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Abstract

Molecular property prediction and generative design via deep learning models has
been the subject of intense research given its potential to accelerate development of
new, high-performance materials. More recently, these workflows have been signif-
icantly augmented with large language models (LLMs) and systems of autonomous
agents capable of utilizing pre-trained models to make predictions in the context of
more complex research tasks. While effective, there is still room for substantial
improvement within agentic systems on the retrieval of salient information for
material design tasks. Within this context, alternative uses of deep learning models,
such as leveraging their latent representations to facilitate cross-modal retrieval
augmented generation within agentic systems for task-specific materials design,
has remained unexplored. Herein, we demonstrate that large, pre-trained chemistry
foundation models can serve as a basis for enabling structure-focused, seman-
tic chemistry information retrieval for both small-molecules, complex polymeric
materials, and reactions. Additionally, we show the use of chemistry foundation
models in conjunction with multi-modal models such as OpenCLIP facilitate un-
precedented queries and information retrieval across multiple characterization data
domains. Finally, we demonstrate the integration of these models within multi-
agent systems to facilitate structure and topological-based natural language queries
and information retrieval for different research tasks.
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1 Introduction

The advent of large language models (LLMs) with capabilities for tool use has enabled a dramatic
expansion of LLM-based systems across chemistry and materials domains. These include applications
of chatbots or multi-agent workflows to metal-organic frameworks|[1} 2], inorganic materials [3l],
automated synthesis [4], organic synthesis [5], and protein discovery [6]. Besides the underlying
agents, some of the most critical components of these workflows are the tools made available to
individual agents. This can include access to retrosynthetic software [3l], predictive models or
computational tools [3]] or generating task-specific code for automated experimentation [4]] —all of
which provide salient information needed by an agent to complete a given task. These examples are
frequently used in combination with standard retrieval augmented generation (RAG) methodologies,
where an embedded natural-language query is executed against a vector database of embedded
documents to retrieve the most relevant documents and provide them to the LLM as part of its prompt
[7H9]]. As with other types of agent tools, this approach is effective in enhancing LLM performance
for answering a particular question by providing the LLM with context it was not trained on. However,
it requires significant optimization with regards to the choice of embedding model, chunk size, LLM
and its available context window, question rephrasing, use of metadata filtering, and similarity metrics
used for retrieval[8} 9]]. The advent of large language models (LLMs) with capabilities for tool use
has enabled a dramatic expansion of LLM-based systems across chemistry and materials domains.
These include applications of chatbots or multi-agent workflows to metal-organic frameworks|[1} 2],
inorganic materials 3], automated synthesis [4]], organic synthesis [5]], and protein discovery [6].
Besides the underlying agents, some of the most critical components of these workflows are the tools
made available to individual agents. This can include access to retrosynthetic software [5]], predictive
models or computational tools [3]] or generating task-specific code for automated experimentation
[4] —all of which provide salient information needed by an agent to complete a given task. These
examples are frequently used in combination with standard retrieval augmented generation (RAG)
methodologies, where an embedded natural-language query is executed against a vector database of
embedded documents to retrieve the most relevant documents and provide them to the LLM as part
of its prompt [8} [10,[11]. As with other types of agent tools, this approach is effective in enhancing
LLM performance for answering a particular question by providing the LLM with context it was not
trained on. However, it requires significant optimization with regards to the choice of embedding
model, chunk size, LLM and its available context window, question rephrasing, use of metadata
filtering, and similarity metrics used for retrieval [} [L1]].

In many of the agent-based workflows noted above, the implemented tools may utilize structural
information in the form of a SMILES string or molecular formula when performing a computation or
property prediction [6, 12 [13]], but not directly in RAG operations focused on structural similarity.
Retrieval of relevant information based on structural similarity, whether focused small molecules,
materials, or reactions, is one of the most critical tasks during any chemistry or materials research
endeavor. Therefore, enabling researchers to use natural-language accompanied by chemical language
to query structure-linked information resources would provide a powerful augmentation of LLM
capabilities. Structure-based RAG operations necessitate a vector-based representation of a given
compound or material whereby similarity queries may be conducted. While there are a significant
variety of molecular fingerprints available through cheminformatics packages such as RDK:it [[14],
the use chemistry language foundation models is highly attractive due to their potential dual use
within an agentic system as an embedding model and a predictive tool. Here, the same model would
be able to support both prediction tasks, such as providing accurate assessments of properties for a
compound of interest and support semantic structural queries for relevant information based on a
compounds structure or structural similarity. Despite these advantages, there exist only a few reports
on the utilization of deep learning chemistry models as embedding models for similarity-based
searches—Ilimited largely to organic molecules and inorganic materials [[15,[16]. And while the LLM
systems for chemistry applications have been demonstrated to search APIs such as PubChem or the
general internet [, these search interfaces do not offer the potential breadth of both query options or
structural similarity features that may be possible when using a chemistry foundation model to embed
structural information and with relevant metadata. Additionally, queries based on other modalities,
such as images of characterization data (e.g., NMR spectra or GPC traces), have largely not been
evaluated within an LLM-based agentic system nor within traditional chemistry database interfaces
in spite of the immense benefit such features would confer to researchers.



