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Abstract

We present CRYPTICBIO, the largest publicly available multimodal dataset of
visually confusing species, specifically curated to support the development of Al
models in the context of biodiversity applications. Visually confusing or cryptic
species are groups of two or more taxa that are nearly indistinguishable based on
visual characteristics alone. While much existing work addresses taxonomic identi-
fication in a broad sense, datasets that directly address the morphological confusion
of cryptic species are small, manually curated, and target only a single taxon. Thus,
the challenge of identifying such subtle differences in a wide range of taxa remains
unaddressed. Curated from real-world trends in species misidentification among
community annotators of iNaturalist, CRYPTICBIO contains 52K unique cryptic
groups spanning 67K species represented in 166 million images. Records in the
dataset include research-grade image annotations—scientific, multicultural, and
multilingual species terminology, hierarchical taxonomy, spatiotemporal context,
and associated cryptic groups. To facilitate easy subset curation from CRYPTICBIO,
we provide an open-source pipeline, CRYPTICB10-CURATE. The multimodal de-
sign of the dataset provides complementary cues such as spatiotemporal context
that support the identification of cryptic species. To highlight the importance of
the dataset, we benchmark a suite of state-of-the-art foundation models across
CRYPTICBIO subsets of common, unseen, endangered, and invasive species, and
demonstrate the substantial impact of spatiotemporal context on vision-language
zero-shot learning for cryptic species. By introducing CRYPTICBI10, we aim to cat-
alyze progress toward real-world-ready fine-grained species classification models
for biodiversity monitoring capable of handling the nuanced challenges of species
ambiguity. The data and the code are publicly available in the project Websiteﬂ

1 Introduction

Advancements in Al are set to play a pivotal role in biodiversity conservation and ecological manage-
ment as data in open citizen science platforms amasses. iNaturalist [28]] and Observation.org [38]] are
well established citizen science platforms collecting biodiversity data worldwide, featuring annotated
in-situ images of a wide range of species as well as metadata such as geographical location and
observation date. Al-ready datasets are a crucial part of the development, evaluation, and eventual
deployment of machine learning (ML) systems, and many studies have already demonstrated their po-
tential for species identification [44, 47, 51]. As it turns out, however, species identification combines
a unique set of challenges. As illustrated in Figure[I] these include: (1) viewpoint variations; (2)
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Figure 1: Challenges of biodiversity: (1) viewpoint variations (Parasteatoda tepidariorum); (2) oc-
clusion by other objects (Vipera berus); (3) clutter (Harmonia axyridis); (4) multiple life cycle stages
(Papilio machaon); (5) deformations (Cornu aspersum); (6) intra-class variation (Passer domesticus);
(7) inter-class similarity (Bellis perennis, Leucanthemum vulgare, Chamomile matricaria).

occlusion by other objects; (3) clutter; (4) multiple life cycle stages; (5) deformations; (6) intra-class
variation; (7) inter-class similarity. The latter two challenges are particularly hard: some species may
have significant visual differences, while at the same time visual similarities in shape and color may
exist between some species belonging to different classes. This morphological confusion makes it
difficult even for humans to distinguish species without deeper level of expertise, and subsequently
limits the construction of trustworthy Al for biodiversity [25].

Existing state-of-the-art datasets of text-annotated biodiversity images primarily curated from iNatu-
ralist focus on taxa identification holistically. Notable examples include TREEOFLIFE-10M [47]
with over 10 million observations spanning 451K species, and BIOTROVE [51]] with over 161 million
observations spanning 366K species, respectively. More recently, the multimodal dataset TAXABIND-
8K [44] extending over 8K text-annotated biodiversity images with other contextual metadata like
geographical location, environmental features, audio recordings, and satellite imagery, shows signifi-
cant improvements on 2K bird species identification, using vision as the binding modality in a unified
embedding space. Datasets that directly address the morphological confusion of groups of two or
more species are significantly smaller, manually curated, and focused on a single taxon [3} 4} 34} [42].
Thus, the challenge of identifying subtle differences in a wide range of taxa remains to be addressed.

In this paper, we challenge the biodiversity Al research by curating and releasing CRYPTICBIO,
a multimodal dataset comprising over 166 million images of 52K unique visually confusing
species groups spanning 67K species. Table[T] summarizes how CRYPTICBIO compares to prior
biodiversity datasets in scale and annotation richness, and Table 2] contrasts it with existing cryptic
species benchmarks (which are several orders of magnitude smaller). As this work is intended to have
a direct impact on the use of Al for biodiversity research, we hope it will provide valuable insights to
researchers seeking to better understand biodiversity. Our main contributions include: (1) the largest
multimodal cryptic species dataset to date; (2) broad taxonomic coverage beyond prior single-taxon
studies, (3) enriched metadata (locations, dates, multicultural and multilingual names) enabling new
multimodal research; (4) an open-source pipeline for easy dataset curation (CRYPTICBIO-CURATE);
(5) evaluation benchmarks demonstrating the utility of context in species identification.

The remainder of the paper introduces the CRYPTICBIO dataset and its relation to existing work
(section [2), outlines the curation methodology (section 3)), presents benchmark tasks and zero-shot
results using CLIP-style models (section [)), and concludes with a summary and discussion of
limitations (section[3). Supplementary material includes implementation details, extended results,
and dataset access instructions.



Table 1: CRYPTICBIO comparable datasets.

Dataset Images  Species Annotations Source Features
(multicultural and GBIF (1Natp ralist and .
. Observation.org), multimodal,
multilingual) vernacular GBIF Backb i
CRrYPTICBIO 166.5M 67.1K scientific terms, taxonomic ackbone cryptic
. . Taxonomy [45], species group
hierarchy, location, date, . .
cryplic species erou iNaturalist (52.7K groups)
yptic sp group Taxonomy [30]
BIOTROVE [51] 161.9M 366.6K vernacular, sAmelAmhc terms, iNaturalist blased vernflcular
taxonomic hierarchy species terminology
iNaturalist,
vernacular, scientific terms, Encyclopedia biased vernacular
TREEOFLIFE-10M [47) 10.4M 41K taxonomic hierarchy of Life (EOL)[9], species terminology
BIOSCAN-1M [22]
vernacular, scientific terms, iNaturalist, multimodal
taxonomic hierarchy, location, iNat2021[48], . L
TAXABIND-8K [44] 8.8K 22K environmental features, audio Santinel-2[6], bgfc;l::ic\}:s

recording, satellite imagery WorldClim-2.1[10]

Table 2: Existing benchmarks; each represent one cryptic group. Our new benchmarks are described
in section 4]

Taxon Benchmark Images  Species Annotations Source
Aves AMAZON PARROTS [34] 14K 35 scientific terms iNaturalist, eBird 8],
Google Images
BUMBLE BEES [46] L iNaturalist, Bumble Bee
(not publicly available) 89K 36 scientificterms . o 77) BugGuide 2]
Insecta CONFOUNDING SPECIES |4
ING SPECIES [4] 100 10 scientific term iNaturalist
(not publicly available)
. CHIROPTERA RHINOLOPHIDAE A personal collection
Mammalia RHINOLOPHUS [3] 293 7 scientific terms during field surveys
SEA TURTLES Ul 6.9K 36 yerqz{cular, Internet
L. (not publicly available) scientific terms
Reptilia
SQUAMATA LACERTIDAE 4.0K 9 scientific terms personal collection

PODARCIS [42] during field surveys

2 CRYPTICBI0O Dataset

CRYPTICBIO comprises over 166 million images from 52K unique cryptic groups spanning 67K
species. Derived from iNaturalist’s records of historical misidentifications, these groups are
not symmetric, and their sizes vary, which explains the difference between the number of species
and the number of cryptic groups (see details in the section[3)). Figure 2] showcases cryptic species
group examples over the representative taxa in biodiversity, while Figure (3| details the cryptic species
group size distribution (see details in supplementary material [B] and [D). The dataset is curated
from research-grade citizen science observations provided by the Global Biodiversity Information
Facility (GBIF) [1]], containing validated data from iNaturalist, a source of demonstrated 95%
annotation reliability [26[], and Observation.org, an expert exclusive data validation source [12, |13}
150117, 1164 [18-21]]. In iNaturalist, observations are of research-grade quality at genus, species, or
subspecies level under the following criteria: (1) at least two identifications (including the observer’s);
and (2) there is an agreement among at least two-thirds of identifiers [29]]. Observation.org data is
validated through: (1) a structured review process in which only expert validators assess the presence
and quality of supporting multimedia; or (2) a computer vision system, available through the Nature
Identification API (NIA) [40]], validates with high confidence [41]].

Images in CRYPTICBIO are annotated with detailed taxonomic descriptions and observation context,
enabling extensive filtering and analysis. As summarized in Table[3] every observation at species level
includes its scientific name and associated six-tier taxonomic hierarchy deterministically derived
from GBIF Backbone Taxonomy [435]].

