Under review as submission to TMLR

The effect of batch size on contrastive self-supervised speech
representation learning

Anonymous authors
Paper under double-blind review

Abstract

Foundation models in speech are often trained using many GPUs, which implicitly leads
to large effective batch sizes. In this paper we study the effect of batch size on pre-
training, both in terms of statistics that can be monitored during training, and in the
effect on the performance of downstream fine-tuning tasks. By using batch sizes varying
from 87.5 seconds to 80 minutes of speech we show that, for a fixed amount of iterations,
larger batch sizes result in better pre-trained models, with an upper limit for effectiveness.
We then show that the quality of the pre-trained model depends mainly on the amount
of speech data seen during training, i.e., on the product of batch size and number of
iterations. Our extensions can help researchers choose effective operating conditions when
studying self-supervised learning in speech, and hint towards benchmarking self-supervision
with a fixed amount of seen data. Code and model checkpoints are available at https:
//github.com/anonymous/available-after-review.

1 Introduction

Foundation models have become the norm in deep learning research. In the audio domain, popular models
with open weights include wav2vec 2.0 (Baevski et al., [2020; |Conneau et al., [2021), HuBERT (Hsu et al.,
2021), and WavLM (Chen et al.l |2022b). These transformer models all use a form of self-supervised learning
(SSL) with the use of a pretext task to learn (“pre-train”) speech representations. The models can then
be fine-tuned on a myriad of downstream tasks (Yang et al., |2021)), including speech recognition, speaker
recognition, emotion recognition, and intent classification. However, self-supervised pre-training takes a
tremendous amount of resources, exceeding high-end consumer grade hardware at the time of writing. First,
due to the unlabeled nature of self-supervision, it is relatively cheap to increase the dataset size. Over a
span of two years, we have seen public training datasets increase by two orders of magnitudeﬂ with wav2vec
2.0 using 1k hours of audio (circa 100 GB) from Librispeech (Panayotov et al., |2015)), to WavLM using
94k hours (circa 10 TB) by combining Libri-light (Kahn et al.l [2020), GigaSpeech (Chen et al., [2021]) and
VoxPopuli (Wang et al., [2021). Secondly, the seminal works mentioned above all report results of models
trained with large batch sizes using data parallelism across many GPUs. For example, for models with
94 M parameters, WavLM and HuBERT use 32 GPUs, and wav2vec 2.0 uses 64 GPUs, with batch sizes of
respectively 3 hours, 45 minutes, and 90 minutes of audio. The number of GPUs needed to work with these
large batches in a timely manner, as well as the required disk space for the datasets, make it non-trivial to
apply these algorithms.

While the effect of dataset size on performance is (at least partially) known (Baevski et al.l |2020; |Conneau
et al 2021), to our knowledge there are no studies on the scaling behaviour of SSL algorithms with respect
to the batch size and number of training iterations. This can be of interest to researchers who do not have
the resources to study these algorithms under large batch size conditions, or practitioners who need to make
a trade-off between time, computational budget, and desired performance. Given a fixed model complexity,
dataset size, and number of training iterations, how much is gained by increasing the batch size? How well

!Leaving aside Whisper (Radford et al. [2023) and Google USM (Zhang et al. [2023), with respectively 680k hours and 12 M
hours of private training datasets.

https://github.com/anonymous/available-after-review
https://github.com/anonymous/available-after-review

Under review as submission to TMLR

do these techniques work with fewer resources, and can the academic community do meaningful experiments
without industrial-scale data centers? While we aim to answer these questions generally, for precisely the
reason of available computational resources, we limit ourselves to studying the BASE wav2vec 2.0 (Baevski
et al.l |2020)) model extensively. Concretely, we set out to address the following research questions:

RQ 1: How does the batch size affect the pre-training procedure?
RQ 2: How does the batch size during pre-training affect downstream fine-tuning?

RQ 3: Can we compensate for a reduction of the batch size by increasing the amount of training iterations
by the same factor?

Regarding all three RQs, and given the existing literature on speech SSL (Baevski et al., 2020; [Hsu et al.,
2021; |Chen et al., 2022b), our hypothesis is that large batch sizes are essential for pre-training convergence
and the model’s ability to be properly fine-tuned to the downstream task. For RQ[I] we are interested in
knowing whether a large batch size is a necessity for optimizing the objective. It would be valuable to know
the smallest possible converging batch size, and how optimization behaves with this batch size compared to
the canonical, large batch size. For RQ [2| we expect that a larger batch size will lead to better downstream
task performance, but we are especially interested in how much the performance improves with each doubling
of the batch size. What is the minimum batch size at which we see that fine-tuning is possible, and how
does this depend on the amount of data available for fine-tuning? For RQ [3] we are interested in knowing
whether training twice as long with half the batch size results in the same performance. This would imply
that performance is only a function of how much data is seen during self-supervision, and that with patience,
people with fewer resources can also carry out pre-training.

To answer these questions, we pre-train wav2vec 2.0 with batch sizes ranging from 87.5 seconds to 80 minutes.
We then fully fine-tune these models for speech recognition (updating all weights), with 10 minutes to 960
hours of labeled speech. To include other speech technology tasks, we also fine-tune following the SUPERB
benchmark protocol, where small downstream models are trained on different categories of speech tasks.
Here, the foundation model weights are frozen, and the (trainable) weighted sum of all layer outputs of the
foundation model are used as input. Hereby, we make the following contributions:

1. We perform a comprehensive study of the effect of batch size and amount of training iterations for
pre-training wav2vec 2.0, helping practitioners to make trade-offs when deciding on downstreak task
performance.

2. We show that the most important factor for the downstream task performance is the amount of data
seen during self-supervision, indicating that fixing the product of batch size and training iterations
in a benchmark can provide valuable information.

3. We provide all pre-training model checkpoints for further analysisﬂ

The rest of this article is structured as follows. First, we will cover related work in Section [2] including studies
on batch sizes with stochastic gradient descent, (contrastive) SSL (in speech) and its scaling behaviour, and
research on SSL with smaller budgets. Then, Section [3] will explain wav2vec 2.0 pre-training and fine-tuning,
followed by experimental setup and results in Section [and we will close with a discussion and conclusion in
Section [l

2 Related work

Stochastic gradient descent and large batch sizes |[McCandlish et al.| (2018)) study the trade-off
between time and computational resources when choosing a batch size. It is argued that a small batch size
leads to gradients dominated by noise, which is averaged out by consecutive update steps, or more efficiently,

2See the code repository for a link to the model checkpoints.

Under review as submission to TMLR

by using data parallelism. However, when a batch size is very large, the gradient estimate contains little
noise, and therefore sampling two batches and averaging their gradient will not lead to a significantly better
estimate. In this case doubling the batch size does not serve a practical purpose anymore. Thus, there is a
critical batch size, the exact value varying for each task and domain, after which an increase in batch size
has strongly diminishing returns. Complementary, Shallue et al.| (2019) conducted a study on the batch size
affecting generalization performance, across multiple datasets (5 vision, 2 text), neural network families (FC,
3 CNNs, LSTM, Transformer) and optimizers (SGD, with (Nesterov) momentum). They experimentally
confirm the existence of a critical batch size, and observe the magnitude of this critical batch size depends on
the dataset, neural network type, and optimizer, but no clear relationship is found. Lastly, |Smith et al.| (2018])
showed that a decaying learning rate schedule is equivalent to increasing the batch size during training, up to
a batch size around 10 % of the training dataset size.

Scaling self-supervised representation learning |Kaplan et al. (2020) analyse the scaling behavior of
pre-training large language models, with respect to model size, dataset size, and the number of training steps.
Their primary finding is that the test loss follows a power law in relation to all three aspects, as long as model
size is increased according to the dataset size, and training length is not made a bottleneck. It is also found
that very large models are more sample efficient, i.e., fewer iteration or less data is required compared to
smaller models. |Goyal et al.| (2019) study the scaling behavior of visual representation learning, with respect
to model size, dataset size, and complexity of the pretext task. They find that increasing both the dataset
size, and complexity of the pretext task, is beneficial, as long as the model size is large enough. For speech
SSL, the scaling behavior of the model size and the fine-tuning dataset size is studied in [Pu et al.| (2021)).
They use the reconstructive pretext task Mockingjay (Liu et al., [2020), and their results match |[Kaplan et al.
(2020)); larger model size leads to better performance, and larger models require less fine-tuning data.

