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Abstract

Based on the offset Rademacher complexity, this
work outlines a systematical framework for deriv-
ing sharp excess risk bounds in statistical learn-
ing without Bernstein condition. In addition to
recovering fast rates in a unified way for some
parametric and nonparametric supervised learn-
ing models with minimum identifiability assump-
tions, we also obtain new and improved results
for LAD (sparse) linear regression and deep logis-
tic regression with deep ReLU neural networks,
respectively.

1. Introduction
Let (X,Y ) ∈ X ×Y denote the predictor and response ran-
dom variables pair distributed from an unknown probability
distribution µ, where X ⊆ Rd and Y ⊆ R. In statistics
learning problems, we usually observe an independently and
identically distributed (i.i.d.) sample D := {(Xi, Yi)}ni=1

drawn from µ. With this sample in mind, we can establish
a statistical procedure, a measurable function mapping X
to Y . Specifically, let F be a class of measurable functions
and introduce a loss function ℓ(·, ·) : Y ×R → [0,∞), then
we denote the empirical risk minimizer (ERM) as

f̂n ∈ argmin
f∈F

Rn(f) :=
1

n

n∑
i=1

ℓ(Yi, f(Xi)). (1)

To characterize the finite-sample performance of ERM f̂n
in (1), we can consider the excess risk, denoted by

R(f̂n)− inf
f∈J

R(f) (2)
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where R(f) := Eℓ(Y, f(X)) refers to the population risk
of f ∈ F , and J ⊇ F is a reference function class which
may be different from the admissible set F . We call the
learning model well-specified when J = F , otherwise it
is called misspecified. Obviously, it incurs an additional
approximation error denoted by Eapp = inff∈F R(f) −
inff∈J R(f) in misspecified settings.

Deriving the convergence rate of (2) i.e., providing a gen-
eralization analysis for the ERM f̂n in (1) stands a central
place in machine learning and statistics since it quantifies
whether the ERM learning procedure obtained from the
training data generalize well on unseen data. With tools
of symmetrization and Lipschitz contraction, the classical
method for bounding (2) in the well-specified setting is
transforming into bounding the global Rademacher average,
denoted as

E
[
sup
f∈F

1

n

n∑
i=1

τif(Xi)
]
, (3)

where {τi}ni=1 are i.i.d. Rademacher random variables, that
is, P (τi = 1) = P (τi = −1) = 1/2. Thereafter, global
Rademacher average (3) can be bounded in terms of the
complexity of function class F , say Complex(F), such as
covering number or VC-dimension, see Van Der Vaart &
Wellner (1996); Van de Geer & van de Geer (2000); Van der
Vaart (2000); Giné & Nickl (2021) for detailed analysis
from the viewpoint of the empirical process. But, global
Rademacher average (3) may lead to a suboptimal error

bound taking the order of O(
√

Complex(F)
n ). Subsequently,

Bartlett et al. (2005); Koltchinskii (2006) proposed local
Rademacher average

E

[
sup

f∈F :E[f(X)2]≤r

1

n

n∑
i=1

τif(Xi)

]
, (4)

where r > 0. Obviously, local Rademacher average (4)
utilizes the local structure of function class F , and it can
reach the sharp error bound with the order of O(Complex(F)

n )
in some scenarios. However, this improvement needs the
so-called Bernstein condition which reads for each f ∈ F ,

E[|f(X)− f∗(X)|2] ≤ BE[ℓ(Y, f(X))− ℓ(Y, f∗(X))],

for some B > 0, where f∗ minimizes in F the functional
f 7→ E[ℓ(Y, f(X))]. In this case, the application of lo-
cal Rademacher complexity is restricted to some strongly
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convex and bounded loss functions. To circumvent this
Bernstein condition, Liang et al. (2015) introduced the off-
set Rademacher complexity as an intuitive alternative to the
local Rademacher average to obtain a sharp error bound for
the ERM with the least squared loss. Mendelson (2018)
studied the behavior of ERM with convex and differentiable
loss functions including the log and Huber loss functions by
developing the small-ball method. Later, Xu & Zeevi (2021)
provided a refined localized procedure to obtain tighter er-
ror bounds for the ERM (or estimator obtained via certain
optimization algorithms) with convex, differentiable and
bounded losses. More recently, Kanade et al. (2022) intro-
duced the offset condition as a replacement of Bernstein
condition in the setting of model aggregation to derive an
exponential-tail excess risk bound. In model aggregation,
the test function class J in (2) is a subset of admissible
class F in (2), which makes the techniques developed in
Kanade et al. (2022) may not be used for general supervised
learning setting where F ⊆ J is our interest.

Although there is a large body of literature focusing on
the error analysis of the excess risk, see Bartlett et al.
(2005); Koltchinskii (2006); Liang et al. (2015); Mendelson
(2018); Xu & Zeevi (2021); Kanade et al. (2022) and refer-
ences therein, there still remains some challenging issues
to be solved. Especially, in the absence of additional as-
sumptions like the Bernstein condition a sharp error bound
O(Complex(F)

n ) for the ERM is not available when the loss
function in (1) is only Lipschitz continuous but neither dif-
ferentiable nor bounded such as the least absolute derivation
(LAD) loss. In this work, we make efforts to address these
issues. With the tools of offset Rademacher complexity, we
obtain a sharp error bound with the order of O(Complex(F)

n )
for the expected excess risk with general Lipschitz contin-
uous loss functions including the LAD. To this end, we
use symmetrization and decompose the expected excess
risk of ERM into a summation of an approximation error
Eapp = inff∈F R(f) − inff∈J R(f) vanishing in well-
specified settings and an offset Rademacher complexity
term. Instead of using the chaining method in Liang et al.
(2015), we apply Hoeffding’s inequality to proceed, which
leads to an upper bound of the offset Rademacher complex-
ity with the order of O( log EXN∞(δ,F,X)

n ), see Theorem 2.3
for details. We highlight that we need neither the Bernstein
condition (Bartlett et al., 2005; Koltchinskii, 2006) nor the
offset condition (Kanade et al., 2022).

We summarize the contributions of this paper as follows.

(i) We provide sharp error bounds for the expected excess
risk of ERM by using the tools of offset Rademacher
complexity, wherein Bernstein condition (Bartlett
et al., 2005; Koltchinskii, 2006) or offset condition
(Kanade et al., 2022) is not required. Thus, the ob-
tained error bound is applicable for general loss func-

tions which may be nonsmooth and unbounded.

(ii) Under conditions that make the models considered are
identifiable, we recover fast rates for parametric mod-
els including ordinary least squares (ℓ0 constrained
least squares), logistic regression (ℓ0 constrained lo-
gistic regression) and deep nonparametric regression
with least square loss in a unified way.

(iii) We obtain a new result for sparse liner regression with
LAD loss and derive an improved rate for deep logis-
tic regression with ReLU neural networks under very
mild conditions.

1.1. Outlines

The rest of this paper is organized as follows. In Section 2,
we sketch out the framework deriving an upper bound of the
expected excess risk based on offset Rademacher complex-
ity. Extensions to the error analysis of parametric models
incorporating with sparsity and nonparametric models are
given in Sections 3 and 4, respectively. Concluding is shown
in Section 5. The proofs of all lemmas, corollaries and theo-
rems are deferred in Appendices A to C.

1.2. Notations

In this section, we introduce the notations used through-
out this paper. The set of positive integers is denoted by
N := {1, 2, . . .}. We also denote N0 := N ∪ {0} for con-
venience. We write ∥x∥q := (

∑d
i=1 |xi|q)

1
q as the q-norm

(q ∈ [1,∞]) of a vector x = (x1, . . . , xd)
T ∈ Rd, and ∥x∥0

represents the number of nonzero elements of x. For proba-
bility measure ν and measurable function f : Rd → R, let
∥f∥qLq(ν) := EX∼ν |f(X)|q . For any a, b ∈ R, ⌈a⌉ denotes
the smallest integer no less than a, a ∨ b := max{a, b}.

2. Main Results
In this section, we construct a unified framework by relating
the expected excess risk of ERM to the offset Rademacher
complexity. Therefore, we first recall the definition of offset
Rademacher complexity (Liang et al., 2015).

2.1. Offset Rademacher complexity

The offset Rademacher complexity is introduced in Liang
et al. (2015) to provide sharp bounds for a two-step Star esti-
mator. Denote by F a class of measurable functions from X
to R, let µX be the probability distribution of the predictor
X and set X := {Xi}ni=1 as i.i.d. random variables dis-
tributed according to µX . Let {τi}ni=1 be i.i.d. Rademacher
random variables. Then, the empirical (or conditional) offset
Rademacher complexity (Liang et al., 2015) of F is defined
as the following penalized version of empirical Rademacher
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complexity which localizes F adaptively according to the
magnitude of f2, i.e.,

Roff
n (F , β|X) := E

[
sup
f∈F

1

n

n∑
i=1

τif(Xi)− βf(Xi)
2
∣∣∣X],

for some β > 0, and the offset Rademacher complexity of
F is denoted by

Roff
n (F , β) := EXR

off
n (F , β|X)

= E
[
sup
f∈F

1

n

n∑
i=1

τif(Xi)− βf(Xi)
2
]
. (5)

As shown in Sections 3 and 4, for most of the common para-
metric and nonparametric supervised learning problems the
expected excess risk induced by the Lipschitz continuous
loss function can be bounded by the offset Rademacher com-
plexity and approximation errors. Hence, we give the main
results of this work on controlling the offset Rademacher
complexity with properly chosen classes.