While the inclusion of common or vernacular terminology alongside Latin binomials has been
recognized as an important step toward accessibility and inclusivity in biodiversity datasets [47]],
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Figure 2: Example of cryptic species in CRYPTICBIO. Each column shows from left to right a cryptic
group from Arachnida, Aves, Fungi, Insecta, Mollusca, Plantae, and Reptilia, taxa representative in
biodiversity conservation and policy change supervision.
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Figure 3: Cryptic group size distribution in CRYPTICBI10. The long-tailed distribution suggests that
the majority are divided into a small number of cryptic entities.

relying solely on English risks marginalizing indigenous and culturally specific naming traditions.
Moreover, even within the English-speaking world, regional naming conventions can introduce their
own biases. For example, the species Perisoreus canadensis is commonly known as the Canada Jay
in Canada, yet referred to as the Gray Jay in the United States [36]]. Despite this variability, existing
biodiversity datasets standardize to a single vernacular name per species, overlooking the cultural
and linguistic diversity embedded in naming practices. We believe integrating multicultural and
multilingual species vernacular names preserves ecological knowledge and equity, and increases
inclusivity and cultural reach. CRYPTICBIO enumerates scientific and vernacular species terminology
as listed in the iNaturalist Taxonomy Archive [30].

Building on prior work demonstrating that spatiotemporal priors improve species identification [3} 7,
143]), we integrate spatiotemporal context as an additional modality which can then eventually be



Table 3: CRYPTICBIO annotations enumerate 15 fields provided in 627 Parquet formats; the dataset
is openly available (for download and browsing) on HuggingFace Datasets.

Type Description
Species scientific name Scientific species name (Latin binomial), represented as a string in field
scientificName.

Species vernacular name(s)  Multicultural species common or vernacular names (i.e., Perisoreus canaden-
sis is commonly referred to as the Canada Jay in Canada, while in the United
States is referred to as Gray Jay), represented in a list of comma separated
strings in field vernacularName.

Taxonomic hierarchy Species (primary) taxonomic hierarchy deterministically derived from species
scientific name, represented as strings in separate fields: kingdom, phylum,
class, order, family, genus.

Date The date when the species was observed (separated DD, MM, YYYY), repre-
sented in fields day, month, year.

Geographical location Latitude, longitude coordinates where the species was observed (decimals),
represented in two fields decimalLatitude and decimalLongitude.

Cryptic species group One or more species misidentified with the focal species, noted by scientific
name, represented in a sequence of strings in field crypticGroup.

URL Downloadable image link from Naturalist and Observation.org repositories,

represented as a string in field url.

aligned in a common embedding space. Figure 4] details the spatiotemporal distribution of the dataset.
Cryptic species have historically emerged as a consequence of biogeographic isolation (natural
barriers, such as rivers, mountain ranges, or deserts; deforestation; agricultural expansion; or man-
made structures) which disrupted gene flow between populations and ultimately promoted allopatric
divergence over evolutionary timescales [25]. We hypothesize that the integration of temporal (date)
and spatial (geographical coordinates) context provide complementary cues beyond visual appearance
alone and ultimately enhance the identification of cryptic species. Figure []illustrates an example of
two cryptic bird species that have distinct geospatial distribution patterns and it is easy to tell them
apart based on the location.

Additionally, to support reproducibility and extensibility, we release the full data curation pipeline
CRYPTICBIO-CURATE, enabling streamlined access, manipulation, and image download via raw
URLSs for CRYPTICBIO subsets curation.

License Only images released under a Creative Commons license (CC BY-NC 4.0) are included,
ensuring that the dataset is openly available for public research and non-commercial use.

Geoprivacy We include geolocation metadata for all records, relying on the source platforms’
automated and user-specified obscuration for sensitive species [27, 39]]. This means endangered or
protected taxa have deliberately imprecise coordinates, in line with geoprivacy best practices.

Offensive content We opted not to remove occasional graphic images (e.g. predation or roadkill) to
maintain ecological authenticity. These instances are infrequent, but we advise users—especially
when deploying models or visualizations—to be mindful that some images may be upsetting to
general audiences.

Responsible use Models trained on this data should not be used for unlawful wildlife tracking or
poaching; we provide the data to support conservation efforts and ecological research, aligning with
NeurIPS ethical guidelines.

Privacy We strictly exclude all personally identifiable information (PII) from the metadata associated
with the dataset, ensuring that fields such as observer names and email addresses are removed.
However, we acknowledge that in rare cases, PII may still be visible within the image content itself;
for example, faces of individuals, vehicle license plates, distinctive property features, or GPS location
markers embedded in the media. While such occurrences are unintended and infrequent, users of the
dataset should be aware of this residual risk when analyzing or displaying images.

In comparison to prior biodiversity datasets (e.g., TREEOFLIFE-10M [47] and BIOTROVE [51]], see
Table 1)) that take a broad but coarse approach, CRYPTICBIO is the first to specifically target cryptic
species at massive scale, with 166M images across 52K cryptic groups—significantly enriching each
observation with spatiotemporal context and multicultural vernacular names. Compared to the only
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Figure 4: Spatiotemporal distribution of CRYPTICBIO: (top) stacked seasonality distribution; (bottom)
geographical distribution. Majority of records are concentrated in Europe and North America, with a
seasonal peak in observations during May.

other multimodal dataset TAXABIND-8K (focused exclusively on 2K bird species), CRYPTICBIO
covers 67K species across diverse taxa with vision+language+spatiotemporal modalities, making it a
general, real-world Al-for-biodiversity benchmark.

3 Data Curation

Cryptic species challenge Cryptic species groups are derived from iNaturalist "Similar Species" tab
on a species profile page. When an observation originally identified as species A is later reclassified
as species B, species B is designated as a commonly misidentified counterpart of A. These empirically
derived confusion links, aggregated across many observations, determine which taxa appear in each
other’s "Similar Species" lists. Importantly, these groups are not symmetric; if species A is often
confused with B, C, and D, species B’s "Similar Species" does not necessarily include C or D as
common misidentifications. This data-driven cryptic species group curation reflects real-world trends
in species misidentification among community annotators. By leveraging this organically generated
confusion structure, we design a dataset that reflects the practical challenges of fine-grained species
identification—particularly in cases where even skilled annotators struggle to distinguish between
species.

Because this information is not exposed through the iNaturalist API or bulk exports, CRYPTICBIO
relies on a reproducible scraping workflow to extract the "Similar Species" tab content directly from
public species pages. Importantly, this procedure respects iNaturalist’s robots . txt policy, targets
only non-restricted endpoints, and introduces a 20-second delay between requests to avoid excessive
server load. To ensure transparency and reproducibility, we release the full scraping code, metadata,
and curated outputs in |GitHub, allowing others to replicate the construction of cryptic species groups
under the same conditions. While we recognize the limitations of this approach, it provides the only
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Figure 5: The importance of geospatial information demonstrated by two visually similar species and
their distinct patterns in geospatial locations from CRYPTICBIO.

current means of systematically capturing iNaturalist’s confusion-based links, and we are actively
investigating API-based or officially supported alternatives for future iterations of the dataset.

Curation and filtering To assemble a taxonomically diverse dataset utilizing GBIF’s data portal, we
apply a series of structured filters to occurrence records. GBIF comprises over 217M occurrences as
of 2025-04-13, originating from citizen science sources iNaturalist Research-Grade Observations
and Observation.org, stored in a Darwin Core Archive standard vocabulary (CSV files occurrence,
multimedia and additional metadata eml.xml and meta.xml). We select observations of most
frequent taxa from Animalia (classes Arachnida, Aves, Insecta, Mollusca, Reptilia), Plantae, and
Fungi kingdoms, and join each occurrence and multimedia files, discarding irrelevant columns.
We filter observations CC licensed image files (bird observations may include audio or video media
files) made only species level and enrich them with primary taxonomic hierarchy levels (kingdom,
phylum, class, order, family, and genus [31]]), as well as multicultural English vernacular species
terminology from iNaturalist Taxonomy [30]. We retain the temporal (date) and spatial (latitude
and longitude) metadata associated with each occurrence as additional contextual information. The
associated images are referenced by downloadable URLs, ensuring direct access to the visual media
for each observation (see details in supplementary material [C)).

Cryptic groups are structured using species scientific terminology based on scraped information from
iNaturalist, and stored in JSON format. After extracting these groups, we merge them with GBIF
observations, ensuring that we also retain species that do not have their own cryptic group but are
listed as members of another species’ group. Finally, the data are exported in the Parquet format and
made publicly available on HuggingFace Datasets.

