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Abstract

Speculative decoding is an effective and lossless method for Large Language Model
(LLM) inference acceleration. It employs a smaller model to generate a draft token
sequence, which is then verified by the original base model. In multi-GPU systems,
inference latency can be further reduced through tensor parallelism (TP), while the
optimal TP size of the draft model is typically smaller than that of the base model,
leading to GPU idling during the drafting stage. We observe that such inefficiency
stems from the sequential execution of layers, which is seemingly natural but
actually unnecessary. Therefore, we propose EasySpec, a layer-parallel speculation
strategy that optimizes the efficiency of multi-GPU utilization. EasySpec breaks
the inter-layer data dependency in the draft model, enabling multiple layers to
run simultaneously across multiple devices as “fuzzy” speculation. After each
drafting-and-verification iteration, the draft model’s key-value cache is calibrated
in a single forward pass, preventing long-term fuzzy-error accumulation at minimal
additional latency. EasySpec is a training-free and plug-in method. We evaluated
EasySpec on several mainstream open-source LLMs, using smaller versions of
models from the same series as drafters. The results demonstrate that EasySpec can
achieve a peak speedup of 4.17x compared to vanilla decoding, while preserving
the original distributions of the base LLMs. Specifically, the drafting stage can be
accelerated by up to 1.62x with a maximum speculation accuracy drop of only 7%.
The code is available at https://github.com/Yize-Wu/EasySpec.

1 Introduction

Transformer-based Large Language Models (LLMs) have demonstrated remarkable problem-solving
abilities across various domains [1–5]. However, as the parameter size continues to grow, the time-
consuming process of auto-regressive decoding poses a significant barrier to deploying large models
in latency-sensitive applications [6, 7].

Various effective approaches [8–10] have been proposed to reduce inference latency, including
speculative decoding [11, 12] and tensor-parallel (TP) distribution [13]. Speculative decoding employs
a smaller model to generate a draft token sequence, and uses token-level parallelism to conduct
non-autoregressive verification, ensuring no shifting of the original model’s output distribution. In
contrast, TP distribution leverages cross-device parallelism by partitioning computational workloads
across multiple devices (usually GPUs) and synchronizing the results subsequently, which is also
lossless.

Combining speculative decoding with TP distribution achieves even greater acceleration ratio. How-
ever, integrating a draft model into a distributed system is not trivial [7]. Since the parameter size of
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Figure 1: Overview of EasySpec: comparison between standard Speculative Decoding and EasySpec.
The differences are mainly about: (1) Fuzzy Speculation uses layer parallelization for drafting
acceleration. (2) The fuzzy KV items are discarded regardless of acceptance length, while Speculative
Decoding preserves accepted items. (3) Speculative Decoding is 2-staged and EasySpec is 3-staged,
with an additional stage for bonus calibration.

the draft model is typically smaller than that of the base model, the optimal TP size (the number of
segments of workload distribution) is correspondingly smaller [12], meaning that the draft model
would run fastest when dispatched on one or a subset of GPUs, leaving other GPUs idle (see Fig-
ure 2 and Table 6). Consequently, multi-GPU computational resources are under-utilized during the
drafting stage.

We identify the primary cause of such inefficiency as the lack of parallelism between the draft model’s
layers: while tensor operations within one layer can be parallelized by TP, the layers themselves
are restricted to be executed sequentially, one after another and from bottom to top, for generating a
“precise” result of inference. However, the drafting result is never required to be precise, as it is only
used for token parallelism and does not directly impact the final output—the verification result does
(see Section 2.1). Therefore, strictly following the execution order is unnecessary, while a “fuzzy” but
faster layer execution strategy could be preferable than the precise one, as long as it can sufficiently
approximate the drafting result.
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Figure 2: GPU runtime of different decoding algorithms in the distributed system. Speculative
Decoding (SD) enables token-level parallelism (fewer base-model blocks), while causing multi-GPU
under-utilization during the drafting stage. EasySpec solves the problem by layer-parallel speculation.

Based on this insight, we propose EasySpec, a layer-parallel speculation strategy for optimizing the
efficiency of drafting-stage multi-GPU utilization. EasySpec introduces fuzzy speculation, which
breaks the data dependencies between some consecutive attention layers by running them with the
most recent hidden state as input to all of them (Figure 1 and Algorithm 2). As the data dependencies
are eliminated, multiple layers of the draft model can execute simultaneously on separate devices,
achieving layer-level parallelism, more efficient multi-GPU utilization and hence faster speculation
inference. Meanwhile, the speculation outputs can be well-approximated, retaining a high speculation
accuracy.

The approximation errors in the key-value (KV) cache of the draft model may accumulate during the
inference procedure. To prevent this, we perform bonus calibration after each iteration of drafting-
and-verification. Firstly, the accepted tokens are concatenated to the bonus token to form a token
sequence. This sequence is then re-input to the draft model, where a conventional layer-sequential
forward pass is executed, and the KV cache is updated with the precise values. This calibration step
applies token parallelism, which is typically used only in the verification stage, to the drafting stage as
well. Therefore, it incurs minimal additional latency to the speculation procedure, while significantly
enhancing accuracy—ultimately contributing to improved overall inference speed.

We evaluate our method on several widely-used open-source LLMs and task-specific models. The
draft models are selected from the same series as their corresponding large models. The evaluation
results show that EasySpec can achieve a peak speedup of 4.17x over vanilla decoding. Specifically,
the drafting stage can be accelerated by up to 1.62x with no greater than 7% drop of speculation
accuracy, requiring no additional training or fine-tuning on the existing draft models.