2 Results

To overcome these limitations and dramatically expand the capabilities of multi-agent systems for
materials design and development tasks, we surmised that: 1) a single, high-performance chemistry
foundation model could be adapted to facilitate semantic structure searches across small molecules,
polymers, and reactions; 2) such a model could be used in combination with a multi-modal embedding
model to enable semantic queries over images and chemical structures; and 3) these systems can be
integrated within multi-agent systems to provide richer context while performing materials design
tasks. Before building a complete semantic structure search-based multi-agent RAG workflow, it
was imperative to evaluate the effectiveness of the latent representations generated by the chemistry
language foundation models for structural similarity queries with many competent models that may
fill such a role. Prior work focused on the use of ChemBERTa models to enable similarity searches
for functional analogues of drugs [16H18], however there are other potential models that could
work including Mol-BERT [19], Mol2Vec [20]], GPT-MolBERTza [21]], or ChemGPT [22]. For our
investigation, we selected MoLFormer as a baseline embedding model which has recently been
shown to be highly performant across numerous benchmarks from MoleculeNet [23], effective at
capturing molecular similarity, as well as potentially learning 3D spatial relationships from SMILES
inputs [24]]. To evaluate structural similarity queries, we compiled a focused dataset of 2.5M organic
small-molecules using open-source data and historical data from our own work [25H28]]. The SMILES
representations were canonicalized and vector embeddings were computed for each compound using
MoLFormer[24] before insertion into the Milvus vector database (see Supplmentary Information
for more details) [29]. Using this dataset we evaluated the ability of MoLFomer embeddings to
facilitate retrieval of structurally similar compounds from sample queries on known organocatalysts
for ring-opening polymerization (ROP) using the vector search capabilities inherent to Milvus (Fig.

M) (30, 31].

For the result of each query, several metrics relating to the structural similarity based on either MoL-
Former embedding distance (cosine, Euclidean, Fig. [I)) or fingerprints for each compound generated
using RDKit (Tanimoto, RDKit, MACC, and Dice, Fig. [T). Each score represents the similarity
between the resulting compound and the query compound. For 1,8-diazabicyclo[5.4.0Jundec-7-ene
(DBU) 1a, the top result was itself followed by several closely related structural analogues based
on the cosine or Euclidean similarity (Fig. [T|A, Eq. ST)). Interestingly, the second rank compound
1b was given a much lower similarity scores from most fingerprint derived metrics despite differing
from 1a only in the saturation of the imine (Fig. [T]A). For 2a, a organocatalyst for ROP designed
with the aid of generative Al [31]], we find that while the original query was not present in the
dataset, most of the core functional group features—an cyclic 5-membered guanidine and an aromatic
ring—based on visual inspection (Fig. 2B). As with 1a, most of the fingerprint-based similarity
metrics indicate the result compounds as highly dissimilar, with exception of MACC (Fig. 2B).
Overall, these examples further substantiate prior results[24] demonstrating MoLFormer embeddings
capture relevant structural information and similarity despite differing substantially in several cases
from fingerprint-based metrics (see Supplementary Fig. [ST]for an additional example query).

With the success of the similarity queries using MoLFormer embeddings in conjunction with a
vector store, we sought next to expand search capabilities beyond simple small molecule queries to
maximize the diversity of search options available to LLM agents. In natural language, differences in
word vector embeddings have been demonstrated to capture lexical relationships between different
words, with classic examples of King — Man + Woman = Queen or Paris — France + Poland =
Warsaw capturing the relationships of gender and capital city[32]. Given that MoLFormer is a
chemistry language model based on SMILES syntax, we surmised that differences between vector
embeddings between two compounds within the base model latent space should correspond to
differences in structure (Fig. [IB). Moreover, this implies that combinations of vector embeddings
from compounds of interest can be used to identify novel analogues based on functional group
features of both compounds as well as utilize scalar property values to manipulate the magnitude
of the vector—facilitating unique similarity queries to access different sets of data. To implement
these ideas, we first created an identical collection of 2.5M molecules used in Fig. [I] where instead
each vector was now scaled by the compounds’ corresponding molecular weight. This was tested
on guanidine 3a, which was used as a search input to either the molecular weight scaled collection,
or the base collection used previously (Fig. [2JA). The results in Fig. [JJA demonstrated the success
of both approaches in retrieving structurally relevant compounds, however, the metadata filtering



Quary

id 1e

0.32

. 3 o
o q,\sd“e' o m\’*ﬁ\o\e o W o oo

Figure 1: A) Heatmap of similarity metrics for the results of the query of 1a against a small-molecule
collection. Structures of each of the top five closest compounds are shown beneath the heatmap. B)
Heatmap of similarity queries of 2a against a small-molecule collection. Structures of each of the top
five closest compounds. For the similarity metrics displayed in the heatmap, cosine and Euclidean
refer to the respective distance between the query embedding and the result embedding converted
into similarity scores. Tanimoto, RDKit, MACC, and Dice refer to similarity scores from molecular
fingerprints generated using the RDKit package for the query and returned compound. For all metrics,
a value closer to 1 indicates high similarity whereas a value closer to zero indicates lower similarity.
See Supplementary Information for details.

is limited to identical top results within certain molecular weight ranges (3f, Fig. 2JA)—potentially
requiring different filtering strategies depending on the desired output.