As outlined, we release CRYPTICB10-CURATE, a configurable preprocessing pipeline that streamlines
the preparation of biodiversity datasets for multimodal learning. The pipeline (1) loads raw metadata
(e.g., species scientific names, image URLSs); (2) applies customizable filters to ensure data quality
(such as balancing class distributions); (3) downloads associated images; and (4) outputs a curated
dataset in a standardized format.
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Figure 6: Example images from CRYPTICBIO benchmarks: (left) CRYPTICBIO-ENDANGERED
Calidris pygmaea cryptic species group; (right) CRYPTICBIO-INVASIVE Acacia mearnsii cryptic
species group.

4 Benchmarks

4.1 New Benchmarks

We curate four new cryptic species benchmark datasets, complementary to existing benchmark
listed in Table 2] Figure [6]illustrates example images from our new benchmarks, which include
both endangered and invasive cryptic species. We rigorously balance species distribution to enable
more reliable and equitable cryptic species group identification (see new benchmark details in
supplementary material[E): for all our benchmarks we randomly select 100 samples from each species
in a cryptic group where there are more than 150 observation per species.

CRYPTICB10-COMMON We curate one common species (species with >10K observations) from
Arachnida, Aves, Insecta, Plantae, Fungi, Mollusca, and Reptilia and associated cryptic group,
spanning n=158 species.

CRYPTICB1I0-COMMONUNSEEN To assess performance on common species from CRYPTICBIO-
COMMON not used during model training, we specifically curate a subset containing data from
01-09-2024 to 01-04-2025, spanning n=133 species. By doing so, we ensure there are no duplicated
images in training and inference.

CRYPTICB10-ENDANGERED We propose a cryptic species subset of global TUCN Red List [32]
endangered species. We select one endangered species from Arachnida, Aves, Insecta, Plantae, Fungi,
Mollusca, and Reptilia and associated cryptic group, spanning n=37 species.

CRYPTICBIO-INVASIVE We also propose a cryptic species subset of invasive alien species (IAS)
according to global the Global Invasive Species Database (GISD) [23]]. IAS are a significant concern
for biodiversity as their records appear to be exponentially rising across the Earth, and their geograph-
ical context is crucial [37]]. We select one invasive species from Aves, Fungi, Insecta, and Plantae
and associated cryptic group, spanning n=72 species.

4.2 Experiments

Models We evaluate state-of-the-art CLIP-style models trained on biodiversity data using the scientific
and vernacular terminology of species. We use BIOCLIP [47]]; BIOTROVE’s BIOCLIP ViT-B-16
and OpenAl ViT-B-16 fine-tuned variants [51]]; and TAXABIND [44]] as image-only baseline models.



Table 4: Zero-shot learning on various models and benchmarks: 1/ L / E refers to image / location
/ environmental features embeddings; AP refers to AMAZON PARROTS [34] n=35 species; SLP
refers to SQUAMATA LACERTIDAE PODARCIS [42]] n=9 species; CRR refers to CHIROPTERA
RHINOLOPHIDAE RHINOLOPHUS [3] n=7 species; CB-C refers to CRYPTICB1I0-COMMON n=158
species; CB-CU refers to CRYPTICB10-COMMONUNSEEN n=133; CB-E refers to CRYPTICBIO-
ENDANGERED n=37 species; CB-I refers to CRYPTICBIO-INVASIVE n=72 species; WA refers to
weighted average; BC refers to BIOCLIP; BT-B refers to BIOTROVE-CLIP-B10CLIP; BT-O refers
to BIOTROVE-CLIP-OPENAI; TB refers to TAXABIND. We mix scientific and common terminology
were avaiable.

Model AP SLP CRR CB-C CB-CU CB-E CB-1 WA
BC I 18.1 +1.26 143 +1.14  36.1 £1.57  427+1.61  457+1.63 51.1+1.63  49.1£1.63  44.36
BT-B I 14.1 +1.14 14.1 £1.14 16.0 £1.20  58.9+1.61 61.6+1.59 458+1.63 583 +1.62 51.54
BT-O I 30.1£1.50  25.8 +£1.43 19.4+129 48.6+1.63  49.8+1.55 41.1=%1.61 489 £1.63  44.60
TB I 15.1 £1.17 148 £1.16  36.1+1.57 46.1£1.63  48.8+1.63 52.4+1.63 52.2+1.63 46.73
TB I+L - - - 46.2+1.63  49.0+1.63  52.4+1.63 523%1.63 49.77
BT-B I+L - - - 61.9 £1.58  64.2+1.56 452+1.63  63.2+1.57 58.14
BT-O I+L - - - 48.8+1.63  51.7+1.63  40.8+1.60 50.5+1.63 4798
BT-B I+E - - - 259+1.43  26.1+1.43  33.1+1.61 30.1£1.50  28.65
BT-O I+E - - - 209 £1.33  223+136  30.1x1.50 245141 24.48

For multimodal learning, we add embeddings obtained from the image encoders to those obtained
from TAXABIND location and environmental features encoders, which are then used for zero-shot
classification. We collect from WorldClim-2.1[[10] environmental features for each observation based
on the location metadata, which are then passed through TAXABIND’s environmental encoder.

Metrics We evaluate top-1 zero-shot accuracy across all new and existing benchmarks. We include a
95% confidence intervals for all reported metrics, calculated using binomial proportion confidence
interval method (denoted as +). Furthermore, we compute an aggregate performance metric, which
represents the weighted average accuracy over all classes across the benchmarks. Datasets used in
our benchmark is balanced by design, with an equal number of samples per class (n=100). As a
result, macro- and weighted-average metrics are effectively equivalent and are not affected by class
imbalance. To assess the significance of pairwise performance differences between models, we use
McNemar’s test (p-value < 0.05).

Results Table [ reports the performance on various benchmarks (for more details, see supplementary
material [F). We find that location embeddings significantly improve model performance on zero-
shot image classification for cryptic species (p-value < 0.05). While part of the observed gain
from adding image and location embeddings likely reflects the real-world geographic separation of
morphologically similar species, it is also possible that data collection is geographically biased, with
certain species more frequently observed and labeled in particular regions. In such cases, location
embeddings may act as proxies for latent biases in the training distribution, effectively anchoring
predictions in more probable species given past observer behavior and sampling hotspots. However,
in our setting, the evaluation datasets are randomly sampled from the full data distribution, without
explicit regional or taxonomic filtering. This suggests that the performance boost is not merely an
artifact of overfitting to spatial bias, but rather a reflection of how location embeddings can capture
species ranges and statistical tendencies (i.e. regional observation frequencies) present in the broader
data. We encourage the Al community to create new subsets of CRYPTICBIO for various regions and
measure performance against current benchmarks.

We observe that incorporating environmental variables alongside images results in a significant drop
in zero-shot accuracy. We believe this is due to the limited discriminative value of environmental
features for fine-grained classification, particularly within cryptic species groups that often share
similar habitats. Additionally, environmental embeddings may be coarse, noisy, or misaligned with
the image modality, which can dilute visual signals in a shared embedding space. This effect is
especially pronounced in zero-shot settings, where model robustness is sensitive to modality noise
and fusion quality.

We find that larger cryptic groups are associated with better model performance (Spearman p-value
> 0.05 and Pearson p-value > 0.07). Its worth noting species in larger groups tend to be more
common (i.e., CRYPTICB10-COMMON and CRYPTICB10-COMMONUNSEEN) and overrepresented
in public biodiversity datasets like iNaturalist and Observation.org, resulting in stronger image-text



associations even in zero-shot. Smaller cryptic groups often consist of rare or underrepresented
species, which pose a greater challenge due to fewer images. Future benchmarks should consider
stratifying evaluation by group size and representation level.

Limitations We recognize that this data-driven identification of cryptic groups may miss rarely
observed lookalike species. In future expansions, incorporating expert knowledge or targeted sampling
of under-reported taxa could help capture cryptic relationships that have not yet appeared in crowd-
sourced data.

Although our dataset includes temporal metadata, we have not systematically evaluated model
performance when explicitly embedding this modality. This limits our understanding of how well the
model leverages temporal patterns. While we still report significant zero-shot results using pretrained
embeddings derived from different biodiversity datasets, few-shot learning could further enhance
performance by enabling task-specific adaptation with minimal supervision.