2 Preliminary

2.1 Speculative decoding

Speculative decoding is a two-stage non-autoregressive decoding method for inference acceleration.
The two stages are namely drafting and verification, which are iteratively executed as the inference
proceeds. At time step t, the input token sequence is X . In the drafting stage, a smaller and
faster model M ′ is employed as the draft model. M ′ auto-regressively runs n times, generating
a speculation token sequence X,x′

t+1, ..., x
′
t+n and probability distributions p′t+1, ..., p

′
t+n. The

original large model M then takes the whole sequence as input and conducts a single-forward
verification, the outputs of which are pt+1, ..., pt+n+1. The acceptance probability of token x′

i is
min(1,

pi(x
′
i)

p′
i(x

′
i)
). After the verification sampling, the sequence of m accepted tokens xt+1, ..., xt+m
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(the same as x′
t+1, ..., x

′
t+m) will be appended to the final output, along with a “bonus” token xt+m+1

(called bonus because it is a by-product of the verification process) which can be sampled from the
distribution p:

p =

{
norm(max(0, pt+m+1 − p′t+m+1)) (m < n)

pt+m+1 (m = n)
(1)

Through this whole verification process, the final output token sequence aligns with the original
distribution of the base model. Details of this algorithm are in Section A.

2.2 Tensor-parallel distributed inference

Tensor parallelism is a technique for deploying large models across multiple devices (GPUs). As
for TP distributed inference, tensors are split up into multiple chunks, and each of these chunks is
dispatched on a unique GPU. During computation operations, each GPU works on its respective
chunk independently at first, and the results are synchronized afterwards to ensure that the final result
is identical to the original. In modern multi-GPU systems, advanced hardware and communication
protocols enable TP to be applied for inference acceleration.

The optimal TP size is primarily influenced by the parameter size. Firstly, the TP size must evenly
divide both the hidden dimension and the number of attention heads. For example, in Qwen-2-0.5B-
Instruct these numbers are 4864 and 14 respectively, which limits the maximum feasible TP size
to 2. Secondly, the computational workload varies with parameter size, which further impacts TP
efficiency. A detailed discussion of these device-level characteristics is provided in Section 2.3.

2.3 Device characteristics

Modern GPUs feature powerful computation capacities and hence short computation latency. There-
fore, matrix computation involved in LLM inference is usually bottlenecked by memory bandwidth
or control-flow overheads [14]. In multi-GPU systems, the computation can also be bounded by
communication and synchronization overheads.

Formally, we denote the workload of 1-token forward as W , the latency of executing W on a single
GPU as Texe(W ), and the additional overhead of TP distribution as Taddi. The workload of s-token
parallelism is sW , and W/s the workload of s-sized TP. If W is relatively small compared to the
computation power, we can expect the following relationships:

Texe(W ) ≈ Texe(sW ) < sTexe(W ) (2)

Texe(W/s) + Taddi > Texe(W ) (3)

The effectiveness of token-level parallelism can be illustrated by Equation (2), which is leveraged
by speculative decoding for acceleration. Equation (3) highlights the impact of communication and
control-flow overheads in distributed inference, which constrains the TP size not to be too large and
limits multi-GPU utilization of the draft model.

3 Method

In this section, we present the details of how EasySpec enhances multi-GPU parallelism to accel-
erate the drafting stage of speculative decoding. The two key steps—fuzzy speculation and bonus
calibration—are specified within each segment.

3.1 Fuzzy speculation

As mentioned in Section 1, the conventional speculation process restricts the layers to be executed
sequentially. Algorithm 1 demonstrates the execution procedure of N consecutive layers. If we
eliminate h′

i in the algorithm, we have

hi+1 = hi +Attnoutputi +MLPoutputi (4)

, which illustrates the data dependencies between the input of layer i + 1 and the output of layer
i. In other words, before the outputs of the previous attention layer (Attnoutputi) and MLP layer
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Algorithm 1 Layer-Sequential Speculation
Input: hidden state h, N consecutive atten-
tion layers Attn1,· · · ,AttnN and MLP layers
MLP1,· · · ,MLPN

h1 = h
for i = 1 to N do
Attnoutputi = Attni(hi) (sequential)
h′
i = hi +Attnoutputi

MLPoutputi = MLPi(h
′
i)

hi+1 = h′
i +MLPoutputi

end for

Algorithm 2 Layer-Parallel Fuzzy Speculation
Input: hidden state h, N consecutive atten-
tion layers Attn1,· · · ,AttnN and MLP layers
MLP1,· · · ,MLPN

h1 = h
for i = 1 to N do

Attnoutputi = Attni(h1) (parallel)
end for
for i = 1 to N do

h′
i = hi +Attnoutputi

MLPoutputi = MLPi(h
′
i)

hi+1 = h′
i +MLPoutputi

end for

(MLPoutputi) are computed, nothing can be done with the upper layer i + 1 (and i + 2 to N as
well).

Such a restriction on the execution order is necessary when the draft model is directly used for
inference. Executing the model differently would shift the output probability distributions p′ to p′′,
undermining the quality of generated content. However, the situation is different when the draft
model is just used for speculation. Regardless of how p′′ deviate from the original, as long as we set
the acceptance probabilities to min(1, p/p′′), the final output distribution will theoretically remain the
same as the base model. This leads to a potential optimization of speculation strategy: if the output
distribution p′ can be efficiently approximated by p′′, such that p′′ ≈ p′, the overall process may
speedup, while the final outputs remain lossless. That is to say, a slightly fuzzy but faster approach
for speculation could outperform the precise one.

Figure 3: 2-D demonstration of high cosine simi-
larity between hi and hi+1.

We propose an effective approximation method
for fuzzy speculation. Inspired by [15], we
observe that the attention layers’ outputs can
be well approximated by substituting the in-
put hi with h1 for all 1 < i ≤ N . In Equa-
tion (4), the hidden state update hi+1 − hi =
Attnoutputi +MLPoutputi is relatively less
significant, so the cosine similarity between hi

and hi+1 can approach 1, and consequently the
similarity between all hi and h1 is also high
(Figure 3 is a 2-D demonstration of this phe-
nomenon). Such high similarities of the input
allow other hidden states to be accurately ap-
proximated as well (see Section E.1 for theo-
retical explanations and Table 4 for empirical
results).

Algorithm 2 shows the detailed steps of this
method. From the perspective of model architectures, the input of the attention layers is not the most
recent hidden states, but rather those from several layers prior (Figure 1). With this modification of
layer execution strategy, we break the data dependencies between N consecutive attention layers:
once hj is computed for some j, all attention layers between j to j +N can be executed with no
data dependencies among them, thereby achieving a layer-level concurrency. In a multi-GPU system,
these attention layers can run simultaneously on different devices (Figure 2).

