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ABSTRACT

Curriculum learning has shown promise for enhancing Large Language Models
(LLMs) through progressive difficulty management, yet existing approaches suf-
fer from instability issues when applied to reinforcement learning paradigms. Ex-
isting curriculum-based RL training exhibits catastrophic performance collapse
during difficulty transitions, particularly when models encounter samples beyond
their current capabilities. This instability stems from rigid curriculum designs
that fail to adapt to individual model characteristics and learning trajectories. To
address these limitations, we propose Adaptive Curriculum Strategies (ACS), a
framework that promotes stable and effective training throughout curriculum pro-
gression. Our approach introduces model-specific difficulty calibration that adapts
to each model’s capabilities, and “Guided Prompting” that transforms challeng-
ing samples to prevent training instability. Experiments demonstrate that ACS
prevents performance collapse in traditional curriculum RL training, achieving
substantial improvements across five mathematical reasoning benchmarks while
enhancing training stability.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks,
with reinforcement learning emerging as an effective paradigm for mathematical reasoning due to
its clear reward signals and iterative optimization capabilities (Guo et al., 2024; Shao et al., 2024;
Yang et al., 2025; Kavukcuoglu, 2025; OpenAI, 2024). Recent work has introduced curriculum
learning strategies into RL frameworks, progressively exposing models to problems of increasing
difficulty and showing promising improvements in convergence speed and performance (Wen et al.,
2025b; Huang et al., 2025; Shi et al., 2025; Team et al., 2025). However, existing curriculum-
based reinforcement learning approaches suffer from severe training instability, particularly during
transitions between difficulty levels.

The Challenge of Instability in Curriculum-Based Reinforcement Learning. Current curricu-
lum learning approaches for RL optimization face a fundamental stability problem that manifests in
several ways: (1) models experience sudden performance drops during difficulty transitions, with
abrupt accuracy degradation rather than smooth progression when advancing to higher difficulty
levels; (2) identical curriculum strategies produce inconsistent learning trajectories across different
model architectures, and some achieving stable improvement while others exhibit erratic perfor-
mance fluctuations or complete learning failure under the same curriculum arrangement; and (3)
models fail to maintain previously acquired capabilities when advancing to more challenging con-
tent, suffering catastrophic forgetting of simpler skills they had previously mastered.

The root cause lies in the rigid, non-adaptive nature of existing curriculum designs. As illustrated in
Figure 1, difficulty perception varies dramatically across models, approximately 55% of questions
that are easily solved by one model prove challenging for another. This reveals a fundamental flaw in
current approaches: they rely on fixed difficulty hierarchies that assume universal difficulty percep-
tion across models (Yu et al., 2025; Wen et al., 2025a). When predefined difficulty levels are applied
uniformly across diverse architectures, the mismatch between assumed and actual difficulty leads
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to inappropriate sample selection, destabilizing training and explaining why identical curriculum
strategies produce inconsistent results across different models.

Deepseek (4.7%)
Qwen-7B (12.3%)
Qwen-1.5B (5.8%)
Deepseek  Qwen-7B (17.1%)
Deepseek  Qwen-1.5B (3.1%)
Qwen-7B  Qwen-1.5B (11.5%)
All (19.6%)
None (25.9%)

Figure 1: Solution correctness patterns for three
mathematical reasoning models. Each colored re-
gion represents problems solved by specific model
combinations. Our analysis shows that approx-
imately 55% of questions that are easy for one
model prove difficult for another, demonstrating
that unified difficulty standards across models are
problematic.

Recent attempts to address curriculum learn-
ing in RL have focused on heuristic-based diffi-
culty ranking approaches (Xie et al., 2025; Wen
et al., 2025b), but these methods maintain the
same fundamental flaw: they impose external
difficulty assessments without considering the
dynamic, evolving nature of individual model
capabilities. This problem is particularly acute
in reinforcement learning settings, where policy
optimization relies on consistent reward signals
and stable training trajectories.

Our Solution: Adaptive Curriculum Strate-
gies. We propose Adaptive Curriculum Strate-
gies (ACS), a framework to ensure stable
curriculum-based RL training. ACS introduces
two key innovations: model-specific difficulty
calibration that adapts sample complexity as-
sessment based on each model’s evolving ca-
pabilities, and ”Guided Prompting,” a sample
transformation technique that prevents catas-
trophic performance collapse when models en-
counter challenging samples.

Unlike existing approaches, our framework prioritizes stability as a primary objective, ensuring
progressive training throughout all curriculum stages. Our evaluation demonstrates that ACS elimi-
nates performance instability in curriculum-based RL training while achieving superior performance
across five mathematical reasoning benchmarks.

