ADAPTIVE CURRICULUM STRATEGIES: STABILIZING REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

ABSTRACT

Curriculum learning has shown promise for enhancing Large Language Models (LLMs) through progressive difficulty management, yet existing approaches suffer from instability issues when applied to reinforcement learning paradigms. Existing curriculum-based RL training exhibits catastrophic performance collapse during difficulty transitions, particularly when models encounter samples beyond their current capabilities. This instability stems from rigid curriculum designs that fail to adapt to individual model characteristics and learning trajectories. To address these limitations, we propose Adaptive Curriculum Strategies (ACS), a framework that promotes stable and effective training throughout curriculum progression. Our approach introduces model-specific difficulty calibration that adapts to each model's capabilities, and "Guided Prompting" that transforms challenging samples to prevent training instability. Experiments demonstrate that ACS prevents performance collapse in traditional curriculum RL training, achieving substantial improvements across five mathematical reasoning benchmarks while enhancing training stability.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, with reinforcement learning emerging as an effective paradigm for mathematical reasoning due to its clear reward signals and iterative optimization capabilities (Guo et al., 2024; Shao et al., 2024; Yang et al., 2025; Kavukcuoglu, 2025; OpenAI, 2024). Recent work has introduced curriculum learning strategies into RL frameworks, progressively exposing models to problems of increasing difficulty and showing promising improvements in convergence speed and performance (Wen et al., 2025b; Huang et al., 2025; Shi et al., 2025; Team et al., 2025). However, existing curriculum-based reinforcement learning approaches suffer from severe training instability, particularly during transitions between difficulty levels.

The Challenge of Instability in Curriculum-Based Reinforcement Learning. Current curriculum learning approaches for RL optimization face a fundamental stability problem that manifests in several ways: (1) models experience sudden performance drops during difficulty transitions, with abrupt accuracy degradation rather than smooth progression when advancing to higher difficulty levels; (2) identical curriculum strategies produce inconsistent learning trajectories across different model architectures, and some achieving stable improvement while others exhibit erratic performance fluctuations or complete learning failure under the same curriculum arrangement; and (3) models fail to maintain previously acquired capabilities when advancing to more challenging content, suffering catastrophic forgetting of simpler skills they had previously mastered.

The root cause lies in the rigid, non-adaptive nature of existing curriculum designs. As illustrated in Figure 1, difficulty perception varies dramatically across models, approximately 55% of questions that are easily solved by one model prove challenging for another. This reveals a fundamental flaw in current approaches: they rely on fixed difficulty hierarchies that assume universal difficulty perception across models (Yu et al., 2025; Wen et al., 2025a). When predefined difficulty levels are applied uniformly across diverse architectures, the mismatch between assumed and actual difficulty leads

to inappropriate sample selection, destabilizing training and explaining why identical curriculum strategies produce inconsistent results across different models.

Recent attempts to address curriculum learning in RL have focused on heuristic-based difficulty ranking approaches (Xie et al., 2025; Wen et al., 2025b), but these methods maintain the same fundamental flaw: they impose external difficulty assessments without considering the dynamic, evolving nature of individual model capabilities. This problem is particularly acute in reinforcement learning settings, where policy optimization relies on consistent reward signals and stable training trajectories.

Our Solution: Adaptive Curriculum Strategies. We propose Adaptive Curriculum Strategies (ACS), a framework to ensure stable curriculum-based RL training. ACS introduces two key innovations: model-specific difficulty calibration that adapts sample complexity assessment based on each model's evolving capabilities, and "Guided Prompting," a sample transformation technique that prevents catastrophic performance collapse when models encounter challenging samples.

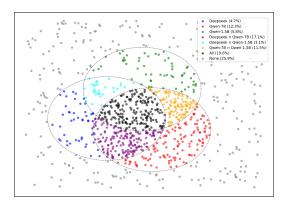


Figure 1: Solution correctness patterns for three mathematical reasoning models. Each colored region represents problems solved by specific model combinations. Our analysis shows that approximately 55% of questions that are easy for one model prove difficult for another, demonstrating that unified difficulty standards across models are problematic.

Unlike existing approaches, our framework prioritizes stability as a primary objective, ensuring progressive training throughout all curriculum stages. Our evaluation demonstrates that ACS eliminates performance instability in curriculum-based RL training while achieving superior performance across five mathematical reasoning benchmarks.

The contributions of this work include:

- We identify and characterize the training instability phenomenon in current curriculumbased RL methods, revealing that rigid unified difficulty standards cause catastrophic performance collapse due to significant difficulty perception differences across model architectures.
- We propose Adaptive Curriculum Strategies (ACS) with two key technical innovations: model-specific difficulty calibration that dynamically adapts to individual model capabilities, and guided prompting that transforms challenging samples to prevent training destabilization.
- We demonstrate through comprehensive experiments on five mathematical reasoning benchmarks that ACS eliminates training instability while achieving consistent performance improvements, validating both the stability and effectiveness of our approach.