In addition to utilizing the vector magnitude to influence similarity search results, we also investigated
whether the addition and subtraction of vectors corresponding to different functional groups resulted
in similar lexical relationships as observed with examples like: King — Man + Woman = Queen. This
approach was evaluated on two catalysts 4a and 4b where their corresponding vector embeddings
were subjected such operations. With 4a the subtraction of the vector Corresponding to dimethylurea
and the addition of dimethylthiourea resulted in a vector embedding that provided corresponding
thioureas (4c) when queried against the database (Fig. 2B). With 4b, the results of similar operation
were less obviously successful, but this is anticipated behavior based on a limited collection of
molecules (Fig. 2B). Nonetheless, the results did provide similar compounds with fluorine containing
amines. Finally, the vector embeddings of 4a and 4b were averaged and queried against the database
with the top results bearing the structural features of both the parent molecules (Fig. 2IC).

Having demonstrated the effectiveness of using MoLFormer vector embeddings on a variety of
different similarity search strategies, we next sought to evaluate their feasibility towards polymers and
reactions. MoLFormer was trained compounds with SMILES strings containing less than 200 tokens
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Figure 2: A) Comparison of results obtained for queries using run using metadata filters compared
to normalized vector embeddings scaled by a target molecular weight. B) Schematic depiction of
search results obtained through mathematical manipulation of query vector embeddings through
addition-subtraction of corresponding functional group vectors or averaging two queries.

were filtered from the pre-training dataset, precluding large SMILES strings which may potentially
represent macromolecules|24]. Outside of biological materials, such as peptides, nucleic acids or
large natural products, macromolecules and other complex materials often exhibit stochastic features
relating to their structure and are hence poorly represented by discrete, one-dimensional SMILES
strings. This problem is frequently circumvented in deep learning models through a reduction in the
complexity by treating polymers as single, discrete repeating units via SMILES strings with variable
attachment points denoted by the asterisk character (PSMILES) 33, [34]. While this approach tends
to overlook the stochastic nature of materials as well as neglects to account for end groups or more
complex polymer topologies, it does produce systems capable of providing predicted values for
polymer properties within these restrictions [33}134]. As the tokenizer for MoLFormer covers the
entire SMILES grammar [24! 35|, including the use of special tokens such as the use of asterisks
for variable attachment points, we hypothesized that it could also serve as a suitable source of
embeddings to facilitate queries based on both polymer structural and topological similarity. It was
unclear, however, as to whether these latent embeddings would capture the same level of molecular
similarity given SMILES fragments with asterisks were unlikely to have been part of any pre-training
set for the model[24]. With this in mind, we leveraged dot-separated SMILES strings containing
asterisks to represent repeat units or other polymer components to evaluate their suitability for use in
semantic queries for polymeric materials.



To evaluate the use of MoLFormer embeddings applied to polymers, we first curated a set of polymer
data from both open literature and our own historical data totaling in 2.5M PSMILES strings
representing predominantly homopolymers [36H41]. As with the small-molecule embeddings, these
were inserted into a Milvus collection, against which similarity queries may be run. First, we
tested the embeddings on very simple queries such as polyimide S4a and polystyrene S4c, both of
which returned sets of highly similar compounds (Fig. [S3]A). Averaging the embeddings of S4a
and S4c enabled the search to identify features of both, consistent with results observed on the
small-molecules and again indicative of the ability of MoLFormer embeddings to capture semantic
structural relationships. Additional examples of basic polymer similarity searches using PSMILES
can be found in Fig. [S2]