Theorem 2.1. Let D := {(Xi, Yi)}ni=1 be i.i.d. copies
of (X,Y ) ∈ X × Y distributed from µ, and let F be a
class of measurable functions mapping X to [−B,B] with
B ≥ 1. Denote the composite function class G := {x 7→
g(x; f) : x ∈ X , f ∈ F} given a measurable function g
mapping X × F to R. Suppose that |g(x; f)− g(x; f ′)| ≤
κ|f(x) − f ′(x)| with κ > 0 and 0 ≤ g(x; f) ≤ 2κB, for
all x ∈ X and f, f ′ ∈ F . Then, for any ω > 0 and f ∈ F
(may depend upon D), it holds

ED

[
EXg(X; f)

]
− (ω + 1)ED

[ 1
n

n∑
i=1

g(Xi; f)
]

(6)

≤ (ω + 2) · Roff
n

(
G, ω

2Bκ(ω + 2)

)
,

where

Roff
n (G, β)

:= E sup
f∈F

( 1
n

n∑
i=1

τig(Xi; f)−
β

n

n∑
i=1

g2(Xi; f)
)
,

with β > 0, refers to the offset Rademacher complexity of
G.

Setting ω = 2, the term in (6) serves as an upper bound for
several common well-specified parametric learning prob-
lems, see Section 3 for details. Next, it remains to derive
an upper bound of the offset Rademacher complexity of
function class G in Theorem 2.1. Hence, we introduce the
definition of covering number (Anthony et al., 1999) used to
characterize this upper bound in the following Theorem 2.3.

Definition 2.2 (Empirical covering number). Given a sam-
ple X = {Xi}ni=1, define the empirical Lp (1 ≤ p ≤ ∞)
metric ∥ · ∥X,p based on the sample X as

∥f∥X,p :=
( 1
n

n∑
i=1

|f(Xi)|p
)1/p

.

A set Fδ is called a ∥·∥X,p δ-cover for F if for every f ∈ F ,
there exits fδ ∈ Fδ such that ∥f−fδ∥X,p ≤ δ. Furthermore,

Np(δ,F ,X) := inf
{
|Fδ| : Fδ is a ∥ · ∥X,p δ-cover of F

}
is called the Lp δ-covering number of F conditionally on
X.

Theorem 2.3 (An upper bound of offset Rademacher com-
plexity). Assume the conditions of Theorem 2.1 hold. Then,
for any δ > 0, the offset Rademacher complexity of G satis-
fies

Roff
n (G, β)

≤
1 + logEX

[
N∞(δ,F ,X)

]
2βn

+ (1 + 4Bβκ)κδ,

where β > 0, and κ,B are defined in Theorem 2.1.

Remark 2.4. Given f ∈ F , Z = (X,Y ) ∼ µ.
Let ℓ(f, Z) = ℓ(Y, f(X)), g̃f (Z) = ℓ(f, Z) −
ℓ(f∗, Z), g(X; f) = EY |X [g̃f (Z)|X] where f∗ :=
argminf∈F E[ℓ(Y, f(X))] in the well-specified setting and
f∗ := argminf∈J E[ℓ(Y, f(X))] in the misspecified set-
ting, respectively. Assuming that the loss function ℓ is
Lispchitz continuous in its second element and the function
class F is bounded, the requirement on G in Theorems 2.1
and 2.3, will meet for most of the common parametric and
nonparametric supervised learning problems under mild
conditions needed for model identifiability, see Sections 3
and 4 for details. Therefore, we draw a unified blueprint
for constructing the error bound of the expected excess risk
of ERM in terms of a class of Lipschitz continuous loss
functions which may be nonsmooth and unbounded.
Remark 2.5. The fast offset Rademacher complexity
rate O(1/n) obtained in Theorem 2.3 improves the rate
O(1/

√
n) derived in Liang et al. (2015) via chaining

method. Note that the Bernstein condition (Bartlett et al.,
2005; Koltchinskii, 2006) and offset condition (Kanade
et al., 2022) are not imposed. Compared to Liang et al.
(2015), we generalize their results since we have a wider
range of applicability, rather than just being limited to the
analysis of least squares estimations. In additions, we have
that the offset Rademacher complexity is closely associated
with the covering number, which provides sufficient intu-
itions enabling us to establish non-asymptotic error bounds
of interests in the sequel.
Remark 2.6. There is some “tension” in that there is a bound
parameter (here ω) that taken small tightens up the empirical
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risk part of the upper bound (Theorem 2.1), but causes
typical bounds on the offset Rademacher complexity to
grow (Theorem 2.3).

3. Applications in Parametric Models
In this section, we consider excess risk bounds and estima-
tion errors in some well-specified parametric regression and
classification models, and there ℓ0 constraint version under
mild assumptions to guarantee that the learning problems
are identifiable.

3.1. Linear regression model

Example 3.1 (Well-specified linear regression model). Let
Θ ⊆ Rd be a parameter space and φ : X → Rd be a feature
map. The linear regression model is

Y = φ(X)T θ∗ + ε, (7)

with (X,Y ) ∼ µ, θ∗ ∈ Θ and ε being a random error term.

Given an i.i.d. sample D := {Xi, Yi}mi=1 from the distribu-
tion µ in model (7), we aim to derive an estimator of θ∗ and
construct the related non-asymptotic error bounds. To that
end, we define the ERM

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Yi, φ(Xi)
T θ), (8)

where ℓ : Y × R → [0,∞) denotes the loss function.

To bound the estimation error of the ERM θ̂n in (8), we
impose the following assumption on the loss function ℓ.

Assumption 3.2. Assume that the loss function ℓ : Y×R →
[0,∞) admits the Bayes predictor φ(·)T θ∗, that is,

φ(x)T θ∗ = argmin
t∈R

E
[
ℓ(Y, t)− ℓ(Y, φ(X)T θ∗)

∣∣X = x
]
,

for all x ∈ X .

Assumption 3.2 is a minimum requirement to guarantee that
the learning problem is identifiable. For example, E[ε|X] =
0 and Med(ε|X) = 0 (conditional medium of ε given X)
will imply Assumption 3.2 for least square regression and
LAD regression, respectively. Additionally, Assumption 3.2
yields the excess risk

E(φ(·)T θ; ℓ) := E
[
ℓ(Y, φ(X)T θ)− ℓ(Y, φ(X)T θ∗)

]
,

θ ∈ Θ, and the inner excess risk can be denoted by

g(x;φ(·)T θ)
:= E

[
ℓ(Y, φ(X)T θ)− ℓ(Y, φ(X)T θ∗)

∣∣X = x
]
,

(9)

for all x ∈ X . It can be easily deduced that E(φ(·)T θ; ℓ) =
EXg(X;φ(·)T θ).

Theorem 3.3 (Excess risk bound of linear regression model
(7)). Suppose that the feature map φ is bounded by Bφ > 0,
the parametric space Θ is bounded by Bθ > 0, Assump-
tion 3.2 holds, and the inner excess risk in (9) satisfies
|g(x;φ(·)T θ) − g(x;φ(·)T θ′)| ≤ κ|φ(x)T θ − φ(x)T θ′|
with κ > 0 for any x ∈ X . Then ERM θ̂n in (8) satisfies

ED
[
E(φ(·)T θ̂n; ℓ)

]
≤ 4Roff

n

(
G, 1

4BφBθκ

)
,

where G := {x 7→ g(x;φ(·)T θ) : x ∈ X , θ ∈ Θ}.

Theorem 3.3 shows that for a class of loss functions satis-
fying Assumption 3.2, the expected excess risk of ERM θ̂n
defined in (8) can be bounded by the offset Rademacher
complexity. More generally, under some mild conditions
we can derive a straightforward error bound between θ̂n and
θ∗ when the loss function ℓ taking a special form such that
Assumption 3.2 holds.
Remark 3.4. For simplify of presentation, we assume the
feature map is bounded as in Theorem 3.3. Indeed, our
method can extend to unbounded data with some distribu-
tional assumptions. For instance, we may assume φ(X) is
sub-Gaussian for X ∼ µX . Then we can obtain a similar
bound via the technique of truncation.

Roughly speaking, we consider the least square and LAD
estimation problems, which correspond to the least square
loss (ℓ(a, b) = (a− b)2) and LAD loss (ℓ(a, b) = |a− b|).
Corollary 3.5 (Excess risk of least squares regression). As-
sume that the conditions of Theorem 3.3 hold, and set the
loss function ℓ as a least square loss and E[ε|X] = 0. Then
we have

ED
[
∥θ̂n − θ∗∥2Σ

]
≤

8B2
φB

2
θ

n

(
1 + d log

3BφBθ

δ

)
+ 8BφBθδ,

for any δ ∈ (0, 1), where Σ := EX [φ(X)φ(X)T ].