2 RELATED WORK

Curriculum Learning and Adaptive Training Strategies. The challenge of effectively managing training sample difficulty has gained increasing attention in large language model optimization. Bengio et al. (2009) established foundational concepts for progressive difficulty management in machine learning, demonstrating that models learn more effectively when training examples are presented with appropriate difficulty sequencing. Recent work has explored various approaches to difficulty-aware training in language models. Xie et al. (2025) implements difficulty progression by adjusting task complexity based on logical reasoning requirements, while Wen et al. (2025b) identifies challenging samples based on model prediction failures and defers them to later training stages. Team et al. (2025) focuses on filtering strategies that remove problematic samples early in training, concentrating computational resources on high-quality examples. Huang et al. (2025) applies difficulty-aware training to retrieval-augmented generation, ordering tasks by the complexity of retrieved information. Shi et al. (2025) proposes dynamic sample selection based on predefined

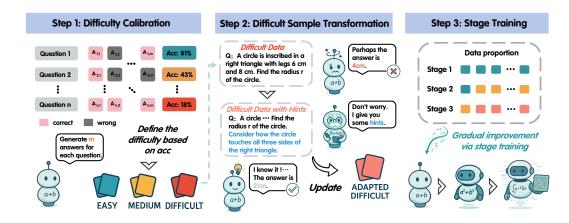


Figure 2: Adaptive Curriculum Strategies Pipeline for Stable RL Training. Step 1: Model-specific difficulty calibration adapts to individual model capabilities, ensuring curriculum construction aligns with each model's evolving learning capacity. Step 2: Guided prompting strategically transforms challenging samples to prevent training instability while preserving learning value, maintaining stable training dynamics. Step 3: Progressive curriculum training with data mixing strategy enables gradual improvement through staged learning and curriculum review, building capabilities from basic to advanced reasoning tasks.

difficulty scores that align with model capabilities during training. Tong et al. (2024); Xue et al. (2025) implement empirical approaches through multi-round sampling, defining difficulty through response accuracy patterns and allocating training emphasis accordingly. Ma et al. (2024) extends this concept by implementing inverse accuracy weighting, where samples with lower success rates receive proportionally greater training attention. However, these approaches rely on fixed difficulty hierarchies that fail to account for individual model capabilities and learning trajectories, often leading to training instability during curriculum transitions.

Reinforcement Learning for Mathematical Reasoning. Reinforcement learning has emerged as a particularly effective paradigm for mathematical reasoning tasks, where reward signals can be clearly defined through solution correctness. Luo et al. (2023); Luong et al. (2024); Yue et al. (2025) demonstrate effectiveness of Proximal Policy Optimization (PPO) for mathematical reasoning enhancement. Shao et al. (2024); DeepSeek-AI et al. (2025); Yu et al. (2025) advance the field through Group Relative Policy Optimization (GRPO), showing substantial improvements in reasoning performance. However, when integrated with curriculum learning strategies, these methods lack stability-preserving mechanisms and often suffer from catastrophic performance collapse during difficulty transitions. The effectiveness of reinforcement learning in mathematical domains makes it an ideal testbed for adaptive difficulty management strategies, as reward signals provide clear feedback on model capability progression.

3 Method

Current curriculum learning approaches in reinforcement learning suffer from a fundamental stability problem: they impose rigid difficulty progressions that fail to adapt to individual model capabilities, leading to catastrophic performance collapse during training. This instability undermines the core benefits of curriculum learning and prevents effective policy optimization in RL settings.

To address these critical limitations, we propose Adaptive Curriculum Strategies (ACS), a framework specifically designed to ensure stable, smooth, and effective curriculum-based RL training. ACS operates through three synergistic components designed to improve training stability while maintaining learning effectiveness.

Our framework is built on three fundamental principles that ensure training stability: (1) Adaptive Difficulty Assessment that calibrates sample complexity based on individual model performance rather than fixed hierarchies, (2) Stability-Preserving Sample Transformation that prevents catastrophic performance drops while preserving learning value, and (3) Progressive Adaptation that

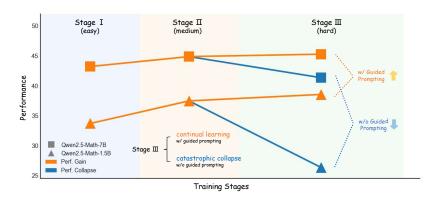


Figure 3: **Training Stability Analysis: ACS vs. Traditional Curriculum Approaches.** Our ACS framework (orange line) shows improved training progression throughout all curriculum stages, while traditional approaches (blue line) suffer significant performance degradation in Stage III. The results demonstrate the benefits of adaptive curriculum strategies for enhancing RL training stability across different model sizes: Owen2.5-Math-1.5B (triangles) and Owen2.5-Math-7B (squares).

ensures smooth transitions between curriculum stages without destabilizing training dynamics. The full algorithm is detailed in Algorithm 1.

3.1 Model-Specific Difficulty Calibration

The primary source of instability in curriculum-based RL training stems from the mismatch between predefined difficulty assessments and actual model capabilities. Fixed difficulty hierarchies ignore the dynamic nature of model learning and frequently expose models to inappropriate training content that destabilizes optimization.

We address this fundamental issue through model-specific difficulty calibration that adapts sample assessment to each model's evolving capabilities. Rather than relying on external difficulty labels, our approach directly measures sample accessibility through model performance. For each training sample i, we generate n responses and evaluate their correctness against the reference answer:

$$ACC_{i} = \frac{\sum_{j=1}^{n} \mathbb{I}\{A_{ij} = A_{i}^{*}\}}{n}$$
 (1)

where A_{ij} represents the j-th generated answer for sample i, A_i^* denotes the reference answer for sample i, n is the number of generated responses, and $\mathbb{I}\{\}$ is the indicator function that equals 1 when the condition is true and 0 otherwise. ACC_i represents the stability-informed accuracy rate for sample i, providing a direct measure of whether the sample is within the model's current learning capacity.

Computational Efficiency. While our approach requires generating multiple responses for difficulty assessment, we employ the VLLM framework for efficient inference acceleration. Taking the Qwen2.5-Math-7B model as an example, the additional computational overhead for difficulty calibration represents less than 5% of the total GPU hours compared to the entire training process, making this overhead negligible while providing substantial stability benefits.

Our approach monitors model performance across training samples, dynamically adjusting difficulty assessments as the model evolves. This adaptive mechanism ensures that the curriculum remains appropriately challenging without introducing destabilizing content that could compromise training stability.

