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Abstract

Designing optimal Bayes filters for nonlinear non-Gaussian systems is a challeng-
ing task. The main difficulties are: 1) representing complex beliefs, 2) handling
non-Gaussian noise, and 3) marginalizing past states. To address these challenges,
we focus on polynomial systems and propose the Max Entropy Moment Kalman
Filter (MEM-KF). To address 1), we represent arbitrary beliefs by a Moment-
Constrained Max-Entropy Distribution (MED). The MED can asymptotically
approximate almost any distribution given an increasing number of moment con-
straints. To address 2), we model the noise in the process and observation model
as MED. To address 3), we propagate the moments through the process model
and recover the distribution as MED, thus avoiding symbolic integration, which is
generally intractable. All the steps in MEM-KF, including the extraction of a point
estimate, can be solved via convex optimization. We showcase the MEM-KF in
challenging robotics tasks, such as localization with unknown data association.

1 Introduction

The Kalman Filter (KF) is an optimal estimator for linear Gaussian systems in the sense that it
provably computes a minimum-variance estimate of the system’s state. From the perspective of
the Bayes Filter, the KF recursively computes a Gaussian distribution that captures the mean and
covariance of the state. However, the optimality of the KF breaks down when dealing with nonlinear
systems or non-Gaussian noise. A plethora of extensions of the KF has been developed to deal with
nonlinearity and non-Gaussianity. For example, linearization-based methods, such as the Extended
Kalman Filter (EKF) [1], linearize the process and measurement models and propagate the covariance
using a standard KF. Other techniques, such as the Unscented Kalman Filter (UKF) [2], rely on
deterministic sampling to better capture the nonlinearities of the system but then still fit a Gaussian
distribution to the belief. Unfortunately, these extensions do not enjoy the desirable theoretical
properties of the KF: they are not guaranteed to produce an optimal estimate and —in the nonlinear
or non-Gaussian case— their mean and covariance might be far from describing the actual belief
distribution. Consider for example a system with non-Gaussian noise sampled from a discrete
distribution over {−1, 1}; clearly, approximating this noise as a zero-mean Gaussian fails to capture
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Figure 1: We generalize the classical Kalman Filter (KF) by proposing the Max Entropy Moment Kalman Filter
(MEM-KF), which operates on a polynomial system with arbitrary noise. In the Bayes Filter framework, the KF
predicts and updates a Gaussian distribution that can be characterized by its mean and covariance. The MEM-KF
predicts and updates a max entropy distribution that can be uniquely characterized by its higher-order moments.
The proposed algorithm is evaluated in a robot localization problem with unknown data association. In this case,
the robot does not know which landmark it observes, which can be modeled by a multi-modal distribution.

the bimodal nature of the distribution. For this reason, existing nonlinear filters, such as the EKF and
the UKF, can hardly capture the noise distribution precisely with Gaussian assumptions.

Thus, a natural question is, how can we provide provably optimal state estimation for nonlinear
systems corrupted by arbitrary noise? When the noise is non-Gaussian, and the system is nonlinear,
the estimation problem becomes less structured for analysis, and traditional methods only focus on the
first two moments (i.e., mean and covariance) to describe the noise and the belief, which are too crude
to capture the true underlying distributions. We argue that by accounting for higher-order moments,
we can recover the state distribution more precisely. In this work, we focus on polynomial systems,
a broad class of potentially nonlinear systems described by polynomial equations (Fig. 1). These
systems can model dynamics on matrix Lie groups [3] and a broad set of measurement models [4] for
robot control [5–16] and state estimation [17–23]. To handle arbitrary noise, we let the user specify
an arbitrary number of moments to better describe the process and measurement noise.

Contribution. We propose the Max Entropy Moment Kalman Filter (MEM-KF) with three key
contributions. Our first contribution is to formulate the state estimation problem as a Kalman-type
filter using the Moment-Constrained Max-Entropy Distribution (MED) as the belief representation.
The MED can asymptotically approximate any moment determinate distribution. Given the moments,
the coefficients of the MED can be recovered by convex optimization.

Our second contribution is to formulate the prediction and update step of the MEM-KF and solve
them via convex optimization. In the prediction step, we propagate the moments through the process
model and recover the belief as MED. In the update step, we formulate the sensor model as MED and
show how to obtain the posterior distribution.

Our third contribution is to extract the optimal point estimate via convex optimization. Due to the
polynomial nature of the MED, we apply semidefinite moment relaxation techniques to extract the
optimal point estimate given the belief representation. The global optimality of the solution (resp. a
non-trivial suboptimality bound) can be certified by using a rank condition (resp. the relaxation gap)
of the moment relaxation. We showcase the resulting MEM-KF in challenging robotics tasks, such as
localization with unknown data association.

Compared to the traditional marginalization step in the Bayes Filter that requires symbolic integrations
and is generally intractable, the proposed method only requires numerical integrations to evaluate the
gradients for the convex optimization. Although the numerical integration is still relatively expensive,
MEM-KF provides a general solution for filtering in polynomial systems with arbitrary noise.

2 Related Work

Bayes Filter. The Bayes filter recursively estimates the posterior probability of a system’s state
by predicting the prior from the process model and updating it with new measurements using
Bayes’ rule [24]. For a nonlinear process model, even a simple distribution can be skewed and
transformed to a multi-model distribution that is hard to approximate. As a solution, the prior can be
approximated by parametric functions, such as a Gaussian mixture [25, 26]. Despite that, the belief
can be asymptotically approximated with larger Gaussian sums, the prediction still assumes linear
process models [25] or relies on linearization [26]. Other approximation of belief includes point
mass [27, 28] and piece-wise constant [29, 30] that are nonsmooth. Contrary to the deterministic
method that approximates the prior by parametric functions, sampling-based methods such as particle
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filters [31] have been applied to approximate the predicted distribution. Though the sampling-based
methods are more versatile for nonlinear non-Gaussian systems, these methods generally lack formal
guarantees. We recommend the readers to [24] for a more comprehensive review.