Next, we investigated the possibility of utilizing additional scalar weights with the component vector
embeddings to enable not only querying for structural similarity but also topological and molecular
weight similarity. In this approach, the polymer structure is broken into its structural components,
each of which is embedded independently using MoLFormer (Fig. [3]A). The individual embeddings
are then subjected to weighted averaging method to afford the final vector embedding for a polymer
(Fig. BJA). To evaluate this approach, we generated a synthetic dataset consisting of both ROP and
acrylate polymers ( 2M) with randomly generated molecular weights, dispersity, and degrees of
polymerization. Two approaches for computing the final polymer embedding from the component
embeddings were investigated. The first approach averaged the individual component vectors and
then scaled the averaged embedding by the dispersity and the log;( of the M, (see Supplementary
Information). The second approach focused on the log weighted average of each of the structural
components’ contribution to the overall M,, of the polymer. Two separate collections from synthetic
polymer data were constructed utilizing these embedding approaches and the same query polymer
(5a, Fig. BJA) was executed against both collections using their respective embedding methods. For
the first embedding approach (Fig. [3B), the returned results exhibited high cosine similarity yet
diverged strongly in terms of Euclidean similarity measures (Fig. [3]B). This can readily be seen within
returned results with Sb being identical structurally but differing more starkly in terms of molecular
weight (Fig. [3B). The next closest compounds 5¢-1 and 5¢-2 exhibited some similarity in structure
and in terms of molecular weight. In contrast, the second embedding approach provided results with
high cosine and Euclidean similarity (Fig. [3B). The first three results (5f) were both structurally
identical to the query—with the top result (5f-1) being closest in M n —and the only examples
of 5a in the entire collection (Fig. [3|C). Additionally, following results both contained the same
structural components within the polymer (5g and 5h, Fig. B|C), as opposed to the other embedding
methodology, where only the methanol initiator component was conserved across all the top results
(Fig. BD). Overall, these results demonstrate both the strong influence of the methodology used to
scale embeddings on the returned results as well as the ability to use embeddings in combination with
a scalar of property data to facilitate unprecedented similarity queries for polymeric materials.

As with polymers, reactions—represented using reaction SMILES syntax[42]—has not been exam-
ined directly using MoLFormer and despite the existence of many transformer-based models for
reactions [35 43]], we were interested in probing the versatility of MoLFormer embedding model
reaction similarity queries. Based on our results with polymeric systems, we anticipated reactions to
behave in a similar manner given a similar syntactical construction. The data for the evaluation was
sourced from an open 2M reaction dataset sourced from the USPTO used previously in transformer
models for reactions, open publications, and historical experimental polymerization reaction data [44]].
In addition to querying on whole reactions, we also focused on queries involving one to two reagents
(Fig. ). In these examples, S5a, S5b, and their average vector where each used to search the
database and provided reaction examples where structurally related reagents were used or the query
molecules themselves (Fig. [S4A). Finally, testing the order of S5a and S5b, either in a dot separated
substrate series or on either side of the double angle brackets (») separating substrates and products
produced markedly different results, indicating the importance of order within the reaction SMILES
sequence. The difference in results when angle brackets are used is understandable considering that
this would indicate two very different reactions when the order is reversed. However, unlike with
polymers, the distinction between the ordering of reactants or products in reaction SMILES has less
relevance unless some order of addition is being encoded. In total, these results indicate that the
base model of MoLFormer is well-suited to capture structural relationships among small-molecules,
polymers, and reactions.
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Figure 3: A) Schema of how an example query polymer 5a is broken into structural components and
then processed into single embedding to facilitate querying across both polymer structure and other
characteristics such as M,,. B). Results from query of 5a embedded using equation S2} C) Results
from query of 5b embedded using equation 3]

The demonstration of MoLFormer as an effective embedding model beyond simple small molecules
prompted us to examine the use of chemical structural embeddings with additional modalities.
Association of chemical structure with different types of characterization data is a highly important
task for any project within chemistry and materials domains. While characterization data is available
in many formats, we opted to leverage the data pre-plotted and saved as images as input for creation
of their corresponding vector embeddings. The ability to query available characterization data by
either image or structure would be a powerful addition to both traditional data infrastructures and
RAG pipelines. Implementing this task would typically require either some form contrastive learning
or latent fusion, necessitating fine-tuning of an existing model or training of an additional model.
Instead, we opted to test alternative strategies where the chemical components of a particular piece of
characterization data would be embedded using MolFormer while the image components would be
embedded using OpenCLIP (see Supplementary Information for details) [45]46]. While CLIP models
for images can also co-embed text captions, it is not anticipated these embeddings would be able
to effectively capture nuances in chemical structure as a chemistry focused model like MoLFormer.
Instead, the text embedder of the OpenCLIP model can be used to embed information captured as a
natural language caption, which can be automatically generated from the metadata of characterization
data files, adding additional natural language query capabilities. To evaluate this approach, we
compiled a small dataset of labeled images of 'H, '*C, and '°F NMR spectra (see Supplementary
Information). The labels for the spectra included their corresponding chemical components as
SMILES strings and natural language captions generated from the spectra metadata. From this dataset
we can test both image-based and structure-based queries on the embedded dataset with excellent
results across numerous collection organization strategies (Fig. ). Despite there being only minor
differences between the image features plots—colors, whitespace, axes, and image size—of the
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Figure 4: A) Schematic of embedding process for characterization data where the image and structural
components share a metadata reference. B) Schematic of embedding process for characterization
data where the image and structural embeddings are projected into a single vector before storage in
a vector database. C) Example of query 'H NMR spectra and the top rank result from a querying
against vector store built using cross-referenced metadata approach.

embedded plots, OpenCLIP can effectively differentiate between different characterization techniques
without additional metadata filtering on the query. This implies that the differentiation is likely
occurring due to shape of the plotted traces or spectra (Fig. ).