Contrastive learning and batch size Contrastive self-supervision benefits from large batch sizes, as
ablated in SimCLR (Chen et al.| [2020)), and shown by, e.g., CLIP (Radford et al.l [2021]) and Florence (Yuan
et al.,|2021). A hypothesis for this observation is that distractors are often sampled within the same mini-batch,
and thus more (and potentially better) distractors are available as the batch size increases. However, Mitrovic
et al.| (2020) show that computing the contrastive objective with fewer (e.g., only two) distractors per anchor
leads to better performance, indicating that large batch sizes are the key factor of improved performance, and
not the amount of available negative samples. [Chen et al| (2022al) argue that small batch sizes in contrastive
learning suffer from a gradient bias, which large batches sizes alleviate. Note that in wav2vec 2.0, negative
samples are only taken from the same utterance. The batch size does not have any effect on the quality and
quantity of negative samples, so there might be a gradient bias even with large batch sizes.

Self-supervised learning with academic budget The apparent effectiveness of large batch sizes makes
it difficult to do research without a large computational budget. There has been some work on trying to
reduce the resources required to do pre-training. For example, [Izsak et al.| (2021)) pre-trained a BERT model
to nearly equivalent performance with only 8 GPUs (with 12 GB VRAM) in 1 day, compared to 4 days
with 16 TPUs (having 32 GB RAM) in the original work (Devlin et al., [2019). This was done by reducing
the maximum sequence length, focusing on large models, pre-masking data, and using specialised software
packages such as DeepSpeed (Rajbhandari et all 2020) and Apex (Micikevicius et al., [2018]). Similar work
has been done for the HuBERT model in (Chen et al.|(2023]). They show that using target representations
from a fine-tuned ASR model in the first iteration of HuBERT pre-training (instead of MFCCs) leads to
better performance, while needing fewer GPU hours. Another line of thinking is presented by [Cao & Wu
(2021)), where it is shown that self-supervised learning in vision can be done on small datasets, with low
resolution images, and with models with relatively few parameters.

3 Methodology

Wav2vec 2.0 model architecture In this work we use the standard architectural setup for self-supervised
learning with audio (Baevski et al., 2020; [Hsu et al. |2021; |Chen et al., |2022b). First, the raw 16 kHz sampled
audio X = {x1,...,2,} is processed with a 1-d CNN into local speech representations Z = {zy,...,z7},
T = |r/320]. For each respective layer, the kernel sizes are [10, 3, 3, 3, 3, 2, 2] with strides [5, 2, 2, 2, 2, 2, 2],
with GELU activation, 512 output channels, and GroupNorm once after the first convolution.

Under review as submission to TMLR

The CNN is followed by a gradient scaling layer with the constant set to %, then Z is projected to Z/,

with 768 dimensions, and LayerNorm is applied. Then, a relative positional embedding is added using a
convolution with kernel size 128, weight normalization (Salimans & Kingmal 2016|) on the kernel weights,
padding of 64 on both sides, and 16 groups. A vanilla encoder-only transformer network is used to create
contextualized representations C = {cy,...,cr}. The transformer network has 12 layers, with an hidden
dimension of 768 in the self-attention module, 12 attention heads, and a scale-up to 3072 dimensions in the
feed-forward network, with GELU activation.

3.1 Self-supervised pre-training

Quantization FEach z; in a sequence Z is individually classified to a quantized vector q;, thereby creating
Q ={qai,...,qr}. The possible quantized vectors are learned, and represented by codebooks, discrete sets of
real-valued vectors. A codebook G is a set of V entries (vectors) of a particular dimension dg, representable
as a matrix of size V' x dg. A single linear layer with gumbel-softmax (Jang et al.| [2017) activation can be
used to get a probability distribution over V different classes. The class with maximum probability can then
be used to determine q; from z;. In wav2vec 2.0 there are two codebooks with each V' = 320 entries of size
de = 128, resulting in V? = 102400 quantized vectors with dimensionality d, = 256. During pre-training, a
temperature 7 = 2 in the gumbel softmax is gradually decreased to 7 = 0.5 with a factor 0.999995 every
iteration.

Masking The masking is done after the projection and normalization, but before the relative positional
embedding. The mask consists of multiple regions of L,, = 10 consecutive latent speech vectors which are all
replaced by the same learned mask vector. In total p,, = 50% of the latent vector sequence Z’ are masked to
vA , with possible overlap, and excluding padding. The set of time steps where masking is applied is indicated
by M.

Objective function The objective function during SSL pre-training consists of a weighted sum of the main
contrastive loss L., together with an auxiliary diversity loss L4 with weighing A4, and an auxiliary L2 penalty
loss L, with weighting Ap:

£ssl = £c +)\d‘Cd + Ap‘cp (1)

The contrastive loss L. encapsulates the pretext task, where the transformer has to predict the cluster
centroids Q of the projected and masked values 7' in the output C. The network is explicitly penalized if c;
is similar to any distractors sampled from Q. Similarity is measured with the cosine similarity, written as
s(a,b). The loss can then be defined as

exp(s(ch,)/)
Lc C, (Q7 M) = —lo ?
() t%\:/{ g(Z eXp(s(CLq(/i)/TC) ?

deDU{t}

where ’ implies a linear projection layer to 256 dimensions, and D; is random sample of k& = 100 values from
M\{t}. A temperature 7. = 0.1 leads to a hard softmax distribution. The contrastive loss can be interpreted
as a standard 1+ k classification task with the sum-reduced cross-entropy criterion, where the target is always
the class index of q;.

Diversity loss A shortcut to optimizing the contrastive loss is to map all values in Z to the same quantized
vector. To prevent this, a diversity loss is applied, which encourages uniform predictions over the codebook
entries. A codebook G with V entries has classified the sequence Z to Q, using logits from a softmax
activations of a linear layer P = {py,...,pr}. For uniform predictions the average probability distribution
p=T"" Zle p: should be flat. In this best case, the entropy H(p) = log V', and the perplexity P =y,
In the case of shortcut, a single class has probability 1, which means the entropy H(p) = 0 and the perplexity 1.
Therefore, the diversity loss minimizes the number of the entries in a codebook subtracted by the perplexity

Under review as submission to TMLR

of the predictions:
s

Ly(P) =V —exp(— Zp“ logp™), (3)

where pU) is the jth component of p. The weighting \g = 1—0 throughout this work unless specified otherwise.

L2 penalty loss The third loss is a regularization term, which keeps the values of Z as small as possible.

This loss is defined as
1 i 2
£,(Z) = =33 (), (4)
Td,
(7)

where z;”’ is the jth component of z;, and d, = 512. The weighting A, = 10 throughout this work.

3.2 Batch creation

The methodology descriptions have assumed a single utterance X, while training is done with a batch of the
dataset, split into multiple gpu-batches for distributed data-parallel training. The LibriSpeech dataset is
used, implying utterances have variable lengths, at minimum 0.83 seconds, and at most 30 seconds. As each
utterance in a gpu-batch needs to have the same length, all but the longest raw waveform in a batch are
padded with zeros. To minimize the amount of padding, the utterances are sorted by length, and put into
bins of 5000 utterances. Each gpu-batch is sampled from only a single bin. Random samples from the bin feed
a priority queue of length 50, from which gpu-batches are formed by taking samples prioritized by shortest
duration, until the total speech duration in the gpu-batch exceeds a threshold, in our case 2.4 M samples.
Because of limitation in GPU memory caching, a gpu-batch is discarded if the difference between the shortest
and longest utterance is more than 10 seconds. This helped alleviate spontaneous CUDA out-of-memory
€rrors.

The CNN also processes the padded part of utterances. However, every vector z; which results purely from
padding in the raw waveform are ignored in the self-attention of the transformer by setting their attention
score to —oo. When creating the mask M, the padded vectors z; are also not considered part of the utterance.
The contrastive loss is computed independently for each masked token in each utterance of the gpu-batch,
and summed afterwards. For the diversity loss, the probability distribution p is computed by averaging
over the predictions of all tokens of all utterances in the gpu-batch, before computing the perplexity. The
L2-penalty loss is simply the mean of each representation value in the gpu-batch. The gradient resulting
from each gpu-batch are averaged before the weights of the networks are updated.

3.3 Full fine-tuning for speech recognition with subsets of LibriSpeech

To fine-tune a pre-trained model for speech recognition, Z and C can be computed from X, disregarding
the quantization. The network still applies a mask, but only p,, = 5% of the utterance is replaced with the
learned masking vector. This acts as a regularization method, similar to SpecAugment (Park et al., [2019).
Each vector in C can be separately classified to a character (or blank) with a softmax-activated linear layer,
and optimized with CTC (Graves et al., [2006]) loss. The CNN is not updated during fine-tuning, and the
transformer network is only updated after the first 5k iterations. We fine-tune on 10 min, 1 hour, 10 hours,
100 hours and 960 hours of LibriSpeech following Baevski et al.| (2020).