Kalman Filtering. When the process and measurement models are linear, and the noises are
Gaussian, the Kalman Filter [32] becomes provably optimal and returns the minimum-variance
estimate among all estimators. To deal with nonlinear systems, the Extended Kalman Filter (EKF)
linearizes the process and measurement models around the estimated states [33] and propagates
the covariance through the linearized system. However, the performance of EKF deteriorates as
the linearization points deviate from the true states, as the process model becomes more nonlinear
and the noise increases [1, 34]. To tackle this problem, symmetry-preserving linearization has been
applied in homogeneous space [35–37] that can avoid the inconsistency caused by imperfect state
estimations. As an alternative to linearizations, the Unscented Kalman Filter (UKF) [2] applies a
deterministic sampling approach to handle nonlinearities. However, for non-Gaussian noise, UKF
lacks a systematic way to handle arbitrary noise. We note that both EKF and UKF adopt the Kalman
gain and only use the mean and covariance of the noise distribution. Shimizu et al. [38] and Jasour
et al. [39] are closer to our work, where moment propagation is derived for filtering problems by
assuming knowledge of the characteristic function of the Gaussian noise. In our methods, we only
utilize moment information instead of the entire distribution, e.g., the characteristic function, which is
inaccessible in typical applications. Though [20] utilized higher-order moments to derive a minimal
variance filter, the prediction applies approximations that is not exact.

Semidefinite Relaxation Semidefinite relaxations have been critical to designing certifiable algo-
rithms for robot state estimation. These relaxations transform polynomial optimization problems into
semidefinite programs (SDPs) that are convex, using Lasserre’s hierarchy of moment relaxations [40].
Subsequently, SDP relaxation-based certifiable algorithms have been extended to various geometric
perception problems, including pose graph optimization [41, 42], rotation averaging [43, 44], trian-
gulation [45, 46], 3D registration [47–50], absolute pose estimation [51], and category-level object
perception [52, 53]. Compared to belief, e.g., [25–30] that are hard to extract or certify the globally
optimal point estimation, the optimal point estimation of MED can be solved by SDPs.

3 Preliminaries

We review key concepts in polynomial systems. Let R[x] be the ring of polynomials with real
coefficients, where x := [x1, x2, . . . , xn]

T. Given an integer r, we define the set Nn
r := {α ∈

Nn|
∑

i αi ≤ r} (i.e., α is a vector of integers that sums up to no more than r). A monomial of
degree up to r is denoted as xα := xα1

1 xα2
2 . . . xαn

n , α ∈ Nn
r . For a polynomial p(x) :=

∑
γ cγx

γ ,
its degree deg p is defined as the largest ∥γ∥1 with cγ ̸= 0.

Let s(r, n) := |Nn
r | =

(
n+ r
n

)
. We then define the basis function ϕr(x) : Rn → Rs(r,n) using all

the entries of the canonical basis ϕr(x) =
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, x

r
1, . . . , x

r
n

]T
.

Given a probability distribution p(x) over support K, we can compute the moment matrix of prob-
ability p(x) as Mr(x̄α) =

∫
K Mr(x)p(x)dx, α ∈ Nn

2r, where we have x̄α :=
∫
K xαp(x)dx to

denote the moment of xα. The inverse of this process is the moment problem that tries to identify the
distribution given the moment sequence. A special case is the moment-determinate distribution that
describes a wide range of well-behaved probabilities that are neither long-tailed nor have higher-order
moments growing too fast:
Definition 1 (Moment-determinate distribution). A distribution p(x) is said to be moment-
determinate if it can be uniquely determined by all the moments with order from 0 to ∞.5

We introduce the following equality-constrained Polynomial Optimization Problem (POP) that will
be applied to extract the optimal point estimation given an MED:
Definition 2 (Equality-constrained POP). An equality-constrained polynomial optimization problem
(POP) is an optimization problem with polynomial cost and constraints c(x), g(x) ∈ R[x]:

c∗ := inf
x

c(x) s.t. gj(x) = 0, ∀j ∈ {1, . . . ,m}, (POP)
5With finite order r, there can be an infinite number of distributions with the specified moments.
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The moment relaxation that solve (POP) via SDPs is presented in Appendix A. Some introductory
examples of the moment matrix and polynomial systems are provided in Appendix B and C. In the
perception problems, such relaxed SDPs usually retrieve globally optimal solutions to the original
(POP), meaning that the relaxation is often exact [46, 54, 55].

4 Problem Formulation

We consider the following polynomial dynamical system:{
xk+1 = f(xk,uk,wk)
h(yk,xk) = vk

, xk ∈ K, ∀ k, (1)

where xk is the deterministic state to estimate, yk are the measurements, and uk is the control input,
all defined at discrete time k. We assume that the state xk is restricted to the domain K, e.g., the set of
2D poses. Both the process model f and the observation model h are vector-valued real polynomials.
We take the standard assumption that the process noise wk and measurement noise vk are identically
and independently distributed across time steps. For polynomial systems, we make the following
assumption:
Assumption 1 (K). The domain K is either the Euclidean space K = Rn (i.e., the state is uncon-
strained), or can be described by polynomial equality constraints K = {x|g(x) = 0 ∈ Rm}.

Assumption 1 is relatively mild and captures a broad set of robotics problems where the variables
belong to semi-algebraic sets (e.g., rotations, poses); see, for instance [11, 56]. Given the system in
eq. (1), we formally define the filtering problem that recursively estimates the belief p(x):
Problem 1 (Recursive State Estimation). Assume the state at time k + 1 is solely dependent on the
previous state xk, action uk, and measurement yk, we have the process and observation model as:

p(xk+1|xk,uk,xk−1, · · · ,x0) = p(xk+1|xk,uk), p(yk|xk,yk, · · · ,x0) = p(yk|xk). (2)

Our goal is to recursively estimate the belief p(xk) := p(xk|uk, · · · ,u0,yk, · · · ,y0) for the system
in (1) dependent on all the information from process and observation models until time k.

In the Bayes Filter, we apply the prediction and update steps to fuse the dynamics and measurements:

p−(xk+1) ∝
∫
K
p(xk+1|xk,uk)p(xk)dx, (Prediction)

p(xk) ∝ p(yk|xk)p
−(xk). (Update)

As the system (1) is nonlinear and corrupted by arbitrary noise, solving Problem 1 via Bayes filter is
challenging in representing the belief p(x) and the noise. When non-trivial noise belief is involved,
marginalizing the distribution in the prediction steps is also generally intractable. In the following
sections, we leverage the polynomial structure of the system to address these challenges.