The contributions of this work include:

• We identify and characterize the training instability phenomenon in current curriculum-
based RL methods, revealing that rigid unified difficulty standards cause catastrophic per-
formance collapse due to significant difficulty perception differences across model archi-
tectures.

• We propose Adaptive Curriculum Strategies (ACS) with two key technical innovations:
model-specific difficulty calibration that dynamically adapts to individual model capabili-
ties, and guided prompting that transforms challenging samples to prevent training desta-
bilization.

• We demonstrate through comprehensive experiments on five mathematical reasoning
benchmarks that ACS eliminates training instability while achieving consistent perfor-
mance improvements, validating both the stability and effectiveness of our approach.

2 RELATED WORK

Curriculum Learning and Adaptive Training Strategies. The challenge of effectively manag-
ing training sample difficulty has gained increasing attention in large language model optimization.
Bengio et al. (2009) established foundational concepts for progressive difficulty management in
machine learning, demonstrating that models learn more effectively when training examples are
presented with appropriate difficulty sequencing. Recent work has explored various approaches to
difficulty-aware training in language models. Xie et al. (2025) implements difficulty progression
by adjusting task complexity based on logical reasoning requirements, while Wen et al. (2025b)
identifies challenging samples based on model prediction failures and defers them to later training
stages. Team et al. (2025) focuses on filtering strategies that remove problematic samples early
in training, concentrating computational resources on high-quality examples. Huang et al. (2025)
applies difficulty-aware training to retrieval-augmented generation, ordering tasks by the complexity
of retrieved information. Shi et al. (2025) proposes dynamic sample selection based on predefined
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Figure 2: Adaptive Curriculum Strategies Pipeline for Stable RL Training. Step 1: Model-
specific difficulty calibration adapts to individual model capabilities, ensuring curriculum construc-
tion aligns with each model’s evolving learning capacity. Step 2: Guided prompting strategically
transforms challenging samples to prevent training instability while preserving learning value, main-
taining stable training dynamics. Step 3: Progressive curriculum training with data mixing strategy
enables gradual improvement through staged learning and curriculum review, building capabilities
from basic to advanced reasoning tasks.

difficulty scores that align with model capabilities during training. Tong et al. (2024); Xue et al.
(2025) implement empirical approaches through multi-round sampling, defining difficulty through
response accuracy patterns and allocating training emphasis accordingly. Ma et al. (2024) extends
this concept by implementing inverse accuracy weighting, where samples with lower success rates
receive proportionally greater training attention. However, these approaches rely on fixed difficulty
hierarchies that fail to account for individual model capabilities and learning trajectories, often lead-
ing to training instability during curriculum transitions.

Reinforcement Learning for Mathematical Reasoning. Reinforcement learning has emerged as
a particularly effective paradigm for mathematical reasoning tasks, where reward signals can be
clearly defined through solution correctness. Luo et al. (2023); Luong et al. (2024); Yue et al.
(2025) demonstrate effectiveness of Proximal Policy Optimization (PPO) for mathematical reason-
ing enhancement. Shao et al. (2024); DeepSeek-AI et al. (2025); Yu et al. (2025) advance the field
through Group Relative Policy Optimization (GRPO), showing substantial improvements in reason-
ing performance. However, when integrated with curriculum learning strategies, these methods lack
stability-preserving mechanisms and often suffer from catastrophic performance collapse during dif-
ficulty transitions. The effectiveness of reinforcement learning in mathematical domains makes it an
ideal testbed for adaptive difficulty management strategies, as reward signals provide clear feedback
on model capability progression.

3 METHOD

Current curriculum learning approaches in reinforcement learning suffer from a fundamental stabil-
ity problem: they impose rigid difficulty progressions that fail to adapt to individual model capabil-
ities, leading to catastrophic performance collapse during training. This instability undermines the
core benefits of curriculum learning and prevents effective policy optimization in RL settings.

To address these critical limitations, we propose Adaptive Curriculum Strategies (ACS), a frame-
work specifically designed to ensure stable, smooth, and effective curriculum-based RL training.
ACS operates through three synergistic components designed to improve training stability while
maintaining learning effectiveness.

Our framework is built on three fundamental principles that ensure training stability: (1) Adaptive
Difficulty Assessment that calibrates sample complexity based on individual model performance
rather than fixed hierarchies, (2) Stability-Preserving Sample Transformation that prevents catas-
trophic performance drops while preserving learning value, and (3) Progressive Adaptation that
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Figure 3: Training Stability Analysis: ACS vs. Traditional Curriculum Approaches. Our ACS
framework (orange line) shows improved training progression throughout all curriculum stages,
while traditional approaches (blue line) suffer significant performance degradation in Stage III. The
results demonstrate the benefits of adaptive curriculum strategies for enhancing RL training stability
across different model sizes: Qwen2.5-Math-1.5B (triangles) and Qwen2.5-Math-7B (squares).

ensures smooth transitions between curriculum stages without destabilizing training dynamics. The
full algorithm is detailed in Algorithm 1.