5 Conclusion

We introduce CRYPTICBIO, the largest publicly available multimodal dataset designed to better
understand cryptic biodiversity and ultimately, accelerate trustworthy Al solutions for biodiversity.
Curated from research-grade sources, this dataset focuses on visually confusing species groups
with rich associated metadata, surpassing existing cryptic species datasets in scale by several orders
of magnitude. Our benchmarking across CRYPTICBIO underscore the value of context-aware
multimodal datasets for advancing foundation models in biodiversity research, particularly for
challenging cryptic species. CRYPTICBIO is publicly available (for download and browsing) on
HuggingFace Datasets, and we release a comprehensive pipeline (CRYPTICB10-CURATE on GitHub)
to facilitate custom subset creation and reproducibility. With CRYPTICBIO, we aim to accelerate the
development of Al models that are equipped to handle the real-world nuanced and context-dependent
challenges of species ambiguity.
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1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present CrypticBio, the largest publicly available multimodal dataset of
visually confusing species, specifically curated to support the development of Al models for
biodiversity identification using images, language and spatiotemporal data.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
Justification: We discuss Limitations in Section ??.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We submit a dataset & benchmark paper.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All assets are reproducible via our CRYPTICBI10-CURATE pipeline. Code is
available in our git page https://github.com/georgianagmanolache/crypticbio.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experimental results are reproducible, the data is available in
https://huggingface.co/datasets/gmanolache/CrypticBio/tree/main/CrypticBio-Benchmark;
and script in https://github.com/georgianagmanolache/crypticbio.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See section ?? and supplementary material [F}

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] Justification: See section ?? and supplementary material [f|

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, see supplementary material [Ff|
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. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section[2]and supplementary material [B]
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
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Justification: See Section 2] Ethical statements & supplementary material [B]
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:  Code and dataset are accessible through the project website
https://georgianagmanolache.github.io/crypticbio/.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
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Answer: [NA]
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A Supplementary Material

B Ethics statement

B.1 Taxon selection

We select seven most representative taxa in biodiversity conservation and policy change supervision:
Arachnida, Aves, Fungi, Insecta, Mollusca, Plantae, Reptilia, as shown in Figure m These taxa
represent the majority (>70%) of threatened species (left) and harmful invaders (right), underscoring
their significant ecological and economic impact. Figure([§|shows examples of top five most frequent
species and their counts.

IUCN Threatened Species by Taxon (VU/EN/CR) 100 Worst Invasive Alien Species by Taxon

Other Mollusca
Aves

Fungi
Arachnida )
) Reptilia
Reptilia Arachnida

Aves H Other

Insecta

Mollusca
Fungi

Plantae

Insecta
Plantae

Figure 7: Taxa representativeness in biodiversity conservation and policy change supervision: (left)
IUCN [32] endangered species distribution (labeled VU=vulnerable, EN=endangered, CR=critically
endangered, the highest threats); (right) GISD [33] 100 worst alien species distribution.

B.2 Endangered species location disclosure

It is critically important not to disclose the precise locations of threatened species because doing so
can inadvertently put them at even greater risk. Many vulnerable species face threats from poaching,
illegal wildlife trade, habitat disturbance, and over-collection. Sharing exact geographic coordinates,
especially online or in open databases, can make it possible to locate and exploit these species.

To mitigate the risks associated with the disclosure of sensitive biodiversity data, citizen science
platforms iNaturalist and Observation.org implement automatic geoprivacy measures for taxa listed
on the global IUCN (International Union for Conservation of Nature) Red List of Threatened
Species [32]. Our dataset contains less than 2.3K endangered species according to IUCN, as shown

in Figure

B.3 Invasive alien species require geographical context

Accurate identification of visually similar species is critical, particularly when distinguishing between
invasive and non-invasive taxa. Many invasive species closely resemble native or benign taxa.
Additionally, geographic information plays a critical role in this process, as the impact of a species
can vary by region—what is considered invasive in one area may be benign or even native in another.
Overall, distinguishing invasive species within the appropriate geographic context is a foundational
step in safeguarding biodiversity and maintaining ecological resilience.
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Arachnida Insecta Mollusea Plantae Reptilia

Apis mellifera Helix pomatia Achillea millefolium Podarcis muralis
Count: 636334 Count: 72349 Count: 243077 Count: $7873

-
Araneus diadematus Coprinus comatus
Count: 162345 : Count: 107377

B

Harmonia axyridis ‘Limax maximus Trifolium pratense  Sceloporus occidentalis
Count: 375341 Count: 61970 Count: 190700 Count: 137034

Branta canadensis

! /
Phidippus audax
Count: 89183 Count: 364388 Count: 126454

Trametes versicolor

8 QA 3

1 . £
Pisaura mirabilis Amanita muscaria Danaus plexippus Cepaca nemoralis Trifolium repens
Count: 85354 Count: 178565 Count: 304499 Count: 109411 Count: 180354

Argiope aurantia Passer domesticus Xanthoria parict Vanessa atalania Cornu aspersu lliaria petiolata Anolis sagrei
Count: 75280 Count: 427506 Count: 91965 Count: 304327 Count: 149189 Count: 174645 Count: 105911

Thamnophis sirtalis
Count: 74569 Count: 630506 Count: 89869 Count: 276454 Count: 32594 Count: 169009 Count: 74328

Argiope bruennichi . platyriynchos Schizophyllum commune Coccinella septempunciata Arianta arbustorum Glechoma hederacea

Figure 8: Examples of top five most frequent species and their counts in CRYPTICBIO.
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Figure 9: IUCN endangered species distribution: (left) [UCN endangered species distribution, (right)
TUCN endangered species distribution in our dataset.

B.4 Bias in vernacular species terminology across diverse taxa

While we acknowledge the importance of incorporating common species terms alongside scientific
(i.e., Latin binomial) nomenclature to enhance model performance [47], the exclusive reliance on
English vernacular names risks marginalizing indigenous and non-Western terminologies. Moreover,
English speaking cultures may have their regional bias as well. For instance, species Perisoreus
canadensis is commonly referred to as the Canada Jay in Canada, while in the United States is
referred to as Gray Jay [36]]. Currently, datasets like TREEOFLIFE-10M [47]] and BIOTROVE [31]]
include only one version of a species’s vernacular name. We believe integrating multicultural
and multilingual common terminology preserves ecological knowledge and equity, and increases
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inclusivity and cultural reach. Thus, we emphasize on enriching species scientific terminology with
all common terms from iNaturalist Taxonomy [30] (see dataset details is shown in Section @)

Table [5]shows our dataset and comparable datasets TREEOFLIFE-40M and CRYPTICBIO recorded
English vernacular terminology for the widespread flower species Bellis perennis. We include English
vernacular names in CRYPTICBIO, and provide a pipeline in CRYPTICBI10-CURATE to enrich the
dataset with language specific terminology. As illustrated in Figure[T0] approximately 30% of species
are associated with two or more English vernacular terms, whereas 15% lack any recorded English
terminology. It is worth noting that there are also species that have no vernacular names in English,
which underlines the importance of preserving indigenous terminology.

Table 5: Bellis perennis English vernacular names in existing biodiversity datasets and ours.

Dataset Common name

TREEOFLIFE-40M  English daisy

BIOTROVE Lawn daisy

CRYPTICBIO Common daisy, English daisy, Lawn daisy

Distribution of English Vernacular Names per Species

36874

1876
927457286164 114 76 42 38 24 14 8 4 5 3 4 3 3 1 1 2 1 5 1 11 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31 33 34

Figure 10: English vernacular names distribution in CRYPTICBIO based on Naturalist Taxonomy [30].

C Dataset suite

Table [6] summaries all datasets used for the contruction of CRYPTICBI10, while section [C.THC.4] detail
each data source.

Table 6: Dataset suite used in the curation of CRYPTICBIO.
Dataset Description

GBIF [11]] Occurrence records including species observations with associated
metadata such as date, location, and scientific name. Served as the
primary source of biodiversity data.

GBIF Backbone Taxonomy [45] Taxonomic reference for resolving scientific names and aligning
species-level classifications across datasets.

iNaturalist Taxonomy [30] Cross-referencing vernacular and scientific names, and refining taxo-
nomic granularity particularly for user-contributed observations.

iNaturalist "Similar Species" Cryptic group composed of other species commonly misidentified

with a focal species

C.1 GBIF

GBIF [L1] primarily aggregates research-grade biodiversity data, focusing on species occurrence
records derived from scientific sources such as museum collections, academic research, and validated
citizen science observations. As a result, the dataset emphasizes verifiable, expert-curated information
rather than general public or commercial data.

GBIF uses the Darwin Core standard—a widely adopted vocabulary for sharing biodiversity data.
Each GBIF dataset is typically a Darwin Core Archive, structured follows:
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* A core CSV file occurrence.txt with observation or specimen records. Each row in
occurrence.txt is one occurrence (a species observation or specimen record).

* Optional extension files: multimedia.txt, identification.txt.
* A meta.xml file describing the structure.
* A eml.xml file with metadata about the dataset.

All GBIF occurrence data downloads generated DOI are shown in Table[8] Table[7]summarizes fields
used in creation of CONFOUNDINGBIO.

Occurrences GBIF’s occurrence. txt file enumerates 223 fields, however, many fields are often
empty. Original identifiers and provenance data files, such as dataset’s ID and name (iNaturalist
Research-Grade Observations and Observation.org) and original record’s unique ID. One of the most
important metadata fields is basis0fRecord, which tells what kind of occurrence the record is—for
example, whether it is a direct human observation, a museum specimen, or machine-generated.