5 Moment-Constrained Max-Entropy Distribution

In this section, we introduce the MED and show how to recover the distribution given the moment
constraints using convex optimization.

5.1 Asymptotic Property of MED

Though a moment-determinate distribution can be uniquely determined by all its moments, for
computational purposes, we expect to describe distributions with a finite number of moments.
Given a finite number of moments, the underlying distribution is usually not unique. Therefore,
to guarantee uniqueness, we define the notion of Moment-Constrained Max-Entropy Distribution,
which is the distribution with maximum entropy among all the distributions that match the given
moments. We denote the set of distributions that match a set of given moments of order up to r as
Pr := {p(x) |

∫
K p(x)dx = x̄α,∀α ∈ Nn

r }, and its limit as P∞ := limr→∞ Pr.

Thus, the MED can be obtained by maximizing the entropy functional over Pr:

p∗r(x) := argmax
p(x)

−
∫
K
p(x) ln p(x)dx s.t. p(x) ∈ Pr. (Pr)
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We denote the solution to its limiting problem (P∞) with feasible set P∞ as p∗∞(x). For moment-
determinate distribution in Definition 1, p∗∞(x) can be uniquely determined by P∞. The asymptotic
property of p∗r(x) can be summarized by:

Theorem 1 (Asymptotic approximation of Moment-Determinate Distribution [57]). Suppose that
P∞ is defined by the moments of a moment determinate distribution, the solution p∗∞(x) is unique
and p∗r(x) converges to p∗∞(x) in norm,6 i.e., limr→∞ ∥p∗r(x)− p∗∞(x)∥1 = 0.

Proof. The complete proof is shown in [57].

Remark 1. We consider MED as the belief representation for our filtering approach. The resulting
approach avoids the integral in the (Prediction) step —which is generally intractable— by directly
operating over the moments, and then recovers the corresponding distribution via (Pr). The approach
guarantees convergence to the true belief in the limit, i.e. r → ∞, thanks to Theorem 1.

Remark 2. For p(x) with compact support, p(x) is guaranteed to be moment determinate, i.e.,
p∗∞(x) be unique; see Proposition 12.17 of [58]. For an engineering problem where states are not
possible to be infinite, additional assumptions on the compactness of support are reasonable.

5.2 Recover MED via Convex Optimization

Now we briefly review the structure of the solution of (Pr) and how we can retrieve it via convex
optimization. The full derivation by [59] in a normed linear space is summarized in Appendix D-E.

By the first-order optimality condition, we can show that the solution to (Pr) takes the following
form —with the coefficients λα to be determined:

p(x) = exp (−
∑

α λαx
α). (3)

Via the Legendre-Fenchel dual of (Pr), the optimal coefficients can be obtained by minimizing the
thermal dynamics potential ∆(λ) of p(x) [59]:

minλ ∆(λ) :=
∫
K exp (−

∑
α λαx

α)dx+
∑

α λαx̄α. (4)

We observe the gradients,

∂∆(λ)
∂λβ

= −
∫
K exp (−

∑
α λαx

α)xβdx+ x̄β ∈ R|Nn
r | (5)

equal zero when p(x) satisfies all the moment constraints. Thus, we minimize ∆(λ) to search p(x)
that meets the first-order optimality constraints. We can further verify the convexity of ∆(λ) by
verifying that the following Hessian is positive definite:

H(λ)β,γ :=
∂∆(λ)

∂λβλγ
=

∫
K
exp (−

∑
α

λαx
α)xβxγdx ∈ R|Nn

r |×|Nn
r |.

We find that H(λ) is exactly the moment matrix generated by p(x), which is positive semidefinite
as p(x) is nonnegative. We note that numerical integration is required to evaluate the Hessian and
gradients. For an n-dimensional system with moments up to order r are matched, computing the
exact gradients and Hessians requires evaluating |Nn

r | and |Nn
2r| terms of moments, respectively.

For nonempty K defined by g(x) in Assumption 1, additional linear constraints is needed in (4)
to consider the ideal generated by g(x), i.e., I[g(x)] := {

∑
i qi(x)gi(x)|∀qi(x) ∈ R[x]}. The

detailed derivation is summarized in Appendix F.

6 Main MEM-KF Algorithm

In this section, we introduce the Max Entropy Moment Kalman Filter (MEM-KF) algorithm. In the
prediction steps, instead of directly marginalizing the distribution, we predict the moments via the
dynamics first, and then recover the MED matching those moments. In the update steps, we formulate
the observation model as MED and update the parameters via Maximum A Posterior estimation.

6[57] considers the 1−norm ∥p(x)∥1 :=
∫
K |p(x)|dx.
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6.1 Extended Dynamical System

To generate higher-order moments of the states to better approximate the belief, we need an extended
version of system (1) that exposes these moments in the state-space model. To achieve this goal, we
apply ϕr(·) to both sides of (1) to generate monomials of degree up to r for xk, wk and vk:{

ϕr (xk+1) = ϕr(f(xk,uk,wk))
ϕr (h(yk,xk)) = ϕr(vk)

=⇒
{

ϕr(xk+1) = A(wk,uk)ϕs(xk)
C(yk)ϕq(x) = ϕr(vk)

. (6)

Intuitively, (6) combines the entries of the original process and measurement models into higher-order
polynomials by taking powers and products of the entries of f and h. Since each polynomial of
degree up to r can be written as a linear combination of the canonical basis ϕr(x),we can rewrite
both the extended process or the observation models as linear functions of ϕr(x). Note that as the
ϕs(xk) on the RHS of the dynamics may have different degrees as LHS due to the nonlinearity, thus
we have the order possibly r ̸= s, r ̸= q. We also note that the first term of ϕr(·) is always 1 so we
have the dynamics as homogeneous linear equalities. An example of the extended dynamical system
is presented in Appendix G.

6.2 Initialization

We denote the belief or parameters after the prediction step with superscript (·)−. For a recursive
estimator, we set the initial state as a MED p(x|λ0) = exp (−

∑
α λ0,αx

α) with coefficients λ0.
One typical choice is the Gaussian distribution, a max-entropy distribution with constraints on the
mean and covariance.

