H.

(A) ¢ Mean + SD The results in Table 2 demonstrate the advantages
of our method over the baseline and highlight the

101 7.78 8.02 skba ks flexibility and scalability of TVs in general. The LTV
i . takes effect at arbitrary positions and is not confined

(B? - = e = to the last token. Multiple LT Vs can be injected at dif-

ferent positions or layers with performance benefits,
and injecting into ICL prompts can further improve
accuracy (baseline ICL accuracy is slightly < 80%,
ICL Response: 0.1 point now. as in Figure 2). By contrast, TVs distilled from ICL

LTV Response: ©.1 point now. hidden states are sensitive to injection position, do
vanilla TV/FV Response: 1 point in 10 davs. ¢ improve ICL accuracy, and fail to synergize when
injected at multiple locations. The only exception is

Figure 3: (A) Mean and standard deviation the “More layers & Pos.” setting, where both meth-
of ratings for responses generated with ICL, ods fall behind baseline. Closer examination suggests
LTV, FV, and Vanilla TV. (B) An example that injecting at many layers and positions simulta-
question and responses across settings. neously does not help artificial Capital, Capitalize,
and Antonym tasks—Ilikely because their simplicity makes heavy TV injection prone to overfitting.

Q: I can give you a reward of 0.1 points now,
or 1 point in 10 days. Which would you prefer?

Adaptability of LTVs to complex task settings The tasks above have single-token labels and
unique correct answers (e.g., The capital of China is — Beijing). To evaluate generalizability to a
more complex generation task with multi-token responses—where the goal is to elicit a behavioral
mode rather than a single answer—we adopt the Myopic dataset from the LLM steering literature
(Panickssery et al., 2024; Bayat et al., 2025). Each entry presents a question with two choices (see

3Prompts with fewer than 4 tokens are skipped in the accuracy calculation.

“In the baseline case, the FV method adds the sum of head outputs at the last position to the final token’s
hidden state. For varied P, we add summed outputs at each position in P to the corresponding hidden state. For
multiple layers, we replicate the FVs |L| times and inject a copy at each layer. For the Vanilla TV, we patch
hidden states at positions I’ and IL. of an ICL prompt with a different query into those of x,.
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Figure 3 (B)), one myopic and the other favoring long-term rewards. We compare the generated
answers with LTV (injected at the middle layer) to the two baselines by asking an LLM to rate
them on a 10-point scale (details in Appendix I) based on how well they reflect the myopic choice.
The statistics in Figure 3 show that the LTV not only surpasses the baselines but also exceeds ICL
performance—something existing TV methods distilled from ICL representations struggle to achieve.
These results provide clear evidence of the potential of LTVs in complex generation settings (see
Appendix D.5 for other models).

-
=]

Cross-task TV similarity and generalizability As a
first step toward understanding how TVs capture task id-
iosyncrasies, we compute cosine similarities among TVs
trained for different tasks (and across repeats of the same
task). For each of the seven tasks, we train a middle-layer
LTV five times and compute cosine similarities among Capital
the resulting 7 x 5 = 35 vectors. The outcome in Figure 4  Capitalize
(other models in Appendix D.6) shows that LTVs inter-  Antonym
nalize effective and consistent task representations, with R Y"iov“&x@"i &
clear intra-task alignment and inter-task separation. The . N
only notable exception is the moderate alignment between Figure 4: Cosine 51m11ar1ty he.atmap of
LTVs trained for SNLI and RTE, which share the labels L1 Vs for seven tasks, showing inter-task
(true, false}. This suggests that the unembedding SeParation and intra-task clustering.
directions of task labels critically determine the orientation of TVs: LTVs that ultimately promote
alignment of hidden states to the same unembedding vectors naturally exhibit high similarity. To
verify this conclusion, we apply the middle-layer TV trained on SNLI to other datasets and record
the induced accuracy. The results in Table 3 where the TV only leads to nontrivial accuracy on RTE,
demonstrating that the generalizability of TV across tasks critically depends on the task label space.
Additional results of applying the TV of Capital dataset (which does not share the label of other
datsets, as opposed to the SNLI case) on other tasks are in Appendix D.7, where the LTV could not
generalize across task, which further strengthens our conclusion.

I
&

RTE

=] =]
'S >
Cosine Similarity

e
N

o
°

Compositionality of TV Given the strong Table 3: Applying the SNLI TV to other tasks
dependence of TVs on the task label space, we - —
ask whether TVs trained on tasks with related ~SST-2 TREC RTE Capital Capitalize Antonym
label spaces exhibit word2vec-style composi-  0.00% 0.00% 46.21% 130%  0.67% 0.00%
tionality (Mikolov et al., 2013). We consider
three tasks: English—French (e.g., dog — chien), Masculine—Feminine (e.g., actor — actress),
and English Masculine—French Feminine (e.g., actor — actrice). We learn middle-layer LTVs for
the first two tasks, sum them, and evaluate the resulting TV on the third task. As shown in Figure 5,
the composed TV achieves accuracy far above zero-shot and ICL performance, demonstrating that
TVs are compositional in a manner consistent with the semantics of their label spaces.

4.2 LOW-LEVEL INTERACTIONS BETWEEN TV AND ATTENTION HEADS

After demonstrating the superiority of our approach over 75%"
inefficient methods of extracting TVs, we next address the
second gap in prior TV studies: the lack of exposition of
the mechanism behind TV effectiveness. We begin with !

the low-level mechanism through which concrete model 0% % ICL/
components interact with TVs to induce their effects in

computation. We focus on attention heads given their cen- Figure 5: Results of composing the
trality in Transformer-based LLMs (Zheng et al., 2024), LTVs on subordinate tasks on the com-
and their well-documented significance for model perfor- Pposite task.

mance (Yang et al., 2025a; Cho et al., 2025; Jin et al., 2024) and behaviors (McDougall et al., 2023;
Song et al., 2025) across diverse settings.

50% 50%
o

Accuracy
N
%))
X

LTV Coniposition

Reconstructing TV effect through OV circuits In Section 3, we showed that the output of an
attention head (/,k) to the final token hidden state (which directly determines the output) can be

expressed as af\,’ = Xi-1 cilf W(l)z Wé}khi.*]. When a TV 0 is injected at the last position of layer
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83%

75%-
g 52% g "

7 50%7 £ 50%-
< 25% / 5 25%-
7 0 0% ,
° Learned TV Reconstructed through OV zs 0%-
(a) Reconstructing TV effect through OV circuits. (b) Ablating key attention heads
Figure 6: Assessing the significance of attention heads in the low-level interactions between TVs
and model components. (A) Changes induced by TVs on head outputs through OV circuits explain a

substantial portion of the performance boost. (B) Ablating attention heads that critically leverage
TVs significantly degrades performance. Results for other models in Appendix F.2

51%

Learned TV Key Heads Ablated Rand. Heads Ablated

[ — 1, the corresponding hidden state becomes hfv_ !4 6, and the attention head output becomes:
ai= Z SWox Wil + W Wi (hiy ' +6), )

with an additional component cN IWO k W‘ﬂ 0. Since cﬁ\,k is a scalar attention weight and considering

the effect of layer normalization, the term Wéz W‘Z, k0—1.e., the TV transformed by the head’s OV
circuit—is the core factor reflecting the effect of the TV on the head’s contribution to the residual
stream (Figure 1 (B)). Because residual connections (He et al., 2015) carry 6 forward, it influences
all heads in layer / and beyond. Thus, the aggregate influence on head outputs caused by the TV is:

) WO o W0, )
(' J):1'>1

which has a similar form to FV. To test whether interactions between 8 and attention heads constitute
the main low-level pathway, we inject this aggregate back as a packaged TV into the residual
stream at layer [ — 1 to reconstruct the aggregate effect of the original TV expressed and propa-
gated through OV circuits of all heads on the residual stream. We provide further clarifications
in Appendix F.1. We again experiment with the middle layer and rescale the vector to match the
norm of 6, avoiding shifting hidden states out of distribution. After injection, we also add 6 to the
final-layer hidden state to reinstate its purely residual effect 7. The results in Figure 6a confirm the
critical role of attention heads and their OV circuits: reconstructing the TV effect via OV-transformed
decompositions restores much of the performance gain, showing that TV steer the residual stream
largely through channels modulated by attention heads. We further establish the significance of the
OV circuits in expressing and modulating the TV’s effect by experimenting with the alternative of
MLP-based reconstruction in Appendix F.4, which shows that MLP-based reconstruction recovers a
much less proportion of LTV’s effectiveness.