Extensive biological and taxonomic information enumerates full scientific name (usually with author-
ship), taxonomic level of the record (taxonRank), taxonomic hierarchy broken into separate fields
(i.e., kingdom, phylum, class, order, superfamily, family, tribe, subtribe, subfamily,
genus, subgenus) and common name (if provided). An important field is taxonomicStatus which
records the status of the observation (either species, genus, family) is the currently valid/recognized
name in taxonomy (marked as ACCEPTED) or a synonym and its usage is questionable, incorrectly
used. We use only ACCEPTED taxonomicStatus of taxonRank species.

Table 7: GBIF core CSV files occurrence. txt and multimedia.txt essential field description.

Field Description

gbifID Unique identifier for occurrence records

scientificName Species observation scientific name

taxonRank Observation taxonomic level (i.e. species, genus, family)

decimallatitude, decimalLongitude Geographic coordinates in decimals

year, month, day Date parts (often included separately too)

type The type of media available usually StillImage, Sound, or
MovingImage.

identifier Direct URL to raw media content (image/audio/video)

license Data license (usually CC-BY or CCO)

The extensive geographic location fields describe where an organism was observed or collected. Core
fields detail latitude and longitude coordinates in decimal degrees and radius of uncertainty around
the point in meters (e.g. 30, meaning +30 meters). More locality details include country details and
well as free-text description of the place also written in other languages than English.

Apart from 1icense, the main field used for legal reuse, there may be detailed access and rights data,
accessRights, rightsHolder giving more contextual info about the data accessibility than the
strict license field, however, rarely populated in GBIF records.

Other information less relevant for the modern biodiversity is geological context set of fields (13
fields) in GBIF’s, designed to describe the stratigraphic and temporal layers from which a fossil or
subfossil specimen was recovered. These fields are especially important for paleontology, stratigraphy,
and earth history research and is relevent when an observation is a fossil (i.e., basisOfRecord is
FOSSIL_SPECIMEN).

Data quality fields are critical for assessing whether a record is usable, reliable, or problematic. We
use hasGeospatialIssues boolean to filter all includes valid geographic coordinates. Another
interesting field iucnRedListCategory categories taxon conservation status accoridng to Interna-
tional Union for Conservation of Nature IUCN) Red List [32]], although this data is not consistent
throughout the records.

Multimedia GBIF’s multimedia.txt file enumerates 15 fields, and can be joined to
occurrence.txt via gbifID. These fields provide access to the media itself (i.e., identifier)
and its context (i.e., type), and specify who created or owns the media, and how it can be used (i.e.,
license).
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Table 8: GBIF occurrence download DOIs using in the creation of CRYPTICBIO.

Group DOI
Arachnida (iNaturalist + Observation.org) 03 Apr 2025 [12] https
Aves (iNaturalist) 23 Jan 2025 [14] https:
Aves (Observation.org) 23 Jan 2025 [13] https:
Fungi (iNaturalist + Observation.org) 23 Jan 2025 [15] https:
Insect (iNaturalist) 23 Jan 2025 [[17]] https:
Insect (Observation.org) 23 Jan 2025 [16] https:
Mollusca (iNaturalist + Observation.org) 13 Apr 2025 [18] https:
Plantae (iNaturalist) 20 Jan 2025 [[19]] https:
Plantae (Observation.org) 20 Jan 2025 [20] https:

Squamata (iNaturalist + Observation.org) 03 Apr 2025 [21] https:

C.2 GBIF Backbone Taxonomy

://doi.
//doi.
//doi.
//doi.
//doi.
//doi.
//doi.
//doi.
//doi.
//doi.

org/10.15468/d1.
org/10.15468/d1.
org/10.15468/d1.
org/10.15468/4d1.
org/10.15468/d1.
org/10.15468/4d1.
org/10.15468/d1.
org/10.15468/d1.
org/10.15468/d1.
org/10.15468/d1.

GBIF Backbone Taxonomy [435] is structured as a Darwin Core Archive, as follows:

Tsagsw
ezf88w
umgadx
6vb583
z7fgt2
mbmsmm
eg3pvé
59pyzp
pz84ny
kjmmés

* A core TSV (Tab-Separated Values) file Taxon. tsv the primary taxonomic information.

¢ Extension files:

VernacularName. tsv provides common names (vernacular names) for taxa.
TypeAndSpeciment . tsv lists information about taxonomic identifications of species.
Description.tsv contains textual descriptions of taxa, offering additional informa-

tion such as morphology, behavior, or ecology.

Distribution.tsv provides geographic and ecological information associated with

specific taxa.

Reference.tsv lists bibliographic references related to the taxa.
Multimedia.tsv links media resources, such as images or sounds, to taxa.

* A meta.xml file describing the structure.

¢ A eml.xml file with metadata about the dataset.

Table 9: GBIF Backbone Taxonomy Taxon.tsv essential field description.

Field Description

canonicalName Unique species scientific name (Latin binomial), lowest taxonomic rank
kingdom Highest taxonomic rank (Latin uninomial)

phylum Second taxonomic rank (Latin uninomial)

class Third taxonomic rank (Latin uninomial)

order Forth taxonomic rank (Latin uninomial)

family Fifth taxonomic rank (Latin uninomial)

genus Sixth taxonomic rank (Latin uninomial)

GBIF observations enumerate taxonomic hierarchy of 11 levels (kingdom, phylum, class, order,
superfamily, family, tribe, subtribe, subfamily, genus, subgenus) broken into separate

Table 10: Diversity in different taxonomy levels in GBIF Backbone Taxonomy [45] (left) and
CRYPTICBIO (right).

Level Count
kingdom 8
phylum 169

class 519

order 1953

family 15139
genus 268644
species 3389404
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Level Count

kingdom 3

phylum 14
class 56
order 351

family 2036
genus 17327
species 67140



https://doi.org/10.15468/dl.7sagsw
https://doi.org/10.15468/dl.ezf88w
https://doi.org/10.15468/dl.umgadx
https://doi.org/10.15468/dl.6vb583
https://doi.org/10.15468/dl.z7fgt2
https://doi.org/10.15468/dl.mbmsmm
https://doi.org/10.15468/dl.eg3pv4
https://doi.org/10.15468/dl.59pyzp
https://doi.org/10.15468/dl.pz84ny
https://doi.org/10.15468/dl.kjmm6s

Table 11: iNaturalist Taxonomy taxa.csv and VernacularNames-english.csv essential field
description.

Field Description

id Unique identifier for occurrence records

scientificName Species observation scientific name (i.e. Latin binomial)

vernacularName Common or vernacular name (e.g., "Lawn daisy", "English daisy")

language Language of the vernacular name encoded with ISO 639 standard (e.g., en, es, fr)

fields, however, many fields are often empty. Instead, we use GBIF’s Backbone Taxonomy [43]]
to enrich observations at species taxonomic level with six taxonomic hierarchy levels: kingdom,
phylum, class, order, family, genus. Diversity in different taxonomy levels in GBIF Backbone
Taxonomy [45] and CRYPTICBIO is shown in Table [_115} Unlike the selected six taxonomic hier-
archy levels, levels like superfamily, tribe, subtribe, subfamily,subgenus not consistently
recorded in taxonomy [31].

C.3 iNaturalist Taxonomy

iNaturalist Taxonomy [30] is structured as a Darwin Core Archive, as follows:

* A core CSV file taxa. csv the primary taxonomic information.

» Extension files: vernacular names CSV files for each language, encoded as
VernacularNames- [language] . csv; there are 1091 language specific CSV files.

* Ameta.xmnl file describing the structure.

¢ A eml.xml file with metadata about the dataset.

We include all vernacular terminology in VernacularNames-english.csv. We provide a pipeline
in CRYPTICBI0O-CURATE to enrich the dataset with language specific terminology.

C.4 iNaturalist Similar Species

The "Similar Species" feature on iNaturalist is designed to assist annotators in distinguishing between
species that are often confused due to their similar appearances. This tool is particularly useful for
species which share visual characteristics with other species.

This infomation is derived from two primary sources: (1) errors made by iNaturalist’s computer
vision model, which learns from millions of community-validated images, and (2) patterns of human
misidentifications that are later corrected by other users. By combining these signals, iNaturalist
highlights the species that are most frequently mistaken for the focal taxon, presenting them in ranked
order on the species page. As a result, the "Similar Species" links represent dynamic, confusion-
based relationships that evolve as new observations are added and models are retrained, offering
a complementary perspective to formal taxonomic hierarchies by capturing practical field-level
identification challenges. An example of such list is shown in Figure [[T|for species Calidris pygmaea.