3.1 MODEL-SPECIFIC DIFFICULTY CALIBRATION

The primary source of instability in curriculum-based RL training stems from the mismatch between
predefined difficulty assessments and actual model capabilities. Fixed difficulty hierarchies ignore
the dynamic nature of model learning and frequently expose models to inappropriate training content
that destabilizes optimization.

We address this fundamental issue through model-specific difficulty calibration that adapts sample
assessment to each model’s evolving capabilities. Rather than relying on external difficulty labels,
our approach directly measures sample accessibility through model performance. For each training
sample i, we generate n responses and evaluate their correctness against the reference answer:

ACCi =

∑n
j=1 I{Aij = A∗

i }
n

(1)

where Aij represents the j-th generated answer for sample i, A∗
i denotes the reference answer for

sample i, n is the number of generated responses, and I{} is the indicator function that equals 1
when the condition is true and 0 otherwise. ACCi represents the stability-informed accuracy rate
for sample i, providing a direct measure of whether the sample is within the model’s current learning
capacity.

Computational Efficiency. While our approach requires generating multiple responses for diffi-
culty assessment, we employ the VLLM framework for efficient inference acceleration. Taking the
Qwen2.5-Math-7B model as an example, the additional computational overhead for difficulty cal-
ibration represents less than 5% of the total GPU hours compared to the entire training process,
making this overhead negligible while providing substantial stability benefits.

Our approach monitors model performance across training samples, dynamically adjusting difficulty
assessments as the model evolves. This adaptive mechanism ensures that the curriculum remains
appropriately challenging without introducing destabilizing content that could compromise training
stability.

3.2 GUIDED PROMPTING FOR SAMPLE TRANSFORMATION

Why Existing Curriculum Approaches Fail in RL Settings. Traditional curriculum learning faces
a critical stability challenge in reinforcement learning contexts, where optimization requires con-
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sistent policy gradients and stable reward signals for effective convergence. However, traditional
curriculum approaches introduce sudden difficulty transitions that violate these stability require-
ments, leading to catastrophic performance collapse that undermines all previous learning gains.
When models encounter samples significantly beyond their capabilities, the resulting poor perfor-
mance and unstable gradients can cause policy collapse and training divergence. As demonstrated
in Figure 3,curriculum-based RL training without proper stability management leads to severe per-
formance degradation. Specifically, the Qwen2.5-Math-1.5B model suffers a performance drop of
approximately 30% when transitioning to Stage III, while the larger Qwen2.5-Math-7B model also
exhibits notable instability, highlighting the pervasive nature of this challenge across different model
scales. Our ACS framework specifically addresses these RL-specific stability requirements through
adaptive curriculum management that prevents such catastrophic failures.

This catastrophic instability not only wastes computational resources but also violates the funda-
mental assumptions of reinforcement learning optimization, which requires stable policy gradients
for effective convergence. Our analysis reveals that models without stability-preserving mechanisms
suffer dramatic performance drops that persist even after returning to easier samples, indicating fun-
damental damage to the learned policy.

To ensure training stability while preserving the learning value of challenging samples, we introduce
”Guided Prompting,” a strategic sample transformation technique designed specifically for stable RL
training. Rather than discarding difficult samples or exposing models to destabilizing content, our
approach transforms challenging examples into accessible learning opportunities.

For a challenging problem Qi with reference solution Si = {si1, si2, ..., sik}, we extract a strategic
guidance prefix Pi = {si1, si2, ..., sip} where p < k. We gradually provide hints until either the
ratio |p|

|k| reaches a predefined hint ratio α, or the model’s performance improves to meet an accuracy
threshold τ . This transformation creates a stability-preserving training example:

yi ∼ πθ(Y |[Qi;Pi]) (2)

The guided prompting approach maintains training stability by ensuring that all samples remain
within the model’s learning capacity while preserving the educational value of challenging con-
tent. This prevents the policy instability that typically occurs when RL training encounters samples
beyond model capabilities.

As shown in Figure 3, our stability-preserving approach enables consistent performance improve-
ment throughout all curriculum stages, eliminating the catastrophic collapses that plague traditional
curriculum methods and ensuring reliable RL optimization.