Corollary 3.6 (Excess risk of least absolute deviations re-
gression). Assume that the conditions of Theorem 3.3 hold,
and set the loss function ℓ as a LAD loss and Med(ε|X) = 0.
Then we have

ED
[
E(φ(·)T θ̂n; ℓlad)

]
≤ 2BφBθ

n

(
1 + d log

3BφBθ

δ

)
+ 2δ,

for any δ ∈ (0, 1).

As far as we know, the convergence rate O(1/n) established
in Corollary 3.6 (Theorem 3.14) for the LAD loss is new. It
can not been derived by the localized Rademacher method
(Bartlett et al., 2005; Koltchinskii, 2006) or refined localized
convergence procedure (Xu & Zeevi, 2021) since neither the
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Bernstein condition needed (Bartlett et al., 2005; Koltchin-
skii, 2006) nor the statistical noise of smooth population risk
used in Xu & Zeevi (2021) will hold for the LAD loss. With
additional stability assumption as Assumption 3.7 below,
we can establish the estimation error bound for ∥θ̂n − θ∗∥.

Assumption 3.7. There exist some constants ξ > 0 and
τ > 0 such that for any |a| ≤ ξ,∣∣FY |X

(
φ(x)T θ∗ + a

)
− FY |X

(
φ(x)T θ∗

)∣∣ ≥ τ |a|, a.s.,

where FY |X(·) is the cumulative distribution function of Y
given X .

Moreover, there exists a constant C > 0 such that for any
θ ∈ Θ,

|φ(x)T θ − φ(x)T θ∗| ≥ C∥θ − θ∗∥2, a.s.

Corollary 3.8. Assume that the conditions of Theo-
rem 3.3 and Assumption 3.7 hold for the LAD loss with
Med(ε|X) = 0. We have

min
{
ED
[
∥θ̂kn − θ∗∥22

]
, 2ED

[
∥θ̂kn − θ∗∥2

]}
≤ 2Cτ,ξBφBθ

nC

(
1 + d log

3BφBθ

δ

)
+

2Cτ,ξδ

C
,

where Cτ,ξ := max{ 4
τ ,

8
τξ} and C is an absolute constant.

Remark 3.9. In Corollary 3.5 and Corollary 3.6, the least
square and LAD losses satisfy Assumption 3.2 under the
assumptions that E[ε|X] = 0 or Med(ε|X) = 0. Assump-
tion 3.7 is a mild condition on the conditional distribution
such that there exists a neighborhood around φ(x)T θ∗ in
which the fluctuation of the conditional probability distri-
bution function FY |X(·) is larger than that of φ(x)T θ∗. Be-
sides, Padilla & Chatterjee (2020); Shen et al. (2021) also
introduced some similar conditions to this condition. As-
sumption 3.7 is weaker than Condition 2 in He & Shi (1994)
where the density function of response is supposed to be
lower bounded by some positive constant and is weaker than
condition D.1 in Belloni & Chernozhukov (2011) which as-
sumes that the conditional density of Y given X = x is
continuously differentiable and bounded away from zero
uniformly for all quantile level and all x and is also weaker
than Assumption 2 in Hernan Madrid Padilla et al. (2020)
where the conditional density of Y given X = x is sup-
posed to have a positive lower bound determined by some
positive constant.

3.2. Logistic regression model

Example 3.10 (Well-specified logistic regression model).
Let Θ ⊆ Rd be a parameter space and φ : X → Rd be a
feature map. The logistic regression model reads

Y ∼ Bernoulli(η(X)), with η(X) = σ(φ(X)T θ∗), (10)

where (X,Y ) ∼ µ, θ∗ ∈ Θ, and σ(a) = 1
1+exp(−a) denotes

the sigmoid function.

With Logistic regression model (10) and an i.i.d. sample
D := {Xi, Yi}ni=1, the ERM can be defined as

θ̂n ∈ argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Yi, φ(Xi)
T θ)), (11)

where

ℓ(a, b) := log(1 + exp(−ab)), a = ±1, b ∈ R, (12)

denotes the logistic loss.

Theorem 3.11 (Excess risk of logistic regression model
(10)). Suppose that the feature map φ is bounded by Bφ >
0, the parametric space Θ is bounded by Bθ > 0. Then, for
any δ ∈ (0, 1), the ERM θ̂n in (11) satisfies

ED
[
∥θ̂n − θ∗∥2Σ

]
≤ CB

{2BφBθ

n

(
1 + d log

3BφBθ

δ

)
+ 2δ

}
,

where Σ = EX [φ(X)φ(X)T ] and CB = 2(1 +
exp(B))2 exp(−B).

3.3. Sparsity models

In this section, we further consider linear and logistic re-
gression models with sparsity issues (Assumption 3.12).
Over the past two decades, to investigate the model selec-
tion and variable estimation in high-dimensional and sparse
models is a significant research topic in statistics, and there
are numerous related studies, one can refer to Tibshirani
(1996); Fan & Li (2001); Zou (2006); Zhang & Huang
(2008); Zou & Zhang (2009); Ye & Zhang (2010); Zhang
& Zhang (2012); Wang et al. (2013); Loh & Wainwright
(2015); Huang et al. (2018); Wainwright (2019), etc.

Assumption 3.12 (Sparsity). Assume θ∗ defined in (7) or
(10) satisfies ∥θ∗∥0 ≤ k, where k is a positive integer quan-
tifying the sparse level of the underlying regression coeffi-
cients θ∗.

With sparsity Assumption 3.12, we can define the ℓ0-
constrained estimation

θ̂kn ∈ argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Yi, φ(Xi)
T θ),

s. t. ∥θ∥0 ≤ k.

(13)

Similar to the analysis in Sections 3.1 and 3.2, we can also
derive three types of non-asymptotic error bounds of the ℓ0-
constrained estimators in terms of different loss functions,
shown in the following Theorems 3.13 to 3.15.
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Theorem 3.13 (Excess risk of ℓ0-constrained least squares
regression). Set the loss function ℓ as a least square loss in
(13). Suppose that the feature map φ is bounded by Bφ > 0,
the parametric space Θ is bounded by Bθ > 0 and and
E[ε|X] = 0 in model (7). Let θ∗ be defined in (7) satisfying
Assumption 3.12. Then, the ℓ0-constrained least square
estimator θ̂kn satisfies

ED
[
∥θ̂kn − θ∗∥2Σ

]
≤

8B2
φB

2
θ

n

(
1 + k

{
1 + log

d

k
+ log

(3BφBθ

δ

)})
+ 8BφBθδ,

for any δ ∈ (0, 1), where Σ = EX [φ(X)φ(X)T ].

Theorem 3.14 (Excess risk of ℓ0-constrained least absolute
deviations regression). Set the loss function ℓ as the LAD
loss in (13). Suppose that the feature map φ is bounded by
Bφ > 0, the parametric space Θ is bounded by Bθ > 0
and Med(ε|X) = 0 in model (7). Let θ∗ be defined in
(7) satisfying Assumption 3.12. Then, for any δ ∈ (0, 1),
the ℓ0-constrained least absolute deviations estimator θ̂kn
satisfies

ED

[
E(φ(·)T θ̂kn; ℓlad)

]
≤ 2BφBθ

n

(
1 + k

{
1 + log

d

k
+ log

(3BφBθ

δ

)})
+ 2δ.

Moreover, if Assumption 3.7 holds, we have

min
{
ED
[
∥θ̂kn − θ∗∥22

]
, 2ED

[
∥θ̂kn − θ∗∥2

]}
≤ 2Cτ,ξBφBθ

nC

[
1 + k

(
1 + log

d

k
+ log

(3BφBθ

δ

))]
+

2δCτ,ξ

C
,

where Cτ,ξ = max{ 4
τ ,

8
τξ} and C is an absolute constant.

Theorem 3.15 (Excess risk of ℓ0-constrained logistic regres-
sion). Set the loss function ℓ as the logistic loss (12) in (13).
Suppose that the feature map φ is bounded by Bφ > 0, the
parametric space Θ is bounded by Bθ > 0 in model (10).
Let θ∗ be defined as (10) satisfying Assumption 3.12. Then,
for any δ ∈ (0, 1), the ℓ0-constrained logistic regression
estimator θ̂kn satisfies

ED

[
∥θ̂kn − θ∗∥2Σ

]
≤ 2CBBφBθ

n

[
1 + k

(
1 + log

d

k
+ log

(3BφBθ

δ

))]
+ 2CBδ,

where Σ = EX [φ(X)φ(X)T ] and CB = 2(1 +
exp(B))2 exp(−B).