3.4 Frozen fine-tuning for various speech technology tasks using the SUPERB benchmark

Another fine-tuning strategy is used in the SUPERB benchmark, where the (upstream) CNN and transformer
layers will be frozen and used only to generate input features for a task-dependent, small downstream model,
e.g., a 2-layer biLSTM for speech recognition, or a single dense layer followed by mean pooling for speaker
identification. The input features F = {f1, ..., fr} are a weighted-sum of Z’ and C, i.e., f; = wozt—Q—Zz 1 wzcg).
where () indicates the ith transformer layer output sequence, and w; is learned durlng fine-tuning. We use
a subset of tasks to limit computational resources, while including at least one task from 4 out of the 5

categories: phoneme recognition (content), ASR in English (content), out-of-distribution ASR, in Mandarin

Under review as submission to TMLR

Table 1: All batch sizes used for SSL pre-training, together with the number of GPUs, the number of gradient
accumulation steps (acc), the runtime, in days and hours, of a single run, and three possible learning rate
heuristics. The bold learning rates resulted in the lowest validation loss. For the 80 minute batch size setting
we only tried one learning rate.

batch size used learning rates

sec min GPUs acc. runtime Rconst hsub hlin
875 1.5 1 1 1d 13h 5.00 x 10°% 6.04 x 1075 7.29 x 10~
150 2.5 1 1 2d 4h 500 x107* 7.91 x 1075 1.25 x 10~°
300 5 1 2 3d 22h 5.00x 1074 1.12 x 1074 2.50 x 107°
600 10 4 1 2d 14h 500 x 107* 1.58 x 10~* 5.00 x 107°
1200 20 2 4 7d 20h 5.00%x 107% 2.24 x 10~% 1.00 x 10~*
2400 40 4 4 7d 18h 5.00 x 10—* 3.16 x107* 2.00 x 1074
4800 80 8 4 7d 19h 5.00 x 10~—* - -

(content), speaker verification (speaker), emotion recognition (prosody), and intent classification (semantics).
We use the default downstream model for each task, and keep most settings to the default value. We make
the following modifications to reduce the run-time: half- instead of single-precision floats, 200k instead of
500k train steps for mandarin ASR, and gradient accumulation of 1 for all tasks, while increasing the batch
size such that the effective batch size is equal to the default settings. A learning rate of 10~* is used for all
tasks.

4 Experiments

4.1 Pre-training with different batch sizes

The first experiment aims to directly answer RQ [I] and is a prerequisite for answering all others.

Setup We pre-train the BASE wav2vec 2.0 network with batch sizes ranging from 87.5 seconds to 80 minutes
of audio, as seen in Table[l} Each pre-training starts with the same initial weights, and we use all 960 hours
of training data in LibriSpeech (Panayotov et al., 2015 (CC-BY 4.0 licence), with 5% held-out randomly as
a validation set. We validate and store a checkpoint every 5k steps. We adhere to the hyperparameters as
published in the seminal paper (Baevski et all |2020) as much as possible. We use 400k training iterations
with AdamW and a weight decay of 1072, and scan over 3 learning rates (LRs), based on choices explained
below. We change to a 8-cycle triangular learning rate schedule, where one cycle has 25k linear steps up and
25k linear steps down. This allows us to fairly compare fine-tuning results of checkpoints at multiples of
50k iterations. The minimum LR of the cycle is 100 times smaller than the maximum LR. We show the
maximum LRs in Table |1 We also use GPUs (A5000) with at least 24 GB of VRAM , and therefore fill
each GPU with a maximum of 2.4 M audio samples (150 seconds) for full utilization of the device, which
compares to 1.4 M samples (87.5 seconds, 90 minutes batch size with 64 GPUs) in |Baevski et al.| (2020). The
experiments, including initial development runs, took 246 days of GPU time.

For each batch size of duration s, we need to find a well-performing maximum learning rate (LR) for the
cyclic schedule. As a full hyperparameter search would exceed our computational budget, we use heuristics
to choose three different learning rates, and settle on a run with the lowest overall validation loss. The first
heuristic is to scale the learning rate linearly with the batch size. As a reference, a maximum learning rate of
my =5 x 107* was used in [Baevski et al.| (2020) together with a batch size of circa 1.6 hours. Therefore we
use Myin(s) = mirs/Sorig as the first heuristic for the learning rate, with soyiz = 6000 seconds. In Baevski et al.
(2020) a batch size of 5600 seconds is used, but we use 6000 seconds for this heuristic calculation so that hy,
rounds nicely. We still find well-performing LRs. The second heuristic is to scale the learning rate with the
square root of the batch size. We use hgup(S) = Miry/$/Sorig as the sub-linear learning rate heuristic. For
each batch size we also try the constant heonst($) = miy, although this led to divergence for s < 600 seconds.
Moreover, we initially used the a diversity loss weight \g = % as in |Baevski et al.| (2020]), but found this led
to divergence for the batch size of 87.5 seconds. We therefore decreased it from 15 to 55, with the reasoning

Under review as submission to TMLR

loss

Accuracy

©)

Similarity

Contrastive loss
10000 -
8000 -

i SET

4000 -, ' ' B 3
Ok 100k 200k 300k 400k

steps

Accuracy

0.6-
0.4- /W
02- //\/\/\/\NW
00-, , , , ,
0k 100k 200k 300k 400k
steps

Average similarity cb1
08-

07-
06-
0""'-)-I 1

Ok 100k 200k 300k 400k
steps

batch size — 87.5sec

Diversity loss

50 -
40-
SO-JM;

Ok 100k 200k 300k 400k
steps

loss

Perplexity cb1

2 200-
i><, 150 - =
[<X 100 -
® 50-
o 0-
0k 100k 200k 300k 400k
steps
Minimum similarity cb1
> 08~ T
E 0.6- ~—~—_
€ 04- —
» 02-
Ok 100k 200k 300k 400k
steps
150 sec 5min — 10 min

L2-penalty loss

loss
N A~ O

0-

Ok 100k 200k 300k 400k

steps

Perplexity cb2

—_ an
o go
[eNeNoNe]
[T |

Perplexity

100k 200k 300k 400k
steps

0k

Maximum similarity cb1
1.00-
0.95 -
0 A=
0.85-

0.80 -, ,
0k

Similarity

100k 200k 300k 400k
steps

20 min — 40min — 80 min

Figure 1: Various metrics on validation data (interval of 5k training steps) during self-supervised pre-training
with different batch sizes, namely all three losses (A, B, C), the accuracy of predicting the correct masked
quantized vector (D), and the perplexity of codebook 1 (E) and codebook 2 (F). We also show the average,
minimum, and maximum value of the pair-wise cosine similarity of all codewords in codebook 1 (G, H, I)

with an interval of 100 training steps.

that the contrastive loss is almost twice as small (only 1.4M samples instead of 2.4M), and the ratio between
the contrastive loss and the diversity loss should stay the same. We therefore use Ay = % only for a batch

size of 87.5 seconds.

Results We show various metrics during the training procedure in Figure For each batch size, the
metrics of the run with the lowest validation loss are displayed. For the contrastive loss (A), we see that
overall a larger batch size leads to a lower loss. Note that the smallest batch size, 87.5 seconds, has a different
range because the loss is sum-reduced over 1.4 M sampled instead of 2.4 M samples. For the diversity loss
(B), we see that a large batch size (40, 80 min) causes the loss to drop quickly, but then plateau. The other
batch sizes steadily decrease. Notably, for batch sizes of 10 and 20 minutes the diversity loss surpassed the

values of batch sizes 40 and 80 minutes after 150k to 200k steps. The scale of the lowest batch size, 87.5
seconds, is twice as small due to the Ay = %. The same patterns visible in the diversity loss are also seen in
the perplexity of the codebooks (H and I, with the vertical scale reversed). For accuracy (D), a larger batch
size leads to higher accuracies. For the similarity of codewords within the codebooks, we see that the average
(G) and minimum (I) cosine similarity between codebooks only go down steeply with large batch sizes (40
and 80 min). For the maximum similarity values, we observe that they stay relatively stable, although for
the larger batch sizes they increase slightly at the start of training, but decrease again during the training

procedure, which can be related to the decay strategy of 7 used in the gumbel-softmax.