3.3 PROGRESSIVE REINFORCEMENT LEARNING

Using our stability-informed difficulty calibration and sample transformation, we implement pro-
gressive reinforcement learning that maintains training stability throughout curriculum progression.
The training data is adaptively partitioned into stability-ordered subsets D = {D1, D2, ..., Dp}
where each subset Dj contains samples verified to be accessible at the current model capability
level.

Reinforcement learning provides particularly effective optimization for mathematical reasoning
tasks due to clear reward signals from solution correctness. Following successful approaches in
mathematical reasoning DeepSeek-AI et al. (2025), we implement staged reinforcement learning
that can operate directly on pretrained models.

Our reinforcement learning implementation incorporates stability monitoring at every stage to pre-
vent the catastrophic collapses observed in traditional curriculum approaches. We employ Group
Relative Policy Optimization (GRPO) with additional stability constraints that ensure consistent
policy improvement without destabilizing training dynamics.

5
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Algorithm 1 Adaptive Curriculum Strategies for Stable RL Training

Require: training dataset D = {(Qi, Ai)} with questions Qi and reference solution Ai

Require: pretrained model π0, stability threshold τ , adaptation ratio α
1: Adaptive Curriculum Construction with Stability Monitoring:
2: for all question Qi ∈ D do
3: Generate n responses {Ai1, . . . , Ain} using model πθ

4: Calculate stability-informed accuracy: ACCi =
∑n

j=1 I{Aij=A∗
i }

n
5: Monitor performance variance to detect potential instability indicators
6: end for
7: Adaptively partition dataset D into stability-ordered subsets {D1, D2, ..., Dp} based on model-

specific accessibility
8: Stability-Preserving Sample Transformation:
9: for all challenging samples (Qi, Ai) ∈ Dp do

10: Decompose solution Si into guided steps {si1, . . . , sik}
11: Apply guided prompting: gradually provide hints Pi = {si1, . . . , sil}
12: Monitor stability: continue until performance reaches τ or adaptation ratio reaches α
13: if stability threshold achieved then
14: Transform sample: Qi → [Qi;Pi], Ai → {si(l+1), . . . , sik}
15: else
16: Defer sample to later stage with additional adaptation
17: end if
18: end for
19: Stable Progressive RL Training:
20: for each curriculum stage s ∈ {1, . . . , p} do
21: Apply RL optimization on stability-adapted dataset Ds:

πs = arg min
(Q,A)∈Ds

LRL(πs−1) with stability constraints

22: end for
23: Output: Stably trained model πm with enhanced reasoning capabilities

The reward function maintains both accuracy and formatting components while incorporating sta-
bility considerations:

rformat =

{
1.0 if format is correct
0.0 otherwise

(3)

raccuracy =

{
1.0 if prediction is correct
0.0 otherwise

(4)

The total reward r = rformat + raccuracy provides stable optimization signals that enable consis-
tent policy improvement without the instability issues that plague traditional curriculum-based RL
training.

Our stability-aware GRPO implementation generates multiple candidate responses O =
{o1, o2, ..., oG} for each question while monitoring training stability. The relative advantages are
computed as:

Ai =
ri −mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
(5)

The GRPO objective incorporates clipping and KL regularization with additional stability con-
straints:

LGRPO = E(x)∼D[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min(ri,t(θ)Ai,

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Ai)− βDKL(πθ||πref ))], (6)
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where ri,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

represents the importance sampling ratio.

This approach ensures that the RL optimization remains stable and effective throughout all curricu-
lum stages, eliminating the performance collapses that have hindered previous curriculum-based
approaches and enabling reliable policy optimization in challenging domains.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our ACS framework using mathematical reasoning tasks, testing on two model scales
with GRPO across five benchmark datasets. Complete experimental details including dataset con-
struction, model configurations, training hyperparameters, and evaluation protocols are provided in
the Appendix A.

4.2 COMPARATIVE METHODS AND EXPERIMENTAL DESIGN

To systematically evaluate our ACS framework, we design comprehensive comparisons across two
key dimensions of curriculum learning.

4.2.1 DIFFICULTY CALIBRATION STRATEGIES

We compare our model-specific difficulty calibration against three established approaches:

Light-R1. Following Wen et al. (2025b), this method employs a fixed external model to assess
sample difficulty. Difficulty rankings are determined based on the external model’s success rates,
representing a model-agnostic assessment strategy that does not account for target model capabili-
ties.

Length-based Ranking. This heuristic approach ranks samples based on solution length, assuming
longer solutions correspond to more complex problems. Samples are organized in ascending order
of reference solution lengths.