3.2 GUIDED PROMPTING FOR SAMPLE TRANSFORMATION

Why Existing Curriculum Approaches Fail in RL Settings. Traditional curriculum learning faces a critical stability challenge in reinforcement learning contexts, where optimization requires con-

sistent policy gradients and stable reward signals for effective convergence. However, traditional curriculum approaches introduce sudden difficulty transitions that violate these stability requirements, leading to catastrophic performance collapse that undermines all previous learning gains. When models encounter samples significantly beyond their capabilities, the resulting poor performance and unstable gradients can cause policy collapse and training divergence. As demonstrated in Figure 3, curriculum-based RL training without proper stability management leads to severe performance degradation. Specifically, the Qwen2.5-Math-1.5B model suffers a performance drop of approximately 30% when transitioning to Stage III, while the larger Qwen2.5-Math-7B model also exhibits notable instability, highlighting the pervasive nature of this challenge across different model scales. Our ACS framework specifically addresses these RL-specific stability requirements through adaptive curriculum management that prevents such catastrophic failures.

This catastrophic instability not only wastes computational resources but also violates the fundamental assumptions of reinforcement learning optimization, which requires stable policy gradients for effective convergence. Our analysis reveals that models without stability-preserving mechanisms suffer dramatic performance drops that persist even after returning to easier samples, indicating fundamental damage to the learned policy.

To ensure training stability while preserving the learning value of challenging samples, we introduce "Guided Prompting," a strategic sample transformation technique designed specifically for stable RL training. Rather than discarding difficult samples or exposing models to destabilizing content, our approach transforms challenging examples into accessible learning opportunities.

For a challenging problem Q_i with reference solution $S_i = \{s_{i1}, s_{i2}, ..., s_{ik}\}$, we extract a strategic guidance prefix $P_i = \{s_{i1}, s_{i2}, ..., s_{ip}\}$ where p < k. We gradually provide hints until either the ratio $\frac{|p|}{|k|}$ reaches a predefined hint ratio α , or the model's performance improves to meet an accuracy threshold τ . This transformation creates a stability-preserving training example:

$$y_i \sim \pi_\theta(Y|[Q_i; P_i]) \tag{2}$$

The guided prompting approach maintains training stability by ensuring that all samples remain within the model's learning capacity while preserving the educational value of challenging content. This prevents the policy instability that typically occurs when RL training encounters samples beyond model capabilities.

As shown in Figure 3, our stability-preserving approach enables consistent performance improvement throughout all curriculum stages, eliminating the catastrophic collapses that plague traditional curriculum methods and ensuring reliable RL optimization.

3.3 Progressive Reinforcement Learning

Using our stability-informed difficulty calibration and sample transformation, we implement progressive reinforcement learning that maintains training stability throughout curriculum progression. The training data is adaptively partitioned into stability-ordered subsets $D = \{D_1, D_2, ..., D_p\}$ where each subset D_j contains samples verified to be accessible at the current model capability level.

Reinforcement learning provides particularly effective optimization for mathematical reasoning tasks due to clear reward signals from solution correctness. Following successful approaches in mathematical reasoning DeepSeek-AI et al. (2025), we implement staged reinforcement learning that can operate directly on pretrained models.

Our reinforcement learning implementation incorporates stability monitoring at every stage to prevent the catastrophic collapses observed in traditional curriculum approaches. We employ Group Relative Policy Optimization (GRPO) with additional stability constraints that ensure consistent policy improvement without destabilizing training dynamics.

270 Algorithm 1 Adaptive Curriculum Strategies for Stable RL Training 271 **Require:** training dataset $D = \{(Q_i, A_i)\}$ with questions Q_i and reference solution A_i 272 **Require:** pretrained model π_0 , stability threshold τ , adaptation ratio α 273 1: Adaptive Curriculum Construction with Stability Monitoring: 274 2: for all question $Q_i \in D$ do 275 Generate n responses $\{A_{i1}, \ldots, A_{in}\}$ using model π_{θ} 276 Calculate stability-informed accuracy: $ACC_i = \frac{\sum_{j=1}^{n} \mathbb{I}\{A_{ij} = A_i^*\}}{C_i}$ 4: 277 Monitor performance variance to detect potential instability indicators 5: 278 6: end for 279 7: Adaptively partition dataset D into stability-ordered subsets $\{D_1, D_2, ..., D_p\}$ based on modelspecific accessibility 281 8: Stability-Preserving Sample Transformation: 9: for all challenging samples $(Q_i, A_i) \in D_p$ do Decompose solution S_i into guided steps $\{s_{i1}, \ldots, s_{ik}\}$ 283 284 11: Apply guided prompting: gradually provide hints $P_i = \{s_{i1}, \dots, s_{il}\}$ 12: Monitor stability: continue until performance reaches τ or adaptation ratio reaches α 285 13: if stability threshold achieved then Transform sample: $Q_i \rightarrow [Q_i; P_i], A_i \rightarrow \{s_{i(l+1)}, \dots, s_{ik}\}$ 14: 287 15: 288 16: Defer sample to later stage with additional adaptation 289 17: end if 290 18: **end for** 291 19: Stable Progressive RL Training: 292 20: **for** each curriculum stage $s \in \{1, ..., p\}$ **do** 293 Apply RL optimization on stability-adapted dataset D_s : $\pi_s = \arg\min_{(Q,A) \in D_s} \mathcal{L}_{RL}(\pi_{s-1})$ with stability constraints

22: end for

295 296

297

298 299 300

301

302

303

305

306 307 308

310

311

312

313

314 315

316

317 318

319

320

321 322 23: **Output:** Stably trained model π_m with enhanced reasoning capabilities

The reward function maintains both accuracy and formatting components while incorporating stability considerations:

$$r_{format} = \begin{cases} 1.0 & \text{if format is correct} \\ 0.0 & \text{otherwise} \end{cases}$$
 (3)

$$r_{format} = \begin{cases} 1.0 & \text{if format is correct} \\ 0.0 & \text{otherwise} \end{cases}$$

$$r_{accuracy} = \begin{cases} 1.0 & \text{if prediction is correct} \\ 0.0 & \text{otherwise} \end{cases}$$
(4)

The total reward $r = r_{format} + r_{accuracy}$ provides stable optimization signals that enable consistent policy improvement without the instability issues that plague traditional curriculum-based RL training.