Assessing key attention heads leveraging the TV We further evaluate attention heads by identifying
those most reliant on TVs for predictions and examining the effect of ablating them (setting outputs
to 0). We compute a saliency score (Bansal et al., 2022; Michel et al., 2019; Molchanov et al., 2016)
for each head in the presence of a TV. Let af\/, . be head (1,k)’s output to the last position with the TV
ap( yq\mq,e L, IP’)
60,
the correct label probability via a first-order Taylor approximation. We compute scores for all heads
after the injection layer and designate the top 10% as key heads. We then ablate these and randomly
ablate 10% of heads as a control. The results in Figure 6b support the saliency-based identification:
ablating key heads reduces performance far more than random ablations, confirming attention heads’
central role in realizing TV-driven gains, compared with direct residual bias of 6.

injected, its saliency score is |aN |

Characterization of the key attention heads After identifying key heads, we further analyze their
characteristics—specifically their distribution across layers and attention weights over token positions.
We report the average percentage of key heads per layer across datasets. For attention distribution,
we show average patterns of all identified heads over input positions on an SST-2 prompt (for more
prompts see Appendix F.6), alongside the average from an equal number of randomly selected heads.

SWe confirm this residual effect plays an inconsequential role in the observed accuracy gain through
reconstructing the OV effect, see Appendix F.3.
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(a) Distribution of key heads across layers (b) Distribution of attention weights across positions

Figure 7: (A) Key attention heads cluster mainly in layers immediately after the injection (16 for
Llama3.1-8B) and secondarily in final layers. (B) Compared to random heads, key heads suffer less
from attention sink and focus more on final positions. See Appendix FE.5 for other models.
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Figure 8: (A) Metric values of hidden states across layers when the TV is injected at an early or late
layer. (B) Tokens decoded from TVs, with early-layer TVs yielding random tokens and late-layer
TVs producing task-related tokens. See Appendix G.1 for other models’ results.

The results in Figure 7 show two main patterns. First, key heads leveraging TVs follow a quasi-U-
shaped distribution: many appear right after the injection layer (serving as early gateways for TV
influence) and again in final layers (integrating TV effects into outputs). Second, randomly selected
heads exhibit a strong “attention sink” (Xiao et al., 2023; Sun et al., 2024), focusing on the first
token and often performing “no-op” behaviors (Vig & Belinkov, 2019; Vig, 2019), making them
unresponsive to TV injection (see Figure 6b). By contrast, key heads show weaker sink and greater
focus on final positions, enabling them to exploit TVs when shaping outputs (Figure 6a).

4.3 HIGH-LEVEL ANALYSIS OF TV’S INFLUENCE MECHANISM

The previous section demonstrated that TV are realized primarily through attention-head OV circuits,
with a small subset of heads driving most of the effect. We now move from these local interactions to
the higher-level question: how do TVs evolve as they propagate through the network and ultimately
shape predictions? To answer this, we analyze the layer-wise dynamics of hidden states after TV
injection which reflects how the injection effect propagates (Skean et al., 2025; Kirsanov et al., 2025;
Yang et al., 2025a) using the SST-2 dataset that offers clear mechanistic insights (Yang et al., 2025a).
we track three complementary metrics across layers of TV influence (Figure 8 (A)):

1. Logit Lens Accuracy (nostalgebraist, 2020): decode hidden states at intermediate layers with
the unembedding matrix Wy and compute accuracy. This global metric indicates whether the
inference dynamics driven by the TV are able to yield correct predictions at a given depth.

2. Logit Difference: the logit gap between correct and incorrect labels, e.g., positive vs. negative
for SST-2. This measures whether the TV-affected hidden states can separate the correct label
from the wrong in the task label space to support high Logit Lens Accuracy.

3. Task Alignment: average cosine similarity between hidden states and label unembeddings. This
measures whether TV-affected hidden states align with task-related directions to identify the
label space, which achieves high Logit Lens Accuracy given correct Logit Difference.

Given the different effects of TVs injected at early vs. late layers noted in Subsection 4.1, we compute
. / VA . .
these metrics for [H (01)7 ... H (Ll)}, i.e., the collections of last-token hidden states across layers when a

TV 60, is injected at an early or late layer /. We set [ = % for early and [ = %L for late (8 and 24 for
Llama3.1-8B). We compare these TV-affected hidden states with ICL and zero-shot baselines.
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Figure 9: (A) A reconstructed TV based on modeling 6;’s influence as linear achieves comparable
accuracy for most layers. (B) Characterizing hidden-state updates with TVs as linear yields positive
results: the fitted transformation matrix substantially increases intermediate-layer decoding accuracy.

Early vs. late TVs shape hidden states differently From Figure 8 (A), both early- and late-layer
TVs nudge zero-shot hidden states toward ICL trajectories in metric trends, indicating that LTVs
capture the essence of ICL. Yet they act differently: early TVs improve metrics gradually over several
updates, whereas late TVs immediately align hidden states with label unembedding vectors. This
aligns with Figure 8 (B), where decoding TVs directly with Wy, shows early TVs yield irrelevant
tokens while late TV's produce task-related tokens—implying stronger alignment with task directions
and direct steering of hidden states to increase label logits. These differences motivate a closer
look at how early vs. late TV effects propagate through intermediate updates.

Linear propagation of TV’s effect To analyze how a TV’s effect is transmitted to final-layer hidden
states, note that we have the abstraction of the from / to L :

H! = Layer_Update,,; (H'), H<Lll) = Layer_Update,, (H'+ 1,6), 6)

where H’ are zero-shot hidden states at the final layer L, and multiplying by 1, adds the TV to each
of the n examples. Given ample evidence of linear mechanisms in Transformers (Marks & Tegmark,
2024; Park et al., 2024), we hypothesize that if the composite update acts linearly on 6, then

1 O,W,y, ) ~ H(Lll) - HY,

for some Wry, ) € R?*4 parameterizing the linear effect of hidden states update. The resulting effect

of TV on label logits is Wy Wry (1y6;, and on task labels W/”"“Wyy, y6; (inner products with
rows of Wy Wry ;) for “positive”/“negative”). To test this hypothesis, we proceed as follows:

(1) Collect states with noise injection: Using LTV 6, on sample prompts, we obtain H (Ll; (with
injection) and H’ (without). We perturb ; as 0,;=0;+ Aie; while obtaining H (Lll) to avoid degenerate

rank-1 solutions when fitting Wry, ;) since 1;1'— 0, is rank-1.

(2) Construct and evaluate proxy TV: We compute W/ Wry, ;) + W*Wryy, ;) as a proxy TV,
rescale it to match 6;’s norm, and inject it at layer /. This vector should have high inner products
with W/ Wy, ;) and Wi Wy ) should raise both label logits to support correct prediction if the
hypothesis is correct. We test this ; at all layers /. See Appendix J for the full details of the fitting
and reconstruction procedure, where we also the provide the theoretical guarantee for our method
and experimental results validating the theorem.

The results in Figure 9a support the linear hypothesis: the linearly reconstructed TV matches the
original TV’s performance for most layers, with only a few exceptions. This indicates that a purely
linear operator Wry, ;) can almost fully capture the channel linking injected TVs at different layers
to changes in final-layer hidden states, despite the many nonlinear components within the model.

Linearity of hidden-state updates The strong linearity of Layer_Update;_; on TVs suggests
that hidden-state updates may also be summarized linearly. To verify this, we fit Wy ;) such that
H (l;)WH&(,) ~H (Lll) on a sample (details in Appendix J), where H (l;) are layer-/ hidden states with 6,
injected. We then multiply Wy ;) with a separate set of H, (l;) and check if decoding with Wy, yields

higher accuracy than direct decoding, which is confirmed in Figure 9b and signals the strong linearity
of hidden-state updates. These results align with prior evidence of LLM layer linearity (Razzhigaev
et al., 2024) and the success of attempts to linearize Transformers (Li et al., 2020; Han et al., 2024).
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Decomposition of TV’s influence mechanism While TVs injected at different layers are converted
to final output changes via a linear transformation Wry, ;), finer-grained analysis can be conducted to
explain why early and late TVs differ as in Figure 8. To this end, we consider the polar decomposition
Wrv,a) = Q)X 1), where orthonormal Q ;) represents a rotation and positive semidefinite 3, a
stretch along the right-singular directions of Wry, ;). Since Figure 8 (B) shows early-layer TVs
aligned with directions unrelated to the task, we apply only the rotation to 6; at different layers
and measure changes in task alignment. This addresses whether early-layer TVs operate via a
distinct mechanism, or are rotated by subsequent layers to align with task label unembeddings
to increase logits as late-layer TVs do. The substantial increases in task alignment in Figure 10
(A), especially for early layers, indicate a common mechanism: TVs steer hidden states toward
task-related directions (Figure 1 (C)). The fact that early-layer TVs decode task-relevant tokens after
rotation (Figure 10 (B)) supports this view. The observed lag between early-layer injection and the
layer where metrics begin to change (Figure 8(A)) arises because in-between layers (primarily the
OV circuits of heads in these layers as we show in Subsection 4.2) are needed to rotate the TV
toward task-related directions. Thus, Figure 10 provides a unified account linking TVs at different
layers to final outputs.

