
LLMRank: Enhancing Large Language Models for Unsupervised
Keyphrase Extraction with a Candidate Graph Approach

Abstract

Keyphrase extraction is a crucial NLP task
that extracts essential information from exten-
sive texts, aiding in content summarization
and browsing. This paper introduces LLM-
Rank, a novel unsupervised keyphrase extrac-
tion method that augments Large Language
Models (LLMs) with a graph-based approach.
LLMs are first used to generate a wide array
of candidate keyphrases, which are then repre-
sented as nodes in a custom graph. Edges be-
tween these nodes are established based on the
co-occurrence of candidates within the content,
enhancing keyphrase ranking through struc-
tured contextual information. We evaluated
LLMRank using three state-of-the-art LLMs
across four publicly available datasets, compar-
ing its performance against seventeen baseline
models. The results demonstrate that LLM-
Rank effectively extracts keyphrases from long
and complex documents in an unsupervised
manner. Source code is available on GitHub1.

1 Introduction

In the field of natural language processing (NLP),
Keyphrase Extraction (KPE) is essential for vari-
ous applications, including information retrieval,
text summarization, and document clustering.
Keyphrases capture the core meaning of texts, im-
proving metadata for indexing and retrieval while
providing concise summaries of lengthy documents.
Traditionally, KPE methods fall into two categories:
supervised KPE, which requires extensive labeled
data for model training, and unsupervised KPE,
which does not need labeled data for model train-
ing.

Unsupervised KPE removes the need for costly
annotations but often relies on statistical metrics or
researcher-developed unsupervised learning mod-
els that may not fully capture the semantic nuances
inherent in natural language. The emergence of

1https://github.com/emnlp2024code/LLMRank

Large Language Models (LLMs) such as BERT
(Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pre-trained Trans-
former) has transformed this field. GPT operates as
a unidirectional, autoregressive model specializing
in text generation through its decoder-only archi-
tecture. Conversely, BERT is engineered to process
text bidirectionally, which enhances its understand-
ing. It is pre-trained on two interconnected NLP
tasks: Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). These advanced
transformer models effectively capture contextual
relationships and long-range dependencies, provid-
ing a deep understanding of language nuances.

Recently, generative LLMs have gained popu-
larity across various fields due to their impressive
text generation capabilities, cross-domain versa-
tility and ease of access and use. These models
have shown remarkable effectiveness in capturing
contextual meanings, significantly improving per-
formance across language tasks. However, they
struggle with a comprehensive understanding of
entire texts, especially in tasks like KPE where un-
derstanding the full context of lengthy documents
is crucial. While GPT-3 and GPT-4 excel in gener-
ating text and dialogue systems, they often miss the
broader structure of extensive documents, limiting
their effectiveness in tasks requiring a deep grasp
of content. To overcome these limitations, some
approaches have integrated enhancements such as
knowledge graphs [9][28] and long-term memory
networks [30][34] to improve the long-text process-
ing capabilities of generative LLMs.

We propose a method called LLMRank that en-
hances keyphrase extraction by augmenting genera-
tive Large Language Models (LLMs) with a graph-
based approach. Initially, the generative LLM iden-
tifies and ranks candidate keyphrases. These can-
didates then undergo an improved ranking process
using a graph-based method that leverages con-
textual information on a global scale within the
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document. In this graph-based approach, the can-
didate keyphrases identified by the LLM serve as
nodes, while edges are weighted based on both
the distance and co-occurrence of these candidates
within the content. The nodes are subsequently
ranked using a PageRank algorithm to determine
their importance in the document.

We outline our contributions as follows:

• We introduce LLMRank, a method that en-
hances keyphrase extraction from Large Lan-
guage Models (LLMs) by incorporating a
graph-based approach.

• We demonstrate that the proposed LLMRank
effectively captures the content structure and
phrase co-occurrence relationships within a
document, thereby enhancing the performance
of LLMs for Unsupervised Keyphrase Extrac-
tion (uKE).

• We evaluate our enhanced model against stan-
dard baselines across four benchmark datasets,
demonstrating that the proposed LLMRank
outperforms in handling complex and long
texts.