Denote the execution time of sequential and fuzzy speculation over these N attention layers as Tseq

and Tfuzzy , we have

Tseq = NTexe(A)

Tfuzzy = Texe(A) + Taddi
(5)

where A is the workload of one attention layer. Unlike the traditional TP method, the latency
of running an attention layer is long enough to compensate for the additional overhead, that is
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Table 1: Example layer-parallel strategies for drafter models. The strategies for other drafters is the
same as specified in Section 3.1.1.

Model # of Layers N Strategy

Llama-3-8B-Instruct 32 4 0, 1-3, 4-7, 8-11, ..., 24-27, 28-30, 31
Llama-3.2-1B-Instruct 16 2 0, 1-2, 3-4, 5-6, ..., 11-12, 13-14, 15

Qwen2-7B-Instruct 28 4 0, 1-3, 4-7, 8-11, ..., 20-23, 24-26, 27

(N − 1)Texe(A) >> Taddi for N > 1, resulting in Tfuzzy < Tseq. The MLP layers are executed
in the original sequential order, as parallelizing them results in significant approximation errors and
degraded end-to-end performance (Section B).

In order to achieve a higher acceptance rate, EasySpec also incorporates tree attention [16] in the
drafting stage, a technique commonly used in existing speculative decoding methods [7, 17, 18]. Tree
attention can boost the acceptance rate by increasing the number of draft token sequences. As shown
in Figure 5, the drafted tokens are structured as a tree, with each path corresponding to a sequence.
Speculation and verification for all the sequences can be performed in a single forward pass using a
2D tree-attention mask.

3.1.1 Layer-parallel strategy

For the layer-parallel size N , we exclude the first and last layer and parallelize 1 ∼ N − 1, N ∼
2N − 1, ..., until the remaining layers (except for the last) are not enough to compose a N -set.
For instance, for Llama-3-8B-Instruct (32 layers) and N = 4, we have 1 ∼ 3, 4 ∼ 7, ..., 28 ∼ 30
parallelized, while layer 28,29, and 30 have to compose a 3-set because layer 31 is the last (see
Table 1). The reason of such strategy is that, parallelizing intermediate layers (excluding the first and
last layer) yields best performances in our experiments. We hypothesize that this is because the first
and last layer are more sensitive to approximation errors.

Note that there could be a better strategy for models and/or tasks, but this strategy has already yielded
sufficiently satisfactory acceleration. Moreover, trying other strategies is simple and lightweight, as it
requires no modifications to the original model architecture. A change in the configuration is enough.

3.2 Bonus calibration

Formally, the speculation of token j can be denoted as x′
j , p

′
j , kv

′
j−1 = M ′(x′

i<j−1, kv
′
i<j−1, x

′
j−1).

Fuzzy speculation induces errors to the value of x′, p′ and kv′. The errors in x′ and p′ are limited
within a single draft-verify iteration, since the rejected tokens and all output distributions will be
discarded after verification. However, the errors in kv′j−1 will affect all subsequent generations after
j, leading to long-term error accumulation that can severely degrade the accuracy.

The precise values of kv′ are required for preventing such error accumulation. Nevertheless, obtaining
these values demands running the model’s layers sequentially, which is exactly what we try to optimize
through fuzzy speculation. To solve this dilemma, we propose an efficient way of obtaining precise
KV values with minimal additional latency. At the beginning of a standard drafting stage, the bonus
token xt+m+1 from the last iteration is input to the draft model, for the speculation of x′

t+m+2.
This is a 1-token forward pass and also memory-bounded, as discussed in Section 2.1. Therefore,
similar to the verification stage, token parallelism can also be applied here. By concatenating the
accepted token sequence xt+1, · · · , xt+m with the bonus token xt+m+1 and re-inputting this entire
sequence xt+1, · · · , xt+m, xt+m+1 to the draft model, the precise KV values kv′t+1, · · · , kv′t+m
(and kv′t+m+1) can be produced through a single sequential forward pass. According to Equation (2),
the latency of such a forward is nearly equal to a 1-token sequential forward.

We propose bonus calibration based on the method above. As shown in Figure 1, we firstly discard
all fuzzy KV items, regardless of whether the corresponding tokens are accepted or rejected (e.g.
the accepted items 1 and 2 are also discarded). Then, a token-parallel forward is conducted to refill
the KV cache with precise values. From the perspective of execution, the precise KV values are
by-products of the next-token speculation of the bonus token, similar to how the bonus token itself is
produced by the verification. This is the reason why we call this process “bonus”. Bonus calibration
can generate a precise candidate token and distribution, while subsequent rounds of speculation can
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revert to be fuzzy. The overall latency increases slightly, from nTfuzzy to Tseq + (n− 1)Tfuzzy (n
is the speculation length), while the elimination of errors is crucial and substantial. More detailed
theoretical backing is in Section E.2.

4 Experiment

Models and benchmarks. We evaluated EasySpec on Llama-3-70B-Instruct and Qwen2-72B-
Instruct, as well as Llama-3.3-70B-Instruct and task-specific models Qwen2-Math-72B-Instruct and
Qwen2.5-Coder-32B-Instruct [19]. The 0.5B/1.5B/3B/7B/8B models in the same series serve as the
draft models for their respective base models. The benchmarks include a variety of tasks: language
understanding (MMLU[20]), code generation (HumanEval[21]), math reasoning (MATH[22]), in-
struction following (IFEval[23]) and multilingual language usage (MGSM[24]). All the experiments
were conducted using chain-of-thought reasoning with a maximum of 128 tokens. We also evaluated
our method on Spec-Bench [25] for comparison with related work.

Environments and configurations. The experiments were conducted on 8×A100 GPUs. Unless
specified otherwise, the layer-parallel size N is set to 4, as it is optimal for most of the tested models.
The tensor-parallel sizes for drafter and base models are 1 and 8, as they are the optimal in most cases
(see Table 6). The optimal and applied speculation length is 5.