(A) (C) — Rotation phases out, stretch phases
P Task allgament of G g 0:00| 77 COSSMGQu) - € in To further understand how rota-
g g025 /{,"‘ tion and stretch evolve across layers,
0.0 e A o i . . . . ~

0 4 8 12 16 20 24 28 0.00 0 4 NB 12 16 20 24 28 We Compute the COSlne S?mllarlty be

(8) Layer Layer tween 6; and Q;)0;. This quantifies
Tokens Decoded fron Early Laver LTVs rotation strength: higher similarity im-
Before Rotation: classical, Classical, nghiép, brushes, /forms, enant,... plies less I‘Otation as the matrlX ap_
Rotation: positive, negative, adverse, favorable, unfavorable,... prOXimateS ldentlty mapplng The

rising similarity across layers in Fig-
Figure 10: (A) Applying the rotation to TVs at different ure 10 (C) reveals a clear trend of di-
layers substantially increases alignment with unembeddings minishing rotation in deeper layers,
of task-related labels. (B) After rotation, early-layer TVs with stretch becoming the dominant
that originally decode random tokens produce task-related component of Wy ). This suggests
tokens. (C) The rotation effect diminishes for late-layer TVs  that early-layer TVs undergo stronger
as the estimated matrix approaches identity. rotation—consistent with the finding
that intermediate layers are needed to rotate TVs toward task-related directions.

5 CONCLUSION

We revisited task vectors as mechanistic explanations for in-context learning. Moving beyond
extraction-based approaches, we introduced directly trained Learned Task Vectors, which achieve
higher accuracy and adapt flexibly across layers, positions, and task settings. Our analysis showed that
TVs at the low level operate mainly through attention-head OV circuits, with a few key heads driving
their effect. At the high level, TVs propagate through the model in a largely linear manner: early TVs
rotate to align with task subspaces, while later TVs are stretched in magnitude. This rotation—stretch
dynamic offers a unified account of how TVs at different depths shape final predictions. By combining
empirical performance with mechanistic explanation, our work provides both a tool for finding
effective TVs and a principled inquiry into how LLMs use them to realize their effects.

10
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Appendices

A STATEMENT OF LLLM USAGE

In this work, LLMs are used to help with writing, experiment coding, and visualization of the results.
LLMs are also used to produce results in one of the experiments, as explained in Subsection 4.1 and
Appendix L.

B DETAILED PROCEDURES OF TRAINING LEARNED TASK VECTORS

As described in the main text, we train € by minimizing the loss —log p(y,|z4,6,L,P). Optimization
is performed with AdamW (Loshchilov & Hutter, 2017) using a learning rate of 0.001 and weight
decay of 0.01. Prompts for training are drawn from the training split of each dataset, and performance
is evaluated on the corresponding test split, with dataset construction explained in Appendix C. For
efficiency, we select from the training data the first number of examples equal to the size of the test
set, and further divide them into training and validation splits. For example, the Antonym dataset
contains 600 training and 400 test samples; we take the first 400 training samples and split them
into 240 for training and 160 for validation. Training runs for up to 10 epochs, with 100 examples
randomly sampled from the training split per epoch (or the entire split if it contains fewer than 100
samples). Early stopping with a patience of 2 is applied: if validation performance does not improve
for two consecutive epochs, training halts and the 0 that achieved the best validation accuracy is
retained as the final TV. In the setting of Subsection 4.1, where TVs are trained on ICL prompts
rather than zero-shot ones, demonstrations are also drawn from the training data. To avoid label
leakage, demonstrations are sampled only from examples not used in TV training. For instance, in
the Antonym dataset, where 400 of 600 training samples are used for TV training, the remaining 200
are reserved for demonstration construction.

C IMPLEMENTATION DETAILS

Models We use the official HuggingFace implementations of all models. Models with more than
10B parameters are quantized to 4-bit precision, while smaller models are run in half precision.

Datasets We use the official HuggingFace implementations of SST-2, SNLI, RTE, and TREC. For
Capital, Capitalize, Antonym, and Myopic, we use the data released by previous authors. Specifically,
the data for Capital, Capitalize, and Antonym are taken from Todd et al. (2024), and the data for
Myopic from Panickssery et al. (2024).

ICL and evaluation settings We select demonstrations randomly for each query without relying on
any principled selection methods. For SST-2, TREC, SNLI, and RTE, we use the training set both for
demonstration selection and for training task vectors, and we evaluate performance on the test set
(or the validation set if ground-truth test labels are unavailable). To ensure efficiency, if the training
set has more than 10,000 entries, we keep only the first 10,000 for demonstration selection, and
for evaluation we restrict to the first 1,000 examples from the test or validation set. For the Capital
dataset (197 examples in total), we use the first 120 examples for training and the remaining 97 for
testing. For the Capitalize dataset, we use the first 500 rows for training and the following 300 rows
for testing. Similarly, for Antonym we use the first 600 rows for training and the next 400 rows for
testing. For the Myopic dataset, we use the first 500 rows for training and the remaining 450 rows for
testing.

Devices All experiments are conducted on an H200 GPU.

D SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.1

D.1 PERFORMANCE OF LTV INJECTED AT THE LAST POSITION ON OTHER MODELS

In Subsection 4.1, we reported the performance of our LTV for Llama2-7B and Llama2-13B under
the traditional setting following Hendel et al. (2023) and Todd et al. (2024), i.e., injecting at one

16



Under review as a conference paper at ICLR 2026

specific layer into the last position. In Figures 15—-16, we provide similar layer-sweeping results of
LTV performance for Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B. The results likewise
demonstrate a consistent performance advantage of the LTV over the two baselines across layers, with
the gap being most prominent in later layers. In Table 8, we report the corresponding results for the
remaining three non-Llama models. Concretely, we inject the TVs at layers corresponding to 50% of
the total number of layers of each model (for instance, at layer 16 for a 32-layer model). The results
validate the performance of our LTVs across model sizes and architectures, as they consistently raise
performance significantly above the zero-shot level and up to the level of ICL.

D.2 REPLICATION OF TABLE 2 FOR OTHER MODELS

In Tables 9—12, we present the comparison of FV, Vanilla TV, and LTV across the five scenarios on
Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B, which yields largely the same conclusions.
Our LTV demonstrates strong flexibility with respect to injection positions and ICL prompts, as
well as scalability to cases involving multiple positions and layers. By contrast, FV and Vanilla
TV struggle to adapt to different injection positions and fail to improve performance when multiple
injections are used. For the other models we report only the performance of the LTV. The results,
shown in Tables 13—15, are consistent with those in Table 2. The reduced average performance of
TVs when trained and injected at multiple layers and positions simultaneously is again observed,
which we attribute to lower accuracy on the Capital, Capitalize, and Antonym tasks.

D.3 ABLATION STUDIES FOR THE LAYER STRIDE WHEN INJECTING LTVS TO MULTIPLE
LAYERS

In Table 2, we demonstrate the scalability of LTV by injecting it into every four layers of the model
simultaneously. In Table 16, we conduct ablation studies on the layer stride by injecting at every two
layers or every eight layers. The results closely match those obtained with a stride of four, indicating
that the scalability of LTV is unaffected by the specific choice of layer stride.

D.4 COMPARISON OF LTV AGAINST MORE BASELINES

In this section, we compare LTV with two additional methods that distill ICL hidden states into
components to be injected into the zero-shot residual stream: State Vector (Li et al., 2024a) and I12CL
(Li et al., 2025). These methods are not included in the main text because 1) they involve highly
convoluted and opaque optimization procedures, and 2) they require injecting into multiple or even all
layers by default, which not only obscures the mechanistic interpretation of the resulting task vectors
but also makes them fundamentally different from task-vector methods that inject into only one layer
by default. In Figure 17, we compare the performance of LTV with these two baselines by injecting
into each single layer of Llama2-7B on SST-2. The results further corroborate the superiority of
LTV, as it outperforms both baselines across all layers. We also record the total time required for
the three methods to complete a full training—evaluation epoch on SST-2. As shown in Table 7,
LTV requires the least amount of time despite involving gradient-based training, highlighting the
substantial inefficiency of methods like State Vector and 12CL, which rely on highly convoluted
optimization procedures to distill ICL hidden states.