Under review as submission to TMLR

Fine-tune various SSL batch sizes for speech recognition

test-clean test-other

100% -
© 80%- =
5
5 60%- =
Q2 2
L 40%- g
© 3

g 20% -

2 o%-

S 100%- ‘

:‘; T
£ 80%- %
= 3
L 60%- H
@© o3
o 40% - Q
T 0% §
= 8
20 /O " S'
«Q

0%- ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
scratch 87.5s 150s 5min 10 min 20 min 40 min 80 min scratch 87.5s 150s 5min 10 min 20 min 40 min 80 min
self-supervised learning batch size

amount of labels for fine-tuning 10 min —— 1 hour 10 hours —e— 100 hours 960 hours

Figure 2: The WER (left column: LibriSpeech test-clean, right column: LibriSpeech test-other) against the
batch size during pre-training of a self-supervised initialization. The self-supervised models are fine-tuned
for speech recognition using 5 different magnitudes of labeled data. Scratch indicates fine-tuning a random
initialization instead of a self-supervised initialization. The upper row shows the WER, with letter decoding,
while the bottom row shows the WER with word decoding using a 4-gram language model.

4.2 ASR fine-tuning with varying amounts of labels

The second experiment focuses on RQ 2] How is downstream fine-tuning affected by the batch size during
pre-training?

Setup For each batch size in Table [I] we have self-supervised training runs of 400k steps, with checkpoints
saved every 5k steps. For each setting we select the run (and step) with the lowest overall validation loss,
resulting in a single checkpoint which is used as initialization for training a speech recognition system. This is
the checkpoint at step 400k for all runs, expect for batch size of 32 GPUs (80 minutes), which had the lowest
validation loss at step 305 k. For each of these selected checkpoints we perform a fine-tuning on 10 minutes, 1
hour, 10 hours, 100 hours, and 960h hours of labeled LibriSpeech data, with hyperparameters detailed in
Appendix We use the same number of steps as in |Baevski et al.| (2020). We show results with greedy
letter decoding and word decoding using a 4-gram LibriSpeech language model. For word decoding we use
use a beam size and threshold of 50, a language model weight of 2, and a word insertion score of 0 for all
settings. These experiments were done using one A5000 GPU, with a maximum run-time of 2 days when
fine-tuning with 960h of labels (320k steps). In total 205 days of GPU time was used, including experiments
in section

Results We show the word-error-rate (WER), evaluated on LibriSpeech test-clean and test-other, for each
fine-tuning condition in Figure 2] and in tabular format in Appendix[A4] Two clear patterns are visible. First,
independent of the amount of labels available, we observe that fine-tuning a random initialization leads to the
highest WER. Then, each consecutive increase in the batch size during self-supervised learning leads to lower
WERs after fine-tuning. There is one exception: on test-other, the 40 min batch size initialization performs
better than the 80 min batch size initialization, but only when fine-tuning with 10 or more hours of labeled

Under review as submission to TMLR

Average standard deviation of gradient of each parameter (n=10) diversty loss weight

0.3-

-=- 0.05
— 041
c
Q
k]
® 02- batch size
()
5 — 87.5sec
S
[150 sec
0]
% 0.1- 5 min
g — 10min
®©
20 min
— 40 min
0.0-
! ! ! 1 1 — 80 min
0k 100 k 200 k 300 k 400 k
steps

Figure 3: The standard deviation of the gradient of Ly for each batch size, computed over 10 random
batches, and averaged over all parameters, against consecutive checkpoints during pre-training.

data. We observed similar degraded performance after fine-tuning the 400 k checkpoint with batch size of 80
minutes (not shown in Figure . Secondly, having more labeled data for fine-tuning leads to a lower WER
for each self-supervised batch size. However, the larger the batch size, the smaller the difference in WER
between the amount of labels available during fine-tuning. Notably, Baevski et al. (2020)) reports 9%/47%
WER on test-clean with/without a language model when fine-tuning with 10 minutes of labeled audio. In
this experiment we observe a WER of 24%/41% instead, the large difference in LM performance we attribute
to our much smaller beam size in decoding. Finally, we see diminishing returns at a batch size of 80 min.

4.3 Analysis on effectiveness of large batch sizes

So far, we have observed that larger batch sizes lead to a lower contrastive validation loss, and less similarity
between codewords. We have also seen that larger batch result in better fine-tuning performance for speech
recognition, irrespective of the amount of labels available. Why are large batch sizes more effective? Are
better gradients approximations beneficial, or is the amount of observed data an explaining factor?

4.3.1 \Variance of gradients

First, we compare the gradient between different batch sizes. If the gradients are more precise, and less noisy,
with increased batch sizes, we expect the variance between gradients to decrease. To verify this we use the
saved checkpoints (every 5k steps) during pre-training. For each checkpoint, we compute 10 gradient vectors
using new, independently sampled batches from the training set. These 10 batches are kept constant over all
checkpoints of the same batch size. We do not update the weights during this process, and we do not use
the AdamW optimizer state nor the learning rate to scale the gradients. For each parameter, we separately
compute the standard deviation between gradient vectors, after which we average over the parameters to a
get a standard deviation of the whole gradient, shown in Figure [3] We observe that the standard deviation
decreases as the batch size increases. For the smallest batch size, the training run with Ay = % has a
significantly lower gradient variance compared to A\g = %. Further, at a critical batch size of 40 minutes the
standard deviation barely decreases when the batch size is doubled to 80 minutes. Furthermore, for small
batch sizes the standard deviation increases over the training procedure, while it stays constant for large
batch sizes. Moreover, we observe that the batch sizes of 87.5 (with A\g = %) and 150 seconds converge at
the end of training. Finally, the cyclic learning rate schedule seems to affect the gradient variance, as the
standard deviation peeks for all batch sizes when the cycle is at the minimum learning rate (every interval of

50k steps).

Under review as submission to TMLR

4.3.2 Fine-tuning after observing specific amounts of data during pre-training

WER after fine-tuning when having seen a certain amount of data during SSL

©
_(g‘ 10 minutes of labels 100 hours of labels
o 100% -
Ko =

80% -
= N
p \
o
o> 60%-
£
C
2 40%-
o)
£
= 20%-
Qo M T
® T 0-0-900-voor
E OOA)-I! 1 IIIIIII! 1 IIIIIII! 1 IIIIII! 1 IIIIIII! 1 IIIIIII! 1 IIIII
% 1.0k 10.0k 100.0k 1.0k 10.0k 100.0k

Observed data in hours during self-supervision
batch size = 87.5sec 150 sec 5min —— 10 min 20min —<— 40min - 80 min

Figure 4: The WER, after fine-tuning, against the hours of data processed during self-supervision.

We will now focus on RQ[3] We compare the performance of batch sizes at different stages during pre-training.
Because we use a cyclic learning rate, there are equivalences at each end of a cycle, namely at multiples of
50k steps. Different batch sizes overlap on the amount data seen at particular checkpoints. For example,
16.7k hours of data was observed with batch sizes of 150 sec, 5 min, 10 min, and 20 min respectively at 400k,
200k, 100k, and 50k steps. If less noisy gradient approximations are beneficial to learning, we expect a
performance difference when we compare the fine-tuning performance of these checkpoints, in favor of larger
batch sizes. However, if all that matters is observing more data, we should see no difference in performance.

Setup and results For each batch size, we fine-tune the checkpoints with an interval of 50 k steps, resulting
in 8 checkpoints per batch size. We use the training methodology as described in Section [£.2] For this
experiment we focus on fine-tuning on 10 minutes and 100 hours of labeled data, with letter decoding,
evaluating on the test-clean set. The results are shown in Figure [and in tabular form in Appendix
We observe a direct relationship between the amount data observed during pre-traing and the WER after
fine-tuning. There are only minor differences between the WER of different checkpoints with the same
amount of data, which we attribute to noise. The curves for each batch size blend into each other, especially
for the case of fine-tuning with 100 hours of data. With 10 minutes of data we observe that a batch size
of 40 minutes has slightly better performance at the start of training, and worse performance at the end of
training, compared to batches of 20 minutes and 80 minutes. Also, we see that a batch size of 87.5 seconds
performs slightly better than the batch size of 150 seconds. We hypothesise that the diversity weight Ay = 2%
generalized slightly better than \g = %0. Note that we used the naive, upper bound of the amounts of data
hours observed. The measured amount of hours are shown in Appendix [AT]

4.4 SUPERB fine-tuning

To further strengthen the observation that the amount of hours seen during pre-training is the main indicator
of downstream task performance, we repeat the experiment in Section on 6 tasks in the SUPERB
benchmark (Yang et al., [2021), namely phoneme recognition, speech recognition in English and Mandarin,
speaker verification, emotion recognition, and intent classification. There are 3 important differences. First,
we are interested to see whether the pattern holds for tasks other than (English) speech recognition. Secondly,
the speech representation features are frozen during fine-tuning, so the quality of the representations are
more fairly judged. Thirdly, other than phoneme recognition and English ASR, these tasks fine-tune on
out-of-domain data with respect to the pre-training, so that we can see whether the observation holds in
cross-domain adaptation. Note that following datasets are used: phoneme recognition and English ASR are