2 Methodology

Our research introduces a novel method that lever-
ages the capabilities of an LLM for keyphrase ex-
traction. Given an input text, a selected LLM ex-
tracts the top candidate keyphrases. These candi-
date keyphrases are then organized into a weighted
graph based on their relevance and co-occurrences
within the input text. A dedicated PageRank al-
gorithm is applied to produce a score reflecting
their importance from a different perspective. The
scores generated by the LLM and the PageRank
algorithm are then combined to rank the candidate
keyphrases. This approach integrates the semantic
analysis strengths of LLMs with the importance-
ranking capability of PageRank—an algorithm tra-
ditionally used to rank web pages in web search,
but here adapted for the textual domain. Figure 1
provides a comprehensive overview of the system
framework.

2.1 Candidate Generation and Ranking using
LLM

First, we generate and rank the candidate
keyphrases using an LLM. Prompt, shown in the
Table 1, is designed and optimized to guide the

LLM to output the candidate keyphrases and im-
portance scores.

The prompt design takes into account the follow-
ing three factors:

Top K Keyphrases: Depending on the length
of the given text, the LLM is directed to extract
only the top K keyphrases. For long documents,
we increase the K value to capture various topics
embedded in the content. Conversely, for short
documents with a limited number of topics, setting
a high K value could lead to redundancy in the
keyphrases. Therefore, a smaller K value is chosen.
In the experimental section, we demonstrate the
impact of the K value.

Importance Score: The prompt is designed for
the LLM to assign an importance score to each
keyphrase, reflecting its relevance to the main top-
ics in the text and its contextual significance within
the document. Based on the importance scores,
the list of candidate keyphrases can be ranked for
performance calculation.

Original or Generative Text: In the prompt, we
either instruct the LLM to extract keyphrases that
must occur in the original text to avoid generating
content that might not accurately represent the con-
tent, or we allow the LLM to produce generative
content. This setup enables us to assess whether
the LLM can generate keyphrases based on a deep
understanding of the content. If we instruct the
LLM to use the original text, we include the last
sentence in the prompt; otherwise, the last sentence
is omitted.

Role Content
System Extract top K keyphrases from the input text. Each keyphrase

contains 4 or less grams. For each keyphrase, include a
numerical value representing its importance.

For example:
1. keyphrase - 9.1
2. keyphrase - 3.9
3. keyphrase - 5.2

The keyphrases must be the exact phrases that occur in the
input text.

User Input Text

Table 1: Designed Prompt for Keyphrase Extraction

As a result, LLM generates a set of candidate
keyphrases C = {c1, c2, ..., cn} for each input text
T . These candidates are further graphed in the next
stage. Their rankings RLLM = {lc1 , lc2 , ..., lcn}
based on their importance scores are used again in
the overall integration stage.
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Figure 1: System Overview

Figure 2: An example of a candidate phrases graph.

2.2 Augment LLM using a Graph-based
Model

To enhance the LLM using a graph-based model,
we first construct a graph from the candidate
keyphrases generated by the LLM and then apply
the PageRank algorithm to produce a score. Finally,
we combine the score generated by the LLM with
the score generated by the PageRank algorithm in
a linear fashion.

2.2.1 Candidate Keyphrase Graph
Generation

Our method employs a unique graph-based model
designed to effectively evaluate the relevancy and
co-occurrences of keyphrases. In this model, the
top candidate keyphrases generated by LLMs are
stemmed and treated as nodes in the graph. The
edges between these nodes are determined based
on the co-occurrences of the candidate keyphrases
within a defined window in terms of number of
sentences in the input text.

The weight on the edge is calculated as follows:
Within an input text T which has q sen-

tences S = {s1, s2, ..., sq}, each candidate
keyphrase c occurs in a list of r sentences, Oc =
{o1, o2, o3..., or}, 0 ≤ r ≤ q, where ok is the
index of sentence sk.

A window of co-occurrence is defined as dis-
tances between the two sentences containing the
two candidate keyphrases ci and cj are within
a window of w sentences. If two candidate

keyphrases ci and cj occur in multiple sentences
Oci and Ocj , respectively, and within the defined
w of window of co-occurrences, the weight on
the edge (ei,j) between ci and cj are cumulatively
summed, as shown in Eq. 1, where oi ∈ Oci , oj ∈
Ocj .

ei,j =
∑

(w − |oi − oj |), if |oi − oj | ≤ w (1)

Figure 2 illustrates a stemmed candidate
keyphrase graph (left side) generated from a se-
lected document (right side) in the Inspec dataset.
In this graph, the blue nodes represent stemmed
candidate keyphrases produced by an LLM. If the
co-occurrence window is set to 3, it means that
the candidate keyphrases must co-occur within a
distance of three sentences or fewer.