Original Dataset Labels. This approach utilizes the predefined difficulty levels (1-5) provided by
the MATH dataset, organizing training samples according to expert-defined difficulty hierarchies
without considering individual model performance.

4.2.2 CHALLENGING SAMPLE PROCESSING STRATEGIES

For samples exceeding model capabilities, we evaluate two alternative processing approaches:

Retain All Samples. This approach includes all difficult samples without modification, potentially
exposing models to training instability from inaccessible examples.

Discard Difficult Samples. This conservative strategy removes samples below a predefined accu-
racy threshold, avoiding negative impacts but discarding valuable training data.

4.3 MAIN RESULTS

As shown in Table 1, the ACS framework exhibits both methodological robustness and cross-model
scalability. Compared to the GRPO baseline, the improvements were pronounced at 55.9% (from
24.7 to 38.5) and 5.8% (from 42.8 to 45.3) for Qwen2.5-Math-1.5B and Qwen2.5-Math-7B respec-
tively, demonstrating the particular effectiveness of adaptive difficulty management in reinforcement
learning paradigms. Furthermore, ACS achieves the highest average performance across both model
scales, demonstrating superior overall effectiveness compared to other baseline methods, including
difficulty calibration strategies (Light-R1, Length-based, Original) and challenging sample process-
ing approaches (Retain, Discard). Notably, our ACS training strategy yielded generally consis-
tent performance gains across all evaluation benchmarks, confirming its effectiveness in enhancing
model generalization through strategic difficulty adaptation.

7
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Table 1: Main experimental results comparing ACS with baseline methods and ablation studies
across two model scales. Results show performance on five mathematical reasoning benchmarks
using GRPO training. ACS demonstrates consistent improvements through model-specific difficulty
calibration and guided prompting for challenging samples.

Model Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Qwen2.5
Math 1.5B

Base Model 42.8 7.7 25.2 3.3 22.5 20.3

GRPO 51.8 18.4 21.0 10.0 22.5 24.7

Difficulty Calibration Methods

Light-R1 64.2 31.2 30.5 6.7 40.0 34.5

Length 67.4 33.8 28.7 6.7 32.5 33.8

Original 57.8 23.9 23.7 6.7 27.5 27.9

Challenging Sample Processing

Retain 62.2 17.3 26.5 3.3 22.5 26.4

Discard 72.0 30.9 30.1 10.0 40.0 36.6

ACS (Ours) 72.6 31.6 32.7 13.3 42.5 38.5

Qwen2.5
Math 7B

Base Model 63.6 12.5 25.8 10.0 42.5 30.9

GRPO 74.2 33.5 33.9 10.0 62.5 42.8

Difficulty Calibration Methods

Light-R1 73.2 43.0 37.8 13.3 55.0 44.5

Length 75.2 40.8 34.7 13.3 57.5 44.3

Original 75.6 35.7 35.7 13.3 45.0 41.1

Challenging Sample Processing

Retain 71.8 41.5 35.9 10.0 47.5 41.3

Discard 77.4 37.5 37.3 13.3 55.0 44.1

ACS (Ours) 76.6 38.2 38.2 13.3 60.0 45.3

4.4 ABLATION STUDIES

4.4.1 CROSS-MODEL GENERALIZABILITY

To address concerns about the generalizability of our approach across different model architectures,
we conducted additional experiments using DeepSeek-Math-7B-Instruct as the base model. This
evaluation is particularly important given that prior work has shown some models may exhibit vary-
ing sensitivity to training signals in reinforcement learning paradigms. Additionally, to provide
comprehensive comparison baselines, we include results from Light-R1 (the best performing diffi-
culty calibration method from our main experiments) and Discard (the best performing challenging
sample processing strategy from our comparative analysis).

As demonstrated in Table 2, our ACS framework maintains its effectiveness when applied to the
DeepSeek-Math model architecture and achieves the highest average performance across all meth-
ods. Compared to the GRPO baseline, ACS achieves a significant improvement of 8.9% (from
17.9 to 19.5). ACS also outperforms other competitive methods, with improvements of 5.4% over
Light-R1 (from 18.5 to 19.5) and 4.3% over the Discard strategy (from 18.7 to 19.5).

These results validate that our proposed ACS framework exhibits robust cross-model generaliz-
ability, addressing the limitation of model-specific optimization strategies. The consistent perfor-
mance improvements across different architectural foundations demonstrate that the core principles
of model-adaptive curriculum construction and guided prompting are broadly applicable to various
mathematical reasoning models, rather than being artifacts of specific model characteristics.