This feature is not always visible for all species. Its presence depends on the availability of sufficient
observation data and a documented history of misidentifications between the focal species and others.
For many less-observed, rare, or underrepresented taxa, the feature may not appear at all. This is
because the system relies entirely on community-driven data and automated algorithms that detect
patterns in user identifications; it is not manually curated. As a result, even if a species has close look-
alikes, the "Similar Species" tab may be absent if those confusions have not been frequently recorded
by users. This limitation is especially noticeable for obscure species or those from poorly documented
regions, underscoring the importance of consulting external field guides or expert communities when
the feature is not available. Because the exact algorithm and weighting used by iNaturalist are not
fully disclosed, the "Similar Species" tab remains a black box, limiting interpretability and making it
challenging to fully assess coverage and consistency across taxa.
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Spoon-billed Sandpiper (Calidris pygmaea) 9 Filter by Place

|® "Critically Endangered" Globally (Source: [UCN Red List)

TOP OBSERVER TOP IDENTIFIER
hamsambly pelagicgraf

s [F— y 322

LAST OBSERVATION TOTAL OBSERVATIONS
April 26, 2025 353

CHARTS

JAN  FEB  MAR APR MAY JUN JUL AUG SEP OCT NOV  DEC

Map About Taxonomy Status Similar Species # Curation v

Other species commonly misidentified as this species

Red-necked Stint Sanderling Little Stint

Calidris ruficollis Calidris alba Calidris minuta

Figure 11: iNaturalist "Similar Species" tab for Calidris pygmaea.

Tracheophyta
Magnoliopsida Liliopsida

Asterales Fabales Asparagales
12,497,706 5,552,588 2,060,641

Lamiales
1,286,508

Figure 12: Treemap diagram, starting from kingdom. The nested boxes represent phyla, classes,
orders, and families. Box size represents the relative number of samples in the dataset.
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D CRryprTICBIO dataset

Figure [12] shows the treemap diagram, from kingdom, phyla, classes, orders, and families, Table 2]
shows comparable datasets, and Table[T3]|shows the overlap of CRYPTICBIO with the public datasets.

Table 12: CRYPTICBIO comparable datasets and benchmarks.

Dataset Images  Species Annotations Source Features
common (multicultural and GBIF (lNat'urahst and multimodal,
o . Observation.org), X
multilingual), scientific terms, GBIF Backbone data-driven
CRYPTICBIO 166.0M 71.0K taxonomic hierarchies, location, Taxonomy [43] cryptic
date, confounding species iNatura}llliﬂ " ’ species groups
groups Taxonomy IB_QII (52K groups)
common, scientific terms biased common
B10TROVE [51] 161.9M  366.6K O L iNaturalist species terminology
taxonomic hierarchies annotations
iNaturalist, .
common, scientific terms Encyclopedia biased common
TREEOFLIFE-10M 10.4M 454.1K taxonomic hierarchies of Life (EOL)[9], spec;iiz)etzgz)lzlogy
B1oScaN-1M[22]
common, scientific term, iNaturalist
taxonomic hierarchies, location, iNat2021lFLg’|]
TAXABIND-SK [44] 8.8K 22K environmental features, Santinel 2’ multimodal
audio recordings, satellite R
imagery WorldClim-2.1
15 scientific terms, iNaturalist species curated
INATURALIST 2024 M 10K Jocation, time (from 2021-2024)  from iNat2021
GBIF (iNaturalist,
Observation.org, manually selected
AMI-GBIF 2.5M 5.3K scientific terms Artportalen, cryptic species
Norwegian SOS, group (1 group)
Fennoscandia)
iNaturalist, manually selected
BUMBLE BEES . Bumble Bee Y sele
X . 89K 36 scientific terms cryptic species
(not publicly available) Watch [24], roup (1 group)
BugGuide group (1 group
manually selected
TUR.TLES m 6.9K 36 common, scientific terms Internet cryptic species
(not publicly available)
group (1 group)
iNaturalist, manually selected
AMAZON PARROTS 14K 35 scientific terms eBird [8], cryptic species
Google Images group (16 groups)
CONFOUNDING scientific term. confoundin manually selected
SPECIES [4] 100 10 species pairs & iNaturalist cryptic
(not publicly available) P P species pairs
SQUAMATA ersonal collection manually selected
LACERTIDAE 4.0K 9 scientific terms (l;urin field survevs cryptic species
PODARCIS & y group (1 group)
CHIROPTERA ersonal collection manually selected
RHINOLOPHIDAE 293 7 scientific terms pers cryptic species

RHINOLOPHUS

during field surveys

group (1 group)

Table 13: Overlap of CRYPTICBIO species with other datasets.

Dataset Species  Overlap % in CRYPTICBIO % of CRYPTICBIO  Jaccard
BIOTROVE 366.6K 58.2K 15.9% 82.0% 13.7%
TREEOFLIFE-10M [47]  454.1K 61K 13.4% 85.9% 12.0%
TAXABIND-8K [44] 2.2K 2K 90.9% 2.8% 2.7%
INATURALIST 2024 10K 79K 79.0% 11.1% 10.8%
AMI-GBIF 5.3K 5.2K 98.1% 7.3% 6.9%
AMAZON PARROTS 35 32 91.4% 0.05% 0.05%
SQUAMATA
LACERTIDAE 9 8 88.9% 0.01% 0.01%

PODARCIS [42]
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Our dataset leverages real-world confusion patterns to identify perceptually similar species, which
we see as a valuable signal of cryptic relationships. However, we fully acknowledge that VLMs could
indeed be valuable tools for identifying visual similarities between species by capturing semantic and
perceptual relationships at scale. At the same time, we also note that VLMSs remain computationally
expensive and not free from biases. These models can be influenced by consistent background
environments, lighting conditions, or common camera angles, which may not reflect actual visual
similarity between species themselves. In future work, we are planning to explore incorporating
model-based similarity signals to complement our crowd-sourced approach.

E New benchmarks

E.1 CRrYPTICBI10-COMMON benchmark details

We randomly select species from each taxonomic group Arachnida, Aves, Fungi, Insecta, Mollusca,
Plantae, and Reptilia and corresponding visually confusion group species for each benchmark.
Figure [T3HI9] show examples of cryptic groups in CRYPTICBIO, while Table [T4] shows selected
species subset distribution. For benchmarking we randomly select 100 images for each species.

Table 14: CRYPTICB10-COMMON subset distribution.

Taxon Selected species #Associated cryptic species  #Observations
(Arachnida) Parasteatoda tepidariorum 24 500425
(Aves) Passer domesticus 25 2836119
(Fungi) Amanita muscaria 24 333551
(Insecta) Harmonia axyridis 25 947893
(Mollusca) Cornu aspersum 25 542833
(Plantae) Bellis perennis 24 839657
(Reptilia) Zootoca vivipara 19 385535

Commonly misidentified as Parasteatoda tepidariorum

> =
Araneus diadematus
Count: 162345

Argiope aurantia
Count: 75280

Neoscona crucifera
Count: 32552

Pholeus phalangioides

Count: 27891

Steatoda nebilis

Steatoda triangulosa
Count: 27767

Larinioides cornutus

Count: 16827

Latrodectus geometricus

Count: 22712

IR

|

s ||

cog - +&

Parasteatoda tepidarioram Holocnemus pluchei Nesticodes rufipes
Count: 9142 Count: 8250 Count: 5363

Larinioides sclopetarius
Count: 11179

s e
)
o5 akm) \
Nephilingis cruentata Oecobius navus Cryplachaea giganiipes Arancus pegnia Cryplachaea veruculata
Count: 4631 Count: 3399 “ount: Count: 2330 Count: 2265

Zosis geniculata Mimetus puritanus
Count: 1973 Count: 526

Figure 13: Sample of commonly misidentified of selected species (Arachnida) Parasteatoda tepidari-
orum.
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Commonly misidentified as Passer domesticus

Fringilic coclebs
Count: 205426

Haemorhous mexicantes
Count: 242829

Sturnus vulgaris

Count: 281847

Passer domesticus Turdus migratorius
00798

Count: 432802
\

Poccile atricapillus

Mimus polyglotios
Count: 117000

Count: 177492

Melospiza melodia Junco hyemalis

Count: 204049 Count: 178276

Zonotrichia leucophrys
17751

Prunclia modularis
Count: 61865

Thryothorus ludovicienus
Count; 73623

Spizella passerina
Count: 88346

il YOO s
Passer montanus Zonatrichia albicollis
Count: 113328 Count: 90028

o

B

Chondestes grammacus

Count; 26258

Poecile carolinensis Zonotrichia atricapilla

Zonotrichia capensis
Count: 47418 Count; 37279 t: 2898
. -~

Count; 28981

o
rf F

Spizella pusilla Passer italiae Passer hispaniolensis Petronia petronia

Count: 20000 Count: 8880 Count: 7436 Count; 3550

Passer melanurus
Count: 3225

Figure 14: Sample of commonly misidentified of selected species (Aves) Passer domesticus.