Our stability-aware GRPO implementation generates multiple candidate responses O $\{o_1, o_2, ..., o_G\}$ for each question while monitoring training stability. The relative advantages are computed as:

$$A_i = \frac{r_i - mean(\{r_1, r_2, ..., r_G\})}{std(\{r_1, r_2, ..., r_G\})}$$
(5)

The GRPO objective incorporates clipping and KL regularization with additional stability constraints:

$$\mathcal{L}_{GRPO} = \mathbb{E}_{(x) \sim D} \left[\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} (min(r_{i,t}(\theta)A_i, clip(r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon)A_i) - \beta D_{KL}(\pi_{\theta}||\pi_{ref})) \right], \tag{6}$$

where $r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t}|q,o_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|q,o_{i,< t})}$ represents the importance sampling ratio.

This approach ensures that the RL optimization remains stable and effective throughout all curriculum stages, eliminating the performance collapses that have hindered previous curriculum-based approaches and enabling reliable policy optimization in challenging domains.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our ACS framework using mathematical reasoning tasks, testing on two model scales with GRPO across five benchmark datasets. Complete experimental details including dataset construction, model configurations, training hyperparameters, and evaluation protocols are provided in the Appendix A.

4.2 Comparative Methods and Experimental Design

To systematically evaluate our ACS framework, we design comprehensive comparisons across two key dimensions of curriculum learning.

4.2.1 DIFFICULTY CALIBRATION STRATEGIES

We compare our model-specific difficulty calibration against three established approaches:

Light-R1. Following Wen et al. (2025b), this method employs a fixed external model to assess sample difficulty. Difficulty rankings are determined based on the external model's success rates, representing a model-agnostic assessment strategy that does not account for target model capabilities.

Length-based Ranking. This heuristic approach ranks samples based on solution length, assuming longer solutions correspond to more complex problems. Samples are organized in ascending order of reference solution lengths.

Original Dataset Labels. This approach utilizes the predefined difficulty levels (1-5) provided by the MATH dataset, organizing training samples according to expert-defined difficulty hierarchies without considering individual model performance.

4.2.2 CHALLENGING SAMPLE PROCESSING STRATEGIES

For samples exceeding model capabilities, we evaluate two alternative processing approaches:

Retain All Samples. This approach includes all difficult samples without modification, potentially exposing models to training instability from inaccessible examples.

Discard Difficult Samples. This conservative strategy removes samples below a predefined accuracy threshold, avoiding negative impacts but discarding valuable training data.

4.3 Main Results

As shown in Table 1, the ACS framework exhibits both methodological robustness and cross-model scalability. Compared to the GRPO baseline, the improvements were pronounced at 55.9% (from 24.7 to 38.5) and 5.8% (from 42.8 to 45.3) for Qwen2.5-Math-1.5B and Qwen2.5-Math-7B respectively, demonstrating the particular effectiveness of adaptive difficulty management in reinforcement learning paradigms. Furthermore, ACS achieves the highest average performance across both model scales, demonstrating superior overall effectiveness compared to other baseline methods, including difficulty calibration strategies (Light-R1, Length-based, Original) and challenging sample processing approaches (Retain, Discard). Notably, our ACS training strategy yielded generally consistent performance gains across all evaluation benchmarks, confirming its effectiveness in enhancing model generalization through strategic difficulty adaptation.

Table 1: Main experimental results comparing ACS with baseline methods and ablation studies across two model scales. Results show performance on five mathematical reasoning benchmarks using GRPO training. ACS demonstrates consistent improvements through model-specific difficulty calibration and guided prompting for challenging samples.

Model	Method	MATH 500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average		
	Base Model	42.8	7.7	25.2	3.3	22.5	20.3		
	GRPO	51.8	18.4	21.0	10.0	22.5	24.7		
	Difficulty Calibration Methods								
Qwen2.5 Math 1.5B	Light-R1	64.2	31.2	30.5	6.7	40.0	34.5		
	Length	67.4	33.8	28.7	6.7	32.5	33.8		
	Original	57.8	23.9	23.7	6.7	27.5	27.9		
	Challenging Sample Processing								
	Retain	62.2	17.3	26.5	3.3	22.5	26.4		
	Discard	72.0	30.9	30.1	10.0	40.0	36.6		
	ACS (Ours)	72.6	31.6	32.7	13.3	42.5	38.5		
	Base Model	63.6	12.5	25.8	10.0	42.5	30.9		
	GRPO	74.2	33.5	33.9	10.0	62.5	42.8		
	Difficulty Calibration Methods								
Qwen2.5 Math 7B	Light-R1	73.2	43.0	37.8	13.3	55.0	44.5		
	Length	75.2	40.8	34.7	13.3	57.5	44.3		
	Original	75.6	35.7	35.7	13.3	45.0	41.1		
	Challenging Sample Processing								
	Retain	71.8	41.5	35.9	10.0	47.5	41.3		
	Discard	77.4	37.5	37.3	13.3	55.0	44.1		
	ACS (Ours)	76.6	38.2	38.2	13.3	60.0	45.3		

4.4 ABLATION STUDIES

4.4.1 Cross-Model Generalizability

To address concerns about the generalizability of our approach across different model architectures, we conducted additional experiments using DeepSeek-Math-7B-Instruct as the base model. This evaluation is particularly important given that prior work has shown some models may exhibit varying sensitivity to training signals in reinforcement learning paradigms. Additionally, to provide comprehensive comparison baselines, we include results from Light-R1 (the best performing difficulty calibration method from our main experiments) and Discard (the best performing challenging sample processing strategy from our comparative analysis).