8
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Table 2: Cross-model evaluation results on DeepSeek-Math-7B-Instruct model, comparing ACS
with the best-performing baseline methods from each category

Model Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

DeepSeek Math
7B Instruct

GRPO 39.6 18.0 13.6 3.3 15.0 17.9

Light-R1 40.2 20.6 14.0 0.0 17.5 18.5

Discard 40.8 21.4 13.2 3.3 15.0 18.7

ACS(Ours) 41.4 22.8 14.8 3.3 15.0 19.5

4.4.2 DATA MIXING STRATEGY

Drawing inspiration from human learning processes where students periodically review previously
mastered knowledge, we investigate whether models undergoing staged curriculum learning require
similar reinforcement of previously acquired content. This analysis is particularly crucial for main-
taining training stability throughout the curriculum progression. We design two distinct data mixing
strategies for comparative analysis within our ACS framework:

Naive Curriculum: Models receive samples corresponding only to the current difficulty level at
each training stage, focusing exclusively on new, challenging content without revisiting previously
learned material.

Curriculum Review: A strategic data mixing approach that incorporates a small proportion of
easier samples from previous stages during later training phases, allowing the model to revisit and
reinforce previously acquired capabilities while learning new content.

Table 3: Data mixing strategy comparison: Naive Curriculum vs. Curriculum Review across differ-
ent model scales. Bold numbers indicate superior performance.

Model Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Qwen2.5
Math 1.5B

Naive Curriculum 69.8 33.8 30.8 6.7 22.5 32.7

Curriculum Review 72.6 31.6 32.7 13.3 42.5 38.5

Qwen2.5
Math 7B

Naive Curriculum 75.2 35.7 36.4 13.3 52.5 42.6

Curriculum Review 76.6 38.2 38.2 13.3 60.0 45.2

Experimental results in Table 3 demonstrate that the Curriculum Review strategy consistently out-
performs the Naive Curriculum approach and achieves the best performance across both model
scales. For the 1.5B model, Curriculum Review achieves a significant 17.7% average performance
improvement compared to Naive Curriculum (from 32.7 to 38.5), while the 7B model shows a
6.1% improvement (from 42.6 to 45.2). These results confirm that incorporating previously learned
content during later training stages prevents catastrophic forgetting and maintains training stability,
aligning with our ACS stability principles.

5 CONCLUSIONS

We presented Adaptive Curriculum Strategies (ACS), a framework that addresses critical instability
issues in curriculum-based reinforcement learning through model-specific difficulty calibration and
guided prompting techniques. Our experimental results demonstrate that ACS maintains training
stability while achieving superior performance across five mathematical reasoning benchmarks.

This work establishes training stability as a fundamental requirement for curriculum learning, open-
ing promising avenues for developing more reliable training methodologies across challenging do-
mains where progressive learning strategies are crucial for optimal performance.
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A EXPERIMENTAL DETAILS

A.1 DATASET CONSTRUCTION

Following the experimental setting of Zeng et al. (2025), we selected the MATH dataset Hendrycks
et al. (2021) and extracted samples from level 3 to level 5 as training data, comprising a total of
9,255 instances. To implement our proposed ACS framework for creating model-specific difficulty
calibration, we need to feed all training set samples into the pre-trained model for inference and
evaluate the model’s accuracy on each sample.

To ensure that the evaluation results are as reliable as possible while not causing excessive com-
putational overhead, for each question in the dataset, we use the VLLM framework to generate 16
responses from the model, extract predictions from these responses using appropriate scripts, and
compare them with golden answers to determine the correctness of the generations. To fully harness
the model’s potential, we did not adopt a greedy decoding strategy to generate responses, but instead
set the temperature to 0.7, generating responses through sampling.

After calculating the model’s accuracy on the samples through the above steps, we sort the samples
and divide them into 3 equal parts according to quantity. The top 1/3 with the highest accuracy are
classified as accessible samples, used for the first stage of model training. The bottom 1/3 with the
lowest accuracy are classified as challenging samples, used for the final stage of model training.

In addition, for particularly challenging samples, we employed our ”Guided Prompting” approach
to reduce the difficulty for the model while preserving learning value. Specifically, we first collected
reference answers for these challenging samples, then segmented these reference answers into step-
by-step reasoning processes, as illustrated in Figure 4. Finally, we selected a small portion of the
prefix combined with the original question as input to assist the model in solving problems more
effectively while maintaining training stability.

All data was processed into a conversational format.

A.2 MODEL SELECTION AND HARDWARE SETUP

To effectively validate the efficacy of our ACS method across foundation models of varying capa-
bilities, we selected three different models for our experiments: Qwen2.5-MATH-1.5B Yang et al.
(2024), Qwen2.5-MATH-7B, and DeepSeek-Math-7B-Instruct for cross-model generalizability val-
idation. We conducted our experiments using 8 NVIDIA A100 GPUs for the GRPO experiments
within Hugging Face’s Open R1 framework Face (2025).