6.3 Prediction Steps

It is possible to formulate the prediction step as marginalizing the joint density between xk and xk+1:
p−(xk+1) ∝

∫
K p(xk+1|xk,uk)p(xk|λk)dxk. (7)

However, the integration on the RHS is generally intractable for arbitrary distribution. Even if
p(xk+1|xk,uk) and p(xk|λk) are MED, p−(xk+1) is not guaranteed to be MED, that is, we can not
claim MED is a valid conjugate prior in general.

To mitigate this issue, we instead use the extended dynamics to predict the moments for p−(xk+1)
and then recover the distribution. Consider the extended dynamics and take the mean value on both
sides:

ϕr(xk+1) = A(wk,uk)ϕs(xk) ⇒ E[ϕr(xk+1)] = E[A(wk,uk)ϕs(xk)]. (8)
Under the assumption that the noise distribution is independent of the state distribution, the expectation
of the cross term of x and w can be separated, and the above equation can be simplified to:

x̄α,k+1 = A(w̄γ ,uk)x̄β,k, (9)
with the moment sequence specified by α ∈ Nn

r , β ∈ Nn
s . Given the moments sequence x̄α,k+1, we

can apply (4) to recover the distribution represented by λ−
k+1, i.e., p(xk+1|λ−

k+1).
Remark 3. According to Theorem 1, p−(xk+1) converges to the true distribution in norm as r → ∞,
which, in this limiting case, marginalizes the distribution (7) without the symbolic integration.

6.4 Update Steps

In the update steps, we apply Maximum A Posterior estimation to update the belief. Consider the
extended measurement model C(y)ϕq(x) = ϕr(v) Given the moments of ϕr(v), i.e., v̄α, we model
the noise distribution as MED parameterized by µ:

p(v|µ) = exp (−
∑

α µαv
α). (10)

We note that the noise v relates to the observation model via v = h(y,x). Thus, we have the
likelihood function by substituting the v with h(y,x):

p(y|x,ν) = exp (−
∑

α µαh(y,x)
α) = exp (−

∑
α ναx

α), (11)
where ν is the coefficients corresponding to the canonical basis ϕr(x). With a batch of m measure-
ments, and the prior distribution p(x|λ−), the posterior distribution of x can be obtained by:

p(x|λ) ∝ p(x|λ−)
∏m

i=1 p(yi|x,µ) = exp (−
∑

α λαx
α), (12)

with λ being the summation of the coefficients λ = λ− +
∑m

i νi. To predict the belief of the next
step, we normalize the likelihood function via numerical integration to compute the moments.
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Figure 2: The MED with moment matched up to order r. The heat map and samples are shown on the RHS of
the plot. MED asymptotically approaches the sample distribution as the order increases.

6.5 Extraction of Optimal Point Estimation
Algorithm 1 Max Entropy Moment Kalman Filter

Require: Initial distribution parameterized by λ+
0 , dy-

namics model xk+1 = f(xk,uk,wk), observation
model h(y,x) = v.
// Obtain the observation model

µβ
(4)←− v̄β

for time k = 1, . . . , N do
// Compute the moments at k − 1
x̄β,k−1 ←

∫
K p(x|λk−1)x

βdx
// Propagation of moments
x̄α,k ← A(w̄α,uk−1)x̄β,k−1

// Reconstruct the distribution

λ−
k

(4)←− x̄α,k

// Update with measurements

νk
(11)←−− yk,µβ λk ← λ−

k + νk

// Normalize the distribution
λk,α0 ← λk,α0 − ln

∫
K p(x|λk)dx

// Optimal point estimation

x∗
k,X

∗
k

(SDP)←−−− minx∈K− ln p(x|λk)
end for

Given the belief at each step of MEM-KF, we
extract the optimal point estimation with the
highest probability density by:

maxx∈K p(x|λ) ⇔ minx∈K − ln p(x|λ).
(13)

Given Assumption 1 and (3), (13) is a (POP)
with the polynomial cost function being the neg-
ative log-likelihood. Thus, we instead solve the
semidefinite moment relaxation of (POP) (see
details in Appendix A) to extract the optimal
point estimate that has the highest density value.
Under the condition that the resulting SDP has a
rank-1 solution, the optimal point estimate can
be extracted and certified by the rank condition.
We summarize MEM-KF in Algorithm 1.

Remark 4 (KF as a subset of MEM-KF). The
KF is a special case of MEM-KF with linear pro-
cess and measurement models, and the moments
up to the second order are matched.

7 Numerical Experiments

7.1 Asymptotic Property of MED
We first showcase the asymptotic property of MED in approximating complicated distributions. We
apply a line search method to implement (4) with the initial step size determined by exact first-order
gradients (5) and the Hessian approximated by the BFGS algorithm. Although Newton’s method is
introduced in [59], we find obtaining the exact Hessian matrix extremely expensive for high-order
systems. We adopt SPOTLESS [60] to process the polynomials and an adaptive Gaussian quadrature
method [61] for numerical integrations. We apply the MOSEK [62] to solve the (SDP) to extract the
point estimations. More results on nonempty K like SE(2) can be found in the Appendix. H.2.

In the first case, we consider a distribution on R2 generated by the following sampling strategy:

v =

[
sinw + ϵ1
cosπw + ϵ2

]
(14)

where w ∼ U(0, π) is a uniform distribution between 0 and π, and ϵ1, ϵ2 ∼ N (0, 0.01) is Gaussian
noise. We draw N = 1e5 samples from the distribution to compute mean values, an unbiased
estimation of the underlying moments, i.e., v̂α = 1

N

∑N
k=1 v

α
k , α ∈ Nn

r .