10

Under review as submission to TMLR

phoneme recog. (en) ASR (en) OOD ASR (mandarin)
50% - 30% - 40% -

40% - G\&j \
20% J 20% - . . %

i I i ; W 30%
B 20%1 = o%- \'*@x o ™~
10% - \\‘9“99-‘?‘7 X LWW
00/°-I 1 IIIIII! [} IIIIII! [} III Oc’/Q-I 1 IIIIII! [} IIIIII! [} III 200/°_I 1 IIIIII! [} IIIIII! [} III
10,000 100,000 10,000 100,000 10,000 100,000
observed hours during SSL observed hours during SSL observed hours during SSL
speaker recognition emotion recognition intent classification
15.0% - 100% -
64.0% -) W
10.0% - & 62.0%- =+ W & 90%- A7
o o o
i . 5 60.0%-] 5 ,
L . TTRgeTT 3} o N /
5.0%- S 58.0%- B/a-e(d S 80%- /
56.0% -
0-Oo/o-l 1 IIIIII! [| IIIIII! [} III [| IIIIII! [| IIIIII! [| III 70o/o_l 1 IIIIII! [| IIIIII! [| III
10,000 100,000 10,000 100,000 10,000 100,000
observed hours during SSL observed hours during SSL observed hours during SSL
batch size = 87.5sec 150 sec 5min —— 10 min 20min —6- 40min -%- 80 min

Figure 5: We show the performance of 6 SUPERB tasks against the hours of data processed during self-
supervision. For each SSL batch size we fine-tune the checkpoints at step 100k, 200k, 300k and 400k with
learning rate 107%.

fine-tuned on the train-clean-100h set of LibriSpeech (Panayotov et al., 2015)), mandarin ASR is fine-tuned on
Mozilla Common Voice (Ardila et all, 2020), speaker verification is fine-tuned on VoxCelebl (Nagrani et al.,
2020)), intent classification is fine-tuned on Fluent speech commands (Lugosch et al., [2019)), and emotion
recognition is fine-tuned on IEMOCAP (Busso et al., |2008]).

Setup and results For each of the 6 tasks, we fine-tune with 4 checkpoints of each SSL batch size, namely
the checkpoint at 100k, 200k, 300k and 400k steps. We use a learning rate of 10™* for each fine-tuning,
and keep all other hyperparameters equal to the default value for the task, expect that mandarin ASR is
fine-tuned for 200k steps instead of 500k steps. We show the results in Figure 5] and in tabular format in
Appendix In general, we observe similar patterns compared to Figure] meaning curves blending into
each other, and following the pattern of better performance after seeing more data. We also see signs of
overfitting with the batch size of 80 minutes at 400k steps. We observe that the in-domain tasks (English
ASR, and phoneme recognition) have the smoothest curve, followed by mandarin ASR. The other 3 tasks
seem more noisy, where sometimes there is no improvement following a consecutive checkpoint of the same
batch size, e.g., this is visible for speaker and emotion recognition at 10k hours, and intent classification
at 30k hours. Also, emotion recognition is the only task where there is no clear upward trend with more
observed data. For emotion recognition, the best performance was obtained with the checkpoint at 300k
steps with the batch size of 20 minutes, and the batch sizes of 40 and 80 minutes perform noticeably worse.

5 Discussion and conclusions

Research questions From the extensive search of batch sizes reported in Figure [1, we see that larger
batch sizes result in better pre-training convergence, if given the same amount of iteration. This is consistent
with the hypothesis of RQ [1] and [2} We were surprised to observe convergence with all batch size, with the
caveat that we had to change the diversity loss weighting for the smallest batch size of 87.5 seconds. It seems

11

Under review as submission to TMLR

this problem with the loss weighting parameter choice could have been prevented if the contrastive loss would
be mean-reduced instead of sum-reduced, but in this work we followed the implementation of [Baevski et al.
(2020) as closely as possible. A good indicator for well chosen hyperparameters is a continuous increase of the
perplexity of the codebook logits (Figure —F). With larger batch sizes, the similarity of codebook vectors
decreases, which is an indication of the diversity of the learnt representations.

Regarding RQ [2] and Figure [2] we show, for the first time, how pre-training batch size affects the downstream
performance: with a fixed number of iterations, the performance increases with larger batch size. All results
with the 80 min batch size are in accordance with the original paper Baevski et al.| (2020)), except for the
10 minute fine-tuning results, where they decoded using the (impractical) beam size of 500. Our cyclic
LR schedule does not perform worse than Baevski et al.| (2020), while allowing for a fair comparison when
conducting fine-tuning experiments at regular intervals. The largest batch size we investigated showed a little
worse performance, which we attribute to a need for stronger regularisation, e.g., dropout in more places, or
higher value of A, and p,,. In looking for an answer to why larger batch sizes are more effective, we saw in
Figure [3] that the standard deviation of the gradients reduces almost consistently with larger batch size, up
to a critical value of 40 min.

Regarding RQ [3] we found that the most important factor for downstream task performance is the total
amount of data seen during pre-training, i.e., the product of batch size and number of iterations, as shown
convincingly in Figure [and Figure 5] This means that it still is possible to carry out pre-training with
limited amount of GPUs and/or memory, but one needs to be more patient or accept a penalty in performance,
where Figure [2] can help in decision making. There appears to be more noise for the non-content tasks in
Figure [B] namely speaker, emotion and intent recognition. This noise is strongest for emotion recognition,
however, the results lie in a 10 % accuracy bandwidth, which is similar to the range of worst to best systems
in the SUPERB leaderboard (Yang et al 2021)). The small size of the IEMOCAP dataset (10 speakers with
5-fold cross validation) probably adds to the noisy behaviour. We believe this task may not be the best to
indicate the quality of the learned speech representations.

Broader impact Based on these results, we believe that it could benefit the community to benchmark
SSL algorithms (in speech) by constraining the amount of data seen in training, e.g., to 100k hours. In
experiments with different algorithms, one might use 10k hours of seen data to reduce the computational
burden, and verify conclusions at the 100k hours pre-training condition.

Conclusion and limitations We conclude that the batch size during contrastive pre-training can be varied
over a large range of values without a performance penalty, but only if hyperparameters like the learning
rate are adapted accordingly. As a caveat, our results have only looked at contrastive algorithms where
distractors are not taken from other samples in the batch. Future work could look at algorithms where this
is the case, such as SimCLR, or a modified wav2ec 2.0, paying special attention to perform an independent
hyperparameter scan for each batch size. Moreover, other speech representation learning algorithms could
be considered, such as predictive methods like HuBERT (Hsu et al., 2021, WavLM (Chen et al., |2022b)
and DinoSR (Liu et al., [2023)), and reconstructive methods like VQ-VAE (Van Den Oord et al., |2017) and
DeCoAR (Ling et al.l |2020). The range of the batch sizes we found effective for wav2vec 2.0 may be specific
to the architecture (wav2vec 2.0 base, with approximately 95 M parameters), but we believe that also larger
models will show a dependence on the amount of data seen, as shown in Figure [f] and Figure [f] in terms of
the fine-tuning performance.

References

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais,
Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A massively-multilingual speech
corpus. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4218-4222
Marseille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.1rec-1.520.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. In Advances in Neural Information Processing

12

https://aclanthology.org/2020.lrec-1.520

Under review as submission to TMLR

Systems, volume 33, pp. 12449-12460, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
92dleleblcd6£9fba3227870bb6d7£07-Paper.pdf.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jeannette N
Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic motion
capture database. Language resources and evaluation, 42:335-359, 2008. URL https://sail.usc.edu/
publications/files/bussolre2008.pdf.

Yun-Hao Cao and Jianxin Wu. Rethinking self-supervised learning: Small is beautiful. arXiv preprint
arXiv:2103.13559, 2021. URL https://arxiv.org/abs/2103.13559.

Changyou Chen, Jianyi Zhang, Yi Xu, Liqun Chen, Jiali Duan, Yiran Chen, Son Tran, Belinda Zeng,
and Trishul Chilimbi. Why do we need large batchsizes in contrastive learning? a gradient-bias per-
spective. In Advances in Neural Information Processing Systems, volume 35, pp. 33860-33875. Cur-
ran Associates, Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
db174d373133dcc6bf83bc98e4b681f8-Paper-Conference. pdf.