The use of chemistry LLMs such as MoLFormer and multi-modal models like OpenCLIP, in com-
bination with post-embedding pooling and compression strategies, has facilitated the creation of a
variety of vector stores which in turn can support a large variety of similarity queries. This alone
would make a powerful addition to traditional database architectures and search capabilities, yet it’s
the connection of such vector databases within larger agentic RAG workflows can offer the potential
of significant time savings in complex research tasks requiring the merging and summarization of
data retrieved from complex structure, image, and natural language-based queries. In this regard,
access to different vector stores and their respective embedding strategies is provided to LLM agents
as tools which may be used in the context of a particular task. We utilized the LangGraph library (v
0.1.19) [47]] to develop a hierarchical multi-agent adaptive self-reflective RAG system (Fig. [5JA and

), which takes a question as input and outputs, the solution as a formatted report. As shown in Fig.

the hierarchical workflow is directed by a supervisor agent which leverages query analysis [48]] to
adaptively route a user’s question to the correct worker agent. The system consists of four worker
agents, which specialize in small molecules, polymers, chemical reactions, or NMR spectra. Each
of these workers autonomously implement a multi-agent-based self-reflective RAG workflow [49].
As detailed in Fig. BB, the workflow consists of several steps including retrieving and evaluating
documents, generating responses using retrieved documents, revising user input to improve retrieved
documents, checking generated responses for hallucinations and verifying each response completely
addresses a user’s question. Each step of this process is autonomously directed by the worker agents,
which runs until all checks are passed. Once all checks are passed, the answer is sent to the report



generation tool, which summarizes the agent’s findings (Fig. [S3]and[S6)). This report also summarizes
the content retrieved from the vector store used by the agent to generate the report in order to improve

the overall transparency of the workflow.
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Figure 5: A) Schematic overview of hierarchical multi-agent system RAG to handle queries for
different collections. B) Self-reflective RAG pipeline used in the adaptive query analysis by each
RAG worker agent. C) Summarized example of a polymer query and response from the multi-agent
system. D) Summarized example of an NMR spectrum query and response from the multi-agent.

This workflow was demonstrated on a variety of tasks, each of which was able to effectively utilize
the structure and/or image-based vector store tools in combination with other natural language-based
vector databases from historical manuscripts. Summarized examples are shown in Fig. [5IC and 5D
with the full reports shown in Supplementary Figs. [S3|and [S€] As shown in Fig. B[C, the multi-agent
workflow was able to successfully complete the user query using self-reflective RAG for polymers
returning two similar analogs and provided additional content to justify the selection of these analogs.
It should be noted that the collections utilized for the evaluation with the multi-agent system were
limited to 250k examples from the original collection, thus covering a narrower range of compound
types. Regardless, the structure-based RAG approach was able to retrieve close analogues for further
utilization by the agents. For Fig. , the agentic system was asked to identify similar '*C NMR
spectra to the one of a diethanolamine-based carbonate monomer precursor [50]]. The question was
routed to the multi-modal NMR self-RAG agent who reviewed and summarized the characterization



data of four '>C NMR spectra images (three retrieved images and the image corresponding to the
input) summarizing the location of the peaks in these images that are similar to the input NMR
spectra. The report also provides a visualization of the input image, which enables easier review and
interpretation of the provided results. Both reports were reviewed by a domain expert who confirmed
the validity of the findings. In this example, the agent was not instructed to filter the RAG results
if they contained the original query image, and was still able to successfully find several spectra of
closely related diethanolamine-based cyclic carbonates or their precursors (Fig. [5IC, Fig. [S6).

As a final demonstration of the multi-modal agentic workflow, we implemented a user interface (UI)
connection using Open WebUI, an open-source Ul for chat-based interactions[51]. Additionally, we
connected to the workflow foundation models for chemistry and materials property prediction[52} 53],
which provided additional context for each retrieved document in the self-reflexive RAG pipeline.
Figs. [S7TIST0| show examples of a polymer- and characterization data-focused queries, showing
screenshots from the workflow responses and context summaries. The multi-modal characterization
data queries were expanded to include HSQC, EI-MS, and IR data using a open-source synthetic
dataset[54]].

3 Conclusion

The accelerated development of novel materials and catalysts necessitates dramatic improvement of
human—Al interactions to facilitate both effective co-designs as well as realistic implementations
within an experimental setting. Multi-agent RAG systems integrated with chat interfaces hold
significant promise to become useful assistants for researchers operating in laboratory settings. Here,
we have demonstrated that chemical foundation models coupled with powerful Multi-modal models
can facilitate unique types of structural or architectural focused queries on small-molecules, polymers,
and reactions. This represents a significant enhancement of search capabilities not typically found in
traditional database systems for chemistry research. Moreover, the coupling of these systems within
LLM-based multi-agent system can provide a significant advantage for reducing the time needed to
retrieve and summarize relevant multi-modal structure-based information commonly required across
all material research projects.