D.5 REPLICATION OF FIGURE 3 FOR OTHER MODELS

In Figures 18-21, we present the comparison between Vanilla TV, FV, and LTV injected into the
middle layer of Llama2-7B, Llama2-13B, Llama3-8B, and Llama3.2-3B on the Myopic dataset. The
results closely echo those of Figure 3: the LTV consistently outperforms both baselines as well as ICL
across models, demonstrating its generalizability to complex generation tasks beyond single-token
responses and the superiority of its performance uncapped by the representation quality of the ICL
hidden states. In Figures 22-24, we present the results on the remaining models (Llama3-70B,
Qwen2.5-32B, Yi), where we compare Vanilla TV and LTV. The results are largely similar.
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Figure 11: Visualization of how we reconstruct the aggregate effect of TVs induced through the OV
circuits of attention heads in Subsection 4.2.

D.6 REPLICATION OF FIGURE 4 FOR OTHER MODELS

In Figures 25-31, we provide visualizations of the experiments presented in Figure 4 for additional
models. The results indicate that the pattern of intra-task clustering and inter-task separation among
LTVs is common across models, though the strength of intra-task clustering varies, being stronger
in Llama2-7B and Llama2-13B and more moderate in Llama3.1-8B and Llama3-8B. Moreover, the
relatively stronger alignment between LT Vs trained on SNLI and RTE, which share the same label
space, is also consistently observed. This supports our claim in the main text that the direction of
an LTV is closely correlated with the directions of the relevant unembedding vectors, which it must
align hidden states with to facilitate correct decoding.

D.7 REPLICATING TABLE 3 USING THE LTV OF THE CAPITAL DATASET

In Table 17, we replicate the experiment presented in Table 3 but using the LTV learned on the capital
dataset. The results differ from Table 3 because unlike SNLI, Capital does not share the label space
of any other task. This further corroborates the conclusion that the generalizability of LTV critically
depends on the label space of the task.

E DETAILED PROCEDURES OF GENERATING CORRECTNESS RATINGS FOR
THE MYOPIC DATASET

F SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.2

F.1 CLARIFICATIONS OF THE APPROACH TO SIMULATE THE AGGREGATE EFFECT OF TVs
INDUCED THROUGH THE OV CIRCUITS IN SUBSECTION 4.2

We provide a visual explanation of how we simulate the aggregate effect of TVs induced through the
OV circuits of attention heads in Figure 11. We first compute the products between the OV circuit
of each attention head in layers after the point of injection and the injected TV 6, then sum these
products and rescale them to match the norm of € before injecting this aggregate vector as a TV at
the original injection site.
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Note that we inject the aggregate product of the TV and all OV circuits, i.e., ¥ g1)./> Wg kT, W‘ﬂ, w0

as a whole back into the injection layer. This follows the procedure of previous TV studies, which
attempt to construct TVs from attention head outputs (Todd et al., 2024; Li et al., 2024a). We also
considered an alternative approach: instead of injecting the reconstructed TV as a whole, we first
compute

K , ,
07" =y Wg;,j, Wy .0, (7
k=1

for each I’ > [. Then, at each layer I’ from [ to the final layer, we inject 0[(/)‘/ into the residual stream.
This approach is intended to simulate the gradual incorporation of the TV transformed by the OV
matrices at each layer into the residual stream through consecutive updates. Empirically, we found
this method achieves lower reconstructed accuracy than the one presented in Figure 6. We believe the
reason is the strong inconsistencies in hidden state scales across layers (Csordds et al., 2025), which
make it much harder to adjust 01(,)‘/ to an appropriate scale. As a result, adding BIQV at every layer
from [ to the final one risks shifting hidden states out of distribution, which greatly compromises the
accuracy compared to the reconstruction approach in Subsection 4.2.

F.2 REPLICATION OF FIGURE 6 FOR OTHER MODELS

In Figures 32-38, we present results assessing the significance of attention heads in mediating the
low-level interactions between TVs and model components. The findings are somewhat mixed but
overall support the critical role of attention heads. Specifically, reconstructing the TV effect through
OV circuits proves effective for Llama3-8B, Llama3.2-3B, Qwen2.5-32B, and Yi-34B, but not for
the other three models. In contrast, this discrepancy does not appear in the ablation experiments:
across all models, ablating the heads with the highest saliency scores consistently and substantially
reduces the effect of the TV, far more than ablating an equal number of randomly selected heads. In
summary, the importance of attention heads for realizing the impact of TVs is robust across models
and architectures, though reconstructing TV effects by injecting summed OV transformations back
into the stream appears more model-dependent.

F.3 EXAMINING THE INFLUENCE OF REINSTATING THE RESIDUAL EFFECT IN THE OV-BASED
RECONSTRUCTION

In Subsection 4.2, in addition to injecting the summed product of the TV with the OV circuits of
all affected heads as explained in Appendix F.1, we also add the TV to the final layer hidden states
prior to decoding to reinstate the effect of the TV transferred purely through the residual stream.
To test whether this residual effect is the main cause of the observed accuracy gain, which would
otherwise invalidate OV circuits as the dominant low-level channel, we repeat the OV reconstruction
experiment from Subsection 4.2 but omit the final-layer TV addition. The results across models in
Figures 40—47 show that including or excluding the TV at the last layer has only an inconsequential
impact, as accuracy remains practically unchanged.

F.4 DEMONSTRATING THE SIGNIFICANCE OF OV-BASED RECONSTRUCTION THROUGH
MLP-BASED RECONSTRUCTION

In Figure 6a, a gap between the accuracy achieved by the original LTV and the OV-based recon-
struction can be seen, raising the question of whether interactions between the TV and other model
components (i.e., the MLP) also contribute to the low-level influence mechanism of TV. To test
this, we explore an MLP-based reconstruction of the TV effect. Recall the circuit formulation of
the Transformer: hk = hY + Y1 <Z,K I afN,_k + mf\,>, where mf, = MLP/(hﬁ,’] +YK, aly,) is

the update from the MLP sublayer of layer /. With the injection of a TV 6 added to hf\Tl and
its residual effect propagated to all subsequent layers, the aggregate influence on MLP outputs is
Onrp = Y. r> MLP;/(8), ignoring the nonlinearities inside the MLP. We inject Ouip back as a TV
to evaluate the effect of this MLP-based reconstruction. We also inject éM[_]) + éov, where éov is
the aggregate TV influence on attention head outputs in Equation 5, to test whether interactions

19



Under review as a conference paper at ICLR 2026

between the MLP and TV account for the portion of TV performance not explained by TV-OV circuit
interactions. The results in Figure 39 show that the MLP-based reconstruction explains a far smaller
portion of TV performance than the OV-based reconstruction does. Moreover, Figure 39 indicates
that supplementing the OV-based reconstruction with the MLP-based one contributes nothing toward
explaining the remaining benefits of LTV. This suggests that the MLP-based reconstruction merely
reinstantiates a subset of the TV effect already captured by interactions between the TV and OV
circuits of attention heads, thereby underscoring the fundamental significance of OV circuits in the
low-level influence mechanism of TV. We thus conclude that the gap between LTV accuracy and the
OV-based reconstruction should be attributed to Transformer nonlinearities and the ripple-distortion
effects caused by injecting the reconstructed TV into model computation (e.g., on attention weights),
rather than to the MLP.

F.5 REPLICATION OF FIGURE 7 FOR OTHER MODELS

In Figures 4854, we characterize key attention heads for the remaining seven models, focusing
on their average distribution across layers and the distribution of their attention weights over token
positions. For layer distribution, the primary concentration of key heads immediately after TV
injection is a consistent pattern across models. However, the U-shaped trend—featuring a secondary
rise in the proportion of key heads in later layers—is observed in Llama3-8B, Llama3.2-3B, Llama3-
70B, and Llama2-13B, but not in Llama2-7B, Qwen2.5-32B, or Yi-34B. Regarding attention weight
distributions, randomly selected heads in all models exhibit a clear attention sink pattern, whereas key
heads consistently mitigate this effect by concentrating more attention on the final tokens, particularly
near the last position where TVs are injected.

F.6 DISTRIBUTION PATTERNS OF ATTENTION WEIGHTS OF KEY HEADS LEVERAGING TVs
EVALUATED ON MORE PROMPTS

In Figure 7, we reported the difference in the attention distribution of key heads leveraging TVs
versus random heads over token positions of a single SST-2 prompt. To test the generalizability
of these results and exclude the risk of prompt idiosyncrasies, we evaluate the average attention
distribution of heads over the entire SST-2 test set. To address inconsistencies in prompt lengths, we
discretize the tokens of each prompt into 8 bins, each containing % of the total tokens (bin intervals
rounded to the nearest integer). We then calculate the proportion of attention falling into each bin
and average across prompts. The results across models in Figures 76-83 confirm the observation in
Figure 7: key heads allocate a higher proportion of attention to final tokens, as revealed by the high
concentration in the final bin.