Remark 3.16. Setting φ(·) in model (7) as the identical
operator, then it corresponds to the sparse linear model

Y = XT θ∗ + ε, ∥θ∗∥0 ≤ k. (14)

Note that this linear model (14) is identifiable if and only if,
for any k-sparse θ∗ and β∗,

Xθ∗ = Xβ∗ implies θ∗ = β∗, (15)

where X := [X1, X2, . . . , Xn]
T ∈ Rn×d denotes the de-

sign matrix. See Arias-Castro & Lounici (2014) for more
details. Besides, this identifiable condition (15) is equiva-
lent to that, for any subset J ⊂ {1, . . . , d} with |J | ≤ 2k
(|J | represents the cardinality of J), the submatrix XJ is
full-rank (Arias-Castro & Lounici, 2014), and it is also
equivalent to σ2k > 0 denoted by

σ2k := min
{
σmin(X

T
2kX2k/n) :

X2k ∈ Rn×2kconsists of 2k columns of X
}
,

where σmin(X
T
2kX2k/n) is the minimum eigenvalue of

XT
2TX2T /n. We highlight that Theorems 3.13 and 3.14

give the sharp bounds of ℓ0-constrained least squared and
LAD estimators, among which it only requires the identifi-
ability of the model (7) without additional assumptions on
the design matrix. However, the existing theoretical studies
of the regularized methods require stronger assumptions
than the fundamental identifiable condition (15). Van de
Geer & Bühlmann (2009) demonstrated that the compatibil-
ity condition (CC) is the weakest condition in the existing
literature on deriving oracle results for the Lasso (Tibshirani,
1996), while the model identifiability condition σ2k > 0 is
weaker than CC. Zhang & Zhang (2012) showed that obtain-
ing the oracle result of ℓ0-regularized least square estimator
depends on the condition σ3k > 0. Zhang et al. (2017) illus-
trated that one can not derive the result of Zhang & Zhang
(2012) in other regularized methods including Lasso (Tib-
shirani, 1996), SCAD (Fan & Li, 2001) and MCP (Zhang,
2010) without additional conditions. Obviously, σ3k > 0 is
a stronger requirement than the condition σ2k > 0. Further-
more, Theorem 3.15 gives the oracle result of ℓ0-regularized
logistic estimator without imposing the restricted strong
convexity condition required in Loh & Wainwright (2015).

4. Applications in Deep Nonparametric
Models

In this section, we consider nonparametric regression and
classification models in misspecified settings with deep neu-
ral networks.
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4.1. Nonparametric regression models

We have a nonparametric regression model

Y = f0(X) + ε, (16)

where (X,Y ) is the predictor and response variables pair
taking values in X × Y ⊂ Rd × R, f0 : Rd → R is the
underlying regression function and ε ∈ R is the random
noise. Let µ be the joint distribution of (X,Y ) on X × Y ,
and µX corresponds to the marginal distribution ofX . Next,
from the perspective of population and sample levels, we
provide a procedure to obtain the estimator for f0 in (16)
using an i.i.d. sample D := {Xi, Yi}ni=1 drawn from µ.

At population level, given a function f : X → R and a
supervised loss ℓ : Y × R → [0,∞), we can define the
population ℓ-risk of f as

R(f ; ℓ) := E(X,Y )

[
ℓ(Y, f(X))

]
.

Then, the Bayes predictor f∗ can be denoted by

f∗(x) := argmin
t∈R

E
[
ℓ(Y, t)|X = x

]
, (17)

for all x ∈ X , which is the minimizer of the population ℓ-
risk, i.e., by setting J to be the set of measurable functions,

f∗ = argmin{R(f ; ℓ) : f measurable}.

In nonparametric regression models, the Bayes ℓ-risk
R(f∗; ℓ) achieves the optimal performance, then we can
define the excess ℓ-risk as the deviation with respect to the
optimal risk, that is,

E(f ; ℓ) := R(f ; ℓ)−R(f∗; ℓ)

= E(X,Y )

[
ℓ(Y, f(X))− ℓ(Y, f∗(X))

]
.

We also define the inner excess risk

g(x; f) := E
[
ℓ(Y, f(X))− ℓ(Y, f∗(X))

∣∣X = x
]
, (18)

for x ∈ X .

In practice, we only have access to an i.i.d. sample D. Then,
at sample level we can denote the empirical ℓ-risk of f as

Rn(f ; ℓ) :=
1

n

n∑
i=1

ℓ(Yi, f(Xi)).

Accordingly, the ERM is defined as

f̂n ∈ argmin
f∈F

Rn(f ; ℓ), (19)

where F is a subclass of J .

As defined in (19), the ERM f̂n depends on the sample D
and the choice of loss function ℓ. Therefore, we firstly fo-
cus on the general Lipschitz continuous inner excess risk

(18), then generalize to the least square and robust regres-
sion problems by considering different robust loss functions.
To evaluate the quality of the ERM f̂n in (19), we still ex-
plore the expected excess risk ED[E(f̂n)]. To that end, we
introduce the following boundness assumption.

Assumption 4.1. Assume {f∗} ∪F ⊆ {f : ∥f∥L∞(µX) ≤
B} with B ≥ 1.

Now, we give the non-asymptotic error bound of the excess
risk of ERM f̂n under mainly assuming the Lipschitz conti-
nuity of the inner excess risk in (18), shown in the following
theorem.

Theorem 4.2 (Excess risk bound of nonparametric models).
Let f∗ be Bayes predictor defined in (17) and f̂n be the ERM
defined in (19). Suppose that the inner excess risk defined in
(18) satisfies |g(x; f) − g(x; f ′)| ≤ κ|f(x) − f ′(x)| with
κ > 0, f, f ′ ∈ F , for any x ∈ X , and Assumption 4.1 holds.
Then it follows that

ED
[
E(f̂n; ℓ)

]
≤ 4Roff

n

(
G, 1

4Bκ

)
+ 3 inf

f∈F
E(f ; ℓ), (20)

where G := {x 7→ g(x; f) : x ∈ X , f ∈ F}.

Remark 4.3. On the right hand of (20), it includes two
terms, i.e, statistical error Roff

n

(
G, 1

4Bκ

)
and approximation

error inff∈F E(f ; ℓ). Note that this approximation error is
a derivative of model misspecified settings, which can be
controlled by the approximation theory. Additionally, the
Lispchitz continuity of the inner excess risk can be naturally
met when taking certain forms of loss functions such as the
least square and robust losses.

Next, we consider the least square loss (ℓls(a, b) = (a−b)2).
In this case, we can conclude that the minimizer f∗ of ℓls-
risk exactly coincides with the underlying regression func-
tion f0(x) = E[Y |X = x], x ∈ X , under the assumption
that E[ε|X] = 0.

Lemma 4.4 (Excess risk bound of least squares regression).
Set the loss in (17) and (19) as the least square loss. Suppose
that Assumption 4.1 holds and E[ε|X] = 0. Then, for any
δ ∈ (0, 1), the least square estimation f̂n satisfies

ED
[
∥f̂n − f0∥2L2(µX)

]
≤ 32B2

n

(
1 + logEX

[
N∞(δ,F ,X)

])
+ 32Bδ

+ 12B inf
f∈F

∥f − f0∥2L2(µX).

In Lemma 4.4, the statistical error takes the order of
O( log EXN∞(δ,F,X)

n ) ignoring other terms and the approx-
imation error degenerates to inff∈F ∥f − f0∥2L2(µX), and
both of them can be determined by the trade-off of bias and
variance. More recently, the approximation capability of
neural networks to smooth functions has been established,

7
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see Yarotsky (2018); Yarotsky & Zhevnerchuk (2020); Shen
et al. (2019); Shen (2020); Lu et al. (2021); Petersen &
Voigtlaender (2018) and references therein for more details.
It sparks interests of many researchers in studying non-
parametric regression using deep neural networks (Bauer
& Kohler, 2019; Kohler & Langer, 2021; Schmidt-Hieber,
2020; Nakada & Imaizumi, 2020; Farrell et al., 2021; Jiao
et al., 2021; Suzuki & Nitanda, 2021). Thence, we take
the function space F as neural networks with rectified lin-
ear unit (ReLU) activation defined in Definition 4.5 and
set the target function f0 as a Hölder continuous function
in Definition 4.6 to give the statistical guarantee of deep
nonparametric regression, see Corollary 4.7 below. To this
end, we firstly recall the definition of ReLU neural networks,
then introduce the concept of Hölder class.

Definition 4.5 (ReLU neural networks). A class of feedfor-
ward neural networks fθ : Rd → R with parameter θ, depth
D, width W and size S can be defined as

fθ(x) = vD ◦ ρ ◦ vD−1 ◦ ρ ◦ · · · ◦ ρ ◦ v1 ◦ ρ ◦ v0(x),

for x ∈ Rd, where ρ(x) := max(0, x) is the ReLU activa-
tion function and operates pointwisely on x and

vi(x) = Aix+ bi, i = 0, 1, . . . ,D,

Ai ∈ Rdi+1×di is the weight matrix, bi ∈ Rdi+1 is the bias
vector, and di is the width of the i-th layer. The feedforward
neural network fθ has D hidden layers and (D + 1) layers
in total. We use a (D + 1)-vector (d0, d1, . . . , dD)

T to
describe the width of each layer; in particular, d0 = d is
the dimension of the input X and dD = 1 is the dimension
of the output Y . The width W is defined as the maximum
width of hidden layers, i.e., W = max {d1, . . . , dD}. The
size S is defined as the total number of parameters in the
neural network fθ.