4 Code and Data Availability

Data and code will be made available upon final publication.
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A Supplementary Material

Vector Database Setup. All SMILES embeddings were computed using the ibm/MoLFormer-XL-
both-10pct model available through HuggingFace using canonicalized SMILES (with the exception
of the USPTO dataset, which was used as is) [55]]. For the example queries in Figures [T}{4] the
vector embeddings for each compound were L2 normalized prior to insertion into a Milvus lite vector
database using and Hierarchical navigable small world (HNSW) index and the L2 distance as the
metric. For the multi-modal examples (Fig. [5) SMILES embeddings were not L2 normalized and used
in a Milvus standalone vector database using /[VF_FLAT index and the L2 distance metric. For spectra
containing more than one identifiable compound, including the NMR solvent, their corresponding
embeddings were averaged prior to insertion. Image embeddings were computed using OpenCLIP
via the LangChain library. The model used was ViT-g-14 with the laion2b_s34b_b88k checkpoint.
Image embeddings were stored in a separate Milvus collection, using an /[VF_FLAT index and L2
distance metric, and cross-referenced with their corresponding compound embeddings.

Similarity Metrics. For small molecule and polymer example queries, similarity metrics were
computed on the basis of both the MoLFormer embeddings and molecular fingerprints computed
using RDKit. Cosine similarity was computed by subtracting the cosine distance between the query
and result embeddings (measured using the SciPy library) from Eq[l] Euclidean similarity (E) was
computed by the following equation:

E,=1/(1+Ey) 00

where Fj; is the Euclidean distance between the query and result embeddings. Tanimoto and Dice
similarities were computed using the corresponding query and result Morgan fingerprints with a radius
of 2 and a dimension of 2048. RDKit similarity was computed using the built-in RDKit fingerprints
of the query and compound. Molecular ACCess System (MACCS) similarity was computed using
the MACCS Keys fingerprints of the query and the compound using the RDKit package.
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Language Agent Network. As noted in the main text, the multi-agent framework was assembled
using LangChain and LangGraph libraries. The supervisor agent utilized GPT-40 mini model while
other agents used either llava 7b or llama3.1 8b models. All Milvus collections were instantiated as
separate vector stores with customized embedding functions with either MoLFormer or OpenCLIP,
prior to connection with LLLM agents as retrievers. Full code for agent network will be released in
both subsequent drafts of preprint and final publication.

Synthetic Polymer Data Generation. A synthetic dataset of homopolymers and AB block copolymers
of polycarbonates, polyesters, polysiloxanes, polyacrylates, and polystyrenes was created through
enumerative combination of compatible monomers and initiators pulled from historical datasets.
Values for M,,, DP,,, and dispersity where randomly generated within specific ranges and assigned
to the enumerated polymer structure. The resulting dataset contained >1M synthetic polymers with
attendant molecular weight properties.

Vector embeddings for the synthetic polymer data were computed using the following equations:

1 n
7—1 .D-= v
T =log,y My, - D - Z U; )
i=1
1 n
F=—> loggi 7 )
n
i=1

where Z is the final vector embedding, ¢ is the MolFormer embedding of the individual polymer
component, M, is the number average molecular weight, D is the dispersity of the polymer, and x;
is the weight fraction contribution of the component to the total M,,.

Open WebUI Interface. A variation of the agentic workflow shown in Fig. [ implemented in
LangGraph was connected to an Open WebUTI interface via the pipelines API[51]], allowing execution
of the custom, multi-modal RAG pipeline and streaming of custom events emitted from the workflow.
Predictive models for polymer properties used fine-tuned checkpoints from a currently unreleased
foundation model for polymers[52]], with representation interconversion handled during a query
processing step. In this agentic workflow, granite3.2:8b and llama3.1 models were used for retrieval,
analysis, summarization and routing tasks.
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Fig. S1: Additional example of small-molecule similarity query.
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INTRODUCTION

The user is interested in finding analogues of a specific aromatic polyether and exploring potential synthesi
s methods and thermal properties.

The user's exact query was: 'I am interested in aromatic polyethers similar in structure and function to 0=5
(C1=CC=C(0[*:1])C=C1) (C2=CC=C( [%:2])C=C2)=0. Please find analogues and comment on potential means of synthesi
s and thermal properties.’.

Input Compound: 0=S(C1=CC=C(0[*:1])C=C1) (C2=CC=C( [*:2])C=C2)=0

RESEARCH STEPS
I utilized the polymer_rag_search tool to identify aromatic polyethers similar in structure and function to t
he provided SMILES string. The tool returned two relevant SMILES strings that represent potential analogues.