Baseline settings. We use the following baselines for comparison: tensor-parallel distributed
decoding (TP), speculative decoding in the distributed system (+SD), and tree attention (+tree) [16].
Additionally, we compare our work with EAGLE-2 [18].

Metrics. We use token throughput of single-batch inference as the performance metric. We also
measure the running time per 100 tokens of the drafting and verification stages, which demonstrates
the effectiveness of acceleration more clearly. Acceptance rates are also recorded and presented.

4.1 Main results

4.1.1 Effectiveness

To illustrate the robust effectiveness of EasySpec, we conducted experiments on Llama-3-70B-Instruct
and Qwen2-72B-Instruct across datasets, with temperatures=0 and 0.8. The results are shown in
Table 2. We measure the running time per 100 tokens of the drafting (d) and verification (v) stages
and the total acceleration ratio (total) compared to vanilla decoding. α represents the acceptance
rates. The exact total running time of all baselines are in Table 9.

The results show that EasySpec consistently accelerates the overall execution of speculative decoding
across all datasets. While the verification stage (the large models) can be accelerated by TP, the
drafting stage often becomes the primary bottleneck, accounting for a large portion of the total
running time. EasySpec accelerates the drafting stage by up to 1.62x, thereby improving the overall
throughput. Meanwhile, the drop of speculation accuracy is no more than 7%, suggesting that fuzzy
speculation with bonus calibration is sufficiently accurate across all evaluated cases.

We also evaluated EasySpec on two task-specific models: Qwen2-Math-72B-Instruct and Qwen2.5-
Coder-32B-Instruct, along with some other combinations of drafting and base models. The effective-
ness of EasySpec in these cases are shown in Table 7 and Table 8.

4.1.2 Generalization and stability

An intermediate question is that whether we can use an even shallower model to reduce drafting
latency. Firstly, such a model often does not exist within the same series, while training a draft model
from scratch is non-trivial and the trained drafter often lacks generalization capability across base
models and datasets [26]. Secondly, an overly shallower drafter tends to exhibit unstable speculation
performance, while smaller versions of model in the same series inherently have alignments in
behaviors with the larger, due to their shared tokenizer, pretraining corpora and similar training
process [25].

To clarify the above statements, we compare our method with EAGLE-2 [18], a typical tiny-drafter
speculative decoding method. EAGLE-2 uses a well-trained one-layer draft model, aiming for extreme
drafting latency reduction. We evaluated both methods on Spec-Bench [25]. Besides average token
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Table 2: Running time per 100 tokens, total acceleration ratio and acceptance rates of two mainstream
models across datasets. ’d’, ’v’ stands for drafting and verification running time (s/100 tokens)
respectively, and ’total’ and α stands for total acceleration ratio and acceptance rates. More detailed
numbers are in Table 9.

Llama-3-70B(8B)-Instruct Qwen2-72B(7B)-Instruct
Dataset Method d v total α d v total α

temperature=0

MMLU
TP - - 1.53x - - - 1.56x -
+sd 3.52 2.15 2.05x 0.57 3.32 2.25 2.13x 0.52

+tree 2.52 1.59 2.82x 0.88 2.38 1.62 2.96x 0.85
EasySpec 1.70(↑1.48x) 1.73 3.38x 0.82 1.65(↑1.44x) 1.70 3.55x 0.80

HE
TP - - 1.55x - - - 1.57x -
+sd 2.93 1.79 2.50x 0.74 2.82 1.83 2.58x 0.69

+tree 2.53 1.58 2.87x 0.92 2.26 1.51 3.18x 0.95
EasySpec 1.61(↑1.57x) 1.63 3.64x 0.87 1.48(↑1.52x) 1.54 3.97x 0.91

MATH
TP - - 1.52x - - - 1.54x -
+sd 2.96 1.74 2.45x 0.73 2.48 1.65 2.86x 0.78

+tree 2.50 1.47 2.90x 0.95 2.20 1.45 3.24x 0.96
EasySpec 1.58(↑1.58x) 1.55 3.68x 0.91 1.44(↑1.52x) 1.47 4.06x 0.95

IFEval
TP - - 1.50x - - - 1.52x -
+sd 3.68 2.16 1.93x 0.55 4.24 2.80 1.64x 0.39

+tree 2.53 1.55 2.76x 0.89 2.80 1.84 2.49x 0.72
EasySpec 1.68(↑1.51x) 1.65 3.39x 0.82 1.87(↑1.50x) 1.94 3.04x 0.67

MGSM
TP - - 1.54x - - - 1.56x -
+sd 2.66 1.61 2.73x 0.80 2.62 1.75 2.73x 0.72

+tree 2.45 1.48 2.96x 0.96 2.12 1.50 3.29x 0.94
EasySpec 1.55(↑1.58x) 1.51 3.80x 0.93 1.54(↑1.37x) 1.57 3.83x 0.88

temperature=0.8

MMLU
TP - - 1.53x - - - 1.56x -
+sd 3.09 1.93 2.32x 0.67 2.90 1.93 2.47x 0.65

+tree 2.49 1.54 2.89x 0.94 2.14 1.48 3.30x 0.95
EasySpec 1.59(↑1.56x) 1.63 3.61x 0.89 1.49(↑1.43x) 1.54 3.94x 0.93

HE
TP - - 1.54x - - - 1.59x -
+sd 2.94 1.81 2.48x 0.73 2.54 1.63 2.91x 0.80

+tree 2.47 1.49 2.98x 0.96 2.08 1.45 3.44x 0.97
EasySpec 1.53(↑1.62x) 1.49 3.90x 0.94 1.45(↑1.44x) 1.46 4.17x 0.97

MATH
TP - - 1.53x - - - 1.55x -
+sd 2.81 1.65 2.59x 0.78 2.44 1.54 2.98x 0.85

+tree 2.44 1.45 2.97x 0.97 2.09 1.40 3.39x 0.99
EasySpec 1.52(↑1.61x) 1.48 3.86x 0.94 1.43(↑1.47x) 1.44 4.13x 0.98

IFEval
TP - - 1.50x - - - 1.51x -
+sd 3.08 1.87 2.29x 0.67 3.24 2.14 2.16x 0.56

+tree 2.45 1.46 2.89x 0.97 2.17 1.51 3.16x 0.91
EasySpec 1.52(↑1.61x) 1.50 3.73x 0.92 1.53(↑1.42x) 1.58 3.73x 0.87

MGSM
TP - - 1.55x - - - 1.57x -
+sd 2.54 1.55 2.85x 0.84 2.68 1.72 2.73x 0.76

+tree 2.30 1.44 3.13x 0.98 2.08 1.45 3.41x 0.97
EasySpec 1.52(↑1.51x) 1.49 3.88x 0.96 1.46(↑1.42x) 1.50 4.06x 0.94

throughput, we also calculate the variances of throughput across data items, for better demonstration
of performance stability. The temperature is set to 0.8 for both methods.