The candidate keyphrases are highlighted in yel-
low in the selected document. For example, the
keyphrase "flourish" appears once in the 4th sen-
tence, and "impressive margins" appears once in
the 3rd sentence, resulting in a weighted edge of 2
linking these two nodes. The closer the candidate
keyphrases are to each other, the higher the weight
of the edge. The keyphrase "wavelength services"
appears three times, in the 1st, 2nd, and 4th sen-
tences, thereby connecting with the most nodes.
It also has higher weights on the edges, reflecting
its multiple co-occurrences with other candidate
keyphrases within the window of co-occurrence.
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2.2.2 Keyphrase Ranking using PageRank
The stemmed graph is evaluated through the appli-
cation of the weighted PageRank algorithm [31],
which computes the significance scores for each
candidate. These scores, designated as PR(c) for
each candidate c, are determined in accordance
with Equation 2:

PR(c) = (1−δ)+δ×
∑

cn∈Bc

PR(cn)×e2c,cn (2)

In this equation, δ represents the dampening fac-
tor which is set to be 0.85 in this research; cn indi-
cates a neighboring node of c; and Bc comprises all
neighboring nodes of c. The function ec,cn refers
to the edge weight between c and cn. The algo-
rithm accounts for both incoming and outgoing
edge weights, which are considered equally due
to the undirected nature of the graph. PageRank
scores, {PR(ci), ci ∈ C}, is used to generate the
rankings RPageRank = {pc1 , pc2 , ..., pcm} of the
candidate keyphrases. This rankings will be used
to integrate with the LLM-generated rankings.

2.2.3 Ranking Integration
We consider the rankings obtained from the LLMs
(RLLM = {lc1 , lc2 , ..., lcn}) and those derived
from PageRank (RPageRank = {pc1 , pc2 , ..., pcm})
as separate ranking scores, which are subsequently
integrated linearly as outlined in Equation 3. d
indicates an integration ratio, ranging from 0 to
1, which indicates the contribution from the LLM.
Thus, a lower fc suggests higher ranking of the
candidate. It is important to note LLM can gener-
ate candidates that do not appear in the input text
T . These candidates do not have a corresponding
ranking calculated using the PageRank. Hence, the
only LLM-generated ranking is used in calculation
fc.

fc =


d ∗ lc + (1− d) ∗ pc, if c ∈ T

lc, if c /∈ T
(3)

After calculating fc for each candidate
keyphrase, they are ranked in ascending order for
performance evaluation.

3 Experiments

3.1 Datasets and Evaluation Metrics
The performance of the LLMRank is evaluated us-
ing four established benchmark datasets 2. The

2https://github.com/LIAAD/KeywordExtractor-Datasets

datasets Inspec [14] and SemEval2017 [1] feature
short documents, whereas SemEval2010 [16] and
Nguyen2007 [20] are comprised of longer docu-
ments. Table 2 provides a summary of the basic
statistics for these datasets. F1 scores calculated
based on the top 5, 10, and 15 are used for per-
formance comparison. For During the evaluation
process, both extracted and labeled keyphrases, are
stemmed before performance calculation.

Table 2: Table of Basic Statistics for the Datasets

Dataset Document Number Average Sentence Number Average Word Number

Inspec 500 6 134
SemEval2017 493 7 168
SemEval2010 100 362 7845
Nguyen2007 209 235 5088

3.2 UKE Baselines

Our model was benchmarked against 14 base-
line unsupervised keyphrase extraction models,
divided into four distinct groups: (1) Statistical
models3: TF-IDF, YAKE! [7]; (2) Graph-based
models4: TextRank [19], SingleRank [27], Po-
sitionRank [13], MultipartiteRank [4]; (3) Deep
learning-based or mixed models: EmbedRank5 [3],
SIFRank6 [26], KeyGames7 [22], JointModeling8

[18], AttentionRank9 [10], MDERank10 [33], Hy-
perRank [25]; (4) Generative LLM-based models:
PromptRank11 [17].