MAIN FINDINGS

The identified analogues are:

1. [*:1]clccc2e(c1)S(=0) (=0)clcc([*:2])cccl-2
2. [*:1]clec(S(=0) (=0)C(F) (F)Flcc( [*:2])clC

These structures feature sulfur-oxygen bonds and aromatic rings, similar to the original compound. For synthe
sis, aromatic polyethers can typically be synthesized through nucleophilic substitution reactions or using or
ganocatalysts for polymerization. The thermal properties of these compounds can vary based on their specific
structures and substituents, but generally, aromatic polyethers exhibit good thermal stability due to the str
ength of the aromatic bonds.

CONCLUSION

In summary, two potential analogues of the specified aromatic polyether have been identified, along with gene
ral methods for their synthesis and considerations regarding their thermal properties.

SOURCES

- polymer_rag_search tool for identifying analogues and synthesis methods.

**¥Summary of Vector Store Context:s
Compound(s):
= [*:1]clcc(S(=0) (=0) C(F) (F)F)cc( [*:2])clC)

Fig. S5: Example of a report generated for a question routed to the self-reflective RAG agent for
polymers.
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INTRODUCTION

The user requested 1dentification of WWR Spectroscopy 18ages and characterization data for compuunds SImLlar to those depicted in a provised inage.
The user's exact query was: 'Please identify NMR Spectroscopy images along with characterization data for compounds that are similar to those depicted in The provided image. data/images/NMR/@3a-13C/B3a-1.png’.

Input Image:

200 75 150 15 100 75
13C Chemical Shift (PPM)

RESEARCH STEPS

T utilized the nmr_inage_rag_search tool to analyze the provided image and retrieve relevant MMR spectra and characterization data for similar compounds.

MAIN FINDINGS

The analysis yielded several NMR spectra and their corr!invndlr\ﬂ Wﬂks fuf compounds similar to those depicted in the provided image. The compounds include:
8.9, 8, 24.0.

1. **CC(C)clcce(CN(CCO) CCONcc ek — Peaks (ppm): 148.0, L 128, 77.4, 77.8, 76.7, 59.6, 58.9, 55.7,

2. +aCeice(C)ce(CHICCOICCOIctnr — Peaks (ppm): 138.6, 138.8, 129 o, ua a 77.4, 77.0, 76.7, 50.6, 50.1, 55.8, 21.3.

3. weCclec{C)c(EN2CCOC(=0)0CC2)c{Chclmn - Peaks (ppm): 138.2, 137.1, 130.8, 120.2, 77.9, 77.8, 77.7, 77.6, 77.4, 77.0, 76.7, €9.8, 54.7, 53.8, 20.9, 20.0.
144.4, 140.8, 126.4, 127.4, 125.2, 120.1, 78.1, 77.7, 77.4, 77.0, 76.7, 67.8, 60.5, 54.1.

4. **0CQN(CCO)Cle2cccce2-c2cecee2lvs — Peaks (ppm):

CoNCLUSTON
The retrieved NMR spectra and characterization data provide valuable insights into compounds similar to those depicted in the provided image, highlighting their structural features and chemical environments.

SOURCES

- NMR spectra and characterization data retrieved from the nmr_image_rag_search tool.

sxSusmary of Vector Store Contextisx
Compound(s) :
- Celee(C)ec(EN(CEO)CED) c1;C1E{EL)CL
- Celee(C)c(M2CCOC(=D)0CC2) e(Chel; CLEICLCL
- DCCN(CCOICIe2ccccc2-c2ccece2l; CAC(CLICL

The MMR Spectra of the most relevant conpound is shown below
(data/inages /NMR/83b-13C/B3b-1.png) :

L1

136 Chemear shi IWNII
Figure Caption: A 100.62 MHz 13C MMR in CDC13 collected on 2021-02-92T14:25:28 with 256
scans and a scan delay of 4 seconds. The displayed spectrum is between @ and 12 PPM. Peaks
(ppm): 138.6, 138.8, 129.9, 126.8, 77.4, 77.8, 76.7, 59.6, 59.1, 55.8, 21.3

00 s 150

Fig. S6: Example of report generated from an image query of a '>*C NMR
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Please identify similar polymers to this polymer and analyze their potential properties and potential applications:
<smiles_str>CC(C)(c1ccc(Oc2ccc(S(=0)(=0)c3ccc([:2])cc3)cc2)cct)clcce(O[:1])ccl<smiles_str>

Format your response nicely, providing details for each identified relevant compound.
<10/10 >

FM4M RAG Pipeline Today at 1:41 PM
Based on the provided context, | have found two polymers that share structural similarities with the given SMILES string: Object
1 and Object 3. Here is an analysis of their potential properties and applications:

1. Object 1
Polymer Structure: [:7]/CC(C)(cTccc(Oc2ccc(C(=0)c3ccc(Of:2])cc3)cc2)ccl)clcec(OC(C)C)ect
Functional Groups: diarylether, sulfon, phenyl
Predicted Properties:
Band Gap (chain): 3.726 eV
Refractive Index: 2.036
Tg (Glass Transition Temperature): 481.964 K
N2 Permeability: -0.684 Log10 Barrer
CH4 Permeability: -0.707 Log10 Barrer
CO2 Permeability: 0.769 Log10 Barrer

Potential Applications:

High glass transition temperature (482 K) suggests that this polymer could be used in high-temperature applications, such

as automotive components or aerospace parts.
Low nitrogen and methane permeability indicate that it may have good gas barrier properties, making it suitable for
packaging materials or membranes in gas separation processes.