The results in Table 3 show that, for Llama-3-70B-Instruct, the EasySpec-accelerated 1B drafter
achieves higher average token throughput than EAGLE-2 (≈1B) across all tasks, suggesting that a
smaller model from the same series, if existing, is good enough to deliver satisfactory performance
with EasySpec. As for performance stability, EasySpec exhibits significantly smaller variances, which
should be attributed to its remarkably higher speculation accuracies (nearly 0.8 vs less than 0.4). For
Llama-3.3-70B-Instruct, the performance gap becomes even more evident, further indicating that
trained drafters lack generalization capability to other base models, whereas smaller models from the

8



Table 3: Average token throughput(variance) and acceptance rates of EasySpec and EAGLE-2 for
Llama-3-70B-Instruct on Spec-Bench. The format of throughput is mean(variance). α stands for
acceptance rates.

EAGLE-2 EasySpec EAGLE-2 EasySpec

Llama-3-70B-Instruct Llama-3.3-70B-Instruct

Task Throughput α Throughput α Throughput α Throughput α

MT 37.15(31.27) 0.38 39.81(10.95) 0.85 25.92(14.28) 0.24 38.69(23.1) 0.84
TL 32.97(17.28) 0.38 35.31(15.41) 0.72 19.05(8.46) 0.15 34.14(16.06) 0.71

SUM 36.34(9.30) 0.40 39.18(4.88) 0.80 24.23(3.63) 0.20 37.67(5.03) 0.77
QA 31.85(20.15) 0.34 40.38(9.82) 0.84 22.50(10.36) 0.19 40.30(3.41) 0.84
MR 38.10(14.97) 0.45 43.52(4.44) 0.93 27.09(6.14) 0.25 44.59(2.49) 0.96

RAG 37.26(38.15) 0.47 38.15(12.56) 0.83 23.25(15.40) 0.22 36.79(13.75) 0.80

Table 4: Average cosine similarities between precise and approximated hidden states. The tested
model and task are Llama-3-8B-Instruct and MMLU.

LP size h q k v Attnoutput

2 0.93 0.98 0.99 0.92 0.93
3 0.89 0.97 0.98 0.86 0.88
4 0.86 0.96 0.97 0.82 0.83

same series remain compatible. Note that EasySpec requires no training or fine-tuning on either the
target distribution or fuzzy approximation, making it a plug-in method of higher adaptability.

4.2 Approximation precision

The feasibility of fuzzy speculation relies on the approximation precision of the draft model, which is
closely related to the cosine similarities between the precise and fuzzy-approximated hidden states.
Table 4 shows average cosine similarities between these hidden states. The tested drafter is Llama-3-
8B-Instruct and the benchmark is MMLU. The evaluated hidden states include input hidden states
h, outputs of attention layers Attnoutput, and queries(q), keys(k) and values(v) inside attention
heads. We set layer-parallel sizes to 2,3,4 for diverse approximation granularity. The results show
that, as more layers are parallelized, the cosine similarity decreases but stays above 0.8, indicating a
sufficiently high precision of approximation. Notably, the queries and keys are well-approximated
with cosine similarities approaching 1. This is critical for maintaining precision of other hidden states
and outputs, as errors in attention weights scale exponentially.

4.3 Ablation study

We conducted an ablation study on 3 aspects of EasySpec: tree attention width, layer-parallel (LP)
size and the presence or absence of bonus calibration. We varied the tree width across 1,4,8,12 and
LP size from 1 to 5. The results of these different configurations are presented in Figure 4.

For token throughput (left part), as the LP size increases from 1, the throughput improves due to
better multi-GPU utilization of fuzzy speculation. However, when the LP size becomes too large (e.g.
5), the speculation results are excessively fuzzy, leading to a noticeable decline in token throughput.
The optimal LP size is influenced by the tree width: a wider tree increases the likelihood of existence
of correct tokens, thus allowing for a fuzzier and faster speculation (a larger LP size). Moreover, even
without tree attention (width=1), EasySpec can also accelerate the inference with layer parallelism
(see the green line in Figure 4).

For speculation accuracy, the right part shows that bonus calibration can significantly improve
acceptance rates for every combination of tree width and LP size. Bonus calibration also slows the
decline in acceptance rates with increasing LP sizes (see the right part of Figure 4). All the above
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Figure 4: Token throughput and acceptance rates of Llama-3-70B(8B)-Instruct on MMLU under
different configurations of EasySpec. Left: token throughput. Right: acceptance rates.

results prove that the trade-off between precision of KV values and additional latency is reasonable
and effective.

5 Related work

Methods focusing on the drafter stage can be broadly categorized into training drafters, self-
speculation or algorithmic optimization. Specinfer [16] uses boost-trained draft models and tree-
structured attention for efficient speculation. Medusa [7] trains a set of extra MLP heads for future
token prediction using the original LLM’s features. Self-Speculative Decoding [27] and LayerSkip
[28] skips some layers of the target LLM for self-speculation. Lookahead [26] uses n-gram Jacobi
decoding to increase acceptance rates. REST [29] leverages a data storage for retrieval speculation.
Recent work also explores optimized tree-structured attention mechanisms. SpecExec [30] takes
the most probable continuations from the draft model to build a cache tree, improving inference
efficiency on resource-constrained GPUs. OPT-Tree [31] proposes an adaptive and scalable draft-tree
construction algorithm that maximizes the expected acceptance length. Beyond the drafter itself,
other studies investigate stage-level parallelism and theoretical explanations of speculative decod-
ing. For instance, PEARL [32] overlaps the drafting and verification stages to achieve stage-level
pipeline, while SpecTr [33] adopts optimal transport theory to provide a theoretical explanation and
optimization.