Commonly misidentified as Amanita muscaria

Amanita muscaria

Amanita citring
Count: 178565 514

Amanita pantherina
ount: 12759

Amanita parcivolvata

Amanita flavoconia Amanita augusia
It: 5 Count: 5264 Count: 5211

Count: 9045

Amanita frostiana Amanita crenulata
Count: 1611 Count: 1552

Amanita flavorubens Amanita xanthocephala Amanita pantherinoides
Count: 3988 Count: 3393 Count: 2863

Amanita aprica Russula sanguinea Amanita regalis
Count: 1502 Count; 1340 Count: 1299
= > F Vo 7 5

Amanita basii
Count; 774

Amanita caesarea
Count; 1285

Amanita velatipes Amanita cokeri Amanita wellsii
Count: 621 Count: 601 Count: 390

Figure 15: Sample of commonly misidentified of selected species (Fungi) Amanita muscaria.
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Harmonia axyridis

Count: 375341

Adalia bipunciata
Count: 33385

ES s
Coccinella transversalis
Count: 9458

Cycloneda polita
Count: 3888

Commonly misidentified as Harmonia axyridis

Coccinela seprempunciata
Count: 276454

Cyeloneda sanguinca
Count: 20177

" Olla v-nigrum
Count: 8861

Cycloneda munda
Count: 6216

Chilocorus cacti

Count: 2077

Hippodamia convergens
Count: 45908

Adalia decempunctata
Count: 20135

Harmonia quadripunciata

Epilachna borealis
Count: 1596

Psyllobora vigintidvopunciata
Count: 45180

Cheilomenes sexmaculata
Count: 10321

Coclophora inacqualis

Count: 7329

Chilocorus renipustulatus
ount: 4830

Hippodamia variegata
Count: 35454

Harmonia conformis
Count: 10087

i
Subcoccinella vigintiquatuorpunciata
Count:

Henosepilachna vigintioctopunciate
Count: 4330

Figure 16: Sample of commonly misidentified of selected species (Insecta) Harmonia axyridis.

Cornu aspersum
Count: 149189

Cepaca hortensis

Count: 18296

Bradybacna similaris
Count: 11804

Xerotricha conspurcata
346

Commonly misidentified as Cornu aspersum

Cepaca nemoralis
Count: 109411

Zachrysia provisoria
Count: 4918
-

Xeroplexa intersecie

Count: 1888

Helix pomatia
Count: 72349

Theba pisana
Count: 17227

Fraticicola fruticum
Count: 10104

Cantareus apertus

Count: 2654

Helminthoglypia nickiiniana

ount: 1750

Rumina decollata
Count: 17083

Helix lucorum
Count: 5959

Helminthoglypta tudiculata
Count; 2501

Xerarionta stearnsiana
Count: 588

= 4

Lissachatina filica
Count: 25662

Orala lactea
Count: 15720

Helicina orbiculata
Count: 5451

Orala punctata
Count; 2388

Figure 17: Sample of commonly misidentified of selected species (Mollusca) Cornu aspersum.
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Commonly misidentified as Bellis perennis

ifolium pratense

i
unt: 190700

Triplewrospermum inodorum Erigeron philadelphicus Tanacetum partherium igeron strigosus

Count: 29296 Count; 18437

Count; 4222: Cou

Erigeron glacies Erigeron pulchellus
Count: 10141 Count; 6905

ron karvinskianus

Er Matricaria chamomilla
Count: 16348 12441

Leucanthemum maxinuem

rigeron peregrimus

Aphanostephus ramasissimus
Count; 681

Count: 1492

Brachyscome decipicns
Count; 151

Gomphrena globosa

Count: 482

Bellis annua

Count; 648

Figure 18: Sample of commonly misidentified of selected species (Plantae) Bellis perennis.

Commonly misidentified as Zootoca vivipara

Podarcis muralis agilis / ” Lacerta agilis
Count: 87873 s “ount: 51845 Count: 49496

Plestiodon fasciaius
Count; 28417

Podarcis siculus i 3 Lacerta bilineata
Cow Count: 14670 Count; 1410

A 5l f Ja
Gallotia galloti Podarcis bocagei soma polychroma
Count: 4587 Count: 3025 Count: 3689

Lygodactylus capensis

& N/
Takydromus amurensis Darevskia praticola
Count: 398

a dug
Count: 2842

Figure 19: Sample of commonly misidentified of selected species (Reptilia) Zootoca vivipara.

E.2 CRrYPTICB10-COMMONUNSEEN benchmark details

We strictly select CRYPTICB10-COMMON to taxa observed from 01-09-2024 to 01-04-2025. This,
we ensure that we evaluate zero-shot learning of established state-of-the-art models using new
observations (i.e. images). We randomly select 100 images for each species, spanning n = 133 species
(26 species less than CRYPTICB10-COMMON).
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E.3 CRYPTICBIO-ENDANGERED benchmark details

To highlight the challenges of species identification within conservation-critical contexts, we introduce
CRYPTICBIO-ENDANGERED, a curated subset of cryptic species that are listed as threatened or
endangered according to the global IUCN Red List [32]. This subset is designed to assess model
performance on taxa where misidentification may carry heightened ecological and conservation risks.

We select a species from each taxonomic groups—Arachnida, Aves, Fungi, Insecta, Mollusca, Plantae,
and Reptilia—each of which contains species that are both visually similar and conservation-relevant.
From each group, we randomly select 100 representative samples and their corresponding cryptic
species groups. To ensure data quality and sufficient representation for evaluation, we filter out taxa
with fewer than 150 recorded observations.

This subset emphasizes the importance of accurate classification for threatened taxa, where even
minor identification errors can undermine conservation priorities and downstream ecological analyses.
Table [T5]further detail the sample characteristics.

Table 15: CRYPTICBI0-ENDANGERED subset distribution.

Taxon Selected species #Associated cryptic species  #Observations
(Arachnida)  Dolomedes plantarius 2 2352
(Aves) Calidris ruficollis 4 129885
(Fungi) Hygrocybe intermedia 3 16540
(Insecta) Petalura gigantea 3 739
(Mollusca) Pinna nobilis 4 2592
(Plantae) Guaiacum officinale 6 13981
(Reptilia) Vipera aspis vivipara 15 126034

E.4 CRYPTICBIO-INVASIVE benchmark details

To address the increasing ecological risks posed by invasive alien species (IAS), we introduce
CRYPTICBIO-INVASIVE, a dedicated benchmark subset focusing on invasive species and their cryptic
species selected from the 100 of the World’s Worst Invasive Alien Species by Global Invasive
Species Database (GISD) [23]]. IAS are recognized as a major driver of biodiversity loss, with
their occurrences showing exponential growth worldwide [37]. Accurate identification of invasive
taxa—particularly those embedded within morphologically cryptic species complexes—is therefore
critical for early detection, monitoring, and mitigation efforts.

In constructing this subset, we select 100 representative samples from each cryptic group associated
with a selected invasive species. To ensure statistical robustness and adequate representation, we
exclude taxa for which fewer than 150 validated observations are available. We select one species for
each taxons (i.e. Aves, Fungi, Insecta, Mollusca, Plantae, excluding Arachnida and Reptilia as there
are not species mentionings in 100 of the World’s Worst Invasive Alien Species by Global Invasive
Species Database (GISD)).

CRYPTICBIO-INVASIVE highlights the unique challenge of identifying invasive taxa that are visually
indistinguishable from native or non-invasive relatives, and serves as a targeted testbed for evaluating
model performance in scenarios with direct ecological and policy implications. Table [16| further
detail the sample characteristics.

Table 16: CRYPTICBIO-INVASIVE subset distribution.

Taxonomic group Selected species #Associated cryptic group #Observations
(Aves) Acridotheres tristis 25 34689
(Fungi) Cryphonectria parasitica 4 672
(Insecta) Linepithema humile 24 15178
(Plantae) Acacia mearnsii 25 14579
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F EXTENDED RESULTS

Table 17: Model suite used in our benchmarks.

Modality Model Architecture
B1oCLIP [47] BC ViT-B-16
Image BIOTROVE B1oCLIP [51] BT-B ViT-B-16
B10TROVE OPENAI [51] BT-O ViT-B-16
TAXABIND [44] TB ViT-B-16
Geolocation TAXABIND [44] L GEOCLIP [50]
Environment features TAXABIND [44] E ResNet-Style MLP [5]]

Experimental details We benchmark state-of-the-art CLIP-style biodiversity models and the species
taxonomic level. We evaluate on Nvidia GeForce RTX 3080 GPU using 32 GB of RAM memory.
Table [T7] summaries our model suite. We use BIOCLIP [47], BIOTROVE’s BIOCLIP ViT-B-16 and
OpenAl ViT-B-16 fine-tuned variants [51]], and TAXABIND [44] as image-only baseline models.

For multimodal evaluation, we add embeddings obtained from the image encoders to those obtained
from TAXABIND location and environmental features encoders, which are then used for zero-shot
classification. We collect from WorldClim-2.1[[10] environmental features for each observation based
on the location metadata, which are then passed through TAXABIND’s environmental encoder. We
compare performance on scientific, vernacular, and mixed text types, as advised in [47]. We combine
image with location and environment embeddings by adding each embedding.