Then we recover the distribution on R2 as p(x|λ). The samples and MED with moment up to order r
are shown in Figure 2. We observe that as more moments are matched, the distribution asymptotically
approaches the sample distribution. The result is expected according to Theorem 1. When r = 2, the
MED is the Gaussian distribution. Due to the nonlinear transformation, the samples are concentrated
on the curve with higher curvatures, which starts emerging in p(x|λ) when r ≥ 4. We can further
verify that the result of r = 12 is sufficiently good by comparing it with the heat map of the samples.
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Table 1: Covariance of rank-1 point estimation with N accumulated samples using noise model (14) and (16)
with moments up to order r matched. The normalized log-likelihood of the belief, i.e., ln p(x), is shown in (·)
for small N . We note that increasing r consistently results in higher density.

r =
N =

1 2 3 5 10 20 50 100

(14)

2 (BLUE) 1.58 (−1.54) 0.805 (−0.844) 0.539 (−0.439) 0.326 0.163 0.0784 0.0319 0.0161
4 3.38 (−0.840) 1.58 (0.034) 0.771 (0.665) 0.187 0.0303 0.0101 3.47e−3 1.71e−3
6 4.48 (−0.161) 1.80 (0.885) 0.696 (1.65) 0.159 0.0210 3.54e−3 8.94e−4 4.27e−4
6 4.52 (0.892) 1.83 (2.03) 0.661 (2.81) 0.131 7.09e−3 9.30e−4 2.72e−4 1.34e−4
10 4.04 (1.26) 1.83 (3.04) 0.628 (3.96) 0.0596 1.06e−3 3.08e−4 1.07e−4 4.69e−5
12 2.41 (1.72) 1.72 (4.25) 0.367 (5.92) 0.0230 3.78e−4 1.75e−4 7.12e−5 3.27e−5

(16) 2 (BLUE) 2.07 (−1.88) 1.01 (−1.18) 0.706 (−0.779) 0.420 0.208 0.0989 0.0407 0.0199
4 4.47 (0.073) 2.05 (1.42) 1.14 (2.22) 0.272 0.0128 4.59e−3 1.90e−3 9.36e−4
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Figure 3: Applying the update step of MEM-KF to the linear system corrupted by noise (16). With larger r, the
posterior distribution converges faster to the truth states. The case for noise (14) is presented in the Appendix.

7.2 Update Steps

Now we verify the update step of MEM-KF. We consider a basic linear observation model:

y = x+ v ∈ R2, (15)

where the moments of v are known in advance. Then, we consider the non-Gaussian noise generated
by the following nonlinear sampling strategy:

v =

[
2q1 − 1 + ϵ1
2q2 − 1 + ϵ2

]
, q1, q2 ∼ Bernoulli(0.5), ϵ1, ϵ2 ∼ N (0, 0.2I). (16)

We compare the proposed method with the Best Linear Unbiased Estimator (BLUE)[63], which is the
minimum variance estimator using only mean and covariance. We compare the asymptotic property
of the update steps with accumulated measurements. We accumulate N measurements to obtain the
negative log-likelihood, i.e., − ln p(x|y1,y2, · · · ,yN ) = Scalar +

∑N
k=1

∑
α µαh(yk,x)

α.

The normalized belief distribution is illustrated in Figure 3. After receiving the first measurement, we
notice that the belief computed by r = 4 retains the multi-modality caused by the noise distribution
and exhibits four different peaks. After more measurements are incorporated, the belief converges to
the true state with dramatically smaller covariance. On the other hand, the BLUE (r = 2) provides a
unimodal (Gaussian) approximation of the belief and even with more data, it still exhibits a relatively
large covariance around the true state. The interested reader can also find results with noise (14) are
shown in Figure 6 in the Appendix. H.1 which exhibit similar patterns.

We further sample 1000 trials in each noise with different N to compute the empirical variance
of the point estimation extracted by (SDP). The results are presented in Table 1. We observe that
with sufficiently many measurements accumulated (N ≥ 5), increasing r consistently lowers the
covariance and outperforms BLUE dramatically. With small N , the multi-modality of the belief
introduces additional bias when computing the point estimation that makes the covariance higher
than BLUE. However, we note that the point estimation is not a full belief representation and can not
represent the multi-modality. The log-likelihood of the normalized density for the cases with N ≤ 3
is computed to show that increasing r can provide point estimations with higher likelihood.
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Figure 4: Localization with unknown data association. In the first row, the landmark association follows the
same distribution in (18). In the second row, the measurement comes more from the landmarks at the lower
left corner. The performance of baselines degrades due to incorrect data associations, while MEM-KF can
consistently track the ground truth.

7.3 Localization with Unknown Data Association on SE(2)

Now we consider a localization problem where a robot with pose:

Z :=

[
R p
0 1

]
∈ SE(2), including rotation R :=

[
c −s
s c

]
and position p :=

[
px
py

]
moves in the plane while collecting range-and-bearing measurements.7 The problem is modeled by
the following dynamical system:{

Zk+1 = ZkUkWk ∈ SE(2)
yk = RT

k (Lik + v − pk) ∈ R2 , (17)

where the pose Z, input U , and noise W all belong to SE(2). U models the wheel odometry of a
differential-drive wheel robot, and W can be generated by the associated noise distribution in the
Lie algebra [64]. Due to the SO(2) group constraints on R, the system is nonlinear. We denote with
Li ∈ R2 the (known) position of landmark i ∈ I and with Lik the position of the landmark observed
at time k, while v is the measurement noise.

In our case study, we consider the robot receiving observations from four landmarks with unknown
data associations. Due to the unknown data associations, for given yk, we do not know which
landmark is actually measured, so the index ik is unknown. The work [65] decides the data association
between observations and landmarks by taking the ik as variables. For a filtering problem, [65] is
equivalent to choosing the most likely association and leads to an intractable estimation problem.
To mitigate this issue, we assume each measurement to one of the landmarks with equal probability
p1 = p2 = · · · = pN = 1

N . Thus, such “sensor model” with the max entropy association strategy
can be formulated as

Rkyk + pk = vL := Lik + v, (18)

where p(Lik = Li) =
1
N ,∀i ∈ I and v ∈ N (0,Σ). The RHS can be modeled as a single noise term

vL that can be approximated by MED following the same procedure for (16). We consider r = 4 in
our case, which is sufficiently good to represent the four peaks caused by the landmarks. For r = 2,
representing the four landmarks as a Gaussian distribution with extremely large covariance leads to
little innovation in the update steps.