As demonstrated in Table 2, our ACS framework maintains its effectiveness when applied to the DeepSeek-Math model architecture and achieves the highest average performance across all methods. Compared to the GRPO baseline, ACS achieves a significant improvement of 8.9% (from 17.9 to 19.5). ACS also outperforms other competitive methods, with improvements of 5.4% over Light-R1 (from 18.5 to 19.5) and 4.3% over the Discard strategy (from 18.7 to 19.5).

These results validate that our proposed ACS framework exhibits robust cross-model generalizability, addressing the limitation of model-specific optimization strategies. The consistent performance improvements across different architectural foundations demonstrate that the core principles of model-adaptive curriculum construction and guided prompting are broadly applicable to various mathematical reasoning models, rather than being artifacts of specific model characteristics.

Table 2: Cross-model evaluation results on DeepSeek-Math-7B-Instruct model, comparing ACS with the best-performing baseline methods from each category

Model	Method	MATH 500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average
DeepSeek Math	GRPO	39.6	18.0	13.6	3.3	15.0	17.9
	Light-R1	40.2	20.6	14.0	0.0	17.5	18.5
7B Instruct	Discard	40.8	21.4	13.2	3.3	15.0	18.7
	ACS(Ours)	41.4	22.8	14.8	3.3	15.0	19.5

4.4.2 DATA MIXING STRATEGY

Drawing inspiration from human learning processes where students periodically review previously mastered knowledge, we investigate whether models undergoing staged curriculum learning require similar reinforcement of previously acquired content. This analysis is particularly crucial for maintaining training stability throughout the curriculum progression. We design two distinct data mixing strategies for comparative analysis within our ACS framework:

Naive Curriculum: Models receive samples corresponding only to the current difficulty level at each training stage, focusing exclusively on new, challenging content without revisiting previously learned material.

Curriculum Review: A strategic data mixing approach that incorporates a small proportion of easier samples from previous stages during later training phases, allowing the model to revisit and reinforce previously acquired capabilities while learning new content.

Table 3: Data mixing strategy comparison: Naive Curriculum vs. Curriculum Review across different model scales. Bold numbers indicate superior performance.

Model	Method	MATH 500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average
Qwen2.5 Math 1.5B	Naive Curriculum	69.8	33.8	30.8	6.7	22.5	32.7
	Curriculum Review	72.6	31.6	32.7	13.3	42.5	38.5
Qwen2.5 Math 7B	Naive Curriculum	75.2	35.7	36.4	13.3	52.5	42.6
	Curriculum Review	76.6	38.2	38.2	13.3	60.0	$\bf 45.2$

Experimental results in Table 3 demonstrate that the Curriculum Review strategy consistently outperforms the Naive Curriculum approach and achieves the best performance across both model scales. For the 1.5B model, Curriculum Review achieves a significant 17.7% average performance improvement compared to Naive Curriculum (from 32.7 to 38.5), while the 7B model shows a 6.1% improvement (from 42.6 to 45.2). These results confirm that incorporating previously learned content during later training stages prevents catastrophic forgetting and maintains training stability, aligning with our ACS stability principles.

5 CONCLUSIONS

We presented Adaptive Curriculum Strategies (ACS), a framework that addresses critical instability issues in curriculum-based reinforcement learning through model-specific difficulty calibration and guided prompting techniques. Our experimental results demonstrate that ACS maintains training stability while achieving superior performance across five mathematical reasoning benchmarks.

This work establishes training stability as a fundamental requirement for curriculum learning, opening promising avenues for developing more reliable training methodologies across challenging domains where progressive learning strategies are crucial for optimal performance.

ETHICS STATEMENT

486

487 488

489

490

491

492 493

494 495

496

497

498

499

500

501 502

503504

505

506

507

508

509

510

511

512

513

514

515

516

517

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535 536

537

538

This research focuses on mathematical reasoning tasks and adheres to the ICLR Code of Ethics. Our work addresses a technical training stability problem without involving human subjects, personal data, or sensitive applications. All datasets are publicly available academic benchmarks. The research process follows established ethical guidelines and poses no ethical concerns.

REPRODUCIBILITY STATEMENT

Our work ensures strong reproducibility through comprehensive documentation and open-source resources. All models (Qwen2.5-Math series, DeepSeek-Math), datasets (MATH, OlympiadBench, etc.), and training frameworks (Hugging Face Open R1, VLLM) are publicly available. Complete training hyperparameters are detailed in Appendix A.4, data construction procedures in Appendix A.1, and experimental procedures throughout the appendix. The straightforward implementation using standard frameworks makes reproduction simple and accessible.