We benchmark on all English available vernacular terminology, and we use species scientific name
when vernacular term is missing. Table [I8] shows an example of text types. Tables 20H22] sum-
marize performance comparisons across benchmarks on CRYPTICB10-COMMON, CRYPTICBIO-
COMMONUNSEEN, CRYPTICBIO-ENDANGERED, and CRYPTICB10-COMMON-INVASIVE.

We report zero-shot top-1 accuracy based on cosine similarity. We include a 95% confidence intervals
for all reported metrics, calculated using binomial proportion confidence interval method (denoted
as ). Furthermore, we compute an aggregate performance metric, which represents the weighted
average accuracy over all classes across the benchmarks. To assess the significance of pairwise
performance differences between models, we use McNemar’s test (p-value < 0.05).

We deliberately evaluate our approach in a zero-shot setting to assess its generalization capabilities
without relying on task-specific fine-tuning. This is an intentional choice aimed at evaluating how
well additional contextual information can be leveraged within already existing biodiversity models.

Results overview We find combining image and location embeddings to improve performance on
zero-shot image classification overall. Models trained with specialist datasets (i.e. BIOTROVE-CLIP
and BIOCLIP) perform better. Additionally, mixed scientific and common names yield overall best
performance scores, thus, we only report these scores.

We additionally evaluate CRYPTICB10-COMMONUNSEEN across all BIOTROVE variants, noting
that this set comprises taxa observations entirely held out from training.

Table 18: Example of benchmarked text types.

Text type Example
Scientific Bellis perennis
Vernacular Common daisy, English daisy, Lawn daisy

Scientific + Vernacular  Bellis perennis commonly known as Common daisy, English daisy, Lawn daisy

29



Table 19: CRYPTICB10-ENDANGERED benchmark Top-1/3/5 accuracy, precision, and recall with
95% confidence intervals. I/ L refers to image / location embeddings; BC refers to BIOCLIP; BT-B
refers to BIOTROVE-CLIP-BIOCLIP; BT-O refers to BIOTROVE-CLIP-OPENCLIP; TB refers to
TAXABIND; MB refers to MULTIMODALBIO.

Model Modality Top-1 Top-3 Top-5 Precision / Recall

BC 1 49.1+1.63 73.0£1.45  56.5+1.62  0.55/0.49 +0.25/0.24
BT-B 1 584 +1.61 77.8+1.36  61.7+1.59  0.59/0.58 +£0.25/0.25
BT-O 1 489 £1.63  65.7+1.55 509+£1.63  0.48/0.49 +£0.23/0.24
TB I 522+1.63  759+1.40 59.1+1.60  0.57/0.52 +£0.25/0.24
TB I+L 523+1.63  76.1%1.39  593+1.60  0.57/0.52+0.25/0.24
MB-BT-B I+L 63.2+1.57 833+1.22 66.6+1.54  0.65/0.63 +0.27/0.27
MB-BT-O +L 50.5+1.63  69.1£1.51  54.6+£1.63  0.49/0.51 +£0.23/0.24

Table 20: CRYPTICB10-COMMONUNSEEN benchmark on various models. I/ L / E refers to image
/ location / environmental features embeddings; AR/ AV /F/1/M /P /R refers to taxonomic
groups Arachnida | Aves | Fungi | Insecta | Mollusca | Plantae | Reptilia; MN refers to mixed
(scientific + common) text annotations; WA refers to weighted average; BC refers to BIOCLIP; BT-B
refers to BIOTROVE-CLIP-BIOCLIP; BT-O refers to BIOTROVE-CLIP-OPENCLIP; TB refers to
TAXABIND. Location (L) and environmental features (E) are TAXABIND embeddings.

Model  Modality AR-MN AV-MN F-MN I-MN M-MN P-MN R-MN WA

BC 1 37.6+1.58  55.1£1.62 49.7+1.63 385#1.59 295+149 63.7£1.57 46.0%1.63 4576
BT-B I 59.1 £1.61 61.4+1.59 727+145 50.5+1.63 492+1.63 764139 62.0+£1.58  61.66
BT-O 1 50.8+1.63  43.4+1.62 745142 31.7+1.52 39.7+1.60 60.0+1.60 484+1.63 49.84
TB 1 412 +1.61 59.5+1.60  525+1.63 404 +1.60 324153 64.0+1.57 52.0£1.63  48.89
TB I+L 414 +1.61 59.6 £1.60  52.6 +1.63  40.5+1.60 325153 642156 52.5#1.63  49.08
BT-B I+L 59.5+1.60 65.1+1.56 763139 54.9+1.62 50.2+1.63 75.0%1.41 687 £1.51 64.29
BT-B I+E 252142  305#£1.50  37.5%1.58 14.0+1.14  21.5£1.34 268145 272+145 26.14
BT-O I+L 504 +1.63  46.0£1.63  76.4+1.39 344+155 387%159 63.0+1.58 535%1.63 51.79
BT-O I+E 23.1+1.38  21.9*1.35 40.7+1.60  12.4 +1.08 164 £1.21 204 +1.32  21.1+1.33 2233

Table 21: CRYPTICBIO-ENDANGERED benchmark on various models. I/ L / E refers to image
/ location / environmental features embeddings; AR/ AV /F/1/M /P /R refers to taxonomic
groups Arachnida | Aves | Fungi | Insecta | Mollusca | Plantae | Reptilia; MN refers to mixed
(scientific + common) text annotations; WA refers to weighted average; BC refers to BIOCLIP; BT-B
refers to BIOTROVE-CLIP-BIOCLIP; BT-O refers to BIOTROVE-CLIP-OPENCLIP; TB refers to
TAXABIND. Location (L) and environmental features (E) are TAXABIND embeddings.

Model  Modality AR-MN AV-MN F-MN I-MN M-MN P-MN R-MN WA

BC 1 53.0+1.63  495+1.63 603 +1.60 743+1.43 33.0+1.54 603+1.60 273+145 51.11
BT-B 1 48.0£1.63  43.8+1.62 50.7+1.63  483+1.63 44.8+1.62 51.3%1.63 344155 4589
BT-O 1 45.0£1.62 268145 647156 46.7+1.63 36.8+1.57 47.0%1.63 212133 41.15
TB I 54.0 £1.63  53.3+1.63 59.7+1.60 75.0%1.41 31.8+1.52 63.2£1.57 315152 52.62
TB I+L 54.0 £1.63  53.0%1.63 593 #1.60 747+1.42 315152 633£1.57 31.6+1.52 5248
BT-B I+L 46.5+1.63  47.8+1.63 45.0%1.62 44.7+1.62 445+£1.62 555%1.62 328%1.53 4524
BT-B I+E 435+1.62 37.0+1.58 33.3+1.54 333+154 31.0£1.51 33.5+1.54  19.4%1.29 33.01
BT-O I+L 42.0+1.61 28.0+1.47  65.0+1.56 40.0+1.60 42.0+1.61 482+1.63 205+£1.32 40.81
BT-O I+E 40.0£1.60 260+143 357156 333+1.54 31.0%1.51 32.8 £1.53 11.8£1.06  30.09
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Table 22: CRYPTICBIO-INVASIVE benchmark on various models. I/ L/ E refers to image / location /
environmental features embeddings; AV / F / 1/ P refers to taxonomic groups Aves / Fungi / Insecta /
Plantae; MN refers to mixed (scientific + common) text annotations; WA refers to weighted average;
BC refers to BIOCLIP; BT-B refers to BIOTROVE-CLIP-BIOCLIP; BT-O refers to BIOTROVE-
CLIP-OPENCLIP; TB refers to TAXABIND. Location (L) and environmental features (E) are
TAXABIND embeddings.

Model  Modality AV-MN F-MN I-MN P-MN WA
BC I 5991 £1.60  66.75+1.54  33.61 x1.54  36.17 +1.57  49.11
BT-B I 76.05+£1.39  61.25+1.59  54.72+1.63 41.42+1.61 58.36
BT-O 1 62.15+1.58  55.75+1.62  48.11£1.63  29.77£1.49  48.95
TB 1 64.12+1.57  69.00 £1.51  38.28 +1.59  37.58 £1.58  52.24
TB I+L 6432 +1.56  68.75 +1.51 38.61£1.59  37.58+1.58 5231
BT-B I+L 76.77 £1.38  64.75£1.56  61.06 £1.59  50.33 £1.63  63.23
BT-B I+E 18.78 £1.28  57.50 £1.61 21.39+1.34  2299+1.37  30.17
BT-O I+L 61.79 £1.59  57.25+1.62  50.06 +1.63  33.03£1.54  50.53
BT-O I+E 13.18 £1.10  52.75 +1.63 18.11 +1.26 1421 £1.14  24.56
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