The discrepancy between optimal distribution sizes is discovered by the authors of [12], who suggested
training a wider but shallower draft model for better performance under tensor parallelism. There are
currently few works focusing on this problem, yet it is important and worth-solving. To the best of
our knowledge, we are the first to effectively optimize multi-GPU utilization of currently-available
draft models.

6 Conclusion

In this paper, we propose EasySpec, a layer-parallel speculation strategy for efficienct multi-GPU
utilization during the drafting stage of speculative decoding. EasySpec introduces two modifications
to the original speculation process: fuzzy speculation and bonus calibration. Fuzzy speculation breaks
the sequential layer execution order and enables multi-layer parallelization, while bonus calibration
applies token parallelism to the drafting stage to eliminate long-term error accumulation. EasySpec is
training-free and consistently achieves acceleration across models and datasets.
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A Speculative decoding

Speculative decoding consists of iterations of drafting and verification. The detailed algorithm of a
single iteration is present in Algorithm 3.

Algorithm 3 An Iteration of Speculative Decoding
Input: input token sequence X , drafting length m, draft model M ′, base model M
for i = 1 to m do
x′
i, p

′
i = M ′(X,x′

j<i)
end for
p1, · · · , pm, pm+1 = M(X, [x′

1, · · · , x′
m])

sample r1, · · · , rm independently from U(0, 1)
for i = 1 to m do

if ri >
pi(x

′
i)

p′
i(x

′
i)

then
n = i− 1 (n is the accepted length)
break (rejected)

else
xi = x′

i (accepted)
end if

end for
if n < m then
pbonus = norm(max(0, pn − p′n))

else
pbonus = pn+1

end if
sample xbonus from pbonus
return X,x1, · · · , xn, xbonus

For any distribution p′, the final output token sequence is equivalent to sampling them directly from
p. The proof is specified in many existing works (e.g. [11]).

B Strategy for MLP layers

In EasySpec, the MLP layers are executed sequentially, rather than parallelized like the attention
layers. This design choice stems from the empirical results that parallelizing all layers (both attention
and MLP) introduces substantial approximation errors, leading to degraded overall performance. As
shown in Table 5, even parallelizing just N = 2 full layers results in lower token throughput and
reduced speculation accuracies compared to the optimal attention-only parallelization strategy, with
performance deteriorating further as N increases.

C Tree attention

In the context of speculative decoding, tree attention can be leveraged to speculation and verification
for multiple possible token sequences in a single forward pass. With a 2-dimensional attention mask

Table 5: Token throughput and speculation accuracies of models with different parallel strategies on
MMLU.

Model Parallelized Layer N Token throughput α

Llama-3-70B(1B)-Instruct Only Attention 2 34.37 0.77
Full Layer 2 29.71 0.58

Qwen2-72B(1.5B)-Instruct
Only Attention 4 29.94 0.76

Full Layer 2 27.37 0.68
Full Layer 3 24.10 0.51
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Figure 5: Illustration of tree attention. 6 draft token sequences are generated within 2 forward passes,
which increases parallelism and potentially acceptance rates. The whole tree can be verified in a
single-forward pass of the base model.

Table 6: Token throughput of models at different TP sizes on MMLU. ’*’ means the results are from
vLLM.

Model TP=1 TP=2 TP=4 TP=8

L3-70B 8.39 13.00 13.23 13.23
L3-70B* OOM 19.5 28.47 28.25
Q2-72B 8.49 13.03 13.01 12.89

Q2-72B* OOM 18.91 28.63 29.39
L3-8B 36.76 33.90 32.31 32.39
L3-8B* 79.39 68.86 68.35 67.76
Q2-7B 37.16 36.46 37.12 -
Q2-7B* 83.38 73.9 73.81 -

applied to the flattened token tree, token sequences with the same prefix can share the KV-items, thus
increasing token-level parallelism. As an illustration in Figure 5, with 2 forward passes, 6 draft token
sequences are generated.

D Additional results

D.1 Results of different TP sizes

Table 6 shows the token throughput of some typical tested models at different TP sizes. The benchmark
consists of 40 data items from MMLU. While the large models benefit from multi-GPU distribution,
the draft models experience slowdown when the TP size is greater than 1 (due to Equation (3)),
confirming that the under-utilization of multi-GPU resources cannot be solved by traditional TP. We
also tested the throughput in another widely-used inference engine vLLM [34], and the results are
consistent with the above claim. This consistency supports the conclusion that the acceleration and
slowdown are indeed attributable to multi-GPU configurations, rather than other possible factors.
Based on these findings, we use 1 and 8 as the test-time distribution size for all small and large
models respectively, without compromising generalization.

Note that Qwen-2-7B-Instruct does not support TP size=8, as its internal dimension size is not
divisible by 8. That is also an aspect of lacking parallelism (other than the slowdown of inference
speed) and can be solved by EasySpec as well.
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Table 7: Running time per 100 tokens and acceptance rates of two task-specific models across datasets.
The denotation is consistent with Table 2.

Q2.5-Coder-32B(7B)-Instruct

Datasets Methods d v total α

Human
Eval

vanilla - - 7.13 -
+tree 2.15 1.23 3.38 0.97

EasySpec 1.43 1.23 2.66 0.97
-0.72 +0.00 -0.72 -0.00

Q2-Math-72B(7B)-Instruct

MATH
vanilla - - 11.55 -
+tree 2.05 1.51 3.55 0.99

EasySpec 1.40 1.52 2.91 0.98
-0.65 +0.01 -0.64 -0.01

Table 8: Token throughput of other model combinations w/ and w/o EasySpec. The temperature is 0.
The left and right numbers are throughput w/o and w/ EasySpec respectively. ’w/o EasySpec’ is the
same baseline as ’+tree’ in Table 2.