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel
Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, Sanjeev Khudanpur, Shinji Watanabe, Shuaijiang Zhao,
Wei Zou, Xiangang Li, Xuchen Yao, Yongqing Wang, Zhao You, and Zhiyong Yan. GigaSpeech: An
Evolving, Multi-Domain ASR Corpus with 10,000 Hours of Transcribed Audio. In Proc. Interspeech
2021, pp. 3670-3674, 2021. doi: 10.21437/Interspeech.2021-1965. URL https://www.isca-speech.org/
archive/interspeech_2021/chen2lo_interspeech.htmll

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda,
Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu,
Michael Zeng, Xiangzhan Yu, and Furu Wei. Wavlm: Large-scale self-supervised pre-training for full stack
speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505-1518, 2022b. doi:
10.1109/JSTSP.2022.3188113. URL https://arxiv.org/abs/2110.13900.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 1597-1607. PMLR, 13-18 Jul 2020. URL
https://proceedings.mlr.press/v119/chen20j.html.

William Chen, Xuankai Chang, Yifan Peng, Zhaoheng Ni, Soumi Maiti, and Shinji Watanabe. Re-
ducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute. In
Proc. INTERSPEECH 2023, pp. 4404-4408, 2023. doi: 10.21437/Interspeech.2023-1176. URL https:
//www.isca-speech.org/archive/pdfs/interspeech_2023/chen231_interspeech.pdf|

Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli. Unsupervised
Cross-Lingual Representation Learning for Speech Recognition. In Interspeech 2021, pp. 2426—2430.
ISCA, August 2021. doi: 10.21437/Interspeech.2021-329. URL https://www.isca-speech.org/archive/
interspeech_2021/conneau2l_interspeech.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171-4186, June 2019. doi: 10.18653/v1/N19-1423. URL https://aclanthology,
org/N19-1423|

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking self-supervised
visual representation learning. In Proceedings of the ieee/cuf International Conference on computer vision, pp.
6391-6400, 2019. URL https://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_
and_Benchmarking Self-Supervised_Visual_Representation_Learning_ ICCV_2019_paper.pdf.

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the

13

https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://sail.usc.edu/publications/files/bussolre2008.pdf
https://sail.usc.edu/publications/files/bussolre2008.pdf
https://arxiv.org/abs/2103.13559
https://proceedings.neurips.cc/paper_files/paper/2022/file/db174d373133dcc6bf83bc98e4b681f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/db174d373133dcc6bf83bc98e4b681f8-Paper-Conference.pdf
https://www.isca-speech.org/archive/interspeech_2021/chen21o_interspeech.html
https://www.isca-speech.org/archive/interspeech_2021/chen21o_interspeech.html
https://arxiv.org/abs/2110.13900
https://proceedings.mlr.press/v119/chen20j.html
https://www.isca-speech.org/archive/pdfs/interspeech_2023/chen23l_interspeech.pdf
https://www.isca-speech.org/archive/pdfs/interspeech_2023/chen23l_interspeech.pdf
https://www.isca-speech.org/archive/interspeech_2021/conneau21_interspeech.html
https://www.isca-speech.org/archive/interspeech_2021/conneau21_interspeech.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_Learning_ICCV_2019_paper.pdf

Under review as submission to TMLR

23rd international conference on Machine learning, pp. 369-376, 2006. URL https://archive.air.in|
tum.de/Main/Publications/Graves2006a.pdfl

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of
hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451-3460, 2021.
doi: 10.1109/TASLP.2021.3122291. URL https://arxiv.org/abs/2106.07447.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train BERT with an academic budget. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10644-10652, November
2021. doi: 10.18653/v1/2021.emnlp-main.831. URL https://aclanthology.org/2021.emnlp-main.831.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017. URL https://openreview.net/forum?id=rkE3y85ee.

Jacob Kahn, Morgane Riviéere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré,
Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light: A benchmark
for asr with limited or no supervision. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7669-7673. IEEE, 2020. URL https://arxiv.org/abs/1912|
07875.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiw:2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Shaoshi Ling, Yuzong Liu, Julian Salazar, and Katrin Kirchhoff. Deep contextualized acoustic representations
for semi-supervised speech recognition. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6429-6433, 2020. doi: 10.1109/ICASSP40776.2020.9053176.
URL https://arxiv.org/abs/1912.01679.

Alexander H Liu, Heng-Jui Chang, Michael Auli, Wei-Ning Hsu, and James R Glass. Dinosr: Self-distillation
and online clustering for self-supervised speech representation learning. arXiv preprint arXiv:2305.10005,
2023. URL https://arxiv.org/abs/2305.10005.

Andy T Liu, Shu-wen Yang, Po-Han Chi, Po-chun Hsu, and Hung-yi Lee. Mockingjay: Unsupervised
speech representation learning with deep bidirectional transformer encoders. In ICASSP 2020-2020 IEEFE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6419-6423. IEEE,
2020. URL https://arxiv.org/abs/1910.12638.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, and Yoshua Bengio. Speech Model
Pre-Training for End-to-End Spoken Language Understanding. In Proc. Interspeech 2019, pp. 814-818,
2019. doi: 10.21437/Interspeech.2019-2396. URL https://www.isca-archive.org/interspeech_2019/
lugoschl9_interspeech.html.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI DotA team. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018. URL https://arxiv.org/abs/1812.06162.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training. In
6th International Conference on Learning Representations, ICLR 2018, 2018. URL https://openreview,
net/forum?id=r1gs9JgRZl

Jovana Mitrovic, Brian McWilliams, and Melanie Rey. Less can be more in contrastive learning. In Proceedings
on "I Can’t Believe It’s Not Better!" at NeurIPS Workshops, volume 137 of Proceedings of Machine Learning
Research, pp. 70-75. PMLR, 12 Dec 2020. URL https://proceedings.mlr.press/v137/mitrovic20al
html.

14

https://archive.air.in.tum.de/Main/Publications/Graves2006a.pdf
https://archive.air.in.tum.de/Main/Publications/Graves2006a.pdf
https://arxiv.org/abs/2106.07447
https://aclanthology.org/2021.emnlp-main.831
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/1912.07875
https://arxiv.org/abs/1912.07875
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1912.01679
https://arxiv.org/abs/2305.10005
https://arxiv.org/abs/1910.12638
https://www.isca-archive.org/interspeech_2019/lugosch19_interspeech.html
https://www.isca-archive.org/interspeech_2019/lugosch19_interspeech.html
https://arxiv.org/abs/1812.06162
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://proceedings.mlr.press/v137/mitrovic20a.html
https://proceedings.mlr.press/v137/mitrovic20a.html

Under review as submission to TMLR

Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zisserman. Voxceleb: Large-scale speaker verification
in the wild. Computer Speech & Language, 60:101027, 2020. ISSN 0885-2308. doi: https://doi.org/10.1016/
j-csl.2019.101027. URL https://www.sciencedirect.com/science/article/pii/S0885230819302712.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR corpus based
on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5206-5210, South Brisbane, Queensland, Australia, April 2015. IEEE. ISBN
978-1-4673-6997-8. doi: 10.1109/ICASSP.2015.7178964. URL http://ieeexplore.ieee.org/document/
7178964/

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recogni-
tion. In Proc. Interspeech 2019, pp. 2613-2617, 2019. doi: 10.21437/Interspeech.2019-2680. URL
https://www.isca-archive.org/interspeech_2019/parki9e_interspeech.html.

Jie Pu, Yuguang Yang, Ruirui Li, Oguz Elibol, and Jasha Droppo. Scaling Effect of Self-Supervised Speech
Models. In Proc. Interspeech 2021, pp. 1084-1088, 2021. doi: 10.21437/Interspeech.2021-1935. URL
https://www.isca-speech.org/archive/interspeech_2021/pu2l_interspeech.html.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748-8763. PMLR, 18-24
Jul 2021. URL https://proceedings.mlr.press/v139/radford2la.html.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 28492-28518. PMLR,
23-29 Jul 2023. URL https://proceedings.mlr.press/v202/radford23a.html,

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-16. IEEE, 2020. URL https://arxiv.org/abs/1910.02054.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to ac-
celerate training of deep neural networks. In Advances in Neural Information Processing Sys-
tems, volume 29, 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/
ed265bc903a5a097£61d3ec064d96d2e—Paper . pdf.

Christopher J. Shallue, Jachoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning
Research, 20(112):1-49, 2019. URL http://jmlr.org/papers/v20/18-789.html.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=B1Yy1BxCZ.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson,
Juan Pino, and Emmanuel Dupoux. VoxPopuli: A large-scale multilingual speech corpus for representation
learning, semi-supervised learning and interpretation. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 993-1003, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.80. URL https://aclanthology.org/2021.acl-1long.80.