Definition 4.6 (Hölder class). Let α̃ be an n-tuple of non-
negative integers α̃j . A partial derivative of f of order
∥α̃∥1 = α̃1 + . . .+ α̃n is defined by

∂α̃f =
∂|α̃|f

∂xα̃1
1 · · · ∂xα̃n

n

.

For ς > 0 with ς = s+ r, where s ∈ N0 and r ∈ (0, 1] and
d ∈ N, we denote the Hölder class Hς

(
[0, 1]d, B

)
as

Hς
(
[0, 1]d, B

)
=
{
f : [0, 1]d → R, max

∥α̃∥1≤s

∥∥∥∂α̃f∥∥∥
∞

≤ B,

max
∥α̃∥1=s

sup
x ̸=y

∣∣∂α̃f(x)− ∂α̃f(y)
∣∣

∥x− y∥r2
≤ B

}
.

For any subset X ⊆ [0, 1]d, we denote Hς(X , B) :={
f : X → R, f ∈ Hς

(
[0, 1]d, B

)}
.

Based on the above discussion, we can construct a non-
asymptotic error bound of deep nonparametric estimator
with the square loss by incorporating statistical and approxi-
mation errors. This obtained error bound reaches the mini-
max optimal rate in nonparametric regression (Stone, 1982;
Gyorfi et al., 2002; Tsybakov, 2009), shown in the following
corollary.

Corollary 4.7. Let F be deep ReLU neural networks
and f0 be a Hölder continuous function in Definition 4.6
with ς = s + r > 0, s ∈ N0 and r ∈ (0, 1] . Sup-
pose the assumptions of Lemma 4.4 hold and µX is ab-
solutely continuous with respect to Lebesgue measure. Set-
ting the depth D = O((s + 1)2n

d
8ς+4d log(n)) and width

W = O((s+ 1)2ds+1n
d

8ς+4d log(n)), then we have

ED
[
∥f̂n − f0∥2L2(µX)

]
≤ B2(s+ 1)4d2s+(ς∨1)O

(
n−

2ς
2ς+d

)
.

More generally, we can further consider the robust nonpara-
metric regression including the following robust loss func-
tions (i)-(iv) denoted by ℓrobust uniformly. Table 1 shows
that these robust losses considered here are Lipschitz con-
tinuous, and we let κ be the Lipschitz constant for notation
simplification.

(i) LAD loss: ℓ(a, b) = |a− b|, (a, b) ∈ R2.

(ii) Quantile loss: ℓ(a, b) = ρτ (a−b), (a, b) ∈ R2, where
ρτ (x) = τ |x| if x ≥ 0 and ρτ (x) = (1 − τ)|x| if
x < 0 for some τ ∈ (0, 1).

(iii) Huber loss: ℓ(a, b) = hγ(a − b), (a, b) ∈ R2, for
some γ > 0, where hγ(x) = x2/2 if |x| ≤ γ and
hγ(x) = γ|x| − γ2/2 otherwise.

(iv) Cauchy loss: ℓ(a, b) = log{1 + ζ2(a− b)2}, (a, b) ∈
R2, for some ζ > 0.

Table 1. Summary of different Lipschitz loss functions.

Hyper parameter Lipschitz constant κ

LAD N/A 1
Quantile τ ∈ (0, 1) max{τ, 1− τ}
Huber γ ∈ (0,∞) γ

Cauchy ζ ∈ (0,∞) ζ

Lemma 4.8 (Excess risk bound of robust nonparametric
regressions). Set the loss in (17) and (19) as the robust
loss in Table 1. Let f∗ be the Bayes predictor of ℓrobust-
risk defined in (17) and f̂n be the empirical ℓrobust-risk
minimizer defined in (19). Suppose Assumption 4.1 holds.

8
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Then, for any δ ∈ (0, 1), we have

ED
[
E(f̂n; ℓrobust)

]
≤ 8Bκ

n

(
1 + logEX

[
N∞(δ,F ,X)

])
+ 8κδ + 3κ inf

f∈F
∥f − f∗∥L1(µX).

4.2. Nonparametric classification models

Now we turn to consider the nonparametric binary clas-
sification problems. In this case, the response variable Y
takes values in {−1, 1}, then we apply the logistic and hinge
losses defined in Definition 4.9, Definition 4.13. Recall that
the logistic loss (12) can be rewritten as follows.

Definition 4.9 (Logistic loss). ℓlogist(a, b) = log(1 +
exp(−ab)) for a ∈ {−1,+1} and b ∈ R.

Lemma 4.10 (Excess risk bound of logistic loss). Set the
loss in (17) and (19) as the logistic loss in Definition 4.9.
Let f∗ be Bayes predictor of ℓlogist-risk defined in (17) and
f̂n be the empirical ℓlogist-risk minimizer defined in (19).
Suppose Assumption 4.1 holds. Then, for any δ ∈ (0, 1), we
have

ED
[
E(f̂n; ℓlogist)

]
≤ 8B

n

(
1 + logEX

[
N∞(δ,F ,X)

])
+ 8δ +

3

8
inf
f∈F

∥f − f∗∥2L2(µX).

Moreover, it holds

ED
[
∥f̂n − f∗∥2L2(µX)

]
≤ CB

{8B
n

(
1 + logEX

[
N∞(δ,F ,X)

])
+ 8δ

+
3

8
inf
f∈F

∥f − f∗∥2L2(µX)

}
,

where CB = 2(1 + exp(B))2 exp(−B).

Corollary 4.11. Under the same assumptions in
Lemma 4.10 and assume that f∗ is a Hölder continuous
function in Definition 4.6 with ς = s+ r > 0, s ∈ N0 and
r ∈ (0, 1], and µX is absolutely continuous with respect to
Lebesgue measure. Let F be deep ReLU neural networks.
Setting the depth D = O((s+1)2n

d
8ς+4d log(n)) and width

W = O((s+ 1)2ds+1n
d

8ς+4d log(n)), then we have

ED
[
∥f̂n − f∗∥2L2(µX)

]
≤ CBB(s+ 1)4d2s+(ς∨1) · n−

2ς
2ς+d ,

where CB = 2(1 + exp(B))2 exp(−B).

Remark 4.12. The excess risk bound for deep logistic re-
gression derived in Corollary 4.11 is minimax optimal and
it improves the recent sub-optimal rate O(n−

ς
2ς+d ) in Shen

et al. (2022).

Definition 4.13 (Hinge loss). ℓhinge(a, b) = max{0, 1 −
ab} for a ∈ {−1,+1} and b ∈ R.

Lemma 4.14 (Excess risk bound of hinge loss). Set the loss
in (17) and (19) as the hinge loss in Definition 4.13. Let f∗

be Bayes predictor of ℓhinge-risk defined in (17) and f̂n be
the empirical ℓhinge-risk minimizer defined in (19). Suppose
Assumption 4.1 holds. Then, for any δ ∈ (0, 1), we have

ED
[
E(f̂n; ℓhinge)

]
≤ 8B

n

(
1 + logEX

[
N∞(δ,F ,X)

])
+ 8δ + 3 inf

f∈F
∥f − f∗∥L1(µX).

5. Conclusion and Further Work
In this work, we introduce a unified framework establishing
a sharp bound for the expected excess risk of ERM in terms
of general Lipschtiz loss functions which may be nonsmooth
and unbounded via offset Rademacher complexity. We not
only recover some known sharp results in several parametric
and nonparametric supervised learning scenarios but also
make nontrivial improvement in analysing LAD estimations,
sparse linear regression models, and deep logistic regression
with ReLU neural networks.

In future research, we intend to extend the approach in
this paper to nonparametric kernel methods. In addition,
extending this approach to other algorithms including reg-
ularization is indeed a rewarding problem. Furthermore,
performing simulations to validate the theoretical results
presented in this paper is also an important issue.
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A. Proofs in Section 2
A.1. Proof of Theorem 2.1

Proof. For any ω > 0, we have

EDEXg(X; fn)

= ED

[
EXg(X; fn)−

ω + 1

n

n∑
i=1

g(Xi; fn)
]
+ (ω + 1)ED

[ 1
n

n∑
i=1

g(Xi; fn)
]

≤ EX sup
f∈F

(
EXg(X; f)− ω + 1

n

n∑
i=1

g(Xi; f)
)
+ (ω + 1)ED

[ 1
n

n∑
i=1

g(Xi; fn)
]
. (A.1)

Then, it suffices to bound the first term on the right hand of (A.1). Since ∥f∥L∞(µX) ≤ B for f ∈ F , g(x; ·) is κ-Lipschitz
and 0 ≤ g(x; ·) ≤ 2Bκ for all x ∈ X , then for ω > 0, some algebra calculation yields

EX sup
f∈F

(
EXg(X; f)− ω + 1

n

n∑
i=1

g(Xi; f)
)

≤ EX sup
f∈F

(ω + 2

2
EXg(X; f)− ω

2
EXg(X; f)− ω + 2

2n

n∑
i=1

g(Xi; f)−
ω

2n

n∑
i=1

g(Xi; f)
)