3.3 Hyperparameter Setting

In our experiments, we evaluated three different
LLMs, including GPT-3.5 (gpt-3.5-turbo-012512)
and GPT-4o (gpt-4o-2024-05-1313), both under
the OpenAI API license for non-profits with a
maximum context length of 16385 tokens, and
Llama3 (meta-llama-3-70b-instruct14, maximum
context length 8096 tokens) under the Meta Llama
3 community license. To ensure robust genera-
tion of candidate keyphrases, the ’Top K’ num-
ber of candidate keyphrases was set at 50 for

3https://github.com/boudinfl/pke
4https://github.com/boudinfl/pke
5https://github.com/swisscom/ai-research-keyphrase-

extraction
6https://github.com/sunyilgdx/SIFRank
7https://github.com/mangalm96/keygames-pke
8https://github.com/xnliang98/uke_ccrank
9https://github.com/hd10-iupui/AttentionRank

10https://github.com/linhanz/mderank
11https://github.com/NKU-HLT/PromptRank
12https://platform.openai.com/docs/models/gpt-3-5-turbo
13https://platform.openai.com/docs/models/gpt-4o
14https://replicate.com/meta/meta-llama-3-70b-instruct
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longer document datasets. For shorter document
datasets, the model is configured to extract the top
20 keyphrases. For LLMs, the parameter for consis-
tency temperature is set to be 0, and max number
of tokens max_tokens is set to be 576. All other
LLM parameters are kept at their default values.

The window size of co-occurrence (w) and the
weight for the linear integration factor (d) for each
dataset are shown in the Table 3. It is worth noting
that these parameters are used for all three LLMs
evaluated in this research to demonstrate the gen-
eralizability of the proposed model. The window
size is not applicable to Inspec. Our experiments
show that augmenting LLM with the graph-based
model does not improve the overall performance.

Table 3: A Summary of Parameters

Data Set Inspec SemEval2017 SemEval2010 Nguyen2007
Top K 20 20 50 50

w (in Eq. (1)) - 5 30 13
d (in Eq. (3)) 1.0 0.9 0.5 0.5

3.4 Results

Table 4 presents a comparison of the LLMRank
model’s performance with UKE baselines across
four benchmark datasets. The performance of the
baseline models is reported based on results pub-
lished in the original publications or from recent
papers that cited those publications. For datasets
that were not evaluated using some of the baselines,
we ran the published code to obtain the results for
comparison. The results generated from running
the published code are marked with an asterisk (*).

The table presents the performance of keyphrase
extraction using three state-of-the-art LLMs alone
and LLMRank models using "original text only"
and "generative text allowed" settings. We high-
light the best results each dataset under F1@5,
10 and 15, respectively. For the long document
datasets (SemEval2010 and Nguyen2007), the
state-of-the-art LLMs alone outperformed the base-
line models in the literature, particularly in F1@5.
This indicates that LLMs are superior at captur-
ing the semantic richness of long texts, which
provide ample information for analysis and ex-
traction. For the short document datasets (In-
spec and SemEval2017), the state-of-the-art LLMs
achieved performance comparable to or slightly
below the best-performing baselines. LLMs consis-
tently show strong performance in identifying the

top 5 keyphrases (reflected by the values of F1@5),
indicating their effectiveness in identifying a few,
but crucial, phrases in the input text. Comparing
the three state-of-the-art LLMs alone models, GPT
models are better at analyzing the short text docu-
ments, whereas Llama 3 is better at analyzing the
long text documents.

Although LLMs alone shows superior perfor-
mance on long document datasets, the LLMRank
that augments the LLMs using the graph-based
model enhance the LLMs performance further. The
LLMRank achieves the highest F1 scores across
all metrics on the SemEval2010 and Nguyen2007
datasets and improved the performances of the
corresponding LLMs alone approach. This under-
scores the efficacy of capturing the sentential re-
lations using graph-based approach for long texts.
However, the results also show that the augment-
ing the LLMs using graph-based approach does
not have a positive impact on the performances
gained from the shorter documents. Through ex-
periments, we found that the graph-based approach
can even lower the performance of the LLMs on the
Inspec dataset. Whereas for SemEval2017 dataset,
the positive impact of the graph-based augmenting
is very minimal or none. In general, the state-of-
the-art LLMs show no significant advantage over
other deep learning models in generating candidate
keyphrases for short documents.