A.3 COMPUTATIONAL OVERHEAD ANALYSIS

Our ACS framework requires evaluating model performance on training samples through multiple
sampling, which introduces additional computational overhead. To minimize this cost while main-
taining evaluation reliability, we employed the VLLM framework Kwon et al. (2023) for efficient
model inference acceleration.

Thanks to VLLM’s optimized memory management and dynamic batching capabilities, the addi-
tional time overhead introduced by our curriculum construction is minimal. Taking the Qwen2.5-
Math-7B model as an example, the sample evaluation phase for difficulty calibration requires less
than 5% of the total GPU hours compared to the entire training process on NVIDIA A100 GPUs,
making the overhead negligible compared to the overall computational cost.

Specifically, the time cost breakdown is as follows:

• Sample evaluation phase: Using VLLM, we generate 16 responses per sample for the
9,255 training instances, totaling approximately 148,080 inference calls.

• Training phase: Standard fine-tuning process using GRPO on the curriculum-organized
data.

This efficient implementation ensures that the benefits of model-specific difficulty calibration can
be achieved without significant computational burden, making our approach practical for real-world
applications.
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A.4 TRAINING HYPERPARAMETERS

GRPO Training Details. We conducted our experiments using bf16 precision under the Deep-
Speed framework with zero-2 configuration. We set per device train batch size to 16 and gra-
dient accumulation steps to 8, employing a cosine lr scheduler with warmup set to 0.1 and beta
to 0.04, num generations to 7, max prompt length to 512 and max completion length 1024. For
the Qwen2.5-Math-1.5B model, we used a learning rate of 3e-6 and trained for 6 epochs. For
the Qwen2.5-Math-7B model, we used a learning rate of 3e-6 and trained for 4 epochs. For
the DeepSeek-Math-7B-Instruct model, we used the same configuration as the Qwen2.5-Math-7B
model (learning rate of 3e-6, 4 epochs).

A.5 EVALUATION

We evaluated our models using the evaluation script from Zeng et al. (2025). For evaluation, we use
five benchmark datasets to assess the model’s performance across different levels of difficulty and
mathematical reasoning:

• MATH 500 Lightman et al. (2023): A subset of the MATH dataset, containing 500 repre-
sentative problems designed to test a model’s general mathematical capability.

• OlympiadBench He et al. (2024): Includes a collection of problems from Olympiad-level
mathematics and physics competitions.

• Minerva Math Lewkowycz et al. (2022): A curated set of undergraduate-level math prob-
lems that assess complex mathematical reasoning and symbolic manipulation.

• AMC 23 and AIME 24: Include problems from the 2023 American Mathematics Compe-
titions and the 2024 American Invitational Mathematics Examination, respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Problem
Let n be the smallest positive integer that satisfies the following conditions:
n divided by 2 is a perfect square
n divided by 3 is a perfect cube
n divided by 5 is a perfect fifth power
How many divisors of n are NOT multiples of 10?

Solution
The first condition implies that the power of each prime factor of $n$ must be an even power 
(excluding $2$, which must be an odd power). The second condition implies that the power of each 
prime factor of $n$ must be divisible by $3$ (excluding $3$, which must leave a residue of $1$ 
upon division by $3$). The third condition implies that the power of each prime factor of $n$ must 
be divisible by $5$ (excluding $5$, which must leave a residue of $1$ upon division by 
$5$).\nClearly, to minimize $n$, we want to just use the prime factors $2,3,5$. The power of $2$ 
must be divisible by $3,5$, and $2^{15}$ works. Similarly, the powers of $3$ and $5$ must be $10$ 
and $6$, respectively, both of which leave a residue of $1$ upon division. Thus, we need the 
number of factors of $2^{15} \\cdot 3^{10} \\cdot 5^{6}$ which are not multiples of 
$10$.\nApplying the complement principle, there are a total of $(15+1)(10+1)(6+1) = 1232$ 
factors. We can draw a bijection between the number of divisors of $2^{15} \\cdot 3^{10} \\cdot 
5^{6}$ that are divisible by $10$ and the number of divisors of $2^{14} \\cdot 3^{10} \\cdot 5^{5}$ 
(as each of these divisors, when multiplied by 10, will provide a factor of the original number that is 
divisible by 10). There are $(14+1)(10+1)(5+1) = 990$. The answer is $1232-990 = \\boxed{242}$.