Models MMLU HumenEval MATH IFEval MGSM

Q2-72B-1.5B 24.02 29.94 26.28 33.78 27.54 36.11 20.65 25.17 25.92 33.26
Q2-72B-0.5B 24.57 29.29 28.80 33.15 29.61 35.82 20.57 24.08 27.48 32.63
L3-70B-3B 25.41 31.32 26.81 32.52 27.49 35.78 25.20 30.29 27.23 35.18
L3-70B-1B 32.10 34.37 34.25 37.25 35.70 40.00 28.60 34.04 35.78 40.25
L3-8B-1B 47.97 56.49 50.99 61.88 54.04 64.97 49.54 56.01 52.68 63.68

D.2 Results of task-specific models

Table 7 shows the results of two task-specific models on the corresponding datasets MATH and
HumanEval. On these datasets, the original speculation results of the draft models is already highly
accurate (with the acceptance rates greater than 97%), indicating that the speculation is inherently
simple. As a result, fuzzy speculation incurs virtually no drop in accuracies, achieving an ideal
drafting-stage acceleration.

D.3 Results of other combinations of draft and base models

We further tested EasySpec on other combinations of draft and base models. The results in Table 8
illustrates that EasySpec shows acceleration across all model combinations and datasets, highlighting
the wide adaptability of our method. By ’without EasySpec’, we mean that the baseline is ’+tree’
in Table 2. ’L3’ and ’Q2’ stand for Llama-3 and Qwen2 respectively. For the optimal overall
performance, the layer-parallel size of Llama-3.2-1B-Instruct is 2, and the size of others is 4.

As stated in Section 4.1.2, using smaller drafters does not necessarily result in overall optimal
performance. Furthermore, it should be noted that Qwen-2-1.5B and Qwen-2-0.5B only support TP
size ≤ 4 and 2, since the dimension size is not divisible by a larger number (similar to the Qwen 7B
model), while EasySpec increases the parallel sizes by introducing extra layer-parallelism.

D.4 Detailed numbers of results

Table 9 shows detailed numbers of results of EasySpec and baselines. Compared to Table 2, the total
running time per 100 tokens, the running time of vanilla decoding are listed.
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E Theoretical backing

E.1 Connection between cosine similarity and approximation precision

Current transformer-based models typically apply a layer normalization (LayerNorm) operation
before the attention block. Given two input hidden states, h1 and h2 (where h2 is an approximation
of h1), the LayerNorm operator transforms them into normalized representations h′

1 and h′
2, which

are then used in subsequent attention computations. Importantly, the LayerNorm operation preserves
cosine similarity, i.e., cos(h1, h2) = cos(h′

1, h
′
2). When this cosine similarity is close to 1, the

corresponding vectors are also close in Euclidean distance (|h1 −h2| ≈ 0), ensuring that downstream
computations maintain high numerical precision. For models without LayerNorm operation, the
demonstration in Figure 3 also implies that the approximated hidden states can remain precise (in
principle).

E.2 Balance between speculation latency and accuracy

The strategy of speculative decoding (SD) is about finding an optimal balance between the running
time of drafters Tdraft and the speculation accuracy α. Denote the running time of base model
as Tbase, the overall running time of decoding N step without speculative decoding is N ∗ Tbase.
The overall running time with SD can be seen as a function of Tdraft and α: Tall(Tdraft, α) =
N ∗ Tdraft + (N/(n ∗ α)) ∗ Tbase (n is the speculation length), since the base model only needs to
run N/(n ∗ α) times. The key to our method is reducing Tdraft largely while maintaining a high α,
which will lead to decrease in the overall time.

Denote the running time of fuzzy speculation as Tfuzz and original sequential run as Tori. If we just
run fuzzy speculation for every n token, the time will be T ′

draft = n ∗ Tfuzz . Bonus calibration runs
at every beginning of the speculation. As token parallelism is applied (just like it being applied to
verification in normal SD), it has basically the same running time as Tori. The full speculation time
then becomes Tdraft = (n − 1) ∗ Tfuzz + Tori > n ∗ Tfuzz = T ′

draft. If that were all the story,
Tall would increase. However, the α is largely increased by the calibration in the meantime (see in
Figure 4), since the fuzzy KV items in the cache are replaced by precise ones. Consequently, bonus
calibration helps to find a better balance between Tdraft and α.

The theoretical analyses above complement the empirical evidence, further supporting that our
algorithm can effectively accelerate the inference process.

F Limitations

The experiments are conducted on a specific hardware configuration of 8×A100 GPUs and a specific
inference system, and the acceleration rate is likely to vary across different platforms due to variations
in computation speeds and tensor-parallel efficiency. However, as hardware continues to improve,
computational resources may become increasingly redundant, further reducing the benefits of tensor
parallelism. Since this issue is going to get worse with faster hardware and operators, we believe
that layer parallelism offers a more effective solution by optimizing the utilization of multi-GPU
resources now and in future.

G Broader impacts

Our work enables faster inference by accelerating speculative decoding in a layer-parallel approach.
We believe it has positive broader impact for the area of LLM inference acceleration. To the best of
our knowledge, there is no specific negative impacts to be discussed.
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Table 9: Detailed results of running time of drafting and verification per 100 tokens, total running
time and acceleration ratio, and acceptance rates of two mainstream models across datasets, at
temperature=0 and 0.8. The denotation is basically consistent with Table 2.