15

https://www.sciencedirect.com/science/article/pii/S0885230819302712
http://ieeexplore.ieee.org/document/7178964/
http://ieeexplore.ieee.org/document/7178964/
https://www.isca-archive.org/interspeech_2019/park19e_interspeech.html
https://www.isca-speech.org/archive/interspeech_2021/pu21_interspeech.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v202/radford23a.html
https://arxiv.org/abs/1910.02054
https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
http://jmlr.org/papers/v20/18-789.html
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://aclanthology.org/2021.acl-long.80

Under review as submission to TMLR

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu,
Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko tik Lee, Da-Rong
Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman Mohamed, and Hung
yi Lee. SUPERB: Speech Processing Universal PERformance Benchmark. In Proc. Interspeech 2021, pp.
1194-1198, 2021. doi: 10.21437/Interspeech.2021-1775. URL https://www.isca-speech.org/archive/
interspeech_2021/yang2lc_interspeech.html,

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer vision. arXiv
preprint arXiv:2111.11432, 2021. URL https://arxiv.org/abs/2111.11432,

Yu Zhang, Wei Han, James Qin, Yongqgiang Wang, Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li,
Vera Axelrod, Gary Wang, Zhong Meng, Ke Hu, Andrew Rosenberg, Rohit Prabhavalkar, Daniel S. Park,
Parisa Haghani, Jason Riesa, Ginger Perng, Hagen Soltau, Trevor Strohman, Bhuvana Ramabhadran,
Tara Sainath, Pedro Moreno, Chung-Cheng Chiu, Johan Schalkwyk, Francoise Beaufays, and Yonghui
Wu. Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages, September 2023. URL
http://arxiv.org/abs/2303.01037. arXiv:2303.01037 [cs, eess].

A Appendix
A.1 Measured hours of observed data during pre-training
Table 2: The number of epochs and total amount of data observed throughout pre-training for each batch

size. The training dataset contains 912 hours of data and we train for 400 k iterations. Note that the batch
size is an upper bound as they are constructed with variable length samples.

batch size upper bound measured
. observed max. repeats observed

sec epochs data (h) of sample data (h)
87.5 1.5 11 10k 11 9k

150 2.5 18 17k 18 16k

300 5 37 33k 36 31k

600 10 73 67k 71 62k
1200 20 146 133k 140 124k
2400 40 292 267k 277 248k
4800 80 585 533k 554 497k

Due to fact that audio samples in LibriSpeech are varied, batch sizes are filled up to a specific threshold, as
explained in Section The product of the batch size and number of iterations is therefore an upper bound
on the amount and duration of samples observed. Moreover, we discard some batches when the difference
between the minimum and maximum file is larger than 10 seconds, as this prevented GPU out-of-memory
errors. During pre-training, we stored the identifiers of every utterance in all 400k batches. Afterwards, we
could compute the actual amount of data observed, looking up the length of each utterance without padding.
The results are shown in Table [2} We can see that the largest batch size has actually seen only 497k hours of
data, instead of the theoretical 533 k hours. This shows the importance of creating batches with as little
length variability as possible, because our results have shown that seeing more hours of data in the same
amount of iterations matters for downstream performance.

A.2 Pre-training plots with visible hours as x-axis

This appendix shows the plots of Figure [I| with the amount of data seen as x-axis instead of the amount of
iterations. To correct for the different gpu-batch sizes (1.4 M samples instead of 2.4 M samples) and diversity
loss weighting, we multiple the values of batch size 87.5 with a factor 2 for the constrastive and diversity loss.

16

https://www.isca-speech.org/archive/interspeech_2021/yang21c_interspeech.html
https://www.isca-speech.org/archive/interspeech_2021/yang21c_interspeech.html
https://arxiv.org/abs/2111.11432
http://arxiv.org/abs/2303.01037

Under review as submission to TMLR

Validation contrastive loss during pre-training

batch size
12000 80 m?n
—— 40 min
2 —— 20 min
= 10000 10 min A
[«5]
2 5 min
%
= \ — 150 sec
E 8000 87.5 sec |
[\
6000 “\\:;9\\A A
0 100k 200k 300k 400k 500k
Visible training hours
Figure 6: Validation contrastive loss
Validation diversity loss during pre-training
i I T
. L batch size |
: \\ 80 min
50 | \ — 40 min J
I \\ —— 20 min
" .
Lg 45 : \\ 10 min 7
> I \\ 5 min
‘0 40 N X]
= : \\\ — 150 sec
.% 351 \ 87.5 sec
E e —
30 AN
; o
25 | :
0 100k 200k 300k 400k 500k

Visible training hours

Figure 7: Validation diversity loss

17

Under review as submission to TMLR

Validation L2-penatly loss during pre-training

- [” /
6F J/ J ’ VP—
5F / batch size
% / / 80 min
<A / —— 40 min
N L
.q L
3F A% / o —— 20 min
/-/ / / —~ 10 min
3 — 150 sec
1 .]
: bé’//o' 87.5 sec
0 100k 200k 300k 400k 500k
Visible training hours
Figure 8: Validation L2-penalty loss
Validation accuracy during pre-training
0.5 A WW/\/
9}/
v .
04 J batch size
§ | 80 min
g i —— 40 min
© 0.3 20 min
/ 10 min
5 min
0.2 — 150 sec]
87.5 sec
i i
0 100k 200k 300k 400k 500k

Visible training hours

Figure 9: Validation accuracy

18

Under review as submission to TMLR

Validation perplexity of codebook logits

200
NM—W I Ve N U 2 Y Vaan e e A
150 .
= VA A A A batch size
.5 80 min
:gj 100 —— 40 min |
oY —— 20 min
10 min
50 5min
— 150 sec
87.5 sec
0 100k 200k 300k 400k 500k
Visible training hours
Figure 10: Validation perplexity of codebook 1
Average cosine similarity between codewords during pre-training
T u
‘ batch size

0.75 : \ 80 min
[\ — 40 min
0.70 — — 20 min
[\ 10 min
I 5 min]
00 I \ — 150 sec
I -\ 87.5 sec
0.60 | .

~-

average cosine similarity

0.55 |

N

0 100k 200k 300k 400k 500k
Visible training hours

Figure 11: The average similarity between codewords in codebook 1 throughout the pre-training procedure.

19

Under review as submission to TMLR

A.3 Hyperparameter details for full fine-tuning

We use similar fine-tuning parameters for each labeled data condition as stated in Baevski et al.| (2020)), but
make some changes such that the only variation is in the number of iterations. We use 12k, 13k, 20k, 80k and
320k iterations, respectively for 10 minutes, 1 hour, 10 hours, 100 hours, and 960h hours of labeled fine-tuning
data. We use a learning rate of 5 x 10~ with Adam, not using weight decay. We use the same tri-stage
learning rate schedule, where the first 10% of iterations warm up the LR linearly from 5 x 1077 to 5 x 1072,
the next 40% of iterations keep the LR constant at 5 x 1075, and the last 50% iterations exponentially decay
the learning rate from 5 x 1075 to 2.5 x 1075. We fine-tune with a single GPU, using a batch size of 3.2M
samples (200 seconds). The CNN network is frozen for all iterations, while the Transformer network is frozen
for the first 5k iterations. Masking is applied on the Z sequence, but only 5% of the sequence is masked. We
do not apply masking on the feature dimension. We also do not use LayerDrop, as we didn’t use LayerDrop
during pre-training to simplify data-parallelism. Dropout is set to 10% in the Transformer layer (also during

SSL).

A.4 Tabular data for Figure [2]

In Table [3] we show the data in Figure [2]in tabular format.

A.5 Tabular data for Figure [4]

In Table] we show the data in Figure [d]in tabular format, where at least 2 batch sizes match exactly in the
amount of data seen during self-supervision. We observe some variation between checkpoints of different
batch sizes at the same amount of data seen. However, it is not evident that the larger batch size has a better
WER. For example, at 16.7k hours seen, a batch size of 150 sec has the best performance in both fine-tuning
conditions, and at 50k hours, a 10 minutes batch size outperforms 20 min batch size slightly. Except for
the big performance difference at 33k hours for the 40 minute batch size, we alleviate these differences to
random noise. We hypothesize that the 40 min batch size condition performs better because we simply used
a better learning rate while having minor differences in the implementation of wav2vec 2.0. We noticed after
having conducted the experiments that the original wav2vec 2.0 implementation in Fairseq uses Dropout on
the local speech representations before quantiziation. The original implementation also use LayerDrop on the
Transformer layers, which we disabled due to it significantly slowing down the gradient synchronisation in
distributed data-parallel training.