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *International Conference on Machine Learning*, 2009. URL https://api.semanticscholar.org/CorpusID:873046.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo, Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. ArXiv, abs/2501.12948, 2025. URL https://api.semanticscholar.org/CorpusID:275789950.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https://github.com/huggingface/open-r1.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the

- large language model meets programming the rise of code intelligence. *ArXiv*, abs/2401.14196, 2024. URL https://api.semanticscholar.org/CorpusID:267211867.
 - Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. In *Annual Meeting of the Association for Computational Linguistics*, 2024. URL https://api.semanticscholar.org/CorpusID:267770504.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xiaodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *ArXiv*, abs/2103.03874, 2021. URL https://api.semanticscholar.org/CorpusID:232134851.
 - Jerry Huang, Siddarth Madala, Risham Sidhu, Cheng Niu, J. Hockenmaier, and Tong Zhang. Rag-rl: Advancing retrieval-augmented generation via rl and curriculum learning. *ArXiv*, abs/2503.12759, 2025. URL https://api.semanticscholar.org/CorpusID:277066612.
 - Koray Kavukcuoglu. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/, March 2025. Accessed: 2025-05-17
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.
 - Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. *ArXiv*, abs/2206.14858, 2022. URL https://api.semanticscholar.org/CorpusID:250144408.
 - Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *ArXiv*, abs/2305.20050, 2023. URL https://api.semanticscholar.org/CorpusID:258987659.
 - Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct. *ArXiv*, abs/2308.09583, 2023. URL https://api.semanticscholar.org/CorpusID:261030818.
 - Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning with reinforced fine-tuning. *ArXiv*, abs/2401.08967, 2024. URL https://api.semanticscholar.org/CorpusID:267027728.
 - Jingyuan Ma, Rui Li, Zheng Li, Lei Sha, and Zhifang Sui. Plug-and-play training framework for preference optimization. ArXiv, abs/2412.20996, 2024. URL https://api.semanticscholar.org/CorpusID:275133496.
 - OpenAI. Openai o1 system card. https://arxiv.org/abs/2412.16720, 2024. Accessed: 2025-05-17.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *ArXiv*, abs/2402.03300, 2024. URL https://api.semanticscholar.org/CorpusID:267412607.
 - Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement fine-tuning via adaptive curriculum learning. 2025. URL https://api.semanticscholar.org/CorpusID:277628042.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Feng Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Haochen Ding, Hao-Xing Hu, Haoming Yang, Hao Zhang, Haotian Yao, Hao-Dong Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jia-Xing Guo, Jianling Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Li-Na Shi, Li-Tao Ye, Long Yu, Meng-Xiao Dong, Neo Y. Zhang, Ningchen Ma, Qi Pan, Qucheng Gong, Shaowei Liu, Shen Ma, Shu-Yan Wei, Sihan Cao, Si-Da Huang, Tao Jiang, Wei-Wei Gao, Weiming Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wen He, Xian sen Wei, Xian-Xian Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xue biao Pan, Y. Charles, Yang Li, Yan-Ling Hu, Yangyang Liu, Yanru Chen, Ye-Jia Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Yingbo Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhengxin Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhi-Sheng Huang, Zihao Huang, Ziya Xu, and Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with llms. *ArXiv*, abs/2501.12599, 2025. URL https://api.semanticscholar.org/CorpusID:275789974.

- Yuxuan Tong, Xiwen Zhang, Rui Wang, Rui Min Wu, and Junxian He. Dart-math: Difficulty-aware rejection tuning for mathematical problem-solving. *ArXiv*, abs/2407.13690, 2024. URL https://api.semanticscholar.org/CorpusID:271270574.
- Cheng Wen, Tingwei Guo, Shuaijiang Zhao, Wei Zou, and Xiangang Li. Sari: Structured audio reasoning via curriculum-guided reinforcement learning. *ArXiv*, abs/2504.15900, 2025a. URL https://api.semanticscholar.org/CorpusID:277993890.
- Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond. *ArXiv*, abs/2503.10460, 2025b. URL https://api.semanticscholar.org/CorpusID:276960927.
- Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement learning. *ArXiv*, abs/2502.14768, 2025. URL https://api.semanticscholar.org/CorpusID:276482543.
- Boyang Xue, Qi Zhu, Hongru Wang, Rui Wang, Sheng Wang, Hongling Xu, Fei Mi, Yasheng Wang, Lifeng Shang, Qun Liu, and Kam-Fai Wong. Dast: Difficulty-aware self-training on large language models. *ArXiv*, abs/2503.09029, 2025. URL https://api.semanticscholar.org/CorpusID:276938276.
- An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement. *ArXiv*, abs/2409.12122, 2024. URL https://api.semanticscholar.org/CorpusID:272707652.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jing Zhou, Jingren Zhou, Junyan Lin, Kai Dang, Keqin Bao, Ke-Pei Yang, Le Yu, Lianghao Deng, Mei Li, Min Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. 2025. URL https://api.semanticscholar.org/CorpusID:278602855.
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Honglin Yu, Weinan Dai, Yuxuan Song, Xiang Wei, Haodong Zhou, Jingjing Liu, Wei

 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yong-Xu Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale. *ArXiv*, abs/2503.14476, 2025. URL https://api.semanticscholar.org/CorpusID:277104124.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang, Tiantian Fan, Zhengyin Du, Xiang Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu, Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yong-Xu Wu, and Lin Yan. Vapo: Efficient and reliable reinforcement learning for advanced reasoning tasks. 2025. URL https://api.semanticscholar.org/CorpusID:277621526.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerlzoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025. URL https://arxiv.org/abs/2503.18892.

A EXPERIMENTAL DETAILS

A.1 DATASET CONSTRUCTION

Following the experimental setting of Zeng et al. (2025), we selected the MATH dataset Hendrycks et al. (2021) and extracted samples from level 3 to level 5 as training data, comprising a total of 9,255 instances. To implement our proposed ACS framework for creating model-specific difficulty calibration, we need to feed all training set samples into the pre-trained model for inference and evaluate the model's accuracy on each sample.