Llama-3-70B(8B)-Instruct Qwen2-72B(7B)-Instruct
Dataset Method d v total α d v total α

temperature=0

MMLU

vanilla - - 11.61 - - - 11.88 -
TP - - 7.57(1.53x) - - - 7.59(1.56x) -
+sd 3.52 2.15 5.67(2.05x) 0.57 3.32 2.25 5.57(2.13x) 0.52

+tree 2.52 1.59 4.11(2.82x) 0.88 2.38 1.62 4.01(2.96x) 0.85
EasySpec 1.70(↑1.48x) 1.73 3.44(3.38x) 0.82 1.65(↑1.44x) 1.70 3.35(3.55x) 0.80

HE

vanilla - - 11.79 - - - 11.98 -
TP - - 7.58(1.55x) - - - 7.64(1.57x) -
+sd 2.93 1.79 4.72(2.50x) 0.74 2.82 1.83 4.65(2.58x) 0.69

+tree 2.53 1.58 4.11(2.87x) 0.92 2.26 1.51 3.77(3.18x) 0.95
EasySpec 1.61(↑1.57x) 1.63 3.24(3.64x) 0.87 1.48(↑1.52x) 1.54 3.02(3.97x) 0.91

MATH

vanilla - - 11.52 - - - 11.82 -
TP - - 7.56(1.52x) - - - 7.68(1.54x) -
+sd 2.96 1.74 4.70(2.45x) 0.73 2.48 1.65 4.13(2.86x) 0.78

+tree 2.50 1.47 3.97(2.90x) 0.95 2.20 1.45 3.65(3.24x) 0.96
EasySpec 1.58(↑1.58x) 1.55 3.13(3.68x) 0.91 1.44(↑1.52x) 1.47 2.91(4.06x) 0.95

IFEval

vanilla - - 11.29 - - 11.59 - -
TP - - 7.55(1.50x) - - - 7.64(1.52x) -
+sd 3.68 2.16 5.84(1.93x) 0.55 4.24 2.80 7.04(1.64x) 0.39

+tree 2.53 1.55 4.09(2.76x) 0.89 2.80 1.84 4.65(2.49x) 0.72
EasySpec 1.68(↑1.51x) 1.65 3.33(3.39x) 0.82 1.87(↑1.50x) 1.94 3.81(3.04x) 0.67

MGSM

vanilla - - 11.65 - - 11.92 - -
TP - - 7.55(1.54x) - - - 7.63(1.56x) -
+sd 2.66 1.61 4.27(2.73x) 0.80 2.62 1.75 4.37(2.73x) 0.72

+tree 2.45 1.48 3.93(2.96x) 0.96 2.12 1.50 3.62(3.29x) 0.94
EasySpec 1.55(↑1.58x) 1.51 3.06(3.80x) 0.93 1.54(↑1.37x) 1.57 3.11(3.83x) 0.88

temperature=0.8

MMLU

vanilla - - 11.62 - - - -
TP - - 7.59(1.53x) - - - 7.66(1.56x) -
+sd 3.09 1.93 5.02(2.32x) 0.67 2.90 1.93 4.82(2.47x) 0.65

+tree 2.49 1.54 4.02(2.89x) 0.94 2.14 1.48 3.62(3.30x) 0.95
EasySpec 1.59(↑1.56x) 1.63 3.22(3.61x) 0.89 1.49(↑1.43x) 1.54 3.03(3.94x) 0.93

HE

vanilla - - 11.79 - - - 12.14 -
TP - - 7.64(1.54x) - - - 7.65(1.59x) -
+sd 2.94 1.81 4.75(2.48x) 0.73 2.54 1.63 4.17(2.91x) 0.80

+tree 2.47 1.49 3.95(2.98x) 0.96 2.08 1.45 3.53(3.44x) 0.97
EasySpec 1.53(↑1.62x) 1.49 3.02(3.90x) 0.94 1.45(↑1.44x) 1.46 2.91(4.17x) 0.97

MATH

vanilla - - 11.56 - - 11.86 -
TP - - 7.54(1.53x) - - - 7.63(1.55x) -
+sd 2.81 1.65 4.46(2.59x) 0.78 2.44 1.54 3.98(2.98x) 0.85

+tree 2.44 1.45 3.89(2.97x) 0.97 2.09 1.40 3.50(3.39x) 0.99
EasySpec 1.52(↑1.61x) 1.48 3.00(3.86x) 0.94 1.43(↑1.47x) 1.44 2.87(4.13x) 0.98

IFEval

vanilla - - 11.30 - - 11.63 -
TP - - 7.53(1.50x) - - - 7.72(1.51x) -
+sd 3.08 1.87 4.94(2.29x) 0.67 3.24 2.14 5.38(2.16x) 0.56

+tree 2.45 1.46 3.91(2.89x) 0.97 2.17 1.51 3.68(3.16x) 0.91
EasySpec 1.52(↑1.61x) 1.50 3.03(3.73x) 0.92 1.53(↑1.42x) 1.58 3.11(3.73x) 0.87

MGSM

vanilla - - 11.67 - - 12.02 -
TP - - 7.55(1.55x) - - - 7.65(1.57x) -
+sd 2.54 1.55 4.10(2.85x) 0.84 2.68 1.72 4.41(2.73x) 0.76

+tree 2.30 1.44 3.73(3.13x) 0.98 2.08 1.45 3.53(3.41x) 0.97
EasySpec 1.52(↑1.51x) 1.49 3.01(3.88x) 0.96 1.46(↑1.42x) 1.50 2.96(4.06x) 0.94
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper provides EasySpec, a layer-parallel speculation strategy for efficienct
multi-GPU utilization during the drafting stage of speculative decoding, introducing two
modifications to the original speculation process: fuzzy speculation and bonus calibration.
The abstract and introduction clearly state these contributions

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitation of the work in Section F, where the limitation
of specific software and hardware configuration is discussed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There is no theoretical result in the paper. We did provide theoretical backing
for our method in Section E, while it is stated for further clarification of the empirical results.
Therefore, we do not think it is in any way a theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We believe that the detailed experimental settings are provided, in Section 4
and some places in the paper. They include model types, datasets, layer parallel strategies,
speculation length, and so on.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

20



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and the benchmarks are all available in the repository link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: As we mentioned in ’Experimental result reproducibility’, we believe that
detailed hyperparameters have been provided for understanding.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Similar to many existing works in this area, we do not include error bars or
confidence intervals in the empirical results, as repeated trials show negligible variation.
System-level fluctuations have only marginal effects on the outcomes.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The system configuration is specified in Section 4 and Section F..

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Section G.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, this paper poses no issues on safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited original papers for code, datasets or content. The license and terms
of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide assets in the form of code, which is well documented and com-
mented alongside.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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