≤ EX sup
f∈F

(ω + 2

2
EXg(X; f)− ω

4Bκ
EXg

2(X; f)− ω + 2

2n

n∑
i=1

g(Xi; f)−
ω

4Bκn

n∑
i=1

g2(Xi; f)
)
,

where the last inequality holds due to g2(x; ·) ≤ 2Bκg(x; ·), x ∈ X . Further, we introduce a ghost sample X′ = {X ′
i}ni=1

drawn i.i.d. from µX independent of X, and let τ = {τi}ni=1 be a sequence of i.i.d. Rademacher variables independent of X
and X′. By means of the technique of symmetrization, we can replace the expectation inside the supremum by an empirical
mean based on a ghost sample. Because of the independent and identical distribution of {X1, . . . , Xn, X

′
1, . . . , X

′
n}, the

joint distribution of X and X′ is not affected if one randomly interchanges the corresponding components of X and X′. Then
by the convexity of supremum and Jensen’s inequality, we obtain

EX sup
f∈F

(ω + 2

2
EXg(X; f)− ω

4Bκ
EXg

2(X; f)− ω + 2

2n

n∑
i=1

g(Xi; f)−
ω

4Bκn

n∑
i=1

g2(Xi; f
)

= EX sup
f∈F

(
EX′

[ω + 2

2n

n∑
i=1

g(X ′
i; f)−

ω

4Bκn

n∑
i=1

g2(X ′
i; f)

]
− ω + 2

2n

n∑
i=1

g(Xi; f)−
ω

4Bκn

n∑
i=1

g2(Xi; f)
)

≤ EXEX′ sup
f∈F

(ω + 2

2n

n∑
i=1

(g(X ′
i; f)− g(Xi; f))−

ω

4Bκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
= EXEX′Eτ sup

f∈F

(ω + 2

2n

n∑
i=1

τi(g(X
′
i; f)− g(Xi; f))−

ω

4Bκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
≤ EX′Eτ sup

f∈F

(ω + 2

2n

n∑
i=1

τig(X
′
i; f)−

ω

4Bκn

n∑
i=1

g2(X ′
i; f)

)
+ EXEτ sup

f∈F

(ω + 2

2n

n∑
i=1

(−τi)g(Xi; f)−
ω

4Bκn

n∑
i=1

g2(Xi; f)
)

= EXEτ sup
f∈F

(ω + 2

n

n∑
i=1

τig(Xi; f)−
ω

2Bκn

n∑
i=1

g2(Xi; f)
)
,

where the last inequality follows from the fact that (−τi)g(Xi; f) and τig(X ′
i; f) have the same distribution as τig(Xi; f).

Therefore, setting β = ω
2Bκ(ω+2) in (5) yields the desired result.
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A.2. Proof of Theorem 2.3

Proof. As τ = {τi}ni=1 is a sequence of i.i.d. Rademacher variables independent of X = {Xi}ni=1, then conditionally on X
we have

Eτ |X

[
sup
f∈F

1

n

n∑
i=1

τig(Xi; f)−
β

n

n∑
i=1

g2(Xi; f)
∣∣∣X = (Xi)

n
i=1

]
= Eτ sup

f∈F

( 1
n

n∑
i=1

τig(Xi; f)−
β

n

n∑
i=1

g2(Xi; f)
)
.

Let δ > 0 and let Fδ be an L∞ δ-cover of F on X = (X1, . . . , Xn). For any fixed f ∈ F , there exists a fδ ∈ Fδ such that
∥f − fδ∥X,∞ ≤ δ. Thus

1

n

n∑
i=1

τig(Xi; f) ≤
1

n

n∑
i=1

τig(Xi; fδ) +
1

n

n∑
i=1

|τi||g(Xi; f)− g(Xi; fδ)|

≤ 1

n

n∑
i=1

τig(Xi; fδ) + κδ,

(A.2)

where we use the Lipschitz continuity of g(x; ·), x ∈ X . Using |g(x; f)| ≤ 2Bκ and |g(x; fδ)| ≤ 2Bκ and the Lipschitz
continuity of g(x; ·), one obtains

− 1

n

n∑
i=1

g2(Xi; f) = − 1

n

n∑
i=1

g2(Xi; fδ) +
1

n

n∑
i=1

(g(Xi; fδ) + g(Xi; f))(g(Xi; fδ)− g(Xi; f))

≤ − 1

n

n∑
i=1

g2(Xi; fδ) + 4Bκ
1

n

n∑
i=1

|g(Xi; fδ)− g(Xi; f)|

≤ − 1

n

n∑
i=1

g2(Xi; fδ) + 4Bκ2δ.

(A.3)

Hence, it follows from (A.2)-(A.3) that

Eτ sup
f∈F

( 1
n

n∑
i=1

τig(Xi; f)−
β

n

n∑
i=1

g2(f,Xi)
)

≤ Eτ max
fδ∈Fδ

( 1
n

n∑
i=1

τig(Xi; fδ)−
β

n

n∑
i=1

g2(Xi; fδ)
)
+ (1 + 4Bβκ)κδ.

Since {τig(Xi; fδ)}ni=1 are independent random variables conditioning on X = (Xi)
n
i=1, then

Eτ

[
τig(Xi; fδ)

]
= 0, and − g(Xi; fδ) ≤ τig(Xi; fδ) ≤ g(Xi; fδ), i = 1, . . . , n.

By Hoeffding’s inequality, it yields that for any fδ ∈ Fδ and ξ > 0,

Pτ

{ 1

n

n∑
i=1

τig(Xi; fδ) > ξ +
β

n

n∑
i=1

g2(Xi; fδ)
}
≤ exp

(
−

(nξ + β
∑n

i=1 g
2(Xi; fδ))

2

2
∑n

i=1 g
2(Xi; fδ)

)
≤ exp(−2βnξ),

where the last inequality holds due to the numeric inequality

(a+ y)2

y
≥ (a+ a)2

a
= 4a, y ∈ R+.

13
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Therefore, we obtain an estimator for the tail probability

Pτ

{
max
fδ∈Fδ

(
1

n

n∑
i=1

τig(Xi; fδ)−
β

n

n∑
i=1

g2(Xi; fδ)

)
> ξ

}

≤ N∞(δ,F ,X) max
fδ∈Fδ

Pτ

{ 1

n

n∑
i=1

τig(Xi; fδ) > ξ +
β

n

n∑
i=1

g2(Xi; fδ)
}

≤ N∞(δ,F ,X) exp(−2βnξ).

Consequently, for any A > 0,

Eτ max
fδ∈Fδ

( 1
n

n∑
i=1

τig(Xi; fδ)−
β

n

n∑
i=1

g2(Xi; fδ)
)

≤
∫ ∞

0

Pτ

{
max
fδ∈Fδ

(
1

n

n∑
i=1

τig(Xi; fδ)−
β

n

n∑
i=1

g2(Xi; fδ) > ξ

)}
dξ

≤ A+

∫ ∞

A

N∞(δ,F ,X) exp(−2βnξ)dξ

≤ A+
N∞(δ,F ,X)

2βn
exp(−2βnA).

Setting A = logN∞(δ,F,X)
2βn leads to

Eτ max
fδ∈Fδ

( 1
n

n∑
i=1

τig(fδ, Xi)−
β

n

n∑
i=1

g2(fδ, Xi)
)
≤ 1 + logN∞(δ,F ,X)

2βn
.

As a consequence, we have

E sup
f∈F

( 1
n

n∑
i=1

τig(Xi; f)−
β

n

n∑
i=1

g2(Xi; f)
)
≤

1 + logEX
[
N∞(δ,F ,X)

]
2βn

+ (1 + 4Bβκ)κδ.

This completes the proof.

B. Proofs in Section 3
B.1. Proof of Theorem 3.3

Proof. To begin with, for any θ ∈ Θ, let us define

g̃(x, y;φ(·)T θ) := ℓ(y, φ(x)T θ)− ℓ(y, φ(x)T θ∗), (x, y) ∈ X × Y.

Then, we can obtain the following decomposition by the fact that θ̂n is the ERM, that is,

E(φ(·)T θ̂n; ℓ) = E(X,Y )g̃(X,Y ;φ(·)T θ̂n)

= E(X,Y )g̃(X,Y ;φ(·)T θ̂n)−
3

n

n∑
i=1

g̃(Xi, Yi;φ(·)T θ̂n) +
3

n

n∑
i=1

g̃(Xi, Yi;φ(·)T θ̂n)

≤ E(X,Y )g̃(X,Y ;φ(·)T θ̂n)−
3

n

n∑
i=1

g̃(Xi, Yi;φ(·)T θ̂n) +
3

n

n∑
i=1

g̃(Xi, Yi;φ(·)T θ),
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for any θ ∈ Θ. Taking expectation with respect to D = {(Xi, Yi)}ni=1 on both sides of the above inequality gives

ED
[
E(φ(·)T θ̂n; ℓ)

]
≤ sup

f∈F
ED

[
E(X,Y )g̃(X,Y ; f)− 3

n

n∑
i=1

g̃(Xi, Yi; f)
]
+ 3ED

[ 1
n

n∑
i=1

g̃(Xi, Yi;φ(·)T θ)
]

= sup
f∈F

EX

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
+ 3E(φ(·)T θ; ℓ)

≤ EX sup
f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
+ 3E(φ(·)T θ; ℓ),

for any θ ∈ Θ, where F := {x 7→ φ(x)T θ : θ ∈ Θ} and the last inequality follows form the convexity of supremum and
Jensen’s inequality. In Example 3.1, we see that E(φ(·)T θ∗; ℓ) = 0 with θ∗ ∈ Θ. Hence

ED
[
E(φ(·)T θ̂n; ℓ)

]
≤ EX sup

f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
.