To ensure that the evaluation results are as reliable as possible while not causing excessive computational overhead, for each question in the dataset, we use the VLLM framework to generate 16 responses from the model, extract predictions from these responses using appropriate scripts, and compare them with golden answers to determine the correctness of the generations. To fully harness the model's potential, we did not adopt a greedy decoding strategy to generate responses, but instead set the temperature to 0.7, generating responses through sampling.

After calculating the model's accuracy on the samples through the above steps, we sort the samples and divide them into 3 equal parts according to quantity. The top 1/3 with the highest accuracy are classified as accessible samples, used for the first stage of model training. The bottom 1/3 with the lowest accuracy are classified as challenging samples, used for the final stage of model training.

In addition, for particularly challenging samples, we employed our "Guided Prompting" approach to reduce the difficulty for the model while preserving learning value. Specifically, we first collected reference answers for these challenging samples, then segmented these reference answers into step-by-step reasoning processes, as illustrated in Figure 4. Finally, we selected a small portion of the prefix combined with the original question as input to assist the model in solving problems more effectively while maintaining training stability.

All data was processed into a conversational format.

A.2 MODEL SELECTION AND HARDWARE SETUP

To effectively validate the efficacy of our ACS method across foundation models of varying capabilities, we selected three different models for our experiments: Qwen2.5-MATH-1.5B Yang et al. (2024), Qwen2.5-MATH-7B, and DeepSeek-Math-7B-Instruct for cross-model generalizability validation. We conducted our experiments using 8 NVIDIA A100 GPUs for the GRPO experiments within Hugging Face's Open R1 framework Face (2025).

A.3 COMPUTATIONAL OVERHEAD ANALYSIS

Our ACS framework requires evaluating model performance on training samples through multiple sampling, which introduces additional computational overhead. To minimize this cost while maintaining evaluation reliability, we employed the VLLM framework Kwon et al. (2023) for efficient model inference acceleration.

Thanks to VLLM's optimized memory management and dynamic batching capabilities, the additional time overhead introduced by our curriculum construction is minimal. Taking the Qwen2.5-Math-7B model as an example, the sample evaluation phase for difficulty calibration requires less than 5% of the total GPU hours compared to the entire training process on NVIDIA A100 GPUs, making the overhead negligible compared to the overall computational cost.

Specifically, the time cost breakdown is as follows:

- **Sample evaluation phase**: Using VLLM, we generate 16 responses per sample for the 9,255 training instances, totaling approximately 148,080 inference calls.
- **Training phase**: Standard fine-tuning process using GRPO on the curriculum-organized data.

This efficient implementation ensures that the benefits of model-specific difficulty calibration can be achieved without significant computational burden, making our approach practical for real-world applications.

A.4 TRAINING HYPERPARAMETERS

GRPO Training Details. We conducted our experiments using bf16 precision under the Deep-Speed framework with zero-2 configuration. We set per_device_train_batch_size to 16 and gradient_accumulation_steps to 8, employing a cosine lr_scheduler with warmup set to 0.1 and beta to 0.04, num_generations to 7, max_prompt_length to 512 and max_completion_length 1024. For the Qwen2.5-Math-1.5B model, we used a learning rate of 3e-6 and trained for 6 epochs. For the Qwen2.5-Math-7B model, we used a learning rate of 3e-6 and trained for 4 epochs. For the DeepSeek-Math-7B-Instruct model, we used the same configuration as the Qwen2.5-Math-7B model (learning rate of 3e-6, 4 epochs).

A.5 EVALUATION

We evaluated our models using the evaluation script from Zeng et al. (2025). For evaluation, we use five benchmark datasets to assess the model's performance across different levels of difficulty and mathematical reasoning:

- MATH 500 Lightman et al. (2023): A subset of the MATH dataset, containing 500 representative problems designed to test a model's general mathematical capability.
- **OlympiadBench** He et al. (2024): Includes a collection of problems from Olympiad-level mathematics and physics competitions.
- Minerva Math Lewkowycz et al. (2022): A curated set of undergraduate-level math problems that assess complex mathematical reasoning and symbolic manipulation.
- AMC 23 and AIME 24: Include problems from the 2023 American Mathematics Competitions and the 2024 American Invitational Mathematics Examination, respectively.