A.6 Tabular data for Figure [5]

We show the data from Figure [f] in Table

20

Under review as submission to TMLR

Table 3: The data seen in Figure 2] It shows WER after fine-tuning the best SSL checkpoint for each batch
size. Fine-tuning is done on 5 different amounts of label conditions. Decoding is done with letter decoding as
well as 4-gram word decoding with beam size 50. Scratch indicates a random initialization.

letter decoding 4-gram word decoding

labeled data SSL batch size test-clean test-other test-clean test-other

10 min scratch 129.45 129.47 111.17 111.95
87.5 sec 85.98 91.80 72.67 82.14
150 sec 72.07 82.02 54.44 68.26
5 min 61.26 71.06 40.96 53.53
10 min 50.39 59.45 32.06 42.32
20 min 47.04 54.67 27.3 35.96
40 min 45.44 52.05 26.89 34.35
80 min 41.64 50.06 24.38 34.47
1 hour scratch 106.68 104.76 101.23 100.09
87.5 sec 70.5 83.49 51.93 70.58
150 sec 53.28 68.37 34.00 52.00
5 min 39.04 53.57 22.31 37.11
10 min 28.83 41.47 15.69 27.03
20 min 25.12 35.23 13.14 22.25
40 min 23.26 31.75 11.90 19.52
80 min 21.94 31.30 11.80 20.72
10 hours scratch 105.59 104.03 100.56 99.25
87.5 sec 47.74 67.98 29.81 53.69
150 sec 34.53 54.43 20.20 39.96
5 min 23.24 40.24 13.42 28.07
10 min 16.27 29.51 9.46 20.27
20 min 13.26 23.83 7.66 16.31
40 min 11.11 19.78 6.59 13.46
80 min 10.38 19.56 6.28 13.67
100 hours scratch 69.02 84.70 50.36 73.44
87.5 sec 21.31 48.15 12.33 35.99
150 sec 16.68 40.41 9.93 29.63
5 min 12.38 31.43 7.72 22.66
10 min 9.10 23.43 5.93 16.87
20 min 7.41 18.93 5.12 13.72
40 min 6.24 14.87 4.38 10.88
80 min 5.86 15.97 4.45 12.05
960 hours scratch 25.45 48.65 12.62 32.20
87.5 sec 7.94 21.78 4.69 14.41
150 sec 7.05 19.60 4.35 12.77
5 min 6.01 16.84 4.12 11.45
10 min 5.27 13.91 3.74 9.66
20 min 4.44 12.53 3.33 8.90
40 min 4.12 10.62 3.20 7.87
80 min 4.22 11.58 3.34 8.68

21

Under review as submission to TMLR

Table 4: Data from Figure [} We show the WER after fine-tuning SSL checkpoints with overlapping amount
of hour seen during self-supervision, but using a different batch size and number of iterations.

fine-tuning with fine-tuning with
during self-supervised learning 10 minutes of labels 100 hours of labels
(WER in %) (WER in %)

hours seen batch size iteration test-clean test-other test-clean test-other
417k 150 sec 100 k 99.16 101.33 29.79 57.52
4.17k 5 min 50 k 98.55 100.04 30.25 58.14
8.33 k 150 sec 200 k 88.71 94.32 22.98 50.31
8.33 k 5 min 100 k 90.23 95.29 22.98 50.57
8.33 k 10 min 50 k 88.35 93.96 22.35 49.56
125k 150 sec 300 k 80.83 88.28 19.23 44.77
125 k 5 min 150 k 81.17 89.71 19.27 45.25
16.7 k 150 sec 400 k 72.00 82.15 16.49 40.18
16.7 k 5 min 200 k 73.63 83.54 16.71 41.17
16.7 k 10 min 100 k 73.17 84.01 16.83 40.63
16.7 k 20 min 50 k 72.95 83.12 16.89 41.09
25 k 5 min 300 k 64.40 75.36 14.21 35.51
25 k 10 min 150 k 63.73 74.55 13.97 35.50
33.3k 5 min 400 k 60.96 70.61 12.24 31.49
333k 10 min 200 k 59.00 69.44 12.46 31.39
333k 20 min 100 k 59.76 70.14 12.30 31.22
333k 40 min 50 k 53.70 63.52 10.94 27.53
50 k 10 min 300 k 53.32 63.30 10.21 25.99
50 k 20 min 150 k 54.04 63.91 10.47 26.55
66.7 k 10 min 400 k 50.71 60.05 9.07 23.06
66.7 k 20 min 200 k 51.64 60.64 9.28 23.97
66.7 k 40 min 100 k 50.80 58.74 8.63 21.26
66.7 k 80 min 50 k 51.26 60.42 9.29 23.20
100 k 20 min 300 k 48.61 56.51 8.09 20.75
100 k 40 min 150 k 48.04 55.41 7.63 18.67
133 k 20 min 400 k 47.43 54.71 7.40 19.04
133 k 40 min 200 k 48.06 55.66 7.11 17.25
133 k 80 min 100 k 45.40 53.46 7.31 18.32
200 k 40 min 300 k 46.35 53.42 6.58 15.74
200 k 80 min 150 k 42.84 51.20 6.58 16.70
267 k 40 min 400 k 45.57 52.50 6.26 15.10
267 k 80 min 200 k 42.40 50.34 6.27 15.85

22

Under review as submission to TMLR

Table 5: SUPERB fine-tuning results shown in Figure

. _ ASR ASR
during self-supervision PR (en) (#h) ASV ER IC

batch size steps hours seen PER WER CER EER acc acc

87.5 sec 100 k 24k 46.87 25.64 3794 13.88 57.67 73.66
87.5 sec 200 k 48 k 39.74 21.87 34.22 11.15 58.24 77.25
87.5 sec 300 k 7.3k 34.30 19.63 32.68 9.95 5828 81.41
87.5 sec 400 k 9.7k 28.29 1845 31.41 10.13 59.45 84.92
150 sec 100 k 4.2 k 39.71 22,74 35.05 11.73 60.35 76.14
150 sec 200 k 8.3k 30.42 18.81 31.68 9.70 5897 81.89
150 sec 300 k 12.5 k 22.87 16.85 29.66 8.82 60.68 89.80
150 sec 400 k 16.7 k 18.43 15.03 29.08 8.19 61.90 92.01
5 min 100 k 8.3 k 30.36 18.75 31.66 9.33 59.60 82.44
5 min 200 k 16.7 k 19.22 1537 28.84 7.35 60.64 88.27
5 min 300 k 25 k 14.69 13.62 27.60 7.30 61.60 93.75
5 min 400 k 33.3 k 12.41 12.03 26.55 6.69 63.12 94.36
10 min 100 k 16.7 k 17.57 14.72 27.82 7.67 62.11 91.51
10 min 200 k 33.3 k 12.01 11.90 26.08 6.81 61.98 94.12
10 min 300 k 50 k 9.71 1090 25.29 6.47 62.69 95.97
10 min 400 k 66.7 k 8.41 9.79 2469 6.18 63.05 96.52
20 min 100 k 33.3 k 12.06 11.85 26.16 6.80 63.00 96.20
20 min 200 k 66.7 k 8.84 9.87 2470 6.37 63.11 97.31
20 min 300 k 100 k 7.55 8.84 2422 6.15 63.71 97.36
20 min 400 k 133.3 k 6.98 8.12 2383 596 63.13 97.36
40 min 100 k 66.7 k 7.94 9.19 2476 596 61.88 96.81
40 min 200 k 133.3 k 6.50 7.81 24.16 587 61.57 97.13
40 min 300 k 200 k 6.37 729 2397 576 62.57 96.63
40 min 400 k 266.7 k 6.08 7.01 23.73 5.60 62.33 95.86
80 min 100 k 133.3 k 6.70 8.02 2394 6.08 62.09 97.50
80 min 200 k 266.7 k 5.96 7.07 2346 554 63.00 97.39
80 min 300 k 400 k 5.99 711 23.53 5.58 62.33 96.41
80 min 400 k 533.3 k 6.84 7.25 2347 5.777 63.07 96.81

23

	Introduction
	Related work
	Methodology
	Self-supervised pre-training
	Batch creation
	Full fine-tuning for speech recognition with subsets of LibriSpeech
	Frozen fine-tuning for various speech technology tasks using the SUPERB benchmark

	Experiments
	Pre-training with different batch sizes
	ASR fine-tuning with varying amounts of labels
	Analysis on effectiveness of large batch sizes
	Variance of gradients
	Fine-tuning after observing specific amounts of data during pre-training

	SUPERB fine-tuning

	Discussion and conclusions
	Appendix
	Measured hours of observed data during pre-training
	Pre-training plots with visible hours as x-axis
	Hyperparameter details for full fine-tuning
	Tabular data for Figure 2
	Tabular data for Figure 4
	Tabular data for Figure 5