G SUPPLEMENTARY MATERIALS FOR SUBSECTION 4.3

G.1 REPLICATION OF FIGURE 8 FOR OTHER MODELS

In Figures 55-61 and Tables 18-24, we present results tracking the progress measures introduced in
Subsection 4.3 for the evolution of hidden states at each layer of other models, along with the tokens
decoded from early- and late-layer TVs. The findings largely mirror those in Figure 8: injection of
early-layer TVs influences the metrics only after a few subsequent layers, whereas late-layer TVs
change the measures immediately. Moreover, TVs trained at late layers consistently decode more
task-related tokens than early-layer TVs, except in Qwen2.5-32B and Yi-34B, where both early- and
late-layer TVs yield many irrelevant Chinese tokens.

G.2 INVESTIGATING THE LAYER THRESHOLD OF THE TWO OPERATING MODES OF TVS

In Figure 8, we see how early- and late-layer TVs behave very differently: early TVs cause the
measures to change only after several subsequent layers, whereas late TVs directly induce changes
immediately after injection. It is therefore worthwhile to examine the layer depth at which TVs
switch between these two operating modes. In Figures 84-99, we provide the layer-wise trends in
the metrics with TVs injected from the first to the last layer at an interval of 2 on Llama3.1-8B, to
accurately pinpoint this threshold. The results reveal that the transition occurs between layers 18 and
20. Interestingly, this is also the depth at which the Logit Lens Accuracy and Task Alignment values
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of the ICL hidden states begin to rise significantly above the zero-shot hidden state baselines. This
is consistent with previous findings (Yang et al., 2025a), which report that ICL features a distinct
transition pattern where hidden states increasingly align with the unembedding vectors of task-related
labels from a certain layer depth onward. The capability of our LT Vs to accurately simulate the traits
of ICL hidden states further demonstrates the superiority of our method in that it finds TVs that truly
recover the essence of ICL functionality.

G.3 REPLICATION OF FIGURE 9 FOR OTHER MODELS

In Figures 62-68, we show results from replacing the composite layer updates from / to the final layer
with a fitted linear transformation, applied either to TVs or to hidden states across all /. The outcomes
are strongly positive: the linearly reconstructed TVs nearly perfectly match the functionality of the
original TVs across models, with only a few exceptions at certain layers. Likewise, the fitted linear
transformation effectively recovers the influence of composite layer updates on TV-affected hidden
states and raises the Logit Lens Accuracy at intermediate layers significantly above the baseline.

G.4 REPLICATION OF FIGURE 10 FOR OTHER MODELS

In Figures 69-75, we replicate the experiments of Figure 10 on other models. These experiments
apply the rotation component of the estimated linear transformation linking TV injection to output
changes, at different layers. The results confirm that early-layer TVs across models ultimately
increase the logits of task-related labels by being rotated, through subsequent layer updates, into
directions aligned with the corresponding unembedding vectors. This implies that the observation
made for Llama3.1-8B in the main text—that early and late TVs share the same fundamental
mechanism of influence—is consistent across models. Furthermore, the cosine similarity between
the original TV and its rotated counterpart increases monotonically with layer depth across models,
validating the finding that rotation effects are strongest in early layers and diminish in deeper layers.
As a consequence, early-layer TVs undergo stronger rotations and must adjust their orientations
accordingly.

H IMPLEMENTATION DETAILS RELATED TO FUNCTION VECTORS

For Llama2-7B and Llama2-13B, we use the selected attention head index sets (100 heads for each
model) I released by Todd et al. (2024) to construct function vectors. Following the same practice,
we take the sum of the average outputs of each head in I at the last token position across a pool of
ICL prompts, i.e.,

Z al—l,k,ICL'

(I,k)el

The ICL prompts are 8-shot, where the queries consist of the entire test set of each dataset, and the
demonstrations for each query are exactly those used in the evaluation of ICL performance for that
dataset. We also computed function vectors for Llama3-8B, Llama3.1-8B, and Llama3.2-3B, which
were not included in Todd et al. (2024)’s experiments. We adapt Todd et al. (2024)’s procedures to
these models and likewise identify 100 heads for each model from which to construct FVs.

I DETAILED PROCEDURES OF GENERATING CORRECTNESS RATINGS FOR THE
MYOPIC DATASET

We use the following template, adapted from Zhao et al. (2025), to prompt ChatGPT-5 to rate LLM
responses to questions in the Myopic dataset under different TV settings.
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Assign a correctness rating on a scale of 10 to an LLM’s response to a question from the
dataset. Each question presents two choices: one is myopic and the other is far-sighted.
For example, consider the question: "Would you like a donut now, or two donuts in an

‘2. | hour?" Here, the myopic answer is "A donut now," and the far-sighted answer is "Two

g donuts in an hour." Assign the myopic choice, or any synonymous response, a score of 10.

& Assign the far-sighted choice, or any synonymous variant or irrelevant response, a score of
0.
Question: "You can watch a movie now, or wait a week and watch two movies. What do
you want to do?"

0

7]

S

& Waich a movie now. Score: 10.  Wait a week and watch two movies. Score: 0.

Q

o

J TESTING THE LINEAR HYPOTHESIS OF TV EFFECT

We aim to assess whether the effect of a task vector (TV) on downstream model computations can be
approximated by a linear operator. To this end, we fit two linear maps: the TV-transport map Wry ()
and the hidden-state transport map Wy (;), both of which attempt to characterize how a perturbation
at layer / propagates to the final layer.

Fitting Wry ;) We use the Adam optimizer (Kingma & Ba, 2017) with learning rate 1073 and
weight decay 5 x 1073, The sample prompts used to collect H, Ll, and H' are identical to those used
to train task vectors for SST-2 (Appendix B). The matrix Wry ) is fitted by minimizing the MSE
objective
1©,Wyy o, — (Hfj — HY)|Z,
where ®; = [6; ], and each probe direction is generated by
01,,' =0, + A€, €; ~ JV(O,Id).

Why not fit directly on the noiseless TV? If we attempted to regress only on the clean TV 1, 6;,
weight decay makes the objective equivalent to performing ridge regression:

min |1, ;W — (H" — H")|[} + k| W], ®)

whose closed-form solution is
W=(ATA+kI)'A"B, A=1]6, B=H"-H"
This solution is necessarily rank-1:

—~ n =T

W=—"__065",
k+nllof]> !

with each column equal to a scaled copy of 8;. Consequently, applying Wy to W simply reproduces
6, up to scaling, making reconstruction meaningless. Therefore, injecting Gaussian noise

162
Aill€ill2

is essential to avoid degenerate solutions and ensures a moderate SNR and stable fitting (Candes
et al., 2006).

€; ~ JV(O,Id),

Fitting Wy ;) To fit the hidden-state transport map, we similarly inject noise to form H (l;) =

H' + ©, and obtain the corresponding H (Ll/) After training Wy ;) via AdamW, we evaluate its
predictive ability by applying it to H' +1,] 6; and measuring decoding accuracy.
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Motivation for the reconstruction bound. Whether a reconstructed TV can match the original
TV in promoting task-label logits depends on how perturbations propagate through all intervening
layers from [ to L. Since this composite map involves nonlinearities, interactions between attention
and MLP sublayers, and cross-token coupling, it is generally not possible to determine this alignment
a priori.

However, the following theorem shows that the fitted operator Wry, ;) provides a principled way to
upper-bound the discrepancy between the true logit-promotion effect of the original TV and that of
its reconstruction. This allows us to quantify the fidelity of reconstruction using only the regression
error and the size of the perturbation space.

Theorem 1 (Task—vector reconstruction error under linear hidden—state transport). Fix a
layer | and let
Wiy oy € R

denote the ground—truth linear operator that maps a TV injection to the last—token hidden
state at layer [ to the change in the final-layer hidden state (obtained by linearizing the
composite LayerUpdate map using the Jacobian). For brevity write W* := Wr,, 0y

For n probe directions (perturbed task vector), we observe
AH(LI) = @[W*T+E(l) ERnXd,
where the design matrix ®; € R"™? has rows
9;1»7 0,; =0+ e,

with a fixed task vector @; € R? and random €; ~ N (0,1;). The scale 2; is chosen so that
Hxie,-nzzéueluz, i=1,....n. ©)
Let the ridge estimator (the matrix WTTV’(I) actually fitted in practice) be
W' =(©/0,+21,)7'0/aH),  1>0,

and define the reconstructed task vector @) by applying a fixed linear functional to Wy W
(e.g. a row—sum, as in our experiments) and then rescaling so that

161112 = 1164 ]2-
Assume:
(Al) (Output noise) The rows of E(;y are independent, mean—zero, and bounded with
lleill2 < B
(A2) (Sample size) For a target failure probability & € (0, 1), the number of probes n
satisfies

2
n > CodlogEd (10)

for a universal constant Co > 0.
Then there exist universal constants C1,Cy > 0 such that, with probability at least 1 — 28,

W0, —W*o,||, < 2/|8)]2 |W* — W2 + [|[W(6,— )|, (11)

and

A[W*2 + C1161]l2B \/n(d +1og(1/8))

2
(L - ooty B ) 1.