Step 1
The first condition implies that the power of each prime factor of $n$ must be an even power 
(excluding $2$, which must be an odd power).
Step 2
The second condition implies that the power of each prime factor of $n$ must be divisible by $3$ 
(excluding $3$, which must leave a residue of $1$ upon division by $3$).
Step 3
The third condition implies that the power of each prime factor of $n$ must be divisible by $5$ 
(excluding $5$, which must leave a residue of $1$ upon division by $5$).
Step 4
Clearly, to minimize $n$, we want to just use the prime factors $2,3,5$.
Step 5
The power of $2$ must be divisible by $3,5$, and $2^{15}$ works.
Step 6
Similarly, the powers of $3$ and $5$ must be $10$ and $6$, respectively, both of which leave a 
residue of $1$ upon division.
Step 7
Thus, we need the number of factors of $2^{15} \cdot 3^{10} \cdot 5^{6}$ which are not multiples 
of $10$.
Step 8
Applying the complement principle, there are a total of $(15+1)(10+1)(6+1) = 1232$ factors.
Step 9
We can draw a bijection between the number of divisors of $2^{15} \cdot 3^{10} \cdot 5^{6}$ that 
are divisible by $10$ and the number of divisors of $2^{14} \cdot 3^{10} \cdot 5^{5}$ (as each of 
these divisors, when multiplied by 10, will provide a factor of the original number that is divisible 
by 10).
Step 10
There are $(14+1)(10+1)(5+1) = 990$.
Step 11
The answer is $1232-990 = \boxed{242}$.

Case Study

Figure 4: Decomposition of reference answers into step-by-step solution.

B PROMPT DETAILS

During both training and testing processes, the data was processed into a conversational format.
Figure 5 demonstrate the prompts we used during the GRPO processes respectively. After training
the models using their respective methods, we employed the corresponding prompts during testing as
well. Additionally, during the GRPO training process, besides adding the User’s description, we also
appended part of the Assistant’s content prefixed with the special token <think>. This approach
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GRPO Prompt

You are a helpful AI Assistant that provides well-reasoned and detailed responses. 
You first think about the reasoning process as an internal monologue and then 
provide the user with the answer. 
Respond in the following format: 
<think> 
reasoning process here 
</think> 
<answer>
answer here 
</answer>
User:
{Problem}
Assistant:
Let me solve this step by step.
<think>

GRPO Prompt

Figure 5: Prompt template used in GRPO training for ACS implementation.

helps the model quickly learn format compliance during the reinforcement learning process, greatly
enhancing the stability of the model’s reinforcement learning training within our ACS framework.

C USE OF LARGE LANGUAGE MODELS

This paper did not use Large Language Models for writing assistance or content generation.

D ADDITIONAL RESULTS

D.1 LIMITATIONS OF PREDEFINED DIFFICULTY METRICS.

Predefined difficulty metrics exhibit fundamental flaws that undermine their effectiveness in curricu-
lum learning applications. First, these metrics lack precision in capturing actual problem complexity
as experienced by language models. As demonstrated in Figure 6, our systematic evaluation on the
MATH dataset reveals that model performance does not correlate with predefined difficulty rank-
ings. Most notably, models consistently achieve higher accuracy on supposedly more difficult Level
5 problems compared to Level 4 problems, directly contradicting the assumed difficulty hierarchy.
This counterintuitive pattern indicates that expert-defined difficulty levels may not align with the
computational challenges actually faced by neural models.

Second, the assumption of universal difficulty standards proves fundamentally flawed in practice.
Our analysis reveals significant variation in how different models perceive problem complexity,
with difficulty assessments that effectively characterize challenge levels for one architecture often
failing to generalize to other models. This model-specific variation in difficulty perception explains
why curriculum strategies based on fixed difficulty rankings produce inconsistent training outcomes
across different architectures, highlighting the critical need for adaptive, model-aware difficulty cal-
ibration approaches.

D.2 TRAINING PROGRESSION

In this section, we demonstrate the overall performance changes on the test set when applying
our ACS framework to Qwen2.5-Math-1.5B and Qwen2.5-Math-7B using reinforcement learning
methods for multi-stage training. As shown in Figure 7, our ACS method maintains stable perfor-
mance progression as training iterations advance, demonstrating the effectiveness of our stability-
preserving curriculum design.
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Figure 6: Performance of multiple models on MATH dataset subsets with predefined difficulty lev-
els. As predefined difficulty increases from Level 1 to Level 5, model accuracy does not consis-
tently decline but instead exhibits significant fluctuations, demonstrating that predefined difficulty
standards may not correctly adapt to all models.

Figure 7: Performance progression across training stages using ACS framework, demonstrating
stable improvement without catastrophic collapse.
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