Our results also highlight the impact of using
the "original text only" versus "generative text al-
lowed" settings. For instance, in the Inspec dataset,
all three LLMs and our LLMRank models perform
better in the "generative text allowed" setting. How-
ever, this improvement is not observed for the long-
text document dataset Nguyen2007. Results on the
SemEval datasets are mixed, with different LLMs
showing varying performances. We believe this
variability may be related to the training data of
these LLMs and their sensitivity to the instructions
in the prompts. Since LLMs are highly sensitive to
the instructions in the prompt, some prompts may
be particularly effective. Our approach includes an
intuitive evaluation of keyphrase extraction perfor-
mance by setting the temperature parameter to zero
to minimize result variations. Achieving a good
reproduciblility of LLM outputs remains challeng-
ing.

Overall, our results emphasize the potential
of enhancing keyphrase extraction methods with
LLMs and graph-based techniques, especially for
challenging datasets with long or complex texts.
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Table 4: Comparative F1 Scores at 5, 10, 15 Across Keyphrase Extraction Models

Method Inspec SemEval2017 SemEval2010 Nguyen2007
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF [15] 11.28 13.88 13.83 12.70 16.26 16.73 2.81 3.48 3.91 8.66⋆ 11.03⋆ 12.42⋆

YAKE! [8] 18.08 19.62 20.11 11.84 18.14 20.55 11.76 14.40 15.19 15.63⋆ 17.46⋆ 17.63⋆

Graph-based Models
TextRank [19] 27.04 25.08 36.65 16.43 25.83 30.50 3.80 5.38 7.65 1.07⋆ 2.35⋆ 2.95⋆

SingleRank [27] 27.79 34.46 36.05 18.23 27.73 31.73 5.90 9.02 10.58 1.86⋆ 3.55⋆ 4.56⋆

PositionRank [13] 28.12 32.87 33.32 18.23 26.30 30.55 9.84 13.34 14.33 6.35⋆ 9.89⋆ 10.25⋆

MultipartiteRank [4] 25.96 29.57 30.85 17.39 23.73 26.87 12.13 13.79 14.92 13.49⋆ 15.63⋆ 16.50⋆

Deep Learning-based or Mixed Models
EmbedRank d2v [2] 31.51 37.94 37.96 20.21 29.59 33.94 3.02 5.08 7.23 4.47⋆ 6.39⋆ 7.18⋆

SIFRank [26] 29.11 38.80 39.59 22.59 32.85 38.10 8.32⋆ 8.69⋆ 8.78⋆ 9.40⋆ 9.55⋆ 8.88⋆

KeyGames [22] 32.12 40.48 40.94 16.04⋆ 24.86⋆ 29.48⋆ 11.93 14.35 14.62 15.02⋆ 15.68⋆ 14.30⋆

JointModeling [18] 32.61 40.17 41.09 19.17⋆ 29.59⋆ 35.68⋆ 13.02 19.35 21.72 11.52⋆ 15.93⋆ 17.71⋆

AttentionRank [10] 31.55 39.16 40.65 24.45 35.24 39.06 12.72 17.21 19.15 17.22⋆ 20.63⋆ 22.01⋆

MDERank(BERT) [33] 26.17 33.81 36.17 22.81 32.51 37.18 12.95 17.07 20.09 14.47⋆ 17.45⋆ 17.44⋆

HyperRank [25] 33.35 40.79 42.12 - - - 14.79 21.33 24.20 - - -
PromptRank(T5) [17] 31.73 37.88 38.17 27.14 37.76 41.57 17.24 20.66 21.35 18.07⋆ 21.14⋆ 21.48⋆

Models in this Study (Original Text Only)
GPT-3.5 34.61 39.40 38.22 24.65 33.16 36.15 19.44 21.65 21.49 24.29 24.74 22.84
GPT-4o 34.26 38.16 37.86 23.29 33.01 37.26 20.40 23.49 24.25 23.32 22.22 20.53
Llama3 25.09 28.09 26.70 18.22 24.02 25.52 21.94 24.64 23.27 29.06 28.43 25.57

LLMRank (GPT-3.5) 34.61 39.40 38.22 24.73 33.17 36.10 19.66 22.77 22.17 25.00 26.08 23.47
LLMRank (GPT-4o) 34.26 38.16 37.86 23.34 33.03 37.25 21.88 25.23 25.51 24.89 24.68 22.01
LLMRank (Llama3 ) 25.09 28.09 26.70 18.19 24.01 25.55 22.22 24.87 23.76 27.86 28.42 26.63