We present the result of the proposed method and compare it with the baselines, including the EKF,
UKF, and their variants on SE(2) manifolds, i.e., the InEKF [35] and UKFM [66]. We consider
two scenarios, such that 1) the underlying association distribution is identical to the max entropy
association, i.e., the measurement comes from four landmarks with the equal probability, and 2) the
robot receives more measurements from the landmark on the lower-left corner. The results of the two

7Note that the unknown rotation has to satisfy the equality constraint g(x) = c2 + s2 − 1 = 0, due to the
structure of the Special Orthogonal group SO(2).
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Figure 5: Comparison of particle filter with N particles with MEM-KF. In the first row, the landmark association
follows the same distribution in (18). In the second row, the measurement comes more from the landmarks at
the lower left corner. We see that the particle filter can better track the trajectories with more particles. We find
that both the particle filter with a sufficient number of particles and MEM-KF can estimate the trajectories with
similar quality. The statistics are presented in Figure 8.

cases are shown in Figure 4. We can see that MEM-KF consistently outperforms the baselines in
both scenarios. The baselines in 2) have a clear bias in the trajectory, due to the fact that they greedily
choose the most likely landmark as the originator of a measurement.

The MEM-KF is also compared with the particle filter in Figure 5. When sufficiently many particles
are added, both methods can successfully estimate the trajectories with similar estimation error.
However, we note that MEM-KF is deterministic and provides a smooth belief representation that
is analytical and convenient for the extraction of the globally optimal point estimation via convex
optimization. Such a property is not possible for the particle filter that is based on random sampling.
More statistics about the comparison are presented in the Appendix. H.3.

8 Conclusions
In this work, we presented the Max Entropy Moment Kalman Filter (MEM-KF) for optimal state esti-
mation of polynomial systems corrupted by arbitrary noise. By the Moment-Constrained Max-Entropy
Distribution (MED), we can asymptotically approximate almost any belief and noise distributions
given an increasing number of moments of the underlying distributions. We then leverage the system
dynamics to predict future moments to overcome the difficulties in the marginalization steps in the
prediction steps. The update step is formulated as a Maximum A Posteriori estimation problem
with measurements modeled as MED. All the steps in MEM-KF, as well as the extraction of the
optimal point estimation, can be exactly solved by convex optimization. We showcase the MEM-KF
in challenging robotics tasks, such as localization with unknown data association.

Limitations and Future Work The proposed method relies on numerical integration, which is
computationally intensive for real-time deployment. The Gaussian-quadrature applied to evaluate the
gradients (5) in (4) still scales exponentially w.r.t the dimension of the systems. Given this reason, the
average time consumption for the localization case in the update is 6.87 seconds and 34.51 seconds
in recovering MED from moments. Future work will consider GPU-based numerical integration that
scales better for high-dimensional systems and real-time deployment. Possible implementation can
be [67], which includes a GPU version of the deterministic integration methods in [68]. To further
improve the scalability of MEM-KF, we can leverage the sparsity of polynomials by considering only
a partial amount of moments [69].

Societal Impact This paper provides an optimal filtering framework that can asymptotically approxi-
mate any moment-determinant belief for non-Gaussian polynomial systems with smooth functions.
This paper pushes the boundary of reliable and certifiable state estimations, especially for robotics.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We developed the MEM-KF that provides asymptotically optimal state estima-
tion for nonlinear non-Gaussian systems. In the limiting case, the belief maintained in the
filter converges to the true distributions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included this part in the conclusions.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We assume the system is polynomials. We then referred to the work [57] to
show that the induced max entropy distribution can asymptotically approximate any belief
that is moment-determinate.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithm can be reproduced providing that the 1) polynomial basis is
computed correctly, 2) a proper numerical integration method, e.g., Gaussian quadrature, is
available. The algorithm block reveals all the information to reproduce the result.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the core algorithm for the main algorithm in the appendix.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment is a classical problem in robotics that involves multimodal
distributions to show the main asymptotic property of the MEM-KF.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the evaluation of the experiment on a substantial number of
trials and provided the box plot.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments can be implemented on a laptop.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research respect the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included this part in the conclusions. This paper is foundational
research on state estimation that does not have a direct path to negative societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is for nonlinear state estimation that does not have this concern.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited the references and are the owners of the submitted
materials.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All the data and code are well documented.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not used.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not used.
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A Polynomial Optimization and Semidefinite Relaxations

In general, POPs are hard non-convex problems. In order to obtain a convex relaxation, we first
rewrite the POP as a function of the moment matrix. The key idea here is that we can write a
polynomial c(x) of degree up to 2r as a linear function of the moment matrix Mr(x), which contains
all the monomials of degree up to 2r:

c(x) = tr(CMr(x)) := ⟨C,Mr(x)⟩, (19)

where we observe that Mr(x), by construction, is a positive semidefinite rank-1 matrix. We then
relax the problem by dropping the rank-one constraint on the moment matrix Mr(x) while enforcing:

X ⪰ 0,X1,1 = 1. (Semidefinite relaxation)

Since the moment matrix Mr(x) contains multiple repeated entries, we further add moment con-
straints that enforce these repeated entries to be identical:

⟨B⊥
i ,X⟩ = 0. (Moment constraints)

Finally, we enforce the equality constraints, using localizing constraints in the form:

⟨Gj ,X⟩ = 0. (Localizing constraints)

These steps lead to the standard semidefinite moment relaxation of (POP), see [40, 70].
Definition 3 (Moment Relaxation of (POP) [40, 70]).

ρ̂ := inf
X

⟨C,X⟩

s.t. X ⪰ 0,X1,1 = 1

⟨B⊥
i ,X⟩ = 0, ⟨Gj ,X⟩ = 0 ∀i, j.

(SDP)

If a rank-1 solution is obtained from (SDP), its solution X̂ is a valid moment matrix. In such a case,
we can extract X̂ = ϕr(x̂)ϕ

T
r (x̂) from the first column of X̂ .

B Auxiliary Matrices

This appendix formally defines the localizing matrices {Bγ}γ [70] that locate the monomials in a
moment matrix and its orthogonal complement {B⊥

γ,α}γ,α. These matrices are used in the definition
of the moment constraints for the moment relaxations for (POP).