2. Object3

Polymer Structure: [:7]CC(C)(cTccc(Oc2ccc(C(=0)c3ccc(Of:2])cc3)cc2)ccl)clcec(OC(C)C)eet
Functional Groups: alkylarylether, diarylether, organometallic compounds, ketone, carbonyl, phenyl
Predicted Properties:

Band Gap (chain): 3.431 eV

Refractive Index: 1.835

Tg (Glass Transition Temperature): 481.99 K

N2 Permeability: -0.375 Log10 Barrer

Send a Message

+ [ codeInterpreter

Fig. S7: Screenshot of response example of running a polymer structural query via the Open WebUI
interface
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Context Summary

Polymer 1

PROPERTY

Band gap chain (Egc)
Refractive Index (n)
Tg

N2 Permeability

CO2 Permeability
CH4 Permeability

Polymer 2

PROPERTY

Band gap chain (Egc)

Send a Message

+ () codenterpreter

Fig. S8: Screenshot of context summary of matched polymers and their predicted properties from

query in Fig. [57]

VALUE

421

2.068

480.992

-0.497 Log10 Barrer
0.891 Log10 Barrer

-0.423 Log10 Barrer
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Can you help identify compounds with MS spectra matching or similar to the one attached?

FM4M RAG Pipeline
Based on the context provided, | can attempt to match some of the molecular formulas and their corresponding SMILES
notations to potential compounds that might have a mass spectrum (MS) similar to the one you've attached. Here are my

findings:

1. [CH2NH] - 40.019 m/z: Methylamine (CH3NH2) is an amine with a molecular weight of approximately 41 Da. It could

potentially match or be similar to the compound in your MS spectrum.

. [C=0] - 65.007 m/z: Acetone ((CH3)2CO), with two methyl groups on a carbonyl carbon, has a molecular weight of
approximately 60 Da. However, the given molecular weight is 65.007 Da, which might indicate an isotope or a minor peak in
your MS spectrum.

. [C=O]NH - 84.01 m/z: Acetamide (CH3CONH2) has a molecular weight of approximately 85 Da. The given molecular weight
is 84.01 Da, which could be due to the loss of a proton or other fragmentation process in your MS spectrum.

. [C(O)N(H)] - 70.069 m/z: Aminomethanoic acid (NH2CHO) has a molecular weight around 71 Da. The given molecular
weight is 70.069 Da, which might be due to an isotope or fragmentation in your MS spectrum.

. [C(O)(CH3)] - 45.01 m/z: Acetyl group (CH3CO-) has a fholecular weight of about 46 Da. The given molecular weight is
sliahtlv lower. which could be due to the loss of a proton or other fraamentation process in vour MS spectrum.

Send a Message

R

Code Interpreter

Fig. S9: Screenshot of response example of running a EI-MS query via the Open WebUTI interface
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Context Summary
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Spectra caption:

A simulated postive and negative MSMS spectra with the following peaks:

positve:
101.03858 m/z, <smiles_str>[C+]#CC(=C=C)CC#C<smiles_str>
103.05423 m/z, <smiles_str>C#CCC(=C=C)C#[CH2+]<smiles_str>
104.04948 m/z, <smiles_str>[C+]#CN=CC(C)=C=C<smiles_str>
105.03349 m/z, <smiles_str>C= =CC([CH2+])=C=0O<smiles_str>
107.04914 m/z, <smiles_str>[CH+]=C(C=C)C(0)=C=C<smiles_str>
115.05423 m/fz, <smiles_str>[C+]#CC1=CC=CC(=C)C1<smiles_str>
116.04948 m/z, <smiles_str>C#CC= =CC(=[CH+])N<smiles_str>
118.06513 m/z, <smiles_str>[CH+]=C(C=C)N=CC#CC<smiles_str>
120.04439 m/z, <smiles_str>C=C=CC(=N)C([CH2+])=C=0O<smiles_str>
122.09643 m/z, <smiles_str>C=CC1CC=CC(=[CH3+])N1<smiles_str>
128.04948 m/z, <smiles_str>C#CC=NC(=[CH+])C C<smiles_str>
129.03349 m/z, <smiIes,str>C#CCC(=C:C:C:[OH+])C*C<smiIes,str>

Send a Message

Code Interpreter

Fig. S10: Screenshot of context summary of matched EI-MS spectra from query in Fig. [S9|
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