Models in this Study (Generative Text Allowed)
GPT-3.5 35.93 39.90 38.52 24.35 32.67 35.93 18.56 21.61 21.20 23.42 23.49 21.76
GPT-4o 35.86 39.72 38.57 23.28 32.62 36.64 20.55 23.72 24.39 22.10 22.03 20.36
Llama3 25.73 29.60 28.75 18.23 24.50 26.12 21.37 25.02 23.98 28.84 28.69 25.77

LLMRank (GPT- 3.5) 35.93 39.90 38.52 24.48 32.66 35.88 18.66 22.26 22.04 24.43 25.21 22.66
LLMRank (GPT-4o) 35.86 39.72 38.57 23.38 32.63 36.71 21.86 26.31 26.03 24.13 23.39 21.15
LLMRank (Llama3 ) 25.73 29.60 28.75 18.26 24.50 26.10 22.03 25.19 24.65 29.56 29.69 26.31

The superior performance of the proposed LLM-
Rank validates our novel augmentation of LLMs,
effectively addressing the inherent limitations of
existing approaches.

3.4.1 Computational cost
The experiments were performed on a machine
with an i7 9700k processor and 48GB of RAM.
For all three LLMs, the average processing time
is under 0.054 seconds for both short and long
documents. The proposed LLMRank model adds
less than 0.015 seconds for short documents and
less than 0.034 seconds for long documents to the
base LLMs’ processing time.

3.5 Ablation Study

3.5.1 Effects of Window Size
The proposed LLMRank model utilizes the struc-
ture of the article, employing a graph model to
improve the ranking of keyphrases generated by
LLMs. This section details ablation studies con-
ducted on the co-occurrence window size between
the candidate keyphrases using LLMRank built on
GPT-4o in the "Generative Text Allowed" setting.
Since short text document sets have no more than
seven sentences, this ablation study is only applied
to the long text document sets.

Given that a long text document can contain hun-
dreds of sentences, we experimented with the win-

dow size from 2 to 20 with the incremental step
of 1, then from 25 up to 40 with an incremental
step of 5. The performance across co-occurrence
windows ranging from 2 to 40 is shown in Figure
3. For the SemEval2010 dataset, the peak F1@5
score occurs at a window size of 4, with perfor-
mance stabilizing after a window size of 12. The
F1@10 scores reach their peak at a window size of
30, while F1@15 scores peak at 25, maintaining
high levels thereafter. For the Nguyen2007 dataset,
F1@5 remains high between window sizes of 9 to
14 and 20 to 25; F1@10 is sustained between 9 and
15 and after 25; and F1@15 is consistently high
between 13 and 18.

Although optimal performance for both datasets
might be achieved with larger co-occurrence win-
dows, considering computational costs, a window
size below 10 can still yield comparable perfor-
mance.

3.5.2 Effects of Integration Ratio

Augmenting the LLMs is significantly influenced
by the integration ratio d defined in Equation 3. To
explore the effects of this ratio, an ablation study
on the proposed LLMRank model built on GPT-4o
in the "Generative Text Allowed" setting was con-
ducted. Figure 4 illustrates how we systematically
varied d from 0 to 1 in increments of 0.1.

For the Inspec dataset, the F1 scores incremen-
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Figure 3: Evaluation of the Co-occurrence Window Size Impact on Performance

Figure 4: Evaluation of the Integration Ratio Impact on Performance

tally improve as d increases, with the highest scores
observed at d = 1.0 across F1@5, 10, and 15.
This implies that the model relies entirely on the
ranking power of GPT-4o, without incorporating
the graph model’s ranking. Similarly, the Se-
mEval2017 dataset experiences peak performances
at high d values, specifically d = 0.7 for F1@5, 10
and 15. This pattern suggests that LLM alone can
perform well on short document datasets.

In the case of the SemEval2010 dataset, which
contains long text documents, the optimal perfor-
mance occurs at a medium integration ratio; a peak
at d = 0.6 for F1@5 is noted, with F1@5 and
F1@10 peaking at d = 0.3 and d = 0.4, respec-
tively. Thus, we adopt the integration ratio of 0.5,
which is generalizable towards the calculation of
F1@5, 10, and 15. For the Nguyen2007 dataset,

the optimal integration ratio is identified at d = 0.3
across F1@5, 10, and 15. The LLMRank model
achieves optimal performance when d is set to be
0.3, which means GPT-4o contributes 30% and the
PageRank model provides 70% to the final ranking.
This indicates that GPT-4o might not fully compre-
hend the overall context of these long documents.
The LLMRank model is capable to addressing this
limitation and effectively identify keyphrases.