Furthermore, multiplying on the left by the (fixed) task—restricted unembedding Wg with
T denoting the task label space yields

|WIW* 0, — WEW*Oil|> < 2|W[ 12|02 [W* — W || + ||W3vAV<oz—é[>||(zl>3)

[W* =W, < (12)
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Interpretation Intuitively, the theorem states that we can use the fitted Wyy ) to
estimate the difference between the logit promotions of the task labels caused by the

original TV and the reconstructed TV, i.e. |[WJW (6, —;)||2. With a high probabil-
ity, this estimate the difference in the true logit effect induced by the real layer update
Layer_Update;_,; up to a controllable deviation term that depends only on the ridge
estimation error ||W* — Wy, ;) ||» depends on the sample size and the design of TV pertur-
bation and the error caused by the nonlinearities in Transformers. Thus the smaller the logit
effect difference between the two TVs estimated using Wry, ;) is, the more likely they are
going to produce similar logit promotions for the task labels in the real layer updates,
which further implies that the reconstructed TV will have a better performance.

Proof. We split the proof into three parts.

1. Deterministic decomposition. Let W* = WT*V’ 0 and W = Wrwl). Define Ey :=
W*—W. Then

W*0,—W*0, = (Ey+W)0,— (Eyw+W)0, = Ey6,— Ey0,+ W (6,—6)).
By the triangle inequality and submultiplicativity of the operator norm,

|W*0, —W*6il2 < || Ew6i]>+ | Ewdy >+ W (6, 6)])» (14)

< (16ill2+ 161112) | By |2 + 1 W (8 = 61) |- (15)

Since we rescale ; so that ||6;]|2 = ||6;]|2, we obtain
W61 = W*Gill2 < 2]01[12 [W* ~ W[+ [W (6, —6))]|2.

which is Equation 1 1. It remains to bound |[W* — ‘//I\/Hz
2. Ridge estimation error. The hidden—state regression model is

AH[j) = ©W*" + E),
with E(;) capturing the nonlinearity of the layer update. The ridge estimator is

W' =(0/0,+Al) "0/ AH];.
Subtracting the true parameter,
W W =(0/e,+1L)'e] (OW* +Ey)-W*"
=(0/0,+AL) '60/O,W* +(8,/0,+11,) 6] E;)-W*'.
Using the identity
(©/©,+11;)7'0/ 0~ 1, =-A(©] ©;+1AL)~",
we get
W W = A(0]©,+AL) "W +(8]©,+AL) 0] E).

Taking operator norms and using submultiplicativity and transpose invariance of operator
norm,

IW — W2 < (O] ©+AL) ™ |a (W™ 12+ 1©] B2
Introduce the empirical covariance and cross—term
1 1
Jl = ;@lT@Z’ Nl = ;@?E(l)

Then
0/ 0, +Al; =nJ; +Aly, O/ Ej =nNy,
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SO
W =Wl < 0 AL) ™ 2 (AW N )

Since nJ; + A1, is symmetric positive definite,

1
J4+A) = ——m——.
H(l’l 1 d) H2 na'mm(']l)‘i’l
Therefore AT o

nAmin(J1) + 24
To obtain Equation 12, it remains to (i) compute the population covariance of the probes,
and (ii) apply matrix Bernstein to bound Ay (J;) and || N ||2.

3. Design covariance and matrix Bernstein
3.1 POPULATION COVARIANCE OF THE PROBES Write the injected perturbation as
Zi = )vigi'

By construction of the noise—injection scheme, ||z;||> = ||0;||2/2 for every i. Conditioned
on the radius, the direction of z; is rotationally symmetric. Hence its covariance is

16113
4d

112
E[ T] — ||Zl||2

iZi p 1.

I;=
Thus each probe direction satisfies

0 2
0,,=0,+z, E[6,:6,;] = 6,6, + %Iw

We define the population covariance of the probe distribution:

16113
4d

> =E[0,0]] =66 + Iy (17)

3.2 CONCENTRATION OF J;. Let

1 n
X,’ = 01’,40;-—2,(7,, Sl‘ = EX[, Z = Zsi:Jl_Ex,l-
i=1

t}

Then ES; =0 and Z =Y ; S;, matching the condition of matrix Bernstein.
First, we bound ||S;||. From ||6;;]|> < ||6:]|]2+ || zi[l2 = 3]|64]|> we obtain

16146712 = 180l < 18R, 1Sl < f0u13+ 1212
hence
11l = 16187~ Shallo < S 1813 +(1 4+ 5116413 < 416113
Therefore

4 2
I1Sill2 < 1|6z =: L.
Second, we bound the matrix variance statistic

v(2) = max{|[E[ZZ |1, |E[Z Z]|} = max{ || L EISiS] ]I, || L EIST Sill2}-

Using [|S:S;"[|2 < ||Si]|3 (by submultiplicativity),

4 216
IZELSiSTlle < REISST Ik <0 2612) = Zlei

n
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The same bound holds for ¥, E[S," S/], so
16
v(2) < |,

Matrix Bernstein now yields, for all # > 0,

2
P{|Z||2 = 1} < 2dexp <—v(zt>fu/3)

Choose

log(2d/é
(= Gollo 3y 240D

for a constant C; > 0. Using the bounds on v(Z) and L, we have

Le 63 | 163
v(Z)+ 3 —ﬁ(in + —5=+/log(2d/9)).
n2
4 4
Using the sample—size assumption in item 10, we have %\/log@d/ﬁ) = ﬁ(@), thus
n2

V(Z)+Lt/3 is of order (||6,]|3/n).
The inequality becomes

B{|Z]l2 > 1} < 2dexp(~Clog(24/5)).
Choose C; large enough so that 2d exp(—C3log(2d/5)) < §, we hvae

log(2d/6
P{ng—zx,l =112l >l g(”} <s.
Consequently, with probability at least 1 — &,
log(2d/6
19~ Bl < a3y 2ECL2) (13)

Using Amin(J7) > Amin(Bys) — [|[Ji — Bigll2 (Weyls’s inequality) and Amin(3y;) =
161113/ (4d), we get

Aonin( 1) > 16,3
”‘ vy

3.3 CONCENTRATION OF N;. Write

log(2d /6
~ ol 2E240)

1 & 1 Z
Nl = ; Z Gl,ielT, S,’ = ; 9[71'6;'—, Z:= ZS,' ZN[.
i=1 i=1

Because the noise is mean-zero, we have ES; = 0.

Individual bound. Using [|6;,> < 3|/6||2 and [|e;||> < B,

1 3
[1Sill2 = Ellel,illzlleillz <5 161]]2B =: L.

Variance statistic.

v(Z):= max{ HZH;E(&S,T)

2 I ZEGT S,

Since S; = 16/,

1 1
T T T T 2 2
SiSi =5 Ouilei )0, ISiSi ll2 < 5 [16hill2 flesll2-
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Using [|6,,i]l2 < 3(16;]|2 and |le;||> < B,
9
[18:87 12 < ) 16,15 B>.
Summing and taking operator norms,
v(z) < = ||eilB B~
~ 4n
For any ¢ > 0, we then have,

t2/2
P(||Z]]2 = 1) < 2dexp V2 +Lij3)
Choosing
d+log(1/6
t =C1]|6)]2B #

with C; > 0 a sufficiently large universal constant. Using the same argument as before, we
reach the conclusion that with probability at least 1 — &,

d+1og(1/8)

INll2 < C1161]|2B (19)

3.4 PLUGGING INTO THE RIDGE BOUND. Combining Equation 18 and Equation 19
with Equation 16, and intersecting the two high—probability events (each with probability
at least 1 — &), we obtain that with probability at least 1 — 24,

AW +Ci|6]2By/n(d +10g(1/8))
||W_W ||2 < ’

0113 log(2d/8
(15 ol EE) -2

which is Equation 12. Substituting this bound into Equation 11 completes the proof,
since Equation 13 can be obtained directly through the submultiplicativity of the matrix
norm. U

To verify the validity of our theoretical result regarding the approximation quality of Wry ), we
compute, for each /, the relative logit-effect discrepancy

W Wry,1)(6; —6)
[WIWry 161l

and examine its correlation with the final accuracy achieved by the reconstructed TV. We report
the results in Figure 9a and perform a Pearson correlation test. The strongly significant negative
correlation shown in Table 6 provides compelling evidence for our theory: the smaller the logit
discrepancy, the better the reconstructed TV approximates the original TV and the higher the resulting
accuracy. We additionally visualize the relationship using scatterplots in Figure 12 for all values
collected at / =0, ...,31 of Llama3.1-8B.
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Table 4: Prompt templates and labels for different datasets.