We first introduce the matrix Bγ which retrieves the monomial xγ from the moment matrix Mr(x),
i.e., ⟨Bγ ,Mr(x)⟩ = xγ :

Bγ :=
1

Cγ

∑
γ=α+β

eαe
T
β , Cγ := |{(α, β)|γ = α+ β}|, (20)

where eα ∈ Rs(r,n)×1 is the canonical basis corresponding to the n-tuples α ∈ Nn
r and Cγ is a

normalizing factor. We note that the moment matrix can be written as:

Mr(x) =
∑
γ

CγBγx
γ , γ ∈ Nn

2r. (21)

Then we introduce B⊥
γ,α, which is used to enforce that repeated entries (corresponding to the same

monomial xγ) in the moment matrix are identical. We first define the symmetric matrix, for any
given α, β ∈ Nn

r :
Eα,β = eαe

T
β + eβe

T
α. (22)

Then we construct B⊥
γ,α, for some given γ ∈ Nn

2r and for α ∈ Nn
r (with α < γ) as:

B⊥
γ,α =Eᾱ,β̄ −Eα,β , (23)

where β is such that α+ β = γ and β ≤ α, and where ᾱ, β̄ ∈ Nn
r are chosen such that ᾱ+ β̄ = γ

and ᾱ is the smallest vector (in the lexicographic sense) that satisfies ᾱ + β̄ = γ. An example of
matrices Bγ and B⊥

γ,α for a simple problem is given in Appendix C.
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C Examples of Moment Matrix and Constraints

For r = 2, n = 2, we have the moment matrix:

M2(x) =


1 x1 x2 x2

1 x1x2 x2
2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2

 .

For γ = [2, 0], which corresponds to x2
1, we have:

Bγ =
1

Cγ


0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Cγ = 3. (24)

Now let us compute B⊥
γ,α for α = [1, 0] ≤ γ. We note that β = γ − α = [1, 0] and we can choose

ᾱ = [0, 0] and β̄ = [2, 0]. The corresponding vectors in the canonical basis are:

eα = [0 1 0 0 0 0] , eβ = [0 1 0 0 0 0] ,

eᾱ = [1 0 0 0 0 0] , eβ̄ = [0 0 0 1 0 0] ,
(25)

from which we obtain:

B⊥
γ,α = Eᾱ,β̄ −Eα,β = eᾱe

T
β̄ + eβ̄e

T
ᾱ − (eαe

T
β + eβe

T
α)

=


0 0 0 +1 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
+1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
(26)

By adding the constraint:
⟨B⊥

γ,α,X⟩ = 0, X ⪰ 0, (27)

we enforce that the entries corresponding to x2
1 are identical.

D Derivation of MED

Consider the optimization (Pr), given the multiplier λ ∈ R|Nn
r |, we have the Lagrangian:

L(p(x),λ) =
∫
K
p(x) ln p(x)dx+

∑
α

λα(

∫
K
xαp(x)dx− x̄α). (28)

For fixed p(x), the dual problem to (Pr) becomes:

max
λ

min
p(x)

L(p(x),λ) (29)

Via taking the variation of p(x) on L(p(x),λ), we have the first-order optimality condition:

∇p(x)L(p(x),λ) = p(x)
1

p(x)
+ ln p(x) +

∑
α

λαx
α, (30)

where ∇ is the Fréchet derivative in a normed linear space defined on all possible distributions. For
simplicity, we merge the constant 1 produced by the entropy term and let the (30) equal to zero. Then
we have the stationary point (3):

p(x) = exp (−
∑
α

λαx
α).
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E Derivation of Thermal Dynamics Potential

Now we introduce the thermal dynamics potential term that we can minimize to obtain the coefficients
of (3). We mainly refer to the result in [59] to introduce the thermal dynamics potential and the
equivalent potential-like term for the optimization. Consider the integrand:

φ(λ) =

∫
K
exp (−

∑
α∈Nn

r

λαx
α)dx, (31)

the normalized version of (3) can be expressed as:

p∗(x) =
exp (−

∑
α λαx

α)

φ(λ)
. (32)

By substituting the p∗(x) to the inner minimization of minp(x) L(p(x),λ),
we have the Legendre-Fenchel dual as

L(p∗(x),λ)

=

∫
K
p∗(x) ln p∗(x)dx+

∑
α

λα(

∫
K
xαp∗(x)dx− x̄α)

=

∫
K
p∗(x) ln

p(x)

φ(λ)
dx+

∑
α

λα(

∫
K
xαp∗(x)dx− x̄α)

=

∫
K
p∗(x) ln p(x)dx+

∑
α

λα

∫
K
xαp∗(x)dx−

∫
K
p∗(x) lnφ(λ)dx−

∑
α

λαx̄α

=−
∫
K
p∗(x) lnφ(λ)dx−

∑
α

λαx̄α

=− lnφ(λ)−
∑
α

λαx̄α =: −Γ(λ)

(33)

We note that the coefficients λα0
corresponding to the normalization constraints can be extracted

from φ(λ) and we have:

Γ(λ) = ln

∫
K
exp (−

∑
α∈Nn

r /{α0}

λαx
α) exp (−λ0)dx+ (λ0 +

∑
α∈Nn

r /{α0}

λαx̄α)

= ln

∫
K
exp (−

∑
α∈Nn

r /{α0}dx

λαx
α)dx+

∑
α∈Nn

r /{α0}

λαx̄α

(34)

Given the fact that p(x) is normalized at the stationary point:∫
K
exp (−

∑
α∈Nn

r /{α0}

λαx
α) exp (−λ0)dx = 1, (35)

we have the un-normalized thermal dynamics potential:

∆(λ) = (

∫
K
exp (−

∑
α∈Nn

r

λαx
α)dx− 1) +

∑
α∈Nn

r

λαx̄α. (36)

The fact that ∆(λ) = Γ(λ) can be verified by extract the term x̄α0
= 1 and λ0 =

ln
∫
K exp (−

∑
α∈Nn

r /{α0}dx λαx
α)dx.