In summary, the optimal d values diverge
across different datasets, suggesting a nuanced de-
pendency on the specific characteristics of each
dataset.

3.6 Case Study

In most scenarios, the system performs better in
the "Generative Text Allowed" setting. In this sec-

7



Figure 5: Comparison of keyphrase extraction capabili-
ties between "Original Text Only" and "Generative Text
Allowed" settings

tion, we use a case study to investigate the possible
reasons.

On the Inspec dataset, GPT-3.5 in "Generative
Text Allowed" setting performs significantly bet-
ter than in "Original Text Only" setting. Figure
5 shows a document from the Inspec dataset, the
text contains six ground-truth keyphrases; three are
embedded in the original text (highlighted in blue),
and three are not (highlighted in pink). The sys-
tem can successfully identify the three keyphrases
embedded in the text in the "Original Text Only"
setting. However, the ones that do not occurred in
the original text might need either external knowl-
edge or summarization to derive. For example,
‘game theory’ might not be derived without cor-
rect instruction and relevant domain knowledge.
Other two keyphrases ‘noncomplex numbers’ and
‘deterministic processes’ could be potentially be
derived from the text if proper instruction is given
in the prompt. Even with current instruction in the
prompt, the "Generative Text Allowed" setting en-
ables GPT-3.5 to identify ‘deterministic processes’.
This implies that LLMs have the potential to gen-
erate keyphrases based on relevant domain knowl-
edge and proper instruction.

4 Related Works

keyphrase Extraction (KPE)techniques are cate-
gorized into supervised and unsupervised meth-
ods. Supervised Keyphrase Extraction: Supervised
KPE utilizes machine learning to treat extraction
as a binary classification issue, employing mod-
els that learn from extensively labeled datasets

to recognize patterns and relationships. Unsu-
pervised Keyphrase Extraction utilizes three main
approaches: statistical, graph-based, and hybrid
methods. Statistical models, like Term Frequency-
Inverse Document Frequency (TF-IDF) [15], ana-
lyze contextual data to highlight distinctive terms
and assess keyphrase candidates based on word
frequency and text positioning [21, 7].

Graph-based models represent keyphrases as
nodes, with edges reflecting semantic relationships.
Algorithms like PageRank score these nodes, with
enhancements from clustering to form document-
specific graphs or integrate word embeddings for
more accurate rankings [19, 27, 6, 29, 12, 5, 32].

Hybrid methods merge deep learning precision
with traditional techniques, leveraging pre-trained
models for enhanced context understanding. These
methods employ embedding similarities and docu-
ment attributes to effectively rank keyphrases, in-
corporating advanced algorithmic strategies like
attention mapping and evolutionary game theory
models [3, 26, 22, 10, 18, 33, 11, 25].

Generative models such as GPT and BERT have
transformed KPE, enabling more nuanced analy-
sis and ranking of candidates. These models use
prompt-based learning and integrate knowledge
graphs to improve extraction accuracy [17, 24, 23].

5 Conclusion

In conclusion, our research introduces an inno-
vative method, LLMRank, to augment the state-
of-the-art LLMs for unsupervised keyphrase ex-
traction using a graph-based approach. Proposed
model utilizes the generative LLMs to identify a set
of candidate keyphrases. Subsequently, these candi-
dates are subjected to a re-ranking process through
a graph-based model that leverages structured con-
textual information on a global scale within a given
text document. Our approach not only capitalizes
on the inherent strengths of generative LLMs but
also effectively mitigates their limitations by in-
corporating a sophisticated analysis of phrase co-
occurrence relationships.

6 Limitations

The limitations of this research include: (1) The
proposed model only works well on long text doc-
uments, which limits the generalization of the pro-
posed approach. (2) Although we experimented
with three state-of-the-art LLMs for unsupervised
keyphrase extraction, other LLMs such as PaLM

8



2 can also be explored. (3) Only four benchmark
datasets for keyphrase extraction are included in
this study. More can be included in the future re-
search; (4) This research focused on unsupervised
keyphrase extraction, the capability of LLMs to-
wards supervised keyphrase extraction can be fur-
ther explored.

7 Ethical Impact

Generally speaking, this work does not involve ethi-
cal issues. However, if the proposed method is used
to analyze data involving privacy and biases con-
cerns, ethical impacts should be addressed before
using generative AI.
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