Observe that 0 ≤ g(x; ·) ≤ 2BφBθκ for all x ∈ X , then it implies g2(x; ·) ≤ 2BφBθκg(x; ·) by Assumption 3.2.
Consequently,

EX sup
f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]

= EX sup
f∈F

[
2EXg(X; f)− EXg(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

n

n∑
i=1

g(Xi; f)
]

≤ EX sup
f∈F

(
2EXg(X; f)− 1

2BφBθκ
EXg

2(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

2BφBθκn

n∑
i=1

g2(Xi; f)
)
.

We introduce an i.i.d. ghost sample X′ := {X ′
i}ni=1 drawn from µX and independent of X, and let τ = {τi}ni=1 be a

sequence of i.i.d. Rademacher variables independent of X and X′. By means of the technique of symmetrization, we can
replace the expectation inside the supremum by an empirical mean based on the ghost sample. Because of the independent
and identical distribution of {X1, . . . , Xn, X

′
1, . . . , X

′
n}, the joint distribution of X and X′ is not affected if one randomly

interchanges the corresponding components of X and X′. Then by the convexity of supremum and Jensen’s inequality, we
obtain

EX sup
f∈F

(
2EXg(X; f)− 1

2BφBθκ
EXg

2(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

2BφBθκn

n∑
i=1

g2(Xi; f)
)

= EX sup
f∈F

(
EX′

[ 2
n

n∑
i=1

g(X ′
i; f)−

1

2BφBθκn

n∑
i=1

g2(X ′
i; f)

]
− 2

n

n∑
i=1

g(Xi; f)−
1

2BφBθκn

n∑
i=1

g2(Xi; f)
)

≤ EXEX′ sup
f∈F

( 2
n

n∑
i=1

(g(X ′
i; f)− g(Xi; f))−

1

2BφBθκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
= EXEX′Eτ sup

f∈F

( 2
n

n∑
i=1

τi(g(X
′
i; f)− g(Xi; f))−

1

2BφBθκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
= 2EX′Eτ sup

f∈F

1

n

n∑
i=1

(
τig(X

′
i; f)−

1

4BφBθκ
g2(X ′

i; f)
)

+ 2EXEτ sup
f∈F

1

n

n∑
i=1

(
− τig(Xi; f)−

1

4BφBθκ
g2(Xi; f)

)
= 2EX′Roff

n

(
G, 1

4BφBθκ

∣∣∣X′
)
+ 2EXR

off
n

(
G, 1

4BφBθκ

∣∣∣X)
= 4Roff

n

(
G, 1

4BφBθκ

)
.
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We complete the proof.

B.2. Proofs of Corollaries 3.5 and 3.6 and Theorem 3.11

We first introduce and prove the following Lemmas B.1 and B.3 preparing for the proofs of Corollaries 3.5 and 3.6
and Theorem 3.11.

Lemma B.1. Let φ : X → Rd be a feature map satisfying ∥φ(x)∥2 ≤ Bφ for each x ∈ X . Denote F := {x 7→ φ(x)T θ :
θ ∈ Rd, ∥θ∥2 ≤ Bθ}. Then

logN∞(δ,F) ≤ d log
(3BφBθ

δ

)
.

Proof. Denote Θ := {θ ∈ Rd : ∥θ∥2 ≤ Bθ}. Let Θε be a ∥ · ∥2 ε-net of Θ with |Θε| = N(ε,Θ, ∥ · ∥2). Then, for any
θ ∈ Θ , there exists a θε ∈ Θε, such that ∥θ − θε∥2 ≤ ε. By Cauchy-Schwardz inequality, we have

|φ(x)T θ − φ(x)T θε| ≤ ∥φ(x)∥2∥θ − θε∥2 ≤ Bφε,

and consequently, N∞(Bφε,F) ≤ N(ε,Θ, ∥ · ∥2). Using Corollary 4.2.13 in Vershynin (2018) gives

N(ε,Θ, ∥ · ∥2) ≤
(3Bθ

ε

)d
,

for all 0 ≤ ε ≤ 1. By setting δ = Bφε, we conclude the result.

Lemma B.2. Let Y = {+1,−1}. Let ℓ(a, b) : Y × R → [0,∞) be a margin-based loss functions, namely there exists a
representing function ψ : R → [0,∞) such that ℓ(a, b) = ψ(ab) for a ∈ Y and b ∈ R. If

(i) ψ(·) and f(x; ·) are convex for all x ∈ X , and

(ii) η(x)ψ′(f(x; θ∗)) = (1− η(x))ψ′(−f(x; θ∗)) for all x ∈ X ,

then for any x ∈ X , it holds minθ∈Rp E
[
ℓ(Y, f(X; θ))

∣∣X] = E
[
ℓ(Y, f(X; θ∗))

∣∣X].
Proof. Observe that

E
[
ℓ(Y, f(X; θ))− ℓ(Y, f(X; θ∗))

∣∣X] = E
[
ψ(Y f(X; θ))

∣∣X]− E
[
ψ(Y f(X; θ∗))

∣∣X],
and we define

h(X; θ) = E
[
ψ(Y f(X; θ))

∣∣X]
= η(X)ψ(f(X; θ)) + (1− η(X))ψ(−f(X; θ)).

Note that h(x; ·) is convex provided ψ(·) and f(x; ·) are convex for any x ∈ X and

0 ∈ ∂θh(x; θ
∗) =

{
η(x)ψ′(f(x; θ∗))− (1− η(x))ψ′(−f(x; θ∗))

}
∂θf(x; θ

∗),

then we obtain the result.

Lemma B.3. Let f∗ be a Bayes predictor of ℓlogist-risk such that ∥f∗∥L∞(µX) ≤ B with B ≥ 1, then it follows that

exp(B)

2(1 + exp(B))2
∥f − f∗∥2L2(µX) ≤ E(f ; ℓlogist) ≤

1

8
∥f − f∗∥2L2(µX),

for any f satisfying ∥f∥L∞(µX) ≤ B.

Proof. We define the conditional loss at X = x as

hx(t) = E
[
log(1 + exp(−Y t))

∣∣X = x
]
.
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Since f∗ is a Bayes predictor of R(f ; ℓlogist), we have t∗ = f∗(x) = argmint∈R hx(t), which means that h′x(t
∗) = 0.

Using Taylor expansion implies

hx(t) = hx(t
∗) + h′x(t

∗)(t− t∗) +
h′′x(ξ)

2
(t− t∗)2 = hx(t

∗) +
h′′x(ξ)

2
(t− t∗)2.

Note that

h′′x(ξ) = E
[ Y 2 exp(Y ξ)

(1 + exp(Y ξ))2

∣∣∣X = x
]
= E

[ 1

exp(−Y ξ) + exp(Y ξ) + 2

∣∣∣X = x
]

with |ξ| ≤ B, then we can deduce that
exp(B)

(1 + exp(B))2
≤ h′′x(ξ) ≤

1

4
.

Therefore,

exp(B)

2(1 + exp(B))2
(f(x)− f∗(x))2 ≤ hx(t)− hx(t

∗) ≤ 1

8
(f(x)− f∗(x))2,

and integrating with respect to x over µX completes the proof.

Now, we prove Corollary 3.5.

Proof. Define
g(x;φ(·)T θ) := E

[
(φ(X)T θ − Y )2 − (φ(X)T θ∗ − Y )2

∣∣X = x
]
, x ∈ X .

Then, we see

g(X;φ(·)T θ) = E
[
(φ(X)T θ − φ(X)T θ∗ + φ(X)T θ∗ − Y )2 − (φ(X)T θ∗ − Y )2

∣∣X]
= E

[
(φ(X)T θ − φ(X)T θ∗)2 + 2(φ(X)T θ − φ(X)T θ∗)(φ(X)T θ∗ − Y )

∣∣X]
= (φ(X)T θ − φ(X)T θ∗)2.

Thus E(f ; ℓls) = ∥θ−θ∗∥2Σ for any f ∈ F and Assumption 3.2 holds. Observe that |g(x; ·)| is 4BφBθ-Lipschitz continuous
for any x ∈ X . Using Theorems 2.3 and 3.3 and Lemma B.1 yields the result.

Then we prove Corollary 3.6.

Proof. Denote
g(x;φ(·)T θ) = E

[
|φ(X)T θ − Y | − |φ(X)T θ∗ − Y |

∣∣X = x
]
, x ∈ X .