810 811 Case Study 812 Problem 813 Let n be the smallest positive integer that satisfies the following conditions: 814 n divided by 2 is a perfect square n divided by 3 is a perfect cube 815 n divided by 5 is a perfect fifth power 816 How many divisors of n are NOT multiples of 10? 817 Solution 818 The first condition implies that the power of each prime factor of \$n\$ must be an even power 819 (excluding \$2\$, which must be an odd power). The second condition implies that the power of each 820 prime factor of \$n\$ must be divisible by \$3\$ (excluding \$3\$, which must leave a residue of \$1\$ upon division by \$3\$). The third condition implies that the power of each prime factor of \$n\$ must 821 be divisible by \$5\$ (excluding \$5\$, which must leave a residue of \$1\$ upon division by 822 \$5\$).\nClearly, to minimize \$n\$, we want to just use the prime factors \$2,3,5\$. The power of \$2\$ 823 must be divisible by \$3,5\$, and \$2^{15}\$ works. Similarly, the powers of \$3\$ and \$5\$ must be \$10\$ and \$6\$, respectively, both of which leave a residue of \$1\$ upon division. Thus, we need the 824 number of factors of $2^{15} \cdot 3^{10} \cdot 5^{6}$ which are not multiples of 825 10.\nApplying the complement principle, there are a total of (15+1)(10+1)(6+1) = 1232factors. We can draw a bijection between the number of divisors of \$2^{15} \cdot 3^{10} \\cdot 5^{6}\$ that are divisible by \$10\$ and the number of divisors of \$2^{14} \cdot 3^{10} \cdot 5^{5}\$ (as each of these divisors, when multiplied by 10, will provide a factor of the original number that is 828 divisible by 10). There are (14+1)(10+1)(5+1) = 990\$. The answer is $1232-990 = \\infty$ 829 830 Step 1 The first condition implies that the power of each prime factor of \$n\$ must be an even power 831 (excluding \$2\$, which must be an odd power). 832 833 The second condition implies that the power of each prime factor of \$n\$ must be divisible by \$3\$ (excluding \$3\$, which must leave a residue of \$1\$ upon division by \$3\$). 834 Step 3 835 The third condition implies that the power of each prime factor of \$n\$ must be divisible by \$5\$ 836 (excluding \$5\$, which must leave a residue of \$1\$ upon division by \$5\$). Step 4 837 Clearly, to minimize \$n\$, we want to just use the prime factors \$2,3,5\$. 838 Step 5 839 The power of \$2\$ must be divisible by \$3,5\$, and \$2^{15}\$ works. 840 Step 6 Similarly, the powers of \$3\$ and \$5\$ must be \$10\$ and \$6\$, respectively, both of which leave a 841 residue of \$1\$ upon division. Step 7 843 Thus, we need the number of factors of \$2^{15} \cdot 3^{10} \cdot 5^{6}\$ which are not multiples of \$10\$. 844 Step 8 845 Applying the complement principle, there are a total of (15+1)(10+1)(6+1) = 1232 factors. 846 Step 9 We can draw a bijection between the number of divisors of \$2^{15} \cdot 3^{10} \cdot 5^{6}\$ that 847 are divisible by \$10\$ and the number of divisors of \$2^{14} \cdot 3^{10} \cdot 5^{5}\$ (as each of 848 these divisors, when multiplied by 10, will provide a factor of the original number that is divisible 849 by 10).

Figure 4: Decomposition of reference answers into step-by-step solution.

B PROMPT DETAILS

There are (14+1)(10+1)(5+1) = 990\$.

The answer is $1232-990 = \boxed{242}$.

Step 10

Step 11

850

851

852

853 854 855

856 857

858 859

861

862

863

During both training and testing processes, the data was processed into a conversational format. Figure 5 demonstrate the prompts we used during the GRPO processes respectively. After training the models using their respective methods, we employed the corresponding prompts during testing as well. Additionally, during the GRPO training process, besides adding the User's description, we also appended part of the Assistant's content prefixed with the special token <think>. This approach

GRPO Prompt You are a helpful Al Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think> reasoning process here </think> <answer> answer here </answer> User: {Problem} Assistant: Let me solve this step by step. <think>

Figure 5: Prompt template used in GRPO training for ACS implementation.

helps the model quickly learn format compliance during the reinforcement learning process, greatly enhancing the stability of the model's reinforcement learning training within our ACS framework.

C USE OF LARGE LANGUAGE MODELS

This paper did not use Large Language Models for writing assistance or content generation.

D ADDITIONAL RESULTS

D.1 LIMITATIONS OF PREDEFINED DIFFICULTY METRICS.

Predefined difficulty metrics exhibit fundamental flaws that undermine their effectiveness in curriculum learning applications. First, these metrics lack precision in capturing actual problem complexity as experienced by language models. As demonstrated in Figure 6, our systematic evaluation on the MATH dataset reveals that model performance does not correlate with predefined difficulty rankings. Most notably, models consistently achieve higher accuracy on supposedly more difficult Level 5 problems compared to Level 4 problems, directly contradicting the assumed difficulty hierarchy. This counterintuitive pattern indicates that expert-defined difficulty levels may not align with the computational challenges actually faced by neural models.

Second, the assumption of universal difficulty standards proves fundamentally flawed in practice. Our analysis reveals significant variation in how different models perceive problem complexity, with difficulty assessments that effectively characterize challenge levels for one architecture often failing to generalize to other models. This model-specific variation in difficulty perception explains why curriculum strategies based on fixed difficulty rankings produce inconsistent training outcomes across different architectures, highlighting the critical need for adaptive, model-aware difficulty calibration approaches.

D.2 TRAINING PROGRESSION

In this section, we demonstrate the overall performance changes on the test set when applying our ACS framework to Qwen2.5-Math-1.5B and Qwen2.5-Math-7B using reinforcement learning methods for multi-stage training. As shown in Figure 7, our ACS method maintains stable performance progression as training iterations advance, demonstrating the effectiveness of our stability-preserving curriculum design.

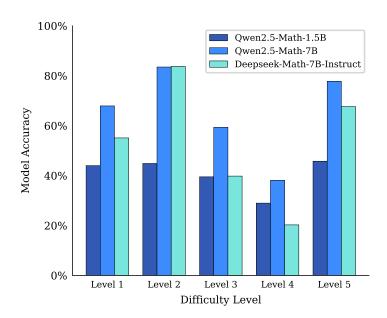


Figure 6: Performance of multiple models on MATH dataset subsets with predefined difficulty levels. As predefined difficulty increases from Level 1 to Level 5, model accuracy does not consistently decline but instead exhibits significant fluctuations, demonstrating that predefined difficulty standards may not correctly adapt to all models.

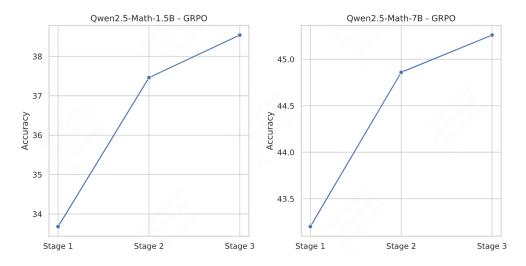


Figure 7: Performance progression across training stages using ACS framework, demonstrating stable improvement without catastrophic collapse.