F Recover Distribution on Quotient Ring

Now, we consider nonempty K that introduces an ideal structure to the systems, which is common in
robotics. Consider the ideal generated by the polynomial equality constraints g(x):

I[g(x)] :=

{∑
i

qi(x)gi(x)|∀qi(x) ∈ R[x]

}
. (37)
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The integration of any term in I[g(x)] will be zero, i.e,∫
K
p(x)

∑
i

qi(x)gi(x)dx = 0,∀α, (38)

which can be checked by the fact that gi(x) ≡ 0,∀x ∈ K. Thus, we need to incorporate these
constraints when recovering λ to avoid degenerate search direction or reducing the systems to the
quotient ring R[x]/I[g(x)].
Now, we proceed to construct the ideal from the canonical basis ϕr(x) by linear algebra techniques.
Consider the elements of R[x]/I[g(x)] with finite degree r; each element can be expressed as a
linear combination of the terms in the set:

B = {xαgi(x)|degxαgi(x) ≤ r, ∀i,∀α}. (39)

Let the vector of all elements in B as b(x), we can express b(x) as linear combination of ϕr(x), i.e,

b(x) = Bϕr(x). (40)

Via QR decomposition of BT, i.e,

BT = [Q Q⊥]

[
R
0

]
, (41)

we can extract the null space of B, i.e, the span of column space of Q⊥, to formulate the basis of the
quotient ring. The R is an upper diagonal matrix. Then, we conclude that

q(x) = QT
⊥ϕr(x) (42)

is a basis for the quotient ring. In this case, the max entropy distribution can be expressed in terms of
q(x):

p(x) = exp
(
−λT

q q(x)
)
, (43)

and then we can minimize the thermal dynamics potential on the quotient ring:

∆(λq) =

∫
K
exp

(
−λT

q q(x)
)
+

∑
i

λqq̄. (44)

By the definition of λq and Q⊥, we have the equivalence relation of λ:

λ−Q⊥λq ∈ colsp(Q). (45)

Thus, we can alternatively perform constrained optimization with moments on R[x] by incorporating
equality constraints to avoid the degenerate search directions:

min
λ

∆(λ)

s.t. QTλ = 0.
(46)

As the constraints are linear, the programming remains convex. When λ is fixed, the gradients and
Hessian can be computed by numerical integration and used to determine the optimal search direction
for the optimal coefficients. As the convex optimization is not agnostic to the initial guess, we can
initialize λ by an MED with finite integrals over K, for example, the Gaussian distribution.

G Example of Extended Polynomial System and Its Affine Form

We provide an example of the extended polynomial system and transform it to the affine form as in
(6). Consider a linear measurement model with state x ∈ R2, measurements y, and measurement
noise w:

y1 − x1 = w1,

y2 − x2 = w2.
(47)

The extended system at r = 2 is:
ϕr(y − x) = ϕr(w) (48)
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where

ϕr(y − x) =


1

y1 − x1

y2 − x2

(y1 − x1)(y2 − x2)
(y1 − x1)

2

(y2 − x2)
2

 =


1

y1 − x1

y2 − x2

y1y2 + x1x2 − y1x2 − y2x1

y21 + x2
1 − 2y1x1

y22 + x2
2 − 2y2x2

 ,ϕr(w) =


1
w1

w2

w1w2

w2
1

w2
2


(49)

We then have the extended system
A(y)ϕr(x) = v, (50)

where

v =


1
w1

w2

w1w2

w2
1

v22

 ,ϕr(x) =


1
x1

x2

x1x2

x2
1

x2
2

 ,A(y) =


1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0
0 y2 y1 −1 0 0
0 2y1 0 0 −1 0
0 0 2y2 0 0 −1

 . (51)

H More Numerical Results

H.1 Update Steps

We compare the update steps in the linear system (15) using the noise model (14) with different
orders of moments constraints r in Figure 6. We find that with higher moments, the density is more
concentrated and converges faster to the ground truth.

H.2 Prediction Steps

We only apply the prediction steps to the system on the matrix Lie group:

Zk+1 = ZkUkWk ∈ SE(2), (52)

and compare the recovered distributions with Monte Carlo simulations. We find that with larger r,
we can better recover the distribution. As marginalizing the distribution p(xk|λ−

k ) requires symbolic
integration that is generally intractable, we apply the Langevin dynamics on SE(2) to sample and
visualize the position part of MED. The MED is sampled by Langevin dynamics and visualized in
x− y plane in Figure 7.

H.3 Comparison with Particle Filter

We compare MEM-KF with particle filters with N = 1e1, 1e2, 1e3, 1e4 and 1e5 particles. For both
cases in Section 7.3, we sample the max entropy association strategy to avoid overconfidence in
the observation models. We consider the threshold for resampling as 0.5 among all the trials. The
estimated trajectories of all the cases are shown in Figure 5. The box plot statistics for the position
error is shown in Figure 8.

We find that as more particles are considered, the particle filters converge to better solutions. In terms
of numerical results, MEM-KF has compatible solutions with a slightly larger median error than the
particle filters with N ≥ 1e3. However, we note that the MEM-KF is a deterministic method that
maintains a smooth analytical belief representation that is convenient for the extraction of global point
estimation. Such a property is not possible for particle filters that are based on random sampling.
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Figure 6: From the top to bottom, using noise model with moments with order up to r = 2, 4, 6, 8, 10 and 12
are matched. As more measurements are accumulated, the belief converges to the true state. With larger r, the
belief converges much faster to the Dirac measure.
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Figure 7: The propagation of the belief on SE(2) with only prediction steps. We visualize the position part in
the x− y plane. The blue dots represent the Monte Carlo simulations of the system dynamics, and the red dots
represent the MED sampled by Langevin dynamics using the log likelihood of the recovered distribution. We
find that with r = 2 the banana shape [64] is not fully captured by the MED. With larger r, the MED better
captures the underlying distribution, especially in the tail of the banana shape.
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Figure 8: Location error for the localization tasks with unknown data association. (a)The underlying real
association follows the same distribution in (18). (b)The measurement comes more from the landmarks at the
lower left corner. We compare the 2-norm between the estimated position and the ground truth for all 100
trajectories. We compared the particle filters with N particles with the proposed MEM-KF with polynomial
order up to r = 4. We find that the particle filter with a sufficient number of particles and the proposed MEM-KF
can estimate the trajectories with similar quality.
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