We deduce

g(X;φ(·)T θ) = E
[
|φ(X)T θ − Y | − |φ(·)T θ∗ − Y |

∣∣X]
= E

[
|φ(X)T θ − φ(X)T θ∗ − ε|

∣∣X]− E
[
|ε|
∣∣X].

Define h(a) := E[|a − ε||X], and note that 0 ∈ ∂ah(0) and h(a) is convex, thus h(a) ≥ h(0) = E[|ε||X] for all a ∈ R.
Hence Assumption 3.2 holds. Using Theorems 2.3 and 3.3 and Lemma B.1, one obtains the first result. Combining Lemma
5 in Shen et al. (2021) with Assumption 3.7 yields the second desired result.

Last, we prove Theorem 3.11.

Proof. By Lemma B.2, we see that g(f(·; θ), X) ≥ 0 for all θ ∈ Θ and X ∈ X . In fact, for logistic loss, the representation
function is given by ψ(z) = log(1 + exp(−z)). Then we see ψ′(z) = σ(z) − 1 and ψ′(−z) = −σ(z) where σ(·) is the
sigmoid function, and thus Assumption 3.2 holds by Lemma B.2. Note that g(·, X) is 1-Lipschitz continuous. By applying
Theorem 3.3, Lemma B.3 and Lemma B.1, we arrive at the final estimate.
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B.3. Proofs of Theorems 3.13 and 3.15

Lemma B.4. Let k ∈ N, k ≤ d and φ : X → Rd be a feature map satisfying ∥φ(x)∥2 ≤ Bφ for each x ∈ X . Denote
Fk := {x 7→ φ(x)T θ : θ ∈ Rd, ∥θ∥2 ≤ Bθ, ∥θ∥0 ≤ k}. Then

logN∞(δ,Fk) ≤ k
{
1 + log

d

k
+ log

(3BφBθ

δ

)}
.

Proof. By Lemma B.1, it is easy to check that

logN∞(δ,Fk) ≤ k
(
1 + log

d

k

)
+ k log

(3BφBθ

δ

)
,

where we used the numerical inequality log
(
d
k

)
≤ k(1 + log d

k ). This completes the proof.

Thence, Theorems 3.13 and 3.15 can be deduced by Lemma B.4, Corollaries 3.5 and 3.6, and Theorem 3.11.

C. Proofs in Section 4
C.1. Proof of Theorem 4.2

Proof. Denote
g̃(x, y; f) := ℓ(y, f(x))− ℓ(y, f∗(x)),

for any (x, y) ∈ X × Y and f ∈ F . Then we have the following decomposition by the fact that f̂n is the empirical risk
minimizer, i.e.,

ED
[
E(f̂n; ℓ)

]
= ED

[
E(X,Y )g̃(X,Y ; f̂n)

]
= ED

[
E(X,Y )g̃(X,Y ; f̂n)−

3

n

n∑
i=1

g̃(Xi, Yi; f̂n)
]
+ 3ED

[ 1
n

n∑
i=1

g̃(Xi, Yi; f̂n)
]

≤ sup
f∈F

ED

[
E(X,Y )g̃(X,Y ; f)− 3

n

n∑
i=1

g̃(Xi, Yi; f)
]
+ 3ED

[ 1
n

n∑
i=1

g̃(Xi, Yi; f)
]

= sup
f∈F

EX

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
+ 3E(f ; ℓ)

≤ EX sup
f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
+ 3E(f ; ℓ),

for any f ∈ F . Here we used the convexity of supremum and Jensen’s inequality. Hence

ED
[
E(f̂n; ℓ)

]
≤ EX sup

f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]
+ 3 inf

f∈F
E(f ; ℓ).

Observe that 0 ≤ g(x; ·) ≤ 2Bκ for all x ∈ X implies g2(x; ·) ≤ 2Bκg(x; ·), and consequently,

EX sup
f∈F

[
EXg(X; f)− 3

n

n∑
i=1

g(Xi; f)
]

= EX sup
f∈F

[
2EXg(X; f)− EXg(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

n

n∑
i=1

g(Xi; f)
]

≤ EX sup
f∈F

(
2EXg(X; f)− 1

2Bκ
EXg

2(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

2Bκn

n∑
i=1

g2(Xi; f)
)
.
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We introduce a independent copy of X, that is, X′ := {X ′
i}ni=1, and let τ = {τi}ni=1 be a sequence of i.i.d. Rademacher

variables independent of X and X′. By the technique of symmetrization and the convexity of supremum and Jensen’s
inequality, we obtain

EX sup
f∈F

(
2EXg(X; f)− 1

2Bκ
EXg

2(X; f)− 2

n

n∑
i=1

g(Xi; f)−
1

2Bκn

n∑
i=1

g2(Xi; f)
)

= EX sup
f∈F

(
EX′

[ 2
n

n∑
i=1

g(X ′
i; f)−

1

2Bκn

n∑
i=1

g2(X ′
i; f)

]
− 2

n

n∑
i=1

g(Xi; f)−
1

2Bκn

n∑
i=1

g2(Xi; f)
)

≤ EXEX′ sup
f∈F

( 2
n

n∑
i=1

(g(X ′
i; f)− g(Xi; f))−

1

2Bκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
= EXEX′Eτ sup

f∈F

( 2
n

n∑
i=1

τi(g(X
′
i; f)− g(Xi; f))−

1

2Bκn

n∑
i=1

(g2(X ′
i; f) + g2(Xi; f))

)
= 2EX′Eτ sup

f∈F

1

n

n∑
i=1

(
τig(X

′
i; f)−

1

4Bκ
g2(X ′

i; f)
)
+ 2EXEτ sup

f∈F

1

n

n∑
i=1

(
− τig(Xi; f)−

1

4Bκ
g2(Xi; f)

)
= 2EX′Roff

n

(
G, 1

4Bκ

∣∣∣X′
)
+ 2EXR

off
n

(
G, 1

4Bκ

∣∣∣X)
= 4Roff

n

(
G, 1

4Bκ

)
.

We complete the proof.

C.2. Proof of Corollary 4.7

Proof. By the relationship between the covering number and the VC-dimension of the ReLU neural networks F (Anthony
et al., 1999), we have

EX
[
N∞(δ,F ,X)

]
≤
( eBn

δVCF

)VCF
, (C.1)

where VCF denotes the VC-dimension of F . Moreover, the VC-dimension for the ReLU neural network F satisfies

c1 · DS log(S/D) ≤ VCF ≤ c2 · DS logS (C.2)

with universal constant c1 and c2, see Bartlett et al. (2019).

By Theorem 3.3 of Jiao et al. (2021), for any W,L ∈ N, there exists a function ϕ belonging to the ReLU neural networks F
with width W = 38(s+ 1)2ds+1W ⌈log2(8W )⌉ and depth D = 21(s+ 1)2L ⌈log2(8L)⌉ such that

|f0(x)− ϕ(x)| ≤ 18B(s+ 1)2ds+(ς∨1)/2 (WL)
−2ς/d

, (C.3)

for any x ∈ ∪θQθ, where

Qθ =
{
x = (x1, x2, . . . , xd) : xi ∈

[
θi
K,

θi+1
K − δ̃ · 1{θi<K−1}

]
, i = 1, 2, . . . , d

}
with θ = (θ1, θ2, . . . , θd) ∈ {0, 1, . . . ,K− 1}d and 0 < δ̃ ≤ 1

3K . Then the Lebesgue measure of [0, 1]d\Qθ is no more
than dKδ̃ which can be arbitrarily small if δ̃ is arbitrarily small. Since µX is absolutely continuous with respect to the
Lebesgue measure, we have

inf
f∈F

∥f − f0∥2L2(µX) ≤ 324B2(s+ 1)4d2s+(ς∨1)(WL)−4ς/d.

By (C.1) to (C.3), setting W = O(n
d

8ς+4d ) and L = O(n
d

8ς+4d ) yields the desired result.
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C.3. Proofs of Lemmas 4.4, 4.8, 4.10 and 4.14 and Corollary 4.11

We first prove Lemma 4.4.

Proof. Define
g(x; f) = E

[
(f(X)− Y )2 − (f∗(X)− Y )2

∣∣X = x
]
, x ∈ X .

Then, we have

g(X; f) = E
[
(f(X)− f∗(X) + f∗(X)− Y )2 − (f∗(X)− Y )2

∣∣X]
= E

[
(f(X)− f∗(X))2 + 2(f(X)− f∗(X))(f∗(X)− Y )

∣∣X]
= (f(X)− f∗(X))2.

Thus E(f ; ℓls) = ∥f − f∗∥2L2(µX) for any f ∈ F . Observe that |g(x; ·)| is 4B-Lipschitz continuous for any x ∈ X , then
using Theorems 2.3 and 4.2 yields the desired result.

Lemmas 4.8 and 4.14 are directly followed from Theorems 2.3 and 4.2. In addition, combing Theorems 2.3 and 4.2
and Lemma B.3, we can obtain Lemma 4.10. Similar to the proof of Corollary 4.7, we can deduce Corollary 4.11.
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