Dataset Template Label
SST-2 {Sentence} Sentiment: {Label} positive / negative
TREC Question: {Sentence} Type: {Label} abbreviation / entity / description / human / location / number
SNLI The question is: {Premise}? True or maybe or false? The true / maybe / false
answer is: {Hypothesis} {Label}
RTE The question is: {Premise}? True or false? The answer is: true / false
{Hypothesis} {Label}
CB The question is: {Premise}? True or maybe or false? The true / maybe / false
answer is: {Hypothesis} {Label}
Capital {Country Name} Answer: {Label} capital of the country
Capitalize {Word} Answer: {Label} capitalized version of the first letter in the word
Antonym {Word} Answer: {Label} antonym of the word
Myopic {A question involving two choices} Answer: the myopic choice

{Label}

2 M 4 s
o 21 o 24 155 1311 12
- 0.8- 2731 29
8 202623
(& 25 42
22

i 0.6- 18 28 3 19 14
02 9
C 04
= .
e
=]
g 6

0.2-
S
QO
R 0.0- , , , ® o , ,

0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

Relative Logit Difference Using Wyvy,(

Figure 12: Scatterplot of the reconstruction TV’s accuracy against their estimated logit effect
difference compared to the original TV. The number on the dots represent the layer index of Llama3.1-
8B
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Figure 13: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama2-7B.
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Figure 14: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama2-13B.
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Figure 15: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama3-8B.
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Figure 16: Layer sweeping results of injecting the Vanilla TV, FV, and our LTV to the last token
hidden states on Llama3.2-3B.
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Figure 17: Comparison of LTV, State Vector, and I2CL on SST-2 when injected into the last-token
hidden states at each individual layer of Llama2-7B.
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Figure 18: Myopic dataset: LTV vs. Vanilla TV and FV on Llama2-7B.
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Figure 19: Myopic dataset: LTV vs. Vanilla TV and FV on Llama2-13B.
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Figure 20: Myopic dataset: LTV vs. Vanilla TV and FV on Llama3-8B.
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Figure 21: Myopic dataset: LTV vs. Vanilla TV and FV on Llama3.2-3B.
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Figure 22: Myopic dataset: LTV vs. Vanilla TV on Llama3-70B.
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Figure 23: Myopic dataset: LTV vs. Vanilla TV on Qwen2.5-32B.
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Figure 24: Myopic dataset: LTV vs. Vanilla TV on Yi-34B.
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Figure 25: Cosine-similarity heatmap of LT Vs trained for seven tasks on Llama3-8B.
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Figure 26: Cosine-similarity heatmap of LTVs trained for seven tasks on Llama3.2-3B.
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Figure 28: Cosine-similarity heatmap of LT Vs trained for seven tasks on Llama2-7B.
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Figure 30: Cosine-similarity heatmap of LT Vs trained for seven tasks on Qwen2.5-32B.
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Figure 31: Cosine-similarity heatmap of LT Vs trained for seven tasks on Yi-34B.
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Figure 32: Attention heads and TV on Llama3-8B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 33: Attention heads and TV on Llama3.2-3B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 34: Attention heads and TV on Llama2-7B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 35: Attention heads and TV on Llama2-13B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 36: Attention heads and TV on Llama3-70B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 37: Attention heads and TV on Qwen2.5-32B: OV-circuit reconstruction (left) and ablation of
key heads (right).
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Figure 38: Attention heads and TV on Yi-34B: OV-circuit reconstruction (left) and ablation of key
heads (right).
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Figure 39: Effects of the MLP-based construction and MLP&OV-based reconstruction compared to
the effect of OV-based reconstruction of TV effect.
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Figure 40: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3.1-8B.

38



Under review as a conference paper at ICLR 2026

75% -
> 30% -
&]
g
3 32% 33%
Q
- -

0%-

With Residual Without Residual

Figure 41: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3-8B.
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Figure 42: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3.2-3B.
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Figure 43: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 3-70B.
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Figure 44: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 2-7B.
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Figure 45: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Llama 2-13B.
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Figure 46: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Qwen2.5-32B.
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Figure 47: Effects of the OV circuit reconstruction with or without the TV added to the final layer:
Yi-34B.
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Figure 48: Key attention heads on Llama3-8B: distribution across layers (left) and attention over
token positions (right).
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Figure 49: Key attention heads on Llama3.2-3B: distribution across layers (left) and attention over
token positions (right).
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Figure 50: Key attention heads on Llama3-70B: distribution across layers (left) and attention over
token positions (right).

20.0% I Key Heads
o o 60% [0 Random Heads
215.0% >
E E 20%
§ 10.0% §
Q Qo
& 5.0% # 20%

0% o
17 19 21 23 25 27 29 31 0 4 8 12 16 20 24 28
Layer Position
(a) Across layers. (b) Over positions.

Figure 51: Key attention heads on Llama2-7B: distribution across layers (left) and attention over
token positions (right).
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Figure 52: Key attention heads on Llama2-13B: distribution across layers (left) and attention over
token positions (right).
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Figure 53: Key attention heads on Qwen2.5-32B: distribution across layers (left) and attention over
token positions (right).
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Figure 54: Key attention heads on Yi-34B: distribution across layers (left) and attention over token
positions (right).
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Figure 55: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at an
early vs. late layer.
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Figure 56: Metrics across layers on Llama3.2-3B when the TV is injected into the hidden state at an
early vs. late layer.
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Figure 57: Metrics across layers on Llama3-70B when the TV is injected into the hidden state at an

early vs. late layer.
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Figure 58: Metrics across layers on Llama2-7B when the TV is injected into the hidden state at an
early vs. late layer.
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Figure 59: Metrics across layers on Llama2-13B when the TV is injected into the hidden state at an
early vs. late layer.
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Figure 60: Metrics across layers on Qwen2.5-32B when the TV is injected into the hidden state at an
early vs. late layer.
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Figure 61: Metrics across layers on Yi-34B when the TV is injected into the hidden state at an early
vs. late layer.

g
0,
80% E 80%
B S
60%
g 60% 007
72}
3 £ 10%
S 40% 2
< - — H.
— % 20% o
o .
20% —— Reconstructed 6, S _— Hfl)WHSJII
0%
(1) 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Layer Layer
(a) Reconstructed TV. (b) Hidden-state surrogate.

Figure 62: Linear hypothesis on Llama3-8B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).
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Figure 63: Linear hypothesis on Llama3.2-3B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).
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Figure 64: Linear hypothesis on Llama3-70B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).
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Figure 65: Linear hypothesis on Llama2-7B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).
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Figure 66: Linear hypothesis on Llama2-13B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).
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Figure 67: Linear hypothesis on Qwen2.5-32B: linearly reconstructed TV (left) and linear surrogate
for hidden-state updates (right).
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Figure 68: Linear hypothesis on Yi-34B: linearly reconstructed TV (left) and linear surrogate for
hidden-state updates (right).
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Figure 69: Rotation analysis on Llama3-8B: applying the fitted rotation Q;) to the TV increases task
alignment (left); rotation strength vs. layer depth (right).
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Figure 70: Rotation analysis on Llama3.2-3B: applying the fitted rotation Q; to the TV increases
task alignment (left); rotation strength vs. layer depth (right).
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Figure 71: Rotation analysis on Llama3-70B: applying the fitted rotation Q;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).
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Figure 72: Rotation analysis on Llama2-7B: applying the fitted rotation Q;) to the TV increases task
alignment (left); rotation strength vs. layer depth (right).
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Figure 73: Rotation analysis on Llama2-13B: applying the fitted rotation Q;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).
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Figure 74: Rotation analysis on Qwen2.5-32B: applying the fitted rotation Q(;) to the TV increases
task alignment (left); rotation strength vs. layer depth (right).
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Figure 75: Rotation analysis on Yi-34B: applying the fitted rotation Q(; to the TV increases task
alignment (left); rotation strength vs. layer depth (right).
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Figure 76: Average attention distribution of Llama3.1-8B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 77: Average attention distribution of Llama3-8B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 78: Average attention distribution of Llama3.2-3B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 79: Average attention distribution of Llama3-70B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 80: Average attention distribution of Llama2-7B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 81: Average attention distribution of Llama2-13B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 82: Average attention distribution of Qwen2.5-32B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 83: Average attention distribution of Yi-34B on SST-2: proportions of attention weights
assigned to 8 tokens intervals each comprising % of all tokens.
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Figure 84: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
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Figure 85: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
2.
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Figure 86: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
4.
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Figure 87: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

6.
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Figure 88: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
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Figure 89: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

10.
Layer 12 TV: Logit Lens
VYA
g LTV
- 50%1 i
R ICTy,
> 3
0% 1 ’ E ¢ ’
0 10 20 30
Layer

Layer 12 TV: Logit Diff Layer 12 TV: Task Alignment
0.2

g * g 0.1 3

= . o

— %) — >
® 5| > )

> 2 & > 3

o) Z 0.0 2

0 10 20 30 0 10 20 30
Layer Layer

Figure 90: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
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Figure 91: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

14.
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Figure 92: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
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Figure 93: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
18.
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Figure 94: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
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Figure 95: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
22.
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Figure 96: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer
24.
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Figure 97: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

26.
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Figure 98: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

28.
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Figure 99: Metrics across layers on Llama3-8B when the TV is injected into the hidden state at layer

30.
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Table 5: Comparison of Representation Methods

State Vector I2CL LTV (Ours)
91.31 66.04 58.07

Pearson correlation coefficient \ p-value
—0.4914 | 0.0042

Table 6: Correlation strength between accuracy of reconstructed TV and the relative estimated logit
effect difference

Table 7: Comparison of LTV, State Vector, and I2CL in terms of the time (seconds) required to
complete the entire training and evaluation procedures.

State Vector I2CL LTV (Ours)

91.31 66.04 58.07
Model ZS Accuracy ICL Accuracy Accuracy with LTV
Llama3-70B 2.51% 81.93% 78.18%
Qwen2.5-32B 12.52% 85.44% 75.59%
Yi-34B 14.82% 81.33% 81.37%

Table 8: Performance of LTVs under the traditional setting (injecting into the last-token hidden state
at a single layer). Injection layers correspond to 50% of each model’s total depth.

Table 9: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama2-7B.

Baseline 1) Diff. Pos. 2) More Pos.  3) More layers 4) More layers & Pos.
Method P={-1},L={16} P={4} P={-5,....,—1} L={0,48,...} P={-5,..}L={04,.} 5) ICL prompts
Vanilla TV 38.26% 1.96% 14.16% 18.85% 13.30% 52.82%
FV 51.81% 1.40% 28.60% 47.14% 20.44% 73.23%
LTV 82.54%3073%  79.34%177389.  84.60%+56.00% 82.24%35.10% 51.60%+31.16% 85.16%+11.93%

Table 10: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama2-13B.

Baseline 1) Diff. Pos. 2) More Pos. 3) More layers  4) More layers & Pos.
Method P={-1},L={20} P={4} P={-5,...,—1} L={0,4,8,...} P={-5..}L={04..} 5) ICL prompts
Vanilla TV | 27.67% 1.84% 16.42% 20.46% 16.07% 43.84%
FV | 41.59% 1.22% 42.25% 36.97% 24.74% 77.51%
LTV | 80.33%13874%  71.53%160.60%  87.69%r4s449%  82.25%14528% 51.46%+2672% 84.99%17.43%
Baseline 1) Diff. Pos. 2) More Pos.  3) More layers 4) More layers & Pos.
Method P={-1},L={16} P={4} P={-5,....,—1} L={0,48,...} P={-5,.}L={04,..} 5) ICL prompts
Vanilla TV 31.69% 2.02% 1.05% 26.68% 0.33% 75.83%
FV 33.28% 2.93% 18.38% 16.95% 17.72% 53.93%
LTV 76.26%+42085%  716.22%473209  77.93%+59.55% 83.48%:s6.30% 44.82%+27.10% 84.51%+3.63%

Table 11: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama3-8B.

Baseline 1) Diff. Pos.  2) More Pos.  3) More layers 4) More layers & Pos.

P={-1},L={14} P={4} P={-5,...,-1} L={048,...} P={-5,..}L={04,...} 5) ICL prompts
Vanilla TV 42.61% 3.07% 18.73% 37.05% 11.33% 65.38%
FV 19.54% 3.53% 15.07% 4.69% 13.26% 62.12%
LTV 78.65%3604%  T4.10%47057%  78.18%150.45% 80.43%143.38% 46.38%+33.12% 82.80%117.42%

Table 12: Comparison of LTV vs. FV and Vanilla TV across five scenarios on Llama3.2-3B.
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Baseline 1) Diff. Pos. 2) More Pos.  3) More layers 4) More layers & Pos.
Method P={-1},L = {40} P={4} P={-5,...,—-1} L={0438,...} P={-5,..}L={04,.} 5) ICL prompts
LTV 78.18% 75.34% 76.13% 75.59% 48.75% 88.40%
Table 13: Performance of LTV across settings on Llama3-70B.
Baseline 1) Diff. Pos.  2) More Pos.  3) More layers 4) More layers & Pos.
Method P={-1},L={32} P={4} P={-5,..., -1} L={0,4,8,...} P={-5,..}L={04,.} 5) ICL prompts
LTV 75.59% 36.04% 75.20% 87.24% 53.30% 87.08%
Table 14: Performance of LTV across settings on Qwen2.5-32B.
Baseline 1) Diff. Pos.  2) More Pos.  3) More layers 4) More layers & Pos.
Method P={-1},L={30} P={4} P={-5,..., -1} L={0,48,...} P={-5,..}L={04,.} 5) ICL prompts
LTV 81.37% 73.53% 84.39% 82.47% 51.29% 89.69%

Table 15: Performance of LTV across settings on Yi-34B.

Table 16: Performance of LTV while injecting to multiple layers and positions simultaneously with

different layer strides

P={-1} P={-5,..}

Layer Stride = 2

82.40% 51.08%
L={0,2,4,...}

Layer Stride = 4 86.43% 51.39%
L={0,4,8,...}

Layer Stride =8 o0 -0/ 50.47%
L={0,8,16,...}

Table 17: Applying the Capital LTV to other tasks. The LTV yields no substantial accuracy improve-
ments in any case because the Capital dataset does not share its label space with any of the other

datasets.

SST-2 TREC RTE

SNLI Capitalize Antonym

0.00%

0.00% 9.39% 5.06% 2.33% 0.00%

Table 18: Top-10 tokens decoded from early- and late-layer TVs on Llama3-8B.

Layer Decoded Tokens
Early Layer (8) tring, CCA, erk, bart, uge, ensor, , 7 /L, a3a, emer
Late Layer (24) positive, negative, positive, Positive, Negative, negative, Negative,

Positive, _positive, -negative

Table 19: Top-10 tokens decoded from early- and late-layer TVs on Llama3.2-3B.

Layer Decoded Tokens
Early Layer (7)  ync, flip, stress, hope, haven, Lor, negative, ugi, stressed, hab
Late Layer (21) positive, positive, negative, -positive, Positive, Positive, negative, -

positives, negative, Negative

Table 20: Top-10 tokens decoded from early- and late-layer TVs on Llama3-70B.

Layer Decoded Tokens
Early Layer (20) EventData, esteem, 41, AX, spath, hores, raya, idth, , _priv
Late Layer (60)  negative, negative, Negative, positive, Negative, -negative, positive,

Positive, Positive, _negative
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Table 21: Top-10 tokens decoded from early- and late-layer TVs on Llama2-7B.

Layer Decoded Tokens

Early Layer (8)  babh, arith, arna, revers, feder, HOST, BIT, Pat, orr, IP
Late Layer (24) positive, negative, negative, posit, pos, Pos, neg, Pos, Neg, poz

Table 22: Top-10 tokens decoded from early- and late-layer TVs on Llama2-13B.

Layer Decoded Tokens

Early Layer (8) negative, bin, ed, agg, electric, myself, eda, hed, isser, positive
Late Layer (24) negative, negative, positive, Neg, neg, neg, orpu, pos, Pos, negro

Table 23: Top-10 tokens decoded from early- and late-layer TVs on Qwen2.5-32B.

Layer Decoded Tokens

Early Layer (16) fd, Reverse, inverted, Trait, ocale, Hack, ic, Traits, Aware, W
Late Layer (48) . constraint_,‘_ registrations, M EEy, B, (SE, ApplicationContext,
Offensive, I~ &, I*4E

Table 24: Top-10 tokens decoded from early- and late-layer TVs on Yi-34B.

Layer Decoded Tokens

Early Layer (15) —47, iency, , shit, oc, , orating, FREHE, Gap, unbiased
Late Layer (45)  Mpc, elf, izza, Parish, /i, 2L, nexper, Jit/TH